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Optimization via simulation (OvS) is an exciting and fast developing area for both research and practice. In this article, we
introduce three types of OvS problems: the R&S problems, the continuous OvS problems and the discrete OvS problems,
and discuss the issues and current research development for these problems. We also give some suggestions on how to use
commercial OvS software in practice.

1 INTRODUCTION

Computer simulation is one of the most widely used operations research tools in practice. Every day, simulation users build
simulation models to design and analyze complex systems. One feature of simulation is that one can change the parameters
of a simulation model easily and try to observe the system performance under different sets of parameters. Therefore, it is
natural to try to find the set of parameters that optimizes the system performance. This is what we call optimization via
simulation (OvS). Because OvS requires simulating the system for multiple replications at multiple (possibly a very large
number of) parameter settings, abundant computing power is necessary. Due to the rapid growth of computing power, OvS
has become popular in recent years.

Many practical problems can be formulated as an OvS problem. Here are some examples:

• Minimize the mean storage-and-retrieval time for a material handling system by choosing the number of automatic
guided vehicles (AGVs), load per AGV, and routing algorithm subject to cost and space constraints;

• Maximize long-run system availability by choosing redundancy and repair capability for components subject to a
budget constraint;

• Choose product variants to stock to maximize expected profit when demand and customer choice is stochastic;
• Allocate buffer capacity along an auto assembly line to minimize the sum of work-in-process and space costs subject

to a throughput constraint.

OvS problems can often be formulated as

min {g(x) = Ex [Y (x)]}, x ∈Θ⊂ℜd , (1)

where x is the vector of decision variables (also called a solution). In words, we try to minimize an objective function that
is defined as the expected value of a random variable whose distribution depends on the decision variable x. To evaluate the
objective function, we can only run simulation experiments at a particular value of x. The simulation run is often slow and
the output is only an estimate of g(x). Furthermore, the distribution of the output may vary significantly over the feasible
region, and little is known about the properties (e.g., differentiability and convexity) of the (implied) objective function. For
a recent comprehensive review of the research and practice of OvS, see Fu (2002).

Based on the structure of the feasible region Θ, we may divide OvS problems into three categories.
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• In the first category, Θ has a small number of solutions (often less than 100) and the decision vector x may be
numerical or categorical. Then, we may simulate all solutions and select the best among them. This problem is
known as the ranking-and-selection (R&S) problem.

• In the second category, x is a vector of continuous decision variables and Θ is a convex subset of ℜd . This problem
is known as the continuous OvS (COvS) problems.

• In the third category, x is discrete and integer ordered and Θ is a subset of the set of d-dimensional integers. This
problem is known as the discrete OvS (DOvS) problems.

Note that this categorization is not exhaustive, e.g., it does not include mixed integer OvS problems. However, it covers the
majority of the OvS problems that arise in practice and in academic research. Therefore, we focus on these three categories
of problems in this paper, and introduce several algorithms for each category.

The algorithms developed in the academic research community often have good provable statistical properties. For
instance, the R&S algorithms often guarantee to find the best solution with a given probability or with the lowest opportunity
cost, and the COvS/DOvS algorithms often guarantee to converge to an optimal solution (either local or global depending
on the algorithm) as the simulation effort goes to infinity. Nevertheless, algorithms that have good empirical performance
but no convergence guarantees have also been applied to solve OvS problems, especially when simulation experiments are
computationally expensive. For instance, metamodel-based optimization algorithms have been used to solve COvS problems
(see Barton and Meckesheimer (2006) for a review) and metaheuristics have been used to solve DOvS problems (see Olafsson
(2006) for a review).

Optimization packages have also been incorporated in commercial simulation-software products. For instance, AutoStat
has been used by simulation software AutoMod and AutoSched; OptQuest has been incorporated in simulation software Arena,
Flexsim, Micro Saint, ProModel, SIMUL8 and others; and SimRunner2 has been integrated in simulation software MedModel,
ProModel and ServiceModel (Law 2007). Unlike the algorithms developed in the academic research community, which focus
on convergence properties, most of the commercial OvS packages implement robust metaheuristics. For instance, AutoStat
uses evolution strategies, OptQuest uses scatter search, tabu search and neural networks, and SimRunner2 uses evolution
strategies and genetic algorithms (Law 2007). These metaheuristics are often robust and perform well on deterministic
problems. However, they usually lack sophisticated schemes to handle randomness in the simulation outputs. When the level
of randomness is low, the algorithms often perform well; when the level of randomness is high, however, the algorithms
could be misled by the noise in the simulation outputs and report solutions with poor qualities.

The rest of the paper is organized as follows: In Section 2, we discuss the basic formulations of R&S problems and
introduce several R&S algorithms (procedures). In Section 3, we introduce the basic form of the stochastic approximation
(SA) algorithm which is by far the most studied and used algorithm for COvS problems, and discuss the issue of gradient
estimation which is critical to the implementation of the SA algorithm. In Section 4, we describe random search algorithms
which are widely used to solve DOvS problems, and discuss the different types of convergence guarantees and finite-time
performance enhancement. In Section 5, we give some suggestions for how to work with commercial OvS software, followed
by conclusions in Section 6.

2 RANKING AND SELECTION

There are a number of different R&S problems that arise in simulation studies, including selection of the best, comparison
with a standard, multinomial selection and Bernoulli selection (Kim and Nelson 2007). In the OvS context, we are mainly
interested in the first problem: selection of the best, which selects the solution with the smallest mean performance. Based
on Equation (1), selecting-the-best procedures select the solution with the smallest g(x) from the finite set Θ.

There are two basic approaches to the selecting-the-best problem: the frequentist approach and the Bayesian approach.
In this section, we will focus on the frequentist approach. However, we will give a brief overview of the Bayesian approach
first. There are two streams of Bayesian selection procedures: the optimal computing budget allocation (OCBA) procedures
and expected value of information (EVI) procedures. The OCBA procedures, proposed by Chen et al. (2000), allocate the
simulation budget to maximize the posterior probability of correct selection (PCS). The EVI procedures, studied by Chick and
Inoue (2001), try to minimize the expected opportunity cost of the chosen solution. A strength of the Bayesian procedures
is that they provide strategies for “optimally allocating simulation effort to the solutions being considered”.

Now we introduce the frequentist approach. Suppose that there are totally k≥ 2 solutions in Θ, denoted as x1,x2, . . . ,xk.
We let Yj(xi) denote the jth observation from simulating solution xi. The frequentist approach typically assumes that
Yj(xi) ∼ N(g(xi),σ2

i ), where g(xi) is unknown and σ2
i may be assumed known or unknown depending on procedures.

Without loss of generality, we let g(x1)≤ g(x2)≤ ·· · ≤ g(xk) and the goal of a R&S procedure is to select solution x1 which
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is unknown to the users. A procedure is statistically valid if

Pr{select solution xk | g(x1)≤ g(x2)−δ} ≥ 1−α, (2)

where δ > 0 is called an indifference-zone (IZ) parameter and it is often set as the smallest difference that is practically
significant. Under this formulation, the best solution x1 will be selected with a probability at least 1−α as long as the
difference between the objective values of the best and second best systems is practically significant enough. If there are a
set of solutions whose objective values are within δ to the objective value of the best solution, then all solutions in the set
are acceptable. Then, R&S procedures that guarantee Equation (2) typically select one of the solutions from the set with a
probability at least 1−α .

We first consider Bechhofer’s procedure (Bechhofer 1954), which is one of the earliest and simplest indifference-zone
selection procedures. The procedure assumes that σ2

1 = σ2
2 = · · ·= σ2

k = σ2 and σ2 is known, and Yj(xi) are independent
of Yn(xm) whenever i 6= m (different solutions) or j 6= n (different observations) or both.

Bechhofer’s Procedure

Step 1. Determine the constant h, which satisfies Pr{Zi ≤ h, i = 1,2, . . . ,k− 1} = 1−α where (Z1,Z2, . . . ,Zk−1) has a
multivariate normal distribution with means 0, variances 1, and common pairwise correlations 1/2. Let

n =
⌈

2h2σ2

δ 2

⌉
.

Step 2. Take n observations from each solution and calculate Ȳn(xi) for all i = 1,2, . . . ,n, where Ȳn(xi) denotes the sample
mean of Y (xi) calculated from the first n observations.

Step 3. Select the solution with the lowest sample mean Ȳn(xi) as the best.

Bechhofer’s procedure includes many of the elements that are essential to an IZ selection procedure. It determines the
sample sizes required for all k solutions based on the variances of the solutions and by assuming g(x1)+δ = g(x2) = · · ·= g(xk),
and then it selects the solution with the lowest sample mean after all solutions acquired the required number of samples.

In OvS, however, the variances are typically unknown. Then a preliminary stage, which acquires some samples for each
solution, is needed to estimate the variances. These type of procedures are called two-stage procedures. There are many
such procedures. When the variances are unknown and unequal, Rinott’s procedure (Ronott 1978) may be used. When the
variances are unknown and unequal and common random numbers (CRN) are used, the procedure of Nelson and Matejcik
(1995) may be appropriate. When the number of solutions become large, a screening step may be added to the preliminary
stage to screen out those clearly inferior solutions (see, for instance, the procedure of Nelson et al. (2001)).

In many real experiments, samples are taken in a batch. For instance, when testing the effectiveness of a drug, a sample
of n patients may take the drug at the same time. It is often not practical to give the drug to only one patient at a time
and wait to see the result before giving the drug to another. Simulation experiments, however, are often conducted on just a
single computer. Therefore, the samples are taken one at a time. When the samples are collected one at a time, it makes
sense to evaluate the selection decision after the collection of every sample. The fully-sequential procedures are proposed
to achieve this goal. The simplest fully-sequential procedure is Paulson’s procedure (Paulson 1964), which makes the same
assumptions as Bechhofer’s procedure.

Paulson’s procedure

Step 1. Let 0 < λ < δ and

a = ln
(

k−1
α

)
σ2

δ −λ
.

Let I = {x1,x2, . . . ,xk} and r = 0.
Step 2. Let r = r +1. Take one observation from each solution that is in I and compute Ȳr(xi) for all xi ∈ I.
Step 3. Let Iold = I and

I =
{

x` ∈ Iold : Ȳr(x`)≤ min
i∈Iold

Ȳi(xi)+max{0,a/r−λ}
}

.
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If |I|> 1, then go to Step 2; otherwise, select the solution in I as the best.

Paulson’s procedure uses a large deviation bound, which can be further tightened to Fabian’s bound (Fabian 1974). Kim
and Nelson (2001) designed a fully-sequential procedure for simulation experiments with unknown and unequal variances,
and it allows the use of CRN. Kim and Nelson (2006) further extended their procedure to allow observations to be non-normal
and dependent. Because of the possibility of early stopping, fully-sequential procedures typically require fewer samples on
average to make the selection decision. Therefore, they are more efficient in practice. To implement these fully sequential
procedures for simulation experiments, frequent switchings among the simulations of different solutions are necessary.
However, switchings can be computationally much more costly than running simulation experiments. Therefore, switching
may offset the efficiency gain of the fully-sequential procedures compared to two-stage procedures that require a minimum
number of switchings. Hong and Nelson (2005) designed sequential procedures that reduce the number of switchings
dramatically while still maintaining the benefit of being sequential.

Branke, Chick, and Schmidt (2007) conducted a comprehensive set of experiments to compare the performance of
different R&S procedures on thousands of combinations of problem structures. They found that no R&S procedure can
dominate in all situations. They also found that the Bayesian procedures are often more efficient in terms of the total number
of samples required to make a decision. However, they do not provide the type of correct selection guarantees that the
frequentist procedures provide.

R&S procedures have also been used with other OvS optimization algorithms to improve the efficiency of the optimization
process or to make a correct decision at the end of the optimization process. Boesel, Nelson, and Kim (2003) proposed a
R&S selection procedure, called a clean-up procedure, which selects the best solution among all solutions evaluated by an
OvS algorithm and provides a fixed-width confidence interval for the value of the best solution. Many search-based OvS
algorithms select the best solution from a neighborhood. Pichitlamken, Nelson, and Hong (2006) designed a sequential
procedure for that purpose. Since an OvS algorithm often runs for many iterations and the algorithm may stop at any
iteration, it is desirable to have a R&S procedure that guarantees the solution of the current iteration is the best among all
visited solution. Hong and Nelson (2007b) designed a such procedure. In Xu, Nelson, and Hong (2009), they also used the
comparison-with-a-standard procedure of Kim (2005) to test the local optimality of a solution when solving DOvS problems
(for more on the local optimality of DOvS problems, see Section 4). OvS problems may have stochastic constraints. Batur and
Kim (2009) provided an interesting R&S procedure to check the feasibility of a solution with multiple stochastic constraints.

3 STOCHASTIC APPROXIMATION AND GRADIENT ESTIMATION

The stochastic approximation (SA) algorithm is often used to solve COvS problems. It takes the following iterative form:

xn+1 = ΠΘ

[
xn−an∇̂g(xn)

]
,

where xn is the solution found at iteration n, ∇̂g(xn) is an estimate of the gradient ∇g(xn), {an} is a sequence of positive
real numbers called the gain sequence, and ΠΘ denotes a projection of a point outside of Θ back into Θ. The SA algorithm
was first proposed by Robbins and Monro (1951) as a root-finding algorithm. Since then, it has been studied extensively in
statistics, stochastic optimization and stochastic simulation literature. Several books have been published on SA algorithms,
including Kushner and Yin (2003) and Borkar (2008).

The SA algorithm can be viewed as a stochastic version of the renowned steepest descent algorithm, which seeks the
next solution along the steepest descent (negative gradient) direction at the current solution. There are two differences
between the SA algorithm and the steepest descent algorithm. First, the gradient in the SA algorithm is a noisy estimate of
the gradient. Even though the convergence of the algorithm only requires ∇̂g(xn) to satisfy certain weak assumptions (e.g.,
E

[
∇̂g(xn)

]
−g(xn)→ 0 at a certain rate), the quality of gradient estimate does matter to the performance of the algorithm.

In the rest of this section, we will introduce several different approaches for estimating the gradient. Second, the step size
an in the SA algorithm is often pre-determined, instead of being adaptive as in the steepest descent algorithm. Although
{an} only needs to satisfy certain assumptions for the SA algorithm to converge (e.g., ∑∞

n=1 an = ∞ and ∑∞
n=1 a2

n < ∞), the
performance of the algorithm is known to be very sensitive to the choice of {an}. If {an} is too large, xn shows an oscillatory
behavior from iteration to iteration; if {an} is too small, xn barely changes from iteration to iteration.
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When the simulation model is treated as a black box, ∇g(x) may only be estimated using finite-difference (FD)
approximations. Let ei denote the ith column of a d×d identity matrix. Then a forward FD estimator of ∇g(x) is

∇̂g(x) =
1
h







Y (x+he1)
Y (x+he2)

...
Y (x+hed)


−Y (x)


 ,

where h is often set as a small positive value. The forward FD estimator is biased, and the bias is often of O(h). When
Y (x+hei) and Y (x) are independent, the variance is often of O(h−2). To reduce the variance of the forward FD estimator,
CRN is often used to introduce a positive correlation between Y (x+hei) and Y (x). To reduce the bias of the forward FD
estimator, a central FD estimator can be used. The central FD estimator of ∇g(x) is

∇̂g(x) =
1

2h




Y (x+he1)−Y (x−he1)
Y (x+he2)−Y (x−he2)

...
Y (x+hed)−Y (x−hed)


 ,

whose bias is often of O(h2). To obtain an observation of the forward FD estimator, totally d +1 simulation runs are required
to evaluate Y (x),Y (x + he1), . . . ,Y (x + hed). To obtain an observation of the central FD estimator, totally 2d simulation
runs are required to evaluate Y (x+he1),Y (x−he1), . . . ,Y (x+he1),Y (x−hed). The SA algorithm with the FD estimators of
∇g(x) was first proposed by Kiefer and Wolfowitz (1952). It is often called the Kiefer-Wolfowitz (KW) SA algorithm.

When the dimension of x is large, i.e., d is large, the KW SA algorithm is not efficient because d +1 or 2d simulation
runs are required to obtain just one observation of ∇g(x). To overcome the difficulty, Spall (1992) proposed a simultaneous
perturbation (SP) FD estimator that uses only 2 simulation runs to obtain an estimate of ∇g(x) regardless the dimension of
x. He called the SA algorithm that uses the estimator the SPSA algorithm. Let Bi be a Bernoulli random variable that takes
value 1 with probability 1/2 and −1 with probability 1/2, and let B = (B1, . . . ,Bd)′. The SP FA estimator of ∇g(x) is

∇̂g(x) =




B−1
1

B−1
2
...

B−1
d




Y (x+hB)−Y (x−hB)
2h

,

which only requires evaluating Y (x+hB) and Y (x−hB). Spall (1998) gave a nice introduction to the theory and applications
of the SPSA algorithm.

When the inside structure of the simulation model is known, we may be able to use this knowledge to design more
efficient gradient estimators. Fu (2008) gave an excellent overview on the research in this field. Among many different
methods, perturbation analysis (PA) and the likelihood ratio/score function (LR/SF) method are the two most commonly
used. PA was proposed by Ho and Cao (1983). It is based on the fact that

∇g(x) = ∇E[Y (x)] = E [∇Y (x)] ,

when the random function Y (x) is stochastically Lipschitz continuous and differentiable with probability 1. Then, if ∇Y (x)
can be observed in the simulation, PA estimates ∇g(x) by ∇Y (x). Note that the PA estimator is unbiased, and it only requires
a single simulation run to compute. To apply PA, Y (x) needs to be stochastically Lipschitz continuous. For some problems,
however, Y (x) is not. For instance, if Y (x) is an indicator function, then it is not Lipschitz continuous. To overcome this
difficulty, several methods have been proposed, including the smoothed perturbation analysis of Gong and Ho (1987) and
Fu and Hu (1997), and the pathwise method of Hong (2009) and Hong and Liu (2009).

The LR/SF method was introduced in Reiman and Weiss (1989) and Glynn (1990). Note that we can often represent
Y (x) by Y (x) = h(Z), where Z is a vector of random variables generated in the simulation and h(Z) is the performance
measure in which we are interested. Let fz(z,x) denote the probability density of Z. Note that x is only in the density
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function of Z and not in h(·). Then, under some regularity conditions,

∇g(x) = ∇E[h(Z)] = ∇
∫

h(z) fz(z,x)dz =
∫

h(z)∇x fz(z,x)dz

=
∫

h(z)∇x log[ fz(z,x)] fz(z,x)dz = E{h(Z)∇x log [ fz(Z,x)]} .

If fz(z,x) is known, then the LR/SF method estimates ∇g(x) by h(Z)∇x log[ fz(Z,x)]. Similar to the PA estimator, the LR/SF
estimator is also unbiased, and it also only requires a single simulation run to compute. The LR/SF estimator does not
require Y (x) be stochastic Lipschitz continuous. Therefore, its applicability is often wider than the PA estimator. However,
the variance of the LR/SF estimator is often high.

4 RANDOM SEARCH ALGORITHMS

In every iteration, random search algorithms typically sample a number of candidate solutions from a neighborhood of the
best solution from the last iteration, evaluate them (possibly with some other previously sampled solutions), and select the
best solution of this iteration. There are many random search algorithm. They differ in terms of the neighborhood structure,
sampling distribution, evaluation scheme and the method of selecting the best solution. Typically, they solve DOvS problems
with a finite (possibly very large) number of feasible solutions. However, some of them can also solve DOvS problems with
a countably infinite number of solutions.

Random search algorithms are by far the most commonly used algorithms for solving DOvS problems. There are several
reasons for that. First, the relaxation of integrality constraints for DOvS problem is typically impossible. When solving
deterministic integer programs, methods that relax integrality constraints, e.g., branch-and-bound algorithms, are often used,
because the objective function can be evaluated at fractional values. When solving DOvS problems, however, the objective
function typically cannot be evaluated at fractional values. For instance, it is often not clear how to simulate a queueing
system with 3.6 servers or 5.2 buffer spaces. Second, simulation models are often considered as black boxes where little
additional information about g(x) is available besides the estimates of its value. Then, random search is often the only
choice.

There are many random search algorithms for DOvS problems, including the stochastic ruler method of Yan and Mukai
(1992), the random search methods of Andradóttir (1995), the simulation annealing algorithm of Alrefaei and Andradóttir
(1999), the stochastic comparison method of Gong, Ho, and Zhai (1999), the nested partitions algorithms of Shi and Ólafsson
(2000) and Pichitlamken and Nelson (2003), the model reference adaptive search (MRAS) of Hu, Fu, and Marcus (2007), the
COMPASS algorithms of Hong and Nelson (2006, 2007a) and the industrial strength COMPASS algorithm of Xu, Nelson,
and Hong (2009). To understand the different issues in random search algorithms, we start with a very simple algorithm,
the stochastic ruler method.

Stochastic Ruler method

Step 0. Choose a and b such that Pr{a≤ ĝ(x)≤ b}= 1 for all x ∈ Θ, an irreducible Markov chain transition matrix R
on Θ such that R(xi,x j) = R(x j,xi) for all solutions xi,x j ∈ Θ, and a sequence of positive integers Mn such that
Mn → ∞ as n→ ∞. Select an initial solution x0 and set n← 0.

Step 1. Generate a candidate solution x′ from R(xn, ·).
Step 2. For i← 1 to Mn do:

Generate an estimate ĝ(x′)
Generate U ∼U(a,b)
If ĝ(x′) > U then

xn+1 ← xn; goto Step 3
endif

loop
xn+1 ← x′

Step 3. n← n+1, goto Step 1.

Let x∗ denote the optimal solution. Because the probability of rejection at Step 2 of the stochastic ruler method is
minimized at x∗, the transition probability into x∗ is greater than out of x∗. And the transition matrix of the implied
discrete-time Markov chain is irreducible, aperiodic and finite. Therefore, we can prove that the steady-state probabilities of
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the Markov chain degenerate to x∗ as n→ ∞. This explains why the algorithm converges to x∗. The algorithm is beautiful
and compact (retains no past data), but is not adaptive and requires increasing effort iteration to iteration. Therefore, the
finite-time performance of the algorithm is not good in practice.

To improve the finite-time performance of various random search algorithms, including the stochastic ruler method,
Andradóttir (1999) suggested using the cumulative sample mean to estimate the value of the optimal solution, even if it
is not used for guiding the search. She showed that this approach makes almost sure convergence of the algorithms easy
to prove, better estimates the true value of the selected solution, and has better empirical performance. Andradóttir (2006)
further suggested to select the sample best of solutions that are visited “often enough” when Θ is countably infinite. She
showed that this can avoid the need for increasing the simulation effort per iteration as the iteration number increases.

To further improve the finite-performance of random search algorithms, recent research emphasizes more careful
consideration of exploration, exploitation and estimation tradeoffs. Prudius and Andradóttir (2006) proposed the balanced
explorative and exploitative search with estimation scheme (BEESE), which always keeps global exploration, local exploitation
and solution estimation in play. The global convergence of the algorithm that falls into the BEESE framework can be
proved if the global search distribution satisfies certain requirements. The MRAS algorithm of Hu, Fu, and Marcus (2007)
uses model-based search where new candidates are generated from a distribution over Θ induced by previous candidates.
This method keeps the search always global, while still focusing adaptively. It provides another approach to the balance of
exploration, exploitation and estimation.

All the random search algorithms that we have discussed so far are globally convergent, which means that the search
will eventually find a globally optimal solution of the DOvS problem as the simulation effort goes to infinity. Since we do
not assume that the DOvS problem has certain special structure, the only way to ensure global convergence is to evaluate
all feasible solutions with an infinite number of observations. If we can evaluate all feasible solutions, then the problem
becomes a R&S problem that has discussed in Section 2. In practice, however, the total number of feasible solutions can
be very large and only a small proportion of the feasible solutions may be evaluated. Then, global convergence provides
little practical meaning other than reassuring that the algorithm will find the optimal solution eventually. In our opinion, a
convergence property is most useful if it can be used to design practically meaningful stopping criterion for the algorithm.

Now we consider the local convergence initiated by Hong and Nelson (2006). Let N (x) = {y : y ∈Θ and ‖x−y‖= 1}
be the local neighborhood of x ∈ Θ, where ‖x− y‖ denotes the Euclidean distance between x and y. Hong and Nelson
(2006) define x as a local minimizer if x ∈ Θ and either N (x) = /0 or g(x)≤ g(y) for all y ∈N (x). Note that, to check
the global optimality of a solution, all solutions in Θ have to be considered. To check the local optimality of a solution,
however, only the solutions in its local neighborhood need to be considered and the local neighborhood has at most 2d
solutions. Therefore, local optimality is more practical to verify than the global optimality. Xu, Nelson, and Hong (2009)
showed that a comparison-with-a-standard procedure (Kim 2005) may be applied to test the local optimality of the solution
with controlled type I and type II errors, after all solutions in the local neighborhood of a candidate optimal solution are
evaluated along with the solution itself.

Hong and Nelson (2007a) designed a framework for locally convergence DOvS algorithms, where they show that the
local convergence can be achieved easily and the framework leaves a lot of room for designing efficient and locally convergent
DOvS algorithms. The COMPASS algorithm of Hong and Nelson (2006) is a special instance of this framework. The
following is a high-level description of the COMPASS algorithm.

The COMPASS Algorithm

Step 1: Build the most promising area in each iteration around the current sample best solution based on geometry.
Step 2: Sample new solutions from the most promising area in each iteration.
Step 3: Simulate new solutions and solutions that define the most promising area a little bit more.
Step 4: Calculate the cumulative sample average for each active solution, and choose the solution with the best cumulative

sample average. Go to Step 1.

To further improve the finite-time performance of the COMPASS algorithm and make it competitive with commercial
DOvS solvers, Xu, Nelson, and Hong (2009) developed an industrial strength COMPASS (ISC) algorithm that takes the
COMPASS algorithm as its core, but adds other steps to make the algorithm more efficient in solving practical problems. The
ISC algorithm uses a different approach to the tradeoff of exploration, exploitation and estimation. It divides the optimization
process into three stages: a global stage that explores the entire feasible region and identifies several regions possibly with
competitive locally optimal solutions, a local stage that exploits the local information and finds a locally optimal solution
for each of the regions identified in the global stage, and a clean-up stage that selects the best solution among all identified
locally optimal solutions and estimates the true value of the selected solution. The ISC algorithm uses a niching genetic
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Figure 1: ISC approach to the tradeoff of exploration, exploitation and estimation (Xu, Nelson, and Hong 2009).

algorithm for the global stage, the COMPASS algorithm for the local stage, and a R&S procedure for the clean-up stage. It
also defines meaningful and testable transition rules between the stages. Figure 4, taken from Xu, Nelson, and Hong (2009),
is an illustration of the approach. Xu, Nelson, and Hong (2009) also compared the ISC algorithm with the OptQuest engine,
which is the solver used in OptQuest and embedded in many commercial simulation packages, for a number of examples with
different characteristics. They found that the ISC algorithm is competitive with OptQuest, despite enforcing finite-sample
and asymptotic guarantees. The C++ implementation of the ISC algorithm along with its instructions and related papers are
free for downloading from <http://www.iscompass.net>.

5 WORKING WITH COMMERCIAL OVS SOFTWARE

Many simulation products have integrated OvS software. Robust heuristics are the most common algorithms found in such
software. In this section, which is based on Chapter 12 in Banks et al. (2005), we provide some guidance on their use.

A “robust heuristic” is an OvS procedure that does not depend on strong problem structure to be effective, can be
applied to problems with mixed types of decision variables, and is tolerant of some sampling variability. Genetic algorithms
and tabu search are two prominent examples, but there are many others and many variations. Such heuristics have been
shown empirically to be highly effective on difficult deterministic optimization problems. However, they typically provide no
performance guarantees for deterministic problems, much less the stochastic simulation problems considered here. Therefore,
we offer three suggestions for using commercial products that employ a robust heuristic to make them more effective:
controlling sampling variability, restarting, and clean up.

5.1 Control Sampling Variability

In many cases, it will up to the simulation user to determine how many replications will be undertaken at each potential
solution. This is a difficult problem in general. Ideally, the number of replications should increase as the heuristic discovers
better solutions because it is much more difficult to distinguish solutions that are close in performance from those that differ
substantially. At the beginning of the search it may be easy for the heuristic to identify good solutions and search directions,
because clearly inferior solutions are being compared to much better ones, but late in the search this might not be the case.

If the OvS software has an “adaptive” setting—meaning it adjusts the number of replications based on the variance of
the simulation estimates—then use it. If, on the other hand, you must specify a fixed number of replications per solution,
then a preliminary experiment should be conducted: Simulate several solutions, some at the extremes of the feasible space
and some nearer the center. Compare the apparent best and apparent worst of these solutions, using the tools described
earlier. Find the minimum number of replications required to declare them to be statistically significantly different. This is
the minimum number of replications that should be used.
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5.2 Restarting the Optimization

Because robust heuristics provide no guarantees that they converge to the optimal solution, it makes sense to run the
optimization several times to see which run yields the best solution. Each optimization run should use different random
number seeds or streams and should start from different initial solutions. Be sure to start at solutions on the extremes of
the solution space, in the center of the space, or even at randomly generated solutions. If people familiar with the system
suspect that certain solutions will be good, be sure to include them as starting solutions for the heuristic. Remember that the
goal is to find the best solution you can find, so an additional day, or even week, of optimization runs may be well worth it
for an important (and perhaps expensive) decision.

5.3 Statistical Clean Up

After the optimization run or runs have completed, it is critical to perform a second set of experiments on the top solutions
identified by the heuristic to avoid two types of errors: failing to recognize the the best solution that was simulated during
the search, and poorly estimating the performance of the solution that is selected at the end. These errors occur because no
optimization algorithm can hope to make any progress while at the same time maintaining statistical error control every step
of the way, and there is a natural bias toward solutions that, by chance, received favorable simulation samples. Therefore,
we recommend “cleaning up” after the search, by which we mean performing a rigorous statistical analysis employing the
comparison techniques described in Section 2 to evaluate which are the best or near-best of the solutions discovered during
the search. The top 5 to 10% of the solutions simulated during the search should be subjected to this controlled experiment.
The “clean up” concept was introduced in Boesel, Nelson, and Kim (2003).

6 CONCLUSIONS

In this article, we give a brief introduction to the recent development of OvS research and practice. As noted in the paper,
there is still a large gap between the OvS algorithms developed in the academic research community and the OvS algorithms
used in commercial software. The research community likes algorithms with provable statistical guarantees or convergence
properties, and the software community mainly uses robust metaheuristics that appear to work but have no such guarantees
or properties. Although there has been some interesting recent work trying to bridge the gap, there is still a long way to go.
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Prudius, A. A., and S. Andradóttir. 2006. Balanced explorative and exploitative search with estimation for simulation

optimization. Working Paper, School of ISyE, Georgia Tech, Atlanta, GA.

84



Hong and Nelson

Reiman, M., and A. Weiss. 1989. Sensitivity analysis for simulations via likelihood ratios. Operations Research 37:830–844.
Rinott, Y. 1978. On two-stage selection procedures and related probability-inequalities. Communications in Statistics

A7:799–811.
Robbins, H., and S. Monro. 1951. A Stochastic Approximation Method. Annals of Mathematical Statistics 22:400–407.
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