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ABSTRACT

Consider the problem of estimating the expectation of a non linear function of a conditional expectation. This function is
allowed to be non-differentiable and discontinuous at a finite set of points to capture practical settings. We develop a nested
simulation strategy to estimate this via simulation and identify bias and optimized mean square error allocation. We show
that this mean square error converges to zero at the rate −2/3, as → , where  denotes the available computational
budget. We also consider combining nested simulation technique with kernel based estimation methods. We note that while
the kernel based method have a better convergence rate when the underlying random process has dimensionality less than
or equal to three, pure nested simulation may be preferred when this dimension is above four.

1 INTRODUCTION

In this paper we consider the problem of estimating via Monte Carlo, the quantity

 = E(G(EX |Y ))

where X is a random variable in , Y is a random vector in d , d ≥ 1, and G is a non-linear function that may have finite
number of discontinuous/non-differentiable points. This has application in many practical settings particularly in pricing
and risk management in finance. Examples include pricing compound options (see, for instance, Glasserman 2004). As an
example, consider a call option expiring at time T1 to buy a call option expiring at time T2 > T1 . Assuming for notational
simplicity that the discount rate is zero, the price of this compound option may be expressed as

E
[
E(S(T2)−K2)+|S(T1)−K1

]+
.

where S(t) denotes the price of the underlying stock at time t, K2 denotes the strike price of a call option on this stock that
expires at time T2, and K1 denotes the strike price of an option on this call option that expires at time T1.

Similarly, a price of a CDO tranche has the form  . To see this, note that the discounted loss amount in the basket
of credit instruments in a CDO may be expressed as E(X |Y ) where Y denotes the underlying random variables such as
realization of credit intensities, default event indicators, etc. at a given time point. Conditioned on these, the value of
each instrument is its risk neutral price and hence may be a conditional expectation. This then makes the total discounted
loss amount a conditional expectation (see, for instance Gordy and Juneja 2006). Owner of a tranche of a CDO with an
attachment point a and detachment point b will suffer losses when the overall loss exceeds a, with the loss amount capped
once the overall loss exceeds b. Precisely, the loss suffered equals

min(b,max(E(X |Y ),a))−a.

1223978-1-4244-5771-7/09/$26.00 ©2009 IEEE



Hong and Juneja

In risk management of a portfolio comprising sophisticated derivatives one encounters the problem of estimating  (see,
for example, Lee 1998, Gordy and Juneja 2008) where G(x), for instance, may be of the form (x−u)+ for a positive u,
I(x > u) for an indicator function I(·), or xn for some n > 0.

One approach to estimating  is via nested simulation: Many independent samples of Y are generated in the ‘outer loop’
and for each such Y many independent samples of X are generated in the ‘inner loop’ to estimate the associated EX |Y . We
analyze the bias of the resultant estimator. In the spirit of the analysis conducted by Lee 1998 and Gordy and Juneja 2008
in a more specialized settings, we also discuss the optimal computational resource allocation between the inner and outer
loop to minimize the resultant mean square error of the estimator. In particular,we see that even in this general setting, the
mean square decays at the rate −2/3, as → , where  denotes the available computational budget.

We also introduce a combination of the kernel methods and nested simulation based estimator for  ((see, for instance,
Bosq 1998, Li and Racine 2007, and Pagan and Ullah 1999 for recent overviews on kernel methods). To keep the analysis
simple, here we assume that G(·) is smooth everywhere. We show that the optimal mean square error decays at rate

O(−min(1, 4
d+2 )).

Hence, when the dimensionality of Y is less than or equal to two, the mean square error has decay rate O(−1). When
it is three, the decay rate O(−4/5) is still an improvement over pure nested simulation. However, for d ≥ 5, the pure
nested simulation may be preferred. We make simplifying assumptions and use heuristical arguments in this paper to aid
the exposition. A more rigorous expanded version will appear separately.

In Section 2 we discuss nested simulation estimation. Its combination with kernel based methods is discussed in Section
3. We end with a brief conclusion in Section 4. Some of the proof outlines are relegated to the appendix.

2 NESTED SIMULATION ESTIMATION

Suppose that random vector Y take values in d , d ≥ 1, X takes values in  and G : → . Consider the following
procedure to estimate : Generate i.i.d. samples Y1, . . . ,Yn of Y . Conditioned on Yi, generate samples (Xi j(Yi) : j = 1, . . . ,m)
of X . Then

̂m,n =
1
n

n


i=1

G

(
1
m

m


j=1

Xi j(Yi)

)

is a nested estimator of  . We first estimate the bias of the estimator ̂m,n, that is, we analyze

|EG(X̄m(Y ))−|

where X̄m(Y ) = 1
m m

j=1 Xj(Y ) and Xj(Y ) is distributed as X conditional on Y .
In this paper we restrict ourselves to settings where random variable H = EX |Y has a probability density function fH(·).

We use the notation H with EX |Y interchangeably, using the former to avoid notational clutter, and the latter where greater
clarity is useful. Conditioned on Y , let 2(Y ) denote the variance of X . Under mild conditions, due to the central limit
theorem, conditioned on Y

1√
m

m


j=1

Xj(Y )

converges to a Gaussian random variable with mean EX |Y and variance 2(Y ). To keep the exposition simple we will
assume that conditional on Y , 1√

m m
j=1 Xj(Y ) has a Gaussian distribution (with mean EX |Y and variance 2(Y )). In more

general settings, the deviations from Gaussian distribution are easy to handle using Berry-Esseen inequalities (see Lee 1998
for similar analysis).

Practically important functions G may have a finite number of points where they are non-differentiable or even
discontinuous. To understand the bias for such G, it suffices to consider functions G that are truncated at a point. For
instance, either G(x) = 0 for x ≥ b or G(x) = 0 for x ≤ a (See, Figure 1). Once, we have established the bias for both such
functions, the bias for a general function with finite non-differentiability or even discontinuity points, can be evaluated by
adding or subtracting such functions for different values of a and b.
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Figure 1: Practically important functions G may have a finite number of points where they are non-differentiable or even
discontinuous. To understand the bias for such G, it suffices to consider truncated functions shown above. The bias for
general functions, when EX |Y is a continuous random variable, can be evaluated by adding or subtracting such functions
for different values of a and b.

2.1 Bias Estimation

We first assume that G(x) = 0 for x > b. For x ≤ b, we assume that G(·) is thrice continuously differentiable (at b we only
consider the limits from the left) with uniformly bounded third derivative. We show that

EG(X̄m(Y ))− =
1

2m
EG′′(EX |Y )2(Y )I(EX |Y ≤ b)−G′(b) fH(b)

2m
E(2(Y )|EX |Y = b)+

G(b)
2m

d
db

fH(b)E(2(Y )|EX |Y = b)
(1)

plus smaller order terms, where G′(·) and G′′(·) denote the first and the second derivatives, respectively.
One can similarly show that if G(x) = 0 for x < a, and for x ≥ a, G(·) is thrice continuously differentiable (at a we only

consider the limits from the right) with uniformly bounded third derivative, then

EG(X̄m(Y ))− =
1

2m
EG′′(EX |Y )2(Y )I(EX |Y ≥ a)+

G′(a) fH(a)
2m

E(2(Y )|EX |Y = a)−G(a)
2m

d
da

fH(a)E(2(Y )|EX |Y = a)
(2)

plus smaller order terms.

Example 1. Suppose that G(·) is thrice continuously differentiable everywhere on the real line, with uniformly bounded
third derivative, then it follows from above that

EG(X̄m(Y ))− =
1

2m
E(G′′(EX |Y )2(Y ))+ smaller order terms.

Hence,

E(X̄m(Y ))2 −E(EX |Y )2 =
1

2m
E(2(Y ))+ smaller order terms.
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Example 2. Suppose that G(·) is thrice continuously differentiable on [a,b] and is zero outside this interval. Again, the
limits associated with the first and second derivatives at points a and b are defined as limits from the right and the limits
from the left, respectively. Then, by expressing this function as a difference of two functions, one on (−,b) and another
on (−,a), both sufficiently smooth in their domains, we get

EG(X̄m(Y ))− =
1

2m
EG′′(EX |Y )2(Y )I(a ≤ EX |Y ≤ b)− G′(b) fH(b)

2m
E(2(Y )|EX |Y = b)

+
G(b)
2m

d
db

fH(b)E(2(Y )|EX |Y = b)+
G′(a) fH(a)

2m
E(2(Y )|EX |Y = a)−G(a)

2m
d
db

fH(a)E(2(Y )|EX |Y = a)+ smaller order terms.

Example 3. Consider G(x) = I(x ≥ u) for a constant u. Then,

P(X̄m(Y ) ≥ u)−P(EX |Y ≥ u) = − 1
2m

d
db

fH(u)E(2(Y )|EX |Y = u)+ smaller order terms.

This was reported in Lee 1998 and Gordy and Juneja 2008.

Example 4. Consider G(x) = (x−u)+ for a constant u. Then,

E(X̄m(Y )−u)+−E(EX |Y −u)+ = +
fH(u)
2m

E(2(Y )|EX |Y = u)+ smaller order terms.

Example 5. Consider

G(x) = min(b,max(x,a))−a = (x−a)+ − (x−b)+,

for a < b. Then,

EG(X̄m(Y ))− =
fH(a)
2m

E(2(Y )|EX |Y = a)− fH(b)
2m

E(2(Y )|EX |Y = b)+ smaller order terms.

Proof outline : To see (1), consider the following decomposition:

E (G(X̄m(Y ))−G(EX |Y )I(EX |Y ≤ b, X̄m(Y ) ≤ b)) , (3)

E (G(X̄m(Y ))−G(EX |Y )I(EX |Y ≤ b, X̄m(Y ) ≥ b)) , (4)

and

E (G(X̄m(Y ))−G(EX |Y )I(EX |Y > b, X̄m(Y ) ≤ b)) . (5)

We show that (3) equals

− 1
2m

G′(b) fH(b)E(2(Y )|H = b)+
1

2m
E2(Y )G′′(EX |Y )I(EX |Y ≤ b)+ smaller order terms. (6)

Furthermore, (4) equals

− G(b) fH(b)√
m

E(WI(W ≥ 0)|H = b)+
G(b)
4m

d fH(b)
db

E(2(Y )|H = b)+
G′(b) fH(b)

4m
E(2(Y )|H = b) (7)

plus smaller order terms, and (5) equals

− G(b) fH(b)√
m

E(WI(W ≤ 0)|H = b)+
G(b)
4m

d fH(b)
db

E(2(Y )|H = b)− G′(b) fH(b)
4m

E(2(Y )|H = b) (8)
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plus smaller order terms. Then, noting that

E(W |H = b) = E(E(W |Y )|H = b) = 0,

(1) follows. The fact that equations (3), (4) and (5) equal (6), (7) and (8), respectively is shown in the appendix.

2.2 Optimizing Mean Square Error

Note that the mean square error of ̂m,n equals its squared bias plus its variance. As we discussed above, the squared bias
has the expression c2/m2 +o(1/m2) for an appropriate constant c. We now evaluate the dominant terms of the variance of
̂m,n. For any rv X , let V (X) denote its variance. Then,

V (̂m,n) =
1
n
V (G(X̄m(Y ))),

and

V (G(X̄m(Y ))) = EG(X̄m(Y ))2 − (EG(X̄m(Y )))2
.

¿From the above analysis, it is clear that under mild conditions,

EG(X̄m(Y ))2 = EG(EX |Y )2 +O(1/m),

and

(EG(X̄m(Y )))2 = (EG(EX |Y ))2 +O(1/m2).

Therefore,

V (̂m,n) =
1
n
V (G(EX |Y ))+

1
n
O(1/m).

As in Lee 1998 and Gordy and Juneja 2008, we now consider the problem of finding asymptotically optimal m and n,
when the overall computational budget  increases to . If we assume that the average computational effort in the outer
loop is a constant  and the average computational effort in the inner loop is m , than for large values of n, the overall
computational effort is close to n( +m ). We then look for m and n that minimize the mean square error when the total
computational budget  = n( +m ) and → .

Note that the dominant terms in the mean square error are

c2

m2 +
v
n

(9)

where v = V (G(EX |Y )). Setting n = /( +m ) and optimizing (9) over m, we see that the optimal inner loops

m∗ =
(

2c
v

)1/3

1/3.

Then optimal outer loops

n∗ =


 +m∗ =
(

v
2c

)1/3

2/3 +o(2/3).

The mean square error has a decay rate of order −2/3.
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3 KERNEL METHOD BASED ESTIMATION

Recall that in the nested simulation method for estimating  , we generate independent samples of Y , (Yi : i ≤ n) and for
each i, we generate independent samples of X , (Xj : j ≤ m), conditioned on Yi. The estimator of each EX |Yi is X̄m(Yi) and
the estimator of  is 1

n 
m
i=1 G(X̄m(Yi)). Another way suggested by kernel based methods is to also include information

associated with Yj, j �= i for estimating EX |Yi, giving higher weights to Yj’s that are in the vicinity of Yi.
Specifically, consider a kernel function K :→+. Typically such kernels are assumed to be bounded and symmetric

such that yK(y) → 0 as ||y|| →  and
∫
Y y2K(y)dy < . Then an estimator for EX |Yi is given as

n
j=1 X̄m(Yj)K( ||Yj−Yi||

n
)

n
j=1 K( ||Yj−Yi||

n
)

where {n} is a sequence that decreases to zero and n d
n →  (recall that d is the dimension of Y ). In this paper, we focus

on a simple kernel K(x) = I(x < 1).
First consider the case, where Y takes values in . Then our estimator of EX |Yi is

X̃m(Yi) =
n

j=1 X̄m(Yj)I(|Yi −Yj| < n)

n
j=1 I(|Yi −Yj| < n)

.

Our estimator of  is

̃m,n =
1
n

n


i=1

G(X̃m(Yi)).

In this section we assume that G(·) is sufficiently smooth everywhere in .

3.1 Bias Estimation

We first analyze the bias |m,n| of this estimator, where

m,n = E(̃m,n)−.

Denote any vector (Zi : i ≤ n) by �Zn. Let (y) = EX |Y = y. We assume that this function is twice continuously
differentiable. Note that

X̃m(Yi) = Zm,n +
n

j=1(Yj)I(|Yi −Yj| < n)

n
j=1 I(|Yi −Yj| < n)

where

Zm,n =
(n

j=1 X̄m(Yj)−(Yj))I(|Yi −Yj| < n)

n
j=1 I(|Yi −Yj| < n)

.

Furthermore,

n
j=1(Yj)I(|Yi −Yj| < n)

n
j=1 I(|Yi −Yj| < n)

= (Yi)+R1(�Yn,n)+R2(�Yn,n)

where,

R1(�Yn,n) =  ′(Yi)
n

j=1(Yj −Yi)I(|Yi −Yj| < n)

n
j=1 I(|Yi −Yj| < n)

,
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and

R2(�Yn,n) =
 ′′(Yi)

2

n
j=1(Yj −Yi)2I(|Yi −Yj| < n)

n
j=1 I(|Yi −Yj| < n)

+ remainder term.

Hence,

X̃m(Yi) = Zm,n +(Yi)+R1(�Yn,n)+R2(�Yn,n).

Note that m,n equals the expectation of

G′((Yi))(Zm,n +R1(�Yn,n)+R2(�Yn,n))+
G′′((Yi))

2
(Zm,n +R1(�Yn,n)+R2(�Yn,n))2 + remainder term.

Since,

E(Zm,n|�Yn) = 0

it follows that m,n equals

E
(
G′((Yi))(R1(�Yn,n)+R2(�Yn,n))

)
+

1
2
EZ2

m,nG
′′((Yi))+ remainder terms.

We now evaluate the dominant terms in E(G′((Yi))(R1(�Yn,n))), E(G′((Yi))R2(�Yn,n)) and EZ2
m,nG

′′((Yi)).
For this, the following results are useful and are easily established. Let fY (·) denote the pdf of Y which we assume is

sufficiently smooth. Then,

P(|Yj − y| < n) = 2n fY (y)+O( 2
n ),

E(Yj − y)I(|Yj − y| < n) =
2
3
 3

n f ′Y (y)+o( 3
n ),

and

E(Yj − y)2I(|Yj − y| < n) =
2
3
 3

n fY (y)+o( 3
n ).

Conditioning on Yi, using a variant of law of large numbers it can be seen that

1
nn

n


j=1

I(|Yi −Yj| < n) → 2 fY (Yi) a.s.,

1
n 3

n

n


j=1

(Yj −Yi)I(|Yi −Yj| < n) → 2
3

f ′Y (Yi) a.s.,

and

1
n 3

n

n


j=1

(Yj −Yi)2I(|Yi −Yj| < n) → 2
3

fY (Yi) a.s.

It then follows that

1
 2

n
G′((Yi))(R1(�Yn,n)) → 1

3
G′((Yi)) ′(Yi)

f ′Y (Yi)
fY (Yi)

a.s.

Under technical conditions, the LHS is uniformly integrable so that

E(G′((Yi))(R1(�Yn,n)) =
 2

n

3
EG′((Yi)) ′(Yi)

f ′Y (Yi)
fY (Yi)

+o( 2
n ).
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Similarly, E(G′((Yi))R2(�Yn,n)) can be evaluated. To see this note that

1
 2

n
G′((Yi))(R2(�Yn,n)) → 1

6
G′((Yi)) ′′(Yi) a.s.

Therefore, if the LHS is uniformly integrable then,

E(G′((Yi))R2(�Yn,n)) =
 2

n

6
E(G′((Yi)) ′′(Yi))+o( 2

n ).

Now consider EZ2
m,nG

′′((Yi)). Note that this equals

E

(
G′′((Yi))

n
j=1(X̄m(Yj)−(Yj))2I(|Yi −Yj| < n)

(n
j=1 I(|Yi −Yj| < n))2

)
.

Recall that 2(Y ) denotes the conditional variance of X given Y . Then, above equation equals

E

(
1
m

G′′((Yi))
n

j=12(Yj)I(|Yi −Yj| < n)
(n

j=1 I(|Yi −Yj| < n))2

)
. (10)

This term can be seen to have a dominant term

E

(
1
m

G′′((Yi))2(Yi)
n

j=1 I(|Yi −Yj| < n)
(n

j=1 I(|Yi −Yj| < n))2

)
.

As in our earlier analysis, it follows that under technical conditions, (10) equals

1
2mnn

E

(
G′′((Yi))2(Yi)

fY (Yi)

)
(1+o(1)).

Therefore, when Y takes values in , under technical conditions we have that the bias is dominated by terms of the
form

d1 2
n +d2

1
mnn

for constants d1 and d2.

3.2 Variance Estimation

We now consider the variance

V (
1
n

n


i=1

G(X̃m(Yi))) (11)

and argue that the dominant term has the form v1
n . Note that this variance equals

1
n
V (G(X̃m(Y1)))+(1−1/n)Cov(G(X̃m(Y1)),G(X̃m(Y2)))

where Cov(A,B) denotes the covariance between random variables A and B.
Note that V (G(X̃m(Y1))) equals

EG(X̃m(Y1))2 − (EG(X̃m(Y1))
)2

.
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¿From our previous analysis, under technical conditions, this converges to V ((Y )) as n → .
Now consider Cov(G(X̃m(Y1)),G(X̃m(Y2))). To ease the analysis we discuss the case where G(x) = x. In that setting

this term equals

Cov(
n
i=1(Yi)I(|Yi −Y1| < n)
n

i=1 I(|Yi −Y1| < n)
,
n

j=1(Yj)I(|Yj −Y2| < n)

n
j=1 I(|Yj −Y2| < n)

). (12)

Since,

n


i=1

I(|Yi −Y1| < n) ∼ 2nn fY (Y1)

We can show that (12) is asymptotically similar to

1
(nn)2

n


i=1

n


j=1

Cov(
(Yi)

2 fY (Y1)
I(|Yi −Y1| < n),

(Yj)
2 fY (Y2)

I(|Yj −Y2| < n)). (13)

Note that

Cov(
(Yi)

2 fY (Y1)
I(|Yi −Y1| < n),

(Yj)
2 fY (Y2)

I(|Yj −Y2| < n))

equals zero when i �= j �= 1 or 2. When, i = j �= 1 or 2, this equals O( 2
n ). When i = 1 and j ≥ 3, this term is zero. Similarly,

when j = 2 and i ≥ 3, this term is zero. When, j = 1 and i ≥ 3, this term is O( 2
n ). Similarly, when, i = 2 and j ≥ 3,

this term is O( 2
n ). The remaining four terms are bounded from above by O(1) terms. Then, its easy to see that (13) is

dominated by O( 1
n ).

This observation generalizes and one can show that (11) has the form v1
n plus smaller order terms under technical

conditions.

3.3 Multi-Dimensional Analysis

We briefly consider the case where d > 1. The major change in the bias analysis from the case d = 1 is that now

R1(�Yn,n) =
(n

j=1(Yi)T (Yj −Yi)I(||Yi −Yj|| < n)

n
j=1 I(||Yi −Yj|| < n)

,

where (y) dentes the gradient of  at y and ||y|| for y ∈d denotes its Euclidean norm. Similarly,

R2(�Yn,n) =
1
2

(n
j=1(Yj −Yi)TH (Yi)(Yj −Yi)I(||Yi −Yj|| < n)

n
j=1 I(||Yi −Yj|| < n)

+ remainder term,

where H (y) denotes the Hessian of  at y.
In this case it is easy to see that

P(||Yj − y|| < n) = constant× d
n fY (y)+o( d

n ),

E((y)T (Yj − y))I(||Yj − y|| < n) = constant× d+2
n (y)T fY (y)+o( d+2

n ),

and

E(Yj − y)TH (y)(Yj − y)I(||Yj − y|| < n) = constant× d+2
n Tr(H (y)) fY (y)+o( d+2

n )

where Tr(A) denotes the trace of matrix A.
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Then, essentially repeating the discussion for d = 1 case, we see that the bias has the dominant terms of the form

a 2
n +

b
mn d

n

for constants a and b.
The discussion on the variance gives a similar conclusion that the dominant term equals v

n for a constant v. Then, the
mean square error has dominant terms

a2 4
n +2

ab

mn d−2
n

+
b2

m2n2 2d
n

+
v
n
.

If we assume that the computational effort is primarily spent in the outer loop in generating samples of Y (average  per
sample) and in the inner loop in generating samples of X conditional on Y (average effort  per sample), and that the effort
required to compute X̃m(Y ) once the associated samples of Y and X are known, is negligible, then, the overall computational
effort is close to n(+m ). We then look for m, n and n that minimize the mean square error when the total computational
budget  = n( +m ) and → .

In this formulation, for conducting order of magnitude analysis, analysis simplifies if we set  = 0 and  = 1. (The
conclusions do not essentially change by this parameter restriction).

Then, the mean square error (mse) equals

a2 4 +2
ab

 d−2
n

+
b2

2 2d +
vm


.

It then follows that m = 1 is optimal. Furthermore, optimal  is of order

− 1
d+2 .

The convergence rate of mse to zero then equals

−min(1, 4
d+2 ).

Therefore, the kernel based estimation is better than pure nested simulation for d ≤ 3 and is worse than nested simulation
for d ≥ 5.

4 CONCLUSION

In this paper we considered the problem of estimating via simulation the expectation of a non-linear function of a conditional
expectation. We noted some of the applications of this in pricing and risk management in finance. We considered this
problem in two settings: one where pure nested simulation was used and second where this was combined with a popular
kernel method. For both the settings we derived the expressions for the bias and the variance using simplified and heuristic
arguments. We showed that if the overall computational budget equals , then as →, the mse under the first method decays
to zero at rate proportional to −2/3. Under the second method, this depends on the dimensionality of the underlying random

vector and equals −min(1, 4
d+2 ) when d denotes this dimension. Therefore, the second method asymptotically outperforms

the first for d ≤ 3, while the first is better for d ≥ 5. As mentioned earlier, the analysis performed is under simplified
assumptions. A rigorous presentation combined with numerical support for the results will be presented in an expanded
version of this paper.

A APPENDIX

Equation (3) equals (6): Using Taylor’s expansion, we have along the set {EX |Y ≤ b, X̄m(Y ) ≤ b},

G(X̄m(Y ))−G(EX |Y ) = (X̄m(Y )−EX |Y )G′(EX |Y )+
(X̄m(Y )−EX |Y )2

2
G′′(EX |Y )+ smaller order terms.
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Then, E(G(X̄m(Y ))−G(EX |Y ))I(EX |Y ≤ b, X̄m(Y ) ≤ b) equals

= E(X̄m(Y )−EX |Y )G′(EX |Y )I(EX |Y ≤ b, X̄m(Y ) ≤ b) (14)

+
1
2
E(X̄m(Y )−EX |Y )2G′′(EX |Y )I(EX |Y ≤ b, X̄m(Y ) ≤ b) (15)

+ smaller order terms. (16)

Note that

E(X̄m(Y )−EX |Y )G′(EX |Y )I(EX |Y ≤ b) = 0.

Hence, (14) equals

−E(X̄m(Y )−EX |Y )G′(EX |Y )I(EX |Y ≤ b, X̄m(Y ) > b).

Recall that X̄m(Y )) can be expressed as EX |Y + W√
m where conditional on Y , W has a Gaussian distribution with mean

zero and variance 2(Y ). The above equation may then be re-expressed as

−E(
W√
m

)G′(EX |Y )I(EX |Y ≤ b,EX |Y > b− W√
m

). (17)

Let fH,W (·, ·) denote the joint pdf of H = EX |Y and W . Then, (17) equals

−
∫ 

0

w√
m

∫ b

b−w/
√

m
G′(h) fH,W (h,w)dhdw. (18)

By using the Taylor series expansion

fH,W (h,w) = fH,W (b,w)+(h−b)
 fH,W (b,w)

h
+ smaller order terms (19)

(assuming that this density expansion exists) in (18), we see that under mild conditions, it equals

−G′(b) fH(b)
m

E(W 2I(W ≥ 0)|H = b)+ smaller order terms.

Note that

E(W 2I(W ≥ 0)|H = b) = E(E(W 2I(W ≥ 0)|Y )|H = b) =
1
2
E(2(Y )|H = b).

Hence, (14) equals

− 1
2

G′(b) fH(b)
m

E(2(Y )|H = b)+ smaller order terms. (20)

Now consider (15). It may be re-expressed as the difference of

1
2
E(X̄m(Y )−EX |Y )2G′′(EX |Y )I(EX |Y ≤ b) (21)

and

1
2
E(X̄m(Y )−EX |Y )2G′′(EX |Y )I(EX |Y ≤ b, X̄m(Y ) > b). (22)

1233



Hong and Juneja

Conducting the analysis as for evaluating (14), it can be seen that (22) is of smaller order compared to 1/m. Since, (21)
equals

1
2m

E2(Y )G′′(EX |Y )I(EX |Y ≤ b),

(6) follows from (20) and (15).

Equation (4) equals (7): Equation (4) equals

−E (G(EX |Y )I(EX |Y ≤ b, X̄m(Y ) ≥ b)) ,

and may be re-expressed as

− G(b)P(EX |Y ≤ b,EX |Y ≥ b− W√
m

) (23)

− G′(b)E(EX |Y −b)I(EX |Y ≤ b,EX |Y ≥ b− W√
m

), (24)

plus smaller order terms. We may re-express (23) as

−G(b)
∫ 

0

∫ b

b−w/
√

m
fH,W (h,w)dhdw (25)

Again, by using the Taylor series expansion as in (19), in (25), we see that it equals

−G(b) fH(b)√
m

E(WI(W ≥ 0)|H = b)+
G(b)
2m

∫ 

0
w2  fH,W (b,w)

b
+ smaller order terms.

By interchanging the partial derivative and the integral, the second term above may be re-expressed as

G(b)
2m

d
db

fH(b)E(W 2I(W ≥ 0)|H = b). (26)

As before,

E(W 2I(W ≥ 0)|H = b) =
1
2
E(2(Y )|H = b).

Therefore, (25) can be re-expressed as

1
4m

G(b)
d
db

fH(b)E(2(Y )|H = b) (27)

plus smaller order terms.
Now we evaluate the dominant terms in (24). It may be re-expressed as

−G′(b)
∫ 

0

∫ b

b−w/
√

m
(h−b) fH,W (h,w)dhdw.
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By considering the Taylor series expansion of fH,W (h,w) this can be seen to be

≈ G′(b)
∫ 

0

w2

2m
fH,W (b,w)dw,

=
G′(b) fH(b)

2m
E(W 2I(W ≥ 0)|H = b)

=
G′(b) fH(b)

4m
E(2(Y )|H = b).

Equation (5) equals (8): Along the set {EX |Y > b, X̄m(Y ) ≤ b}, we have

G(X̄m(Y )) = G(b)+(X̄m(Y )−b)G′(b)+
(X̄m(Y )−b)2

2
G′′(b)+ smaller order terms.

It follows that (5) equals

G(b)P(EX |Y > b,EX |Y +W/
√

m ≤ b) (28)

+G′(b)E(W/
√

m+EX |Y −b)I(EX |Y > b,EX |Y +W/
√

m ≤ b) (29)

+ a smaller order terms. Equation (28) in turn equals,

G(b)
∫ 0

−

∫ b−w/
√

m

b
fH,W (h,w)dhdw (30)

As before, by using the Taylor series expansion of fH,W (h,w) at fH,W (b,w), in (30), we see that it equals

−G(b) fH(b)√
m

E(WI(W ≤ 0)|H = b)+
G(b)
2m

∫ 0

−
w2  fH,W (b,w)

b
+ smaller order terms.

By interchanging the partial derivative and the integral, the second term above may be re-expressed as

G(b)
2m

d fH(b)
db

E(W 2I(W ≤ 0)|H = b). (31)

Note that

E(W 2I(W ≤ 0)|H = b) = E
(
E(W 2I(W ≤ 0)|Y )|H = b

)
=

1
2
E(2(Y )|H = b).

Therefore, (31) can be re-expressed as

G(b)
4m

d fH(b)
db

E(2(Y )|H = b). (32)

Now we evaluate the dominant terms in (29). It may be re-expressed as

G′(b)
∫ 0

−

∫ b−w/
√

m

b
(w/

√
m+h−b) fH,W (h,w)dhdw.
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By considering the Taylor series expansion of fH,W (h,w) at fH,W (b,w), this can be seen to be

≈ G′(b)
∫ 0

−
fH,W (b,w)

(∫ b−w/
√

m

b
(w/

√
m+h−b)dh

)
dw,

= −G′(b)
∫ 0

−
w2

2m
fH,W (b,w)dw,

= −G′(b) fH(b)
2m

E(W 2I(W ≤ 0)|H = b)

= −G′(b) fH(b)
4m

E(2(Y )|H = b).
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