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ABSTRACT

Value-at-risk (VaR) and conditional value-at-risk (CVaR) are important risk measures. Importance sampling (IS) is often
used to estimate them. We derive the asymptotic representations for IS estimators of VaR and CVaR. Based on these
representations, we are able to give simple conditions under which the IS estimators have smaller asymptotic variances than
the ordinal estimators. We show that the exponential twisting can yield an IS distribution that satisfies the conditions for
both the IS estimators of VaR and CVaR. Therefore, we may be able to estimate VaR and CVaR accurately at the same time.

1 INTRODUCTION

Value-at-risk (VaR) and conditional value-at-risk (CVaR) are two widely used risk measures. They play important roles
in risk measurement, portfolio management and regulatory control of financial institutions. The -VaR, defined as the 
quantile of a portfolio value L. The Basel Accord II has incorporated the concept of VaR and encourages banks to use VaR
for daily risk management. It has the advantage of being flexible and conceptually simple. However, VaR also has some
shortcomings. It provides no information about the amount of loss that investors might suffer beyond the VaR. Moreover,
it has also been criticized for not being a coherent risk measure because it is not subadditive (Artzner et al. 1999). The
-CVaR, defined as the average of −VaR of L for 0 <  <  , has a long history of being used in insurance industry. It
provides information on the potential large losses that an investor can suffer. Rockafellar and Uryasev (2000) showed that
CVaR always satisfies the subadditivity and is therefore a coherent risk measure. Heyde et. al (2007), however, argued that
requiring subadditivity may lead to risk measures that are not robust to the underlying models and data. They proposed
replacing subadditivity axiom by the comonotonic subadditivity axiom and found that both VaR and CVaR satisfy the new
axiom and VaR is more robust.

Because VaR and CVaR both have advantages and disadvantages, it is often difficult to decide which one is better. Risk
managers may consider both of them at the same time to complement each other. There are typically three approaches to
estimate VaR and CVaR: the variance-covariance approach, the historical simulation approach and the Monte Carlo simulation
approach. Among the three, the Monte Carlo simulation approach is frequently used, since it is very general and can be
applied to a wide range of risk models. However, the Monte Carlo simulation approach is often time consuming. In risk
management,  is typically close to 0. A large number of replications are needed to obtain accurate estimation of the tail
behavior. Therefore, variance reduction techniques are often used to increase the efficiency of the estimation. Among all
variance reduction techniques, importance sampling (IS) is a natural choice, because it can allocate more samples to the tail
of the distribution that is most relevant to the estimation of VaR and CVaR. In this paper, we study the asymptotic properties
of the IS estimators of VaR and CVaR and propose simple schemes for choosing IS distributions.

Because IS estimators of both VaR and CVaR are rather complicated compared to the typical sample means, to analyze
their asymptotic properties, we use the method of asymptotic representations. Bahadur (1966) used this method to analyze
the asymptotic properties of the ordinary estimator of VaR (quantile) by showing that the estimator can be approximated
by a sample mean except for a high-order term. Then, the consistency and asymptotic normality of the estimator can be
derived easily. In this paper, we derive the asymptotic representations for the IS estimators of both VaR and CVaR, and use
them to prove the consistency and asymptotic normality of both estimators. From the asymptotic normality, we give simple
conditions on the IS distributions under which the IS scheme is guaranteed to work asymptotically. A good feature of the
conditions is that they are the same for both VaR and CVaR. Therefore, one can estimate the VaR and CVaR simultaneously

415978-1-4244-5771-7/09/$26.00 ©2009 IEEE



Sun and Hong

using the same IS distribution. This feature will greatly help those risk managers who consider both risk measures and use
them to complement each others.

We then consider how to choose a good IS distribution for estimating both VaR and CVaR. We consider this problem
under a special family of change of measure that is known as exponential twisting and show how to choose good IS
distributions from the family. Interestingly, the distributions that we choose for VaR and CVaR are again the same. We show
that the chosen IS distribution guarantees to reduce the asymptotic variances for both VaR and CVaR under mild conditions.

The literature on using IS to estimate VaR is growing rapidly. For example, Glasserman et al. (2000, 2002) used IS
to estimate the VaR of a portfolio loss for both light-tail and heavy-tail situations; Glasserman and Li (2005) applied IS to
estimate the VaR of portfolio credit risk; Glasserman and Juneja (2008) used IS to estimate the VaR of a sum of i.i.d random
variables. To the best of our knowledge, however, there is no published work on using IS to estimate CVaR. Our paper differs
from others for several reasons. We consider the general theory of using IS to estimate VaR and CVaR, without focusing
on specific applications. We show that the variances of VaR and CVaR can be reduced by using the same IS distribution.
Therefore, risk managers who use both VaR and CVaR can obtain accurate estimates of both without running two separate
simulation experiments.

The rest of the paper is organized as follows. Section 2 reviews the IS estimators of VaR and CVaR. In section 3, we
develop asymptotic representations for the IS estimators for both VaR and CVaR. From these representations, we can easily
prove the consistency and asymptotic normality of the IS estimators. In section 4, we consider the exponential twisting to
choose an IS distribution, followed by the conclusions in section 5.

2 IMPORTANCE SAMPLING FOR VAR AND CVAR

Let L be a real-valued random variable with a cumulative distribution function (c.d.f.) F(·), and let v and c denote the
-VaR and -CVaR of L, respectively, for any 0 <  < 1. Then,

v = F−1() = inf{x : F(x) ≥ }, (1)

c = v − 1


E[v −L]+, (2)

where x+ = max{x,0}. Note that v is also the -quantile of L, and c is the average of L conditioning that L ≤ v if L
has a positive density at v . Under the definitions, we are interested in the left tail of the distribution of L. Therefore,  is
often close to 0. Sometimes, v and c are defined for the right tail of a random variable (e.g., Hong and Liu (2009)). We
may convert the right tail to the left tail by adding a negative sign to the random variable.

Conventional Monte Carlo estimation of v and v involves generating n independent and identically distributed (i.i.d)
random observations of L, denoted as L1, . . . ,Ln, and estimating them by

ṽn
 = F̃−1

n () = inf{x : F̃n(x) ≥ }, (3)

c̃n
 = ṽn

 −
1

n

n


i=1

[ṽn
 −Li]+, (4)

respectively, where

F̃n(x) =
1
n

n


i=1

I{Li ≤ x} (5)

is the empirical distribution of L constructed from L1, . . . ,Ln and I{·} is the indicator function. Note that F̃n(x) is an unbiased
and consistent estimator of F(x). By Serfling (1980), F̃−1

n () = L�n�:n, where Li:n is the ith order statistic of the L. Serfling
(1980) showed that ṽn

 and c̃n
 are consistent estimators of v and c , respectively, as n → .

As  is typically chosen close to 0, e.g.,  = 0.01 or 0.05, to estimate v and c accurately using the conventional
Monte Carlo method, the sample size n often needs to be very large. Therefore, it is important to apply some variance
reduction techniques to improve the estimation efficiency. Importance sampling (IS) is intuitively appealing in estimating
v and c especially when  is close to 0, because it may allocate more samples to the left tail of the distribution that are
important in estimating v and c .

Now we introduce the IS estimators of v and c . Suppose we choose an IS distribution function G for which the
probability measure associated to F is absolutely continuous with respect to that associated with G, i.e., F(dx) = 0 if
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G(dx) = 0 for any x ∈. Let L (x) = F(dx)
G(dx) , then L is called the likelihood ratio (LR) function. Then for any x ∈, we

may estimate F(x) by

F̂n(x) =
1
n

n


i=1

I{Li ≤ x}L (Li). (6)

Note that F̂n(x) is an unbiased and consistent estimator of F(x) as F̃n(x) that is defined in Equation (5). Let v̂n
 and ĉn


denote the IS estimators of v and c . Similar to Equations (3) and (4), we define

v̂n
 = F̂−1

n () = inf{x : F̂n(x) ≥ },
ĉn
 = v̂n

 −
1

n

n


i=1

[v̂n
 −Li]+ L (Li).

In the rest of this paper, we analyze the asymptotic properties of v̂n
 and ĉn

 , and discuss how to select G to reduce the
variances of v̂n

 and ĉn
 . Throughout the rest of the paper, we make the following assumptions.

Assumption 1. There exists an  > 0 such that when x∈ (v−,v +) L has a density f (x) > 0 and f (x) is differentiable
.

Assumption 1 requires that L has a density in a neighborhood of v . It also implies that F(v ) =  and c = E [L|L ≥ v ]
(Hong and Liu 2009).

Assumption 2. There exists a constant C > 0 such that L (x) ≤C for all x < v +  .

To estimate v and c , the samples in the set {L < v +} are most useful. Then, any reasonable IS distribution should
allocate more samples to the region, i.e., L (x) ≤ 1 for all x < v +  . Therefore, Assumption 2 is a very weak assumption
on the IS distribution.

3 ASYMPTOTIC REPRESENTATIONS OF THE IS ESTIMATORS

A complicated estimator can often be represented as the sum of several terms, where the asymptotic behaviors of all the
terms are clear. Then, the representation is called an asymptotic representation of the estimator. Based on the asymptotic
representation of an estimator, many asymptotic properties of the estimator, e.g., consistency and asymptotic normality, can
be studied easily.

A famous example is the asymptotic representation of the VaR estimator ṽn
 (also known as Bahadur representation of

the quantile estimator). By Bahadur (1966), under Assumption 1,

ṽn
 = v +

1
f (v )

(
− 1

n

n


i=1

I{Li ≤ v}
)

+Rn, (7)

where Rn = O(n−3/4(logn)3/4) with probability 1 (w.p.1). The statement Yn = O(g(n)) w.p.1 means that there exist a set
0 with P(0) = 1 such that for any  ∈0 we can find out a constant C() satisfies |Yn()| ≤C()g(n) for all n large
enough. Given the representation, many asymptotic properties of ṽn

 can be analyzed easily. For instance, we may use
it to prove the strong consistency and asymptotic normality of ṽn

 . By the strong law of large numbers (Durrett 2005),
1
n 

n
i=1 I{Li ≤ v} → F(v) w.p.1 as n → . Furthermore, because F(v) =  by Assumption 1, it is clear that ṽn

 → v
w.p.1 as n → . Thus, ṽn

 is a strongly consistent estimator of v . Similarly, by the central limit theorem (Durrett 2005),

√
n

(
− 1

n

n


i=1

I{Li ≤ v}
)

⇒
√
(1−)N(0,1)
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as n → , where “⇒” means “convergence in distribution” and N(0,1) is standard normal random variable. Then,

√
n(ṽn

 − v) ⇒
√
(1−)
f (v)

N(0,1) (8)

as n → . Therefore, ṽn
 is asymptotically normally distributed.

In the rest of this section, we develop asymptotic representations of the IS estimators v̂n
 and ĉn

 , and use them to analyze
the consistency and asymptotic normality of v̂n

 and ĉn
 .

3.1 Asymptotic Representation of v̂n


We first consider the asymptotic representation of v̂n
 . Note that by a second order Taylor expansion, when |v̂n

 − v | <  ,

F(v̂n
)−F(v ) = f (v )(v̂n

 − v)−A1,n,

where A1,n = O(v̂n
 − v)2. Then, we have

v̂n
 = v +

F(v̂n
)−F(v )
f (v)

+
1

f (v )
A1,n. (9)

Let A2,n = F(v̂n
)+ F̂n(v)− F̂n(v̂n

 )−F(v) and A3,n = F̂n(v̂n
)−F(v). It is easy to see that

F(v̂n
)−F(v) = F(v)− F̂n(v)+A2,n +A3,n.

Then by Equation (9), we have

v̂ = v +
F(v)− F̂n(v)

f (v )
+

1
f (v )

(A1,n +A2,n +A3,n). (10)

In the following lemma, we provide the orders of A1,n, A2,n and A3,n.

Lemma 3.1. Suppose that Assumptions 1 and 2 are satisfied. Then for any  ∈ (0,1), A1,n = O
(
n−1 logn

)
, A2,n =

O
(
n−

3
4 (logn)−

3
4

)
and A3,n = O

(
n−1
)

w.p.1.

Let Li denote L (Li) for all i = 1, . . . ,n. By Lemma 3.1, we can prove the following theorem on the asymptotic
expansion of v̂n

 .

Theorem 3.1. Suppose that Assumptions 1 and 2 are satisfied. Then for any  ∈ (0,1),

v̂n
 = v +

1
f (v )

(
− 1

n

n


i=1

I{Li ≤ v}Li

)
+An,

where An = O
(
n−

3
4 (logn)−

3
4

)
w.p.1.

Proof. By Assumption 1, F(v ) =  . Then by Equation (6),

F(v)− F̂n(v) = − 1
n

n


i=1

I{Li ≤ v}Li.

Let An = 1
f (v ) (A1,n +A2,n +A3,n). Since f (v) > 0 by Assumption 1, and by Lemma 3.1, we have An = O

(
n−

3
4 (logn)−

3
4

)
w.p.1. Therefore, the conclusion of the theorem follows directly from Equation (10).
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Because ṽn
 is a special case of v̂ where L (x) = 1 for all x ∈, the Bahadur representation of Equation (7) may be

viewed as a special case of Theorem 3.1.
Let EG and VarG denote the expectation and variance under the IS distribution G. From Theorem 3.1, it is also

straight-forward to prove the following corollary on the strong consistency and asymptotic normality of v̂n
 .

Corollary 3.1. Suppose that Assumptions 1 and 2 are satisfied. Then for any  ∈ (0,1), v̂n
 → v w.p.1 and

√
n(v̂n

 − v) ⇒
√

VarG [I{L ≤ v}L (L)]
f (v)

N(0,1)

as n → .

Remark 3.1. The conclusions of Corollary 3.1 have also been proved by Glynn (1996) under Assumption 1 and the
assumption that EG[L 3(L)] < .

Note that

VarG [I{L ≤ v}L (L)] = EG
[
I{L ≤ v}L 2(L)

]−E2
G [I{L ≤ v}L (L)] = E [I{L ≤ v}L (L)]−2. (11)

If the IS distribution allocates more samples to the left tail of the distribution of L, i.e., L (x) < 1 for all x ≤ v , then by
Equation (11), VarG [I{L ≤ v}L (L)] < (1−). Compared to Equation (8), the IS estimator v̂n

 has a smaller asymptotic
variance than the conventional estimator ṽn

 . This explains why IS can improve the efficiency of VaR estimation when the
IS distribution is selected appropriately.

Theorem 3.1 not only can be applied to obtain the strong consistency and asymptotic normality of v̂n
 , it can also be

applied to facilitate another asymptotic analysis related to v̂ . For instance, it helps in developing the asymptotic representation
of ĉn

 as shown in Section 3.2.

3.2 Asymptotic Representation of ĉn


We now consider the asymptotic representation of ĉn
 . Note that

ĉn
 = v̂n

 −
1

n

n


i=1

(v̂n
 −Li)+Li

= v − 1
n

n


i=1

(v −Li)+Li +(v̂n
 − v)− 1

n

n


i=1

[
(v̂n

 −Li)+ − (v −Li)
]
Li. (12)

Furthermore, note that

1
n

n


i=1

[
(v̂n

 −Li)+ − (v −Li)
]
Li =

1
n

n


i=1

[(v̂n
 −Li)I{Li ≤ v̂n

}− (v −Li)I{Li ≤ v}]Li

=
1

n

n


i=1

[(v̂n
 − v)I{Li ≤ v̂n

}]Li +
1

n

n


i=1

(v −Li) [I{Li ≤ v̂n
}− I{Li ≤ v}]Li. (13)

Since

1
n

n


i=1

[(v̂n
 − v)I{Li ≤ v̂n

}]Li =
1


(v̂n
 − v)F̂n(v̂n

)

and ∣∣∣∣∣ 1
n

n


i=1

(v −Li) [I{Li ≤ v̂n
}− I{Li ≤ v}]Li

∣∣∣∣∣≤ 1

|v̂n
 − v |

∣∣F̂n(v̂n
)− F̂n(v )

∣∣ ,
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then by Equations (12) and (13),

ĉn
 = v − 1

n

n


i=1

(v −Li)+Li +Bn, (14)

where

|Bn| ≤ 1

|v̂n
 − v |

(|− F̂n(v̂n
)|+ |F̂n(v̂n

)− F̂n(v)|)≤ 1

|v̂n
 − v |

(
2|F̂n(v̂n

)−F(v)|+ |F̂n(v)−F(v)|) .
In the following lemma, we prove the order of Bn.

Lemma 3.2. Suppose that Assumptions 1 and 2 are satisfied. Then for any  ∈ (0,1), Bn = O
(
n−1 logn

)
w.p.1.

Then, we have the following theorem on the asymptotic expansion of ĉn
 . Note that the conclusion of the theorem

follows directly from Equation (14) and Lemma 3.2. Therefore, we omit the proof.

Theorem 3.2. Suppose that Assumptions 1 and 2 are satisfied. Then for any  ∈ (0,1),

ĉn
 = c +

(
1
n

n


i=1

[
v − 1


(v −Li)+Li

]
− c

)
+Bn,

where Bn = O
(
n−1 logn

)
w.p.1.

Note that EG
[
v − 1

 (v −L)+L
]
= c . Then by the strong law of large numbers and the central limit theorem, it is

easy to prove the following corollary on the strong consistency and asymptotic normality of ĉn
 .

Corollary 3.2. Suppose that Assumptions 1 and 2 are satisfied. Then for any  ∈ (0,1), ĉn
 → c w.p.1 and

√
n(ĉn

 − c) ⇒
√

VarG [(v −L)+L (L)]


N(0,1)

as n → .

Furthermore, we may set L (x) = 1 for all x ∈. Then, the conclusions of Theorem 3.2 and Corollary 3.2 apply to c̃ ,
the conventional Monte Carlo estimator of c . We summarize the results in the following corollary.

Corollary 3.3. Suppose that Assumption 1 is satisfied. Then for any  ∈ (0,1),

c̃n
 = c +

(
1
n

n


i=1

[
v − 1


(v −Li)+

]
− c

)
+Cn

where Cn = O
(
n−1 logn

)
w.p.1, c̃n

 → c w.p.1, and

√
n(ĉn

 − c) ⇒
√

Var [(v −L)+]


N(0,1)

as n → .

Remark 3.2. The strong consistency and asymptotic normality of c̃n
 have also been studied by a number of papers in

the literature, including Trindade et al. (2007), using different methods.

If the IS distribution allocates more samples to the left tail of the distribution of L, i.e., L (x) < 1 for all x ≤ v , then
it is easy to show that VarG [(v −L)+L (L)] < Var [(v −L)+]. Therefore, by Corollaries 3.2 and 3.3, the IS estimator ĉn


has a smaller asymptotic variance than the conventional estimator c̃n

 . This explains why IS can improve the efficiency of
CVaR estimation when the IS distribution is selected appropriately.
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4 SELECTING IS DISTRIBUTIONS

By Theorems 3.1 and 3.2, it is clear that the variances of v̂n
 and ĉn

 are denominated by

VarG

[
1

f (v)

(
− 1

n

n


i=1

I{Li ≤ v}Li

)]
and VarG

[
1
n

n


i=1

[
v − 1


(v −Li)+Li

]]
,

respectively. Note that

VarG

[
1

f (v )

(
− 1

n

n


i=1

I{Li ≤ v}Li

)]

=
1

f 2(v)
VarG [I{L ≤ v}L ] =

1
f 2(v)

{
EG
[
I{L ≤ v}L 2]−2} ,

VarG

[
1
n

n


i=1

(
v − 1


(v −Li)+Li

)]

=
1
2 VarG

[
(v −L)+L

]
=

1
2

{
EG
[
(v −L)2I{L ≤ v}L 2]−E2 [(v −L)+

]}
.

Therefore, we only need to find IS distributions that reduce EG
[
I{L ≤ v}L 2

]
and EG

[
(v −L)2I{L ≤ v}L 2

]
.

To find a good IS distribution function G, we restrict our considerations to the technique of “exponential twisting”, where
we set L = e−L+() and ( ) = logEeL, and our goal is to choose a parameter  that can reduce EG

[
I{L ≤ v}L 2

]
and EG

[
(v −L)2I{L ≤ v}L 2

]
.

We consider  < 0. Then, L < e−(v+)+() for L ∈ (−,v + ). Therefore, Assumption 2 is satisfied. Note that

EG
[
I{L ≤ v}L 2]= E [I{L ≤ v}L ] ≤ E [I{L ≤ v}]e−v+() (15)

EG
[
(v −L)2I{L ≤ v}L 2]= E

[
(v −L)2I{L ≤ v}L

]≤ E
[
(v −L)2I{L ≤ v}

]
e−v+(). (16)

Therefore, we propose to choose  to minimize the upper bounds in Equations (15) and (16), i.e., minimizing −v +( ).
Note that ( ) is called the cumulant-generating function and it is convex. Therefore, the optimal  , denoted as  ∗, satisfies
 ′( ∗) = v . Then, we have the following theorem.

Theorem 4.1. Suppose that Suppose that Assumption 1 is satisfied and v < E[L]. If the IS distribution G satisfies
L = F(L)/G(L) = e−∗L+(∗), then

VarG [I{L ≤ v}L (L)] < Var [I{L ≤ v}] ,
VarG

[
(v −L)+L (L)

]
< Var

[
(v −L)+

]
.

Note that this  ∗ applies to both the IS estimators of VaR and CVaR. Therefore, this allows risk managers to apply
the IS distribution and estimate these two risk measures at the same time. By Theorem 4.1, we show that the exponential
twisting with  ∗ guarantees to reduce the asymptotic variances of both v̂n

 and ĉn
 .

5 CONCLUSIONS

In this paper, we develop the asymptotic representations for the IS estimators of both VaR and CVaR, and derive the consistency
and asymptotic normality for both estimators. We show that there are simple conditions for choosing IS distributions that
guarantee to reduce the asymptotic variances of the estimators. Furthermore, we show that the technique of exponential
twisting guarantees to find an IS distribution that reduces the asymptotic variances of both estimators at the same time.
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