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ABSTRACT

The Poisson process has been an integral part of many models for the arrival process to a telephone call
centers. However, several publications in recent years suggest the presence of a significant “overdisperson”
relative to the Poisson process in real-life call center arrival data. In this paper, we study the overdispersion
in the context of “heavy traffic” and identify a critical factor that characterizes the stochastic variability of
the arrivals to their averages. We refer to such a factor as the scaling parameter and it potentially has a
profound impact on the design of staffing rules. We propose an new model to capture the scaling parameter
in this paper.

1 INTRODUCTION

The Poisson process is one of the most widely used models in queueing theory and call center analysis
due to its analytical tractability. Its validity is also supported by statistical analysis in Brown et al. (2005),
Kim and Whitt (2013a), and Kim and Whitt (2013b). The Poisson model greatly facilitates the associated
queueing analysis and produces many insightful results on staffing, including the broadly known “square
root safety staffing” principle. This staffing principle stipulates that assuming the agents have a unit service
rate, in order to achieve a balance between agent efficiency and service quality the safety staffing level
beyond the nominal requirement should be of the order of the square root of the mean arrival rate. The
square root form essentially stems from the important fact that variance of the arrivals is of the same order
of magnitude as their average, an obvious property of the Poisson process.

In recent years, however, there has been substantial interest in building more sophisticated models for
the arrival process to account for certain non-Poisson features, such as overdispersion and autocorrelation,
which have been observed in a variety of real-life call center data; see, for example, Jongbloed and Koole
(2001) and Avramidis et al. (2004). The models analyzed in these two papers are based on the doubly
stochastic Poisson process (DSPP) model proposed by Whitt (1999). It assumes the uncertainty of the
arrival rates is determined by a random variable, whose realized value can be interpreted as how busy a
day, or a time period of interest, is. Nevertheless, this model is inadequate in capturing the correlation
structure of the arrivals. This is essentially because the randomness of the arrival rate is static. See Soyer
and Tarimcilar (2008) for an extension of this model. Zhang (2013) and Zhang et al. (2013) advocate the
use of a dynamic DSPP which models the arrival rate as tractable stochastic process and permits a more
versatile correlation structure. Another approach is to treat the arrival counts in disjoint time periods rather
than the arrival process as the modeling target and attempt to build models for this multivariate random
variable; see, for example, Avramidis et al. (2004) and Avramidis et al. (2009).

The uncertainty in the arrival rate obviously increases the overall uncertainty of the call center queueing
system and thus may have a significant impact on the evaluation of system performances and the choice
of staffing rules; see Gans et al. (2003) for a general discussion on this issue. Assume the arrival rate is of
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the multiplicative form λG, which is the case for many of the aforementioned doubly stochastic Poisson
models, where G is a random variable or a stochastic process. It is then easy to show that in a heavy traffic
environment of large λ , the mean of the arrival count in a fixed time period is of the order λ whereas its
variance of the order λ 2. Namely, the stochastic variability of the arrival process is enormously amplified
by the uncertainty of the arrival rate. Such significant overdispersion violates the assumption that underpins
the square root staffing principle, and the appropriate safety staffing level is conceivably much higher; see,
for example, Chen and Henderson (2001), Steckley et al. (2005), and Steckley et al. (2009). Numerical
solutions that address the staffing problem in the presence of random arrival rates are discussed in Whitt
(2006), Gurvich et al. (2010), and Liao et al. (2012), using the model proposed in Whitt (1999).

In this paper, we attempt to address an even more fundamental question: what is the order of the
stochastic variability of the arrival process relative to its average? Is it O(λ ) as for the Poisson model, or
O(λ 2) as for the DSPP model in Whitt (1999), or something else? We will investigate the overdispersion of
the arrival process in a heavy traffic environment and propose a new stochastic model to account for it. The
rest of the paper is organized as follows. We provide empirical observations to motivate our investigation
in Section 2. In Section 3, we propose our model that incorporates an explicit scaling parameter and further
prove certain properties of our model that are consistent with the statistical evidence. Section 4 concludes
with a brief discussion on future research. The proofs are collected in the Appendix.

2 MOTIVATION: WHAT IS THE APPROPRIATE SCALING IN HEAVY TRAFFIC ANALYSIS?

Let (A(t) : t ≥ 0) denote the arrival process, i.e. A(t) is the cumulative number of arrivals up to time t. In a
typical heavy traffic analysis such as the “quality and efficiency driven” (QED) regime (Gans et al. 2003),
A(t) is properly scaled and the limiting process is then derived by increasing the mean arrival rate in order
to simplify the subsequent queueing analysis. In particular, assuming EA(t) = λ t and Var(A(t)) = Θ(λ p)
as λ → ∞, where the notation f = Θ(g) means f is bounded both above and below by g up to a constant
asymptotically, we study the limit of the scaled arrival process A(t)−EA(t)√

Var(A(t))
. Or equivalent, we are interested

in the convergence as follows
Aλ (t)−λ t

λ
p
2

⇒ Z(t) (1)

as λ → ∞ for some non-degenerate stochastic process Z(t), where we have rewritten A(t) as Aλ (t) to
emphasize its dependence on λ . For example, if A(t) is a Poisson process with rate λ , then the limit in
(1) reads

N(λ t)−λ t

λ
1
2

⇒ B(t)

as λ → ∞, where N(t) is a Poisson process with unit rate and B(t) is a standard Brownian motion. On
the other hand, if A(t) is a DSPP whose arrival rate is of the form λG for some random variable G with
EG = 1, then one can show easily via the characteristic function that

N(λGt)−λ t
λ

⇒ (G−1)t

as λ → ∞. Hence, the parameter p in (1) is critical for the limiting process, the sequent queueing analysis
and even the design of staffing rules.

In order to identify the parameter p, we conduct statistical analysis on a real-life call center dataset.
This dataset is from a large call center of an anonymous bank in U.S. which operates 24/7. It contains
phone records in July 2001. (We have also examined the data in other months in 2001 - 2002 and they all
give similar findings as we present here in this paper.) We have removed weekends and public holidays
since the traffic of phone calls during these days have an obviously different pattern and finally obtain 21
days’ records. The left panel of Figure 1 shows the arrival count of each 10-minute time period estimated
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based on daily average. The “time-of-day” effect facilitates our study of the parameter p since it creates a
sequence of scenarios of increasingly heavier traffic (i.e. λ ).

Besides the “time-of-day” effect, the arrival process also exhibits significant overdispersion. The actual
variance is overwhelmingly larger than what the Poisson model implies. Additionally, it appears that the
overdispersion is more significant as the arrival rate increases. We therefore compare the variance of the
arrival count of each time period against the mean on the logarithmic scale; see the right panel of Figure 1. It
suggests that the order of the variance relative to the mean lies between 1 and 2. Namely, the overdispersion
relative to the Poisson process does exist in real-life call center arrivals, but it is not as severe as what the
DSPP in Whitt (1999) implies.

Figure 1: Time-of-day effect and overdispersion of the arrival process. Left: the mean and the one standard
deviation band of the arrival count in 10-minute time periods. Right: the mean and the variance of the
arrival count in 10-minute time periods on the logarithmic scale.

We take a heuristic perspective in this paper for estimating the parameter p. Note that Var(A(t)) ∼
c(EA(t))p for some constant c > 0, so log(Var(A(t))) ∼ p log(EA(t)) as λ → ∞. Hence, we assume the
following linear relationship

log(Var(A(t))) = p log(EA(t))+ c, (2)

and estimate p via a linear regression. Conceivably, this estimation approach is not rigorous and the result
depends on the choice of t, i.e. the length of the time period. But we are more interested in demonstrating
the existence of p than in estimating it accurately. Figure 2 shows the linear relationship between the
variance and the mean of the arrival count on the logarithmic scale. Obviously, the linear model (2) fits
the data remarkably well with R2 = 0.99. The parameter p is estimated as p̂ = 1.63, which verifies our
speculation that the level of overdispersion of the arrival process may lie between those implied by the
Poisson model and the DSPP model in Whitt (1999). It also motivates us to develop a new stochastic
model that explicitly captures this phenomenon.

3 DOUBLY STOCHASTIC POISSON MODEL WITH SCALING PARAMETER

We model the arrival process A(t) as a DSPP with the arrival rate X(t), i.e.

A(t) = N
(∫ t

0
X(s)ds

)
,
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Figure 2: Fitting result of the linear model (2). Left: almost perfect linear relationship between the variance
and the mean of the arrival count in 10-minute time periods on the logarithmic scale. Right: comparison
between the variance and the fitted curve.

where N(·) is a Poisson process with unit rate. Further, we model X(t) as a stochastic process that satisfies
the following stochastic differential equation (SDE)

dX(t) = κ(λ −X(t))dt +σλ
αX(t)

1
2 dB(t), (3)

where κ , λ , σ , and α are constants and B(t) is a standard Brownian motion that is independent of N(t). In
fact, the SDE (3) is a reparameterized Cox-Ingersoll-Ross (CIR) process. We choose this model because it
is positive and fairly tractable, and has a stationary distribution. The parameter λ is the long-run average
of the process so this is a stationary model but one can easily modify this model to incorporate predictable
time-varying patterns such as the time-of-day effect. We refer to α as the scaling parameter because it
controls the order of the variance of the arrival process relative to its mean as will be shown in Theorem
1. Intuitively, the volatility term of the SDE (3) is σλ αX(t)

1
2 , which is roughly equal to σλ α+ 1

2 since the
long-run average of X(t) is λ . It follows that the contribution to the variance of the arrival process A(t)
from the arrival rate is of the order λ 2α+1. So it suffices to assume α ∈ (0, 1

2) so that the overdispersion
lies in the range that reconciles with our speculation and empirical evidence.
Lemma 1 (Cox et al. 1985) The process X(t) has a unique stationary distribution π , which is a gamma
distribution with mean λ and variance σ2λ 2α+1

2κ
.

Theorem 1 Suppose X(t) is initialized with the stationary distribution π . Then,

EπA(t) = λ t, (4)

and

Varπ(A(t)) = t
[

λ +
σ 2λ 2α+1

κ2

(
1− 1− e−κt

κt

)]
. (5)

We then immediately have the following result regarding the order of magnitude of Var(A(t)) relative
to EA(t).
Corollary 1 Suppose X(t) is initialized with the stationary distribution π and α ∈ (0, 1

2). Then, Varπ(A(t))) =
Θ(λ 2α+1) as λ → ∞.
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Therefore, the relationship between the parameter p defined in Section 2 and the scaling parameter α

in our model is simply p = 2α +1. Moreover, by assuming α ∈ (0, 1
2), our model well captures the level

of stochastic variation in the arrival process relative to its average observed in the data.
We now turn to the more fundamental property with regard to the scaling scheme in heavy traffic

analysis, namely the convergence (1). Thanks to the analytical tractability of the CIR process as well as the
doubly stochastic Poisson structure, we can show the convergence (in the sense of marginal distribution)
of the scaled arrival process under our model as follows. Note that we write Aλ (t) when it is necessary to
emphasize its dependence on λ .
Theorem 2 Suppose X(t) is initialized with the stationary distribution π and α ∈ (0, 1

2). Then, for any
given t > 0,

Aλ (t)−λ t

λ α+ 1
2
⇒
∫ t

0
u(s)ds, (6)

as λ → ∞, where u(t) is an Ornstein-Uhlenbeck (OU) process

du(t) =−κu(t)dt +σdB(t),

with initial distribution being its unique stationary distribution, i.e. normal distribution with mean 0 and
variance σ2

2κ
.

Note that
∫ t

0 u(s)ds has normal distribution with

Eφ

(∫ t

0
u(s)ds

)
= 0 and Varφ

(∫ t

0
u(s)ds

)
=

σ2

κ2

(
t− 1

κ
(1− e−κt)

)
,

where φ is the stationary distribution of u(t). See Section A.2 for the proof. Hence, for any given t > 0,

Aλ (t)−λ t

λ α+ 1
2

√
Varφ

(∫ t
0 u(s)ds

) ⇒N (0,1),

as λ → ∞, where N (0,1) denotes a standard normal random variable. On the other hand, Equation (5)
implies that if α ∈ (0, 1

2),

Varπ(Aλ (t))∼ σ2λ 2α+1

κ2

(
t− 1

κ
(1− e−κt)

)
= λ

2α+1Varφ

(∫ t

0
u(s)ds

)
as λ → ∞. Consequently, we have the following weak convergence.
Corollary 2 Suppose X(t) is initialized with the stationary distribution π and α ∈ (0, 1

2). Then, for any
given t > 0,

Aλ (t)−EπAλ (t)
Varπ(Aλ (t))

⇒N (0,1), (7)

as λ → ∞, where N (0,1) is a standard normal random variable.
Interestingly, the weak convergence (7) is also well supported by the data. Since we use the arrival

counts in 10-minute time periods for our study, there are 6×24 = 144 such time periods in a day, among
which we select five with increasingly larger average arrival counts. For each of the five selected periods,
we examine the distribution of its arrival count in the 21 days of our dataset and apply the Gaussian kernel
smoothing method (see e.g. Hastie et al. 2009) to estimate its probability density function. We then can
see a clear sign of convergence of such estimated densities to the standard normal density as the mean
arrival rate increases; see Figure 3
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Figure 3: Evidence in data of the convergence (7) of the scaled arrival process. Five 10-minute time periods
are selected and ranked in the ascending order based their average arrival counts. We use λ to denote
the average number of arrivals per hour. The density functions of the arrival counts are estimated via the
Gaussian kernel smoothing method.

4 CONCLUDING REMARKS

In this paper, we have investigated the scaling scheme of the arrival process which is fundamental in typical
heavy traffic analysis of queueing systems. By a careful statistical analysis, we have identified that the
level of the stochastic variation of the arrival process relative to its average is neither as low as that in
the Poisson process, nor as high as that in the DSPP proposed by Whitt (1999) and widely used in the
literature. It in fact lies somewhere in between. To accommodate this new and significant observation,
we have developed a stochastic model that allows an explicit control over the level of overdispersion in a
heavy traffic environment. Our model is fairly tractable and we have proved two important properties to
demonstrate that our model aligns with the data very well.

Note that our arrival model is a DSPP with arrival rate being a (reparameterized) CIR process. Its
simulation is well studied and can be implemented easily; see Giesecke and Kim (2007) and Giesecke et al.
(2011). Hence, our arrival model can be readily used as a more accurate input model to drive simulation
of complex queueing systems.

We believe the presented results in this paper would potentially lead to many interesting open questions.
Here are some examples. First of all, given the excessive random fluctuations in the arrival process, the
necessary staffing level should be higher than it would be for Poisson arrivals in order to achieve similar
service quality. Indeed, the non-conventional scaling scheme in Theorem 2 suggests that the safety staffing
level should conceivably be of the order Θ(λ α+ 1

2 ) for our arrival model, instead of Θ(λ
1
2 ) as for the Poisson

arrival model. However, the associated heavy traffic analysis requires that the scaled arrival process should
have a stronger version of the convergence than the “convergence in marginal distribution” in Theorem 2.
In particular, it should converge in Skorohod topology (see e.g. Whitt 2002). This is part of our on-going
research.

Moreover, given its critical role in determining the proper staffing level, it is of great interest and
importance to develop a credible approach to efficiently estimate the parameter α . (The linear regression
estimation (2) is heuristic and can not be used in any rigorous sense.) One possible approach is to adopt
the Bayesian inference via Markov chain Monte Carlo; see e.g. Gelman et al. (2004) for an extensive
coverage on this topic, or Zhang (2013) for the discussion on a similar problem.
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A APPENDICES

The proofs of both Theorem 1 and Theorem 2 heavily rely on the explicit calculation of the Laplace
transform of A(t), thanks to the analytical tractability of the CIR process.
Lemma 2 For any θ > 0,

Ex exp
(
−θ

∫ t

0
X(s)ds

)
= exp[− f (θ)−g(θ)x],

where Ex(·) , E(·|X(0) = x),

f (θ) =−2κλ 1−2α

σ2 log

(
2γe(γ+κ)t/2

(γ +κ)eγt + γ−κ

)
, (8)

and

g(θ) =
2θ(eγt −1)

(γ +κ)eγt + γ−κ
, (9)

where γ =
√

κ2 +2θσ2λ 2α .

Proof. See Equation (3.76) on page 129 of Glasserman (2003).

Lemma 3 For any θ > 0,

ψ(θ) , Eπ exp(−θA(t)) = exp
[
− f (1− e−θ )

]
·
[

1+
σ2λ 2α

2κ
·g(1− e−θ )

]− 2κλ1−2α

σ2

, (10)

where the functions f and g are given by (8) and (9).

Proof. By the doubly stochastic Poisson structure,

ψ(θ) = Eπ [E(exp[−θA(t)]|X(s) : 0≤ s≤ t)] = Eπ exp
(
−(1− e−θ )

∫ t

0
X(s)ds

)
.

It the follows from Lemma 2 that

ψ(θ) =
∫

∞

0
Ex exp

(
−(1− e−θ )

∫ t

0
X(s)ds

)
π(dx)

=
∫

∞

0
exp
[

f
(

1− e−θ

)
−g
(

1− e−θ

)
x
]

π(dx)

=exp
[
− f
(

1− e−θ

)]
·
[

1+
σ2λ 2α

2κ
·g
(

1− e−θ

)]− 2κλ1−2α

σ2

,

since π is a gamma distribution.
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A.1 Proof of Theorem 1

The calculation of EA(t) is a simple implication of the doubly stochastic Poisson structure.

EπA(t) = Eπ [E(A(t)|X(s),0≤ s≤ t)] = Eπ

[∫ t

0
X(s)ds

]
=
∫ t

0
EπX(s)ds = λ t.

The derivation of EA2(t), however, utilizes the fact that EA2(t) = ψ ′′(0), where ψ(θ) = Eπ exp(−θA(t))
is given by (10). The calculation is straightforward but fairly lengthy and we omit the details.

A.2 Proof of Theorem 2

Note that the convergence (6) is about the marginal distribution of the scaled arrival process. So it suffices
to show the convergence of the corresponding Laplace transform, namely

Eπ exp
(
−θλ

−α− 1
2 (A(t)−λ t)

)
→ Eφ exp

(
−θ

∫ t

0
u(s)ds

)
(11)

as λ → ∞, where φ is the stationary distribution of the OU process u(t). Note that the integrated OU
process is normally distributed, so

Eexp
(
−θ

∫ t

0
u(s)ds

)
= exp

[
−θE

(∫ t

0
u(s)ds

)
+

θ 2

2
Var
(∫ t

0
u(s)ds

)]
.

By Equation (3.51) and (3.54) on page 113 of Glasserman (2003),

E
[

exp
(
−θ

∫ t

0
u(s)ds

)
|u(0)

]
= exp

[
−θ

κ
(1− e−κt)u(0)+

θ 2σ2

2κ2

(
t +

1
2κ

(1− e−2κt)− 2
κ

(1− e−κt)
)]

.

It then follows that, letting U is a random variable distributed as φ (i.e. normal distribution with mean 0
and variance σ2

2κ
),

Eφ exp
(
−θ

∫ t

0
u(s)ds

)
=Eexp

[
−θ

κ
(1− e−κt)U +

θ 2σ2

2κ2

(
t +

1
2κ

(1− e−2κt)− 2
κ

(1− e−κt)
)]

=exp
[

θ 2σ2

4κ3 (1− e−κt)2 +
θ 2σ2

2κ2

(
t +

1
2κ

(1− e−2κt)− 2
κ

(1− e−κt)
)]

=exp
[

θ 2σ2

2κ2

(
t− 1

κ
(1− e−κt)

)]
. (12)

On the other hand, Lemma 3 implies that

Eπ exp
(
−θλ

−α− 1
2 (A(t)−λ t)

)
= ψ(−θλ

−α− 1
2 ) · exp(θ tλ

1
2−α). (13)

Hence, Equation (11) is equivalent to

ψ(−θλ
−α− 1

2 ) · exp(θ tλ
1
2−α)→ exp

[
θ 2σ2

2κ2

(
t− 1

κ
(1− e−κt)

)]
as λ → ∞, because of Equations (12) and (13), which can be shown by an elementray calcualtion and we
omit the details.
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