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ABSTRACT

We consider linear programs where some parameters in the objective functions are unknown but data are

available. For a risk-averse modeler, the solutions of these linear programs should be picked in a way that

can perform well for a range of likely scenarios inferred from the data. The conventional approach uses

robust optimization. Taking the optimality gap as our loss criterion, we argue that this approach can be

high-risk, in the sense that the optimality gap can be large with significant probability. We then propose

two computationally tractable alternatives: The first uses bootstrap aggregation, or so-called bagging in the

statistical learning literature, while the second uses Bayes estimator in the decision-theoretic framework.

Both are simulation-based schemes that aim to improve the distributional behavior of the optimality gap

by reducing its frequency of hitting large values.

1 INTRODUCTION

In any real applications, the input parameters of decision-making optimization models are unknown and

need to be estimated from data. From a risk perspective, the solutions of such optimizations should be

picked such that they can perform well over a range of scenarios as inferred from data. Our focus here,

on a high level, is to find strategies to pick such solutions via a systematic use of risk criteria.

More concretely, we concentrate on deterministic linear programs (LP) in which some coefficients in

the objective are unknown, but the constraints are fully known. This setup entails that the uncertainty is

only on the objective function and not the feasibility of solutions. For ease of explanation, throughout most

of the paper we consider the example

max Z(x;θ) = θx1 + x2

subject to x1 ≤ 1

x1 + x2 ≤ 2

x1,x2 ≥ 0

(1)

where x = (x1,x2) ∈ R
2 are the decision variables, and θ ∈ R is uncertain. We assume the unknown true

value of θ is θ0 = 2, and we have i.i.d. data Y = (Y1, . . . ,Yn) generated from the distribution N(θ0,σ
2) with

say a known σ = 5. For convenience we also let A denote the fully known feasible region in (1).

To evaluate the quality of solution, we use the optimality gap as a criterion. Without fixing the parameter

value at θ0, the optimality gap of an adopted solution x̂ = (x̂1, x̂2), as a function of θ , is given by

G(x̂,θ) = Z(x∗(θ);θ)−Z(x̂;θ)
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where x∗(θ) denotes the optimal solution for (1) as a function of θ . Ideally, we want G(x̂,θ) to be small

for θ = θ0, but the true value θ0 is never known. The main task is therefore to find procedures that are

guaranteed to have small G(x̂,θ0). For convenience, we denote G0(x) = G(x;θ0).
For (1), the true optimal solution can be easily seen to be x∗(2) = (1,1) (via graphical method in Figure

1 for instance) and the optimal value is 3. Hence the optimality gap for a solution x̂ at the true parameter

value θ0 = 2 is G0(x̂) = 3−2x̂1 − x̂2.

We stress our viewpoint of evaluating procedures that output some solution x̂. A procedure will take

in the input data Y , and output x̂ = x̂(Y ). The distribution of G0(x̂(Y )) will provide insight of the quality of

the procedure. The randomness in G0(x̂(Y )) comes from the stochasticity of Y according to the distribution

N(θ0,σ
2). Loosely speaking, a procedure is good if the distribution of G0(x̂(Y )) is concentrated at zero,

whereas it is considered risky if G0(x̂(Y )) is large with significant probability.
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Figure 1: Graphical method for program (1).

2 CONVENTIONAL APPROACHES

2.1 Plug-in Procedure

The most basic approach for solving (1) is a “plug-in” procedure: Take the sample average of Y , namely

Ȳ = (1/n)∑
n
i=1Yi, and use it as an estimate for θ , i.e. θ̂ = Ȳ . Then solve maxx∈A Z(x; θ̂) to get x̂.

Figure 2 shows the distribution of G0(x̂) using the plug-in procedure. We assume a sample size n = 20.

We generate the histogram by repeating 100 times of sampling a data set of size 20 and carrying out the

plug-in scheme, and at the end finding the frequency distribution of the 100 resulting optimality gaps.

As we can see, the plug-in procedure either gives perfect solution or is quite far off: Depending on the

realization of the data Y , the optimality gap is either 0 or 1. This bimodal behavior is due to the solution

nature of LP: an optimal solution in an LP is located at one of the corner points of the polyhedral feasible

region. We classify the values of θ that lead to the same corner point optimal solution as lying in the

same “decision region”. It is then easy to see that there are only two decision regions for the program (1),

corresponding to the solutions (1,1) and (0,2). The optimality gap is zero if θ̂ lies in the first decision

region, i.e. the same one as θ0, whereas the gap is 1 if θ̂ lies in the second region.

For a risk-averse modeler, this behavior of the distribution of G0(x̂) is arguably not satisfactory, because

it implies that the loss can be substantial once a wrong solution is chosen.
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2.2 Robust Optimization

Robust optimization (RO) has been widely studied in recent years (e.g. Ben-Tal et al. 2009, Bertsimas et al.

2011). Motivated by the uncertainty in the parameter θ , the idea is to find a solution x̂ that is guaranteed

to work well for a range that θ0 is likely to lie in. This can be posted as maximizing the worst-case

performance of Z as

max
x∈A

min
θ∈U

Z(x;θ) (2)

where U denotes the uncertainty set. In the data-driven robust optimization framework (e.g. Bertsimas

et al. 2013, Delage and Ye 2010), a common way to calibrate U is to use the interval estimator for θ , i.e.

U = [θ ,θ ] =

[

Ȳ − zα

σ√
n
,Ȳ + zα

σ√
n

]

(3)

where zα is the 1−α quantile of the standard normal distribution. Typical value of α is 0.05. In this case

the output x̂ from (2) will guarantee that the true objective value evaluated at x̂ is better than the optimal

value of (2) with 95% confidence. From a statistical viewpoint, however, this data-driven RO approach does

not correspond to any standard statistical procedure in a decision-theoretic sense, e.g. it is not a minimax

estimator (Cox and Hinkley 1979; also see Section 5) for any particular loss function.

Figure 3 shows the distribution of G0(x̂) by using the data-driven RO formulation (2). We can see

that the distribution is still bimodal; in fact, it appears even worse than the plug-in procedure as there is a

higher chance that the optimality gap is 1. This shows that with respect to the optimality gap, RO is also

a high-risk procedure.
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Figure 2: Histogram of optimality gap for plug-in

procedure.
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Figure 3: Histogram of optimality gap for RO.

2.3 A Comparison of Plug-in Procedure and Robust Optimization

We proceed with some mathematical analysis. Let us compute the exact distribution of G0(x̂) for the

plug-in and RO procedure. First, we write down the function x∗(θ) as

x∗(θ) =

{

(1,1) if θ ≥ 1

(0,2) if θ ≤ 1.
(4)

This can be easily seen by scrutinizing Figure 1. Fixing the feasible region, the optimal solution is (1,1)
when the slope of the objective line is less than −1, while it is (0,2) if the slope is greater than −1.

For the plug-in procedure, (4) implies that we would choose

x̂ =

{

(1,1) if θ̂ ≥ 1

(0,2) if θ̂ ≤ 1.
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Now, using the assumption that Yi ∼ N(θ0,σ
2) and so Ȳ ∼ N(θ0,σ

2/n), we have

P(θ̂ ≥ 1) = P(Ȳ ≥ 1) = Φ

(

1−θ0

σ/
√

n

)

= Φ

(

−
√

n

5

)

and similarly

P(θ̂ ≤ 1) = Φ

(

−
√

n

5

)

where Φ(·) and Φ(·) denote respectively the distribution function and the tail distribution function of

standard normal variable. Therefore, we have

x̂ =







(1,1) with probability Φ

(

−
√

n

5

)

(0,2) with probability Φ

(

−
√

n

5

)

.

Translating into optimality gap, we get

G0(x̂) =







0 with probability Φ

(

−
√

n

5

)

1 with probability Φ

(

−
√

n

5

)

.
(5)

Next we turn to RO. Note that taking the uncertainty set U as the interval estimate in (3), we have

max
x∈A

min
θ∈U

Z(x;θ) = max
x∈A

Z(x;θ).

From (4), we therefore have

x̂ =

{

(1,1) if θ ≥ 1

(0,2) if θ ≤ 1.

Since

P(θ ≥ 1) = P

(

Ȳ − zα

σ√
n
≥ 1

)

= Φ

(

1+ zασ/
√

n−θ0

σ/
√

n

)

= Φ

(

−
√

n

5
+ zα

)

and

P(θ ≤ 1) = Φ

(

−
√

n

5
+ zα

)

,

we get

x̂ =







(1,1) with probability Φ

(

−
√

n

5
+ zα

)

(0,2) with probability Φ

(

−
√

n

5
+ zα

)

and

G0(x̂) =







0 with probability Φ

(

−
√

n

5
+ zα

)

1 with probability Φ

(

−
√

n

5
+ zα

)

.
(6)

Comparing (6) with (5), we see that RO has a less favorable optimality gap distribution in this setting since

Φ(−√
n/5+ zα)< Φ(−√

n/5). In fact, simple further investigation can conclude that the optimality gap

from RO is at best as good as that from plug-in for any realization of Y (and strictly worse with positive

probability). However, we should point out that here the true parameter value θ0 = 2 is an unlucky scenario

for RO. If θ0 had been 1/2 for instance, then RO would have performed better than plug-in. Nevertheless,

the expressions (5) and (6) reveal why the optimality gap distributions for plug-in and RO are both bimodal

and less than satisfactory.
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3 A MINIMAX PROCEDURE ON THE OPTIMALITY GAP

The reason why RO does not perform well with respect to optimality gap is because, by its own construction,

the procedure does not take into account G(x̂;θ) as a risk criterion. To remedy this issue, one can consider

alternately

min
x∈A

max
θ∈U

Z(x∗(θ);θ)−Z(x;θ). (7)

The procedure (7) minimizes the worst-case optimality gap over the uncertainty set of θ . The procedure

thus guarantees that the chosen x̂ will perform at worst as the optimal value of (7), in terms of optimality

gap, with 95% probability. The idea of (7) is similar to that in Lim et al. (2012) and Lim et al. (2006),

which focuses on the uncertainty of parametric distributional model for operations management and finance

problems. Adopting their terminology, we shall call (7) the benchmarking procedure.

To solve (7), note first that Z(x∗(θ);θ), as a function of θ , is given by

Z(x∗(θ);θ) =

{

θ +1 if θ ≥ 1

2 if θ ≤ 1

by putting (4) into the objective function in (1). Figure 4 shows Z(x∗(θ);θ). When the set U = [θ ,θ ]
lies completely below the threshold θ = 1, obviously one should choose x̂ = (0,2), whereas when U lies

completely above the threshold θ = 1, then one should choose x̂ = (1,1). In both cases, the worst-case

optimality gap given by (7) is zero.

ʹ 

 ߠ

ܼ כݔ ߠ Ǣ ߠ  

ͳ 

Figure 4: The function Z(x̂;θ) against θ .
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Figure 5: The function Z(x̂;θ) when U covers

θ = 1 in the benchmarking procedure.

The more interesting scenario is when U neither lies completely below or above θ = 1. In this case,

one can interpret (7) as trying to find a straight line, Z(x;θ) = θx1+x2 as a function of θ , that lies under the

function Z(x∗(θ);θ) such that the maximum shortfall over the range [θ ,θ ] is minimized. Figure 5 shows

such a line. We demonstrate how to find this line mathematically. First, it must touch the point (1,2) since

otherwise one can always lift up the line so that the maximum shortfall is decreased. This translates to the

condition x1+x2 = 2. With this constraint, the maximum shortfall must occur at the boundary of the interval

U , i.e. θ and θ . The shortfall at θ is θ +1−θx1−x2 =(1−θ)x1+(θ −1) by substituting x2 = 2−x1, and the

shortfall at θ is 2−θx1−x2 = (1−θ)x1. Therefore, by noting also that 0 ≤ x1 ≤ 2 due to the non-negativity

constraint in (1), the problem here becomes solving min0≤x1≤2 max{(1−θ)x1 +(θ −1),(1−θ)x1}. One

can draw a graph of max{(1−θ)x1+(θ −1),(1−θ)x1} against x1 and see easily that the minimizer occurs

when (1−θ)x1 +(θ −1) intersects (1−θ)x1. Thus, setting (1−θ)x1 +(θ −1) = (1−θ)x1, we have

x1 =
θ −1

θ −θ
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which is always between 0 and 1 if θ ≥ 1 and θ ≤ 1 (and θ 6= θ ), or in other words U does not lie

completely below or above the threshold θ = 1.

Therefore, we have

x̂ =











(1,1) if U ⊂ [1,∞)
(0,2) if U ⊂ (−∞,1]
(

θ−1

θ−θ
,2− θ−1

θ−θ

)

otherwise.
(8)

Figure 6 shows the distribution of the optimality gap for the benchmarking procedure (7). We can see

that the distribution now is more spread out between the two extremes 0 and 1, and has a substantially

lower probability of having a large optimality gap. In fact, the probability of having an optimality gap at

around 1 drops from 0.2 in the case of plug-in and 0.8 in the case of RO to close to 0.01 for benchmarking.

The change in the shape of the optimality gap distribution comes from the phenomenon that the solution

(8) is no longer concentrated at the corner points (1,1) and (0,2). Rather, there is a smooth transition

from (1,1) to (0,2) as the uncertainty set moves from [1,∞) to (−∞,1] (as a comparison, Figure 7 shows

the only two possibilities of Z(x̂;θ) in the plug-in or RO procedure). In general, this smoothing of the

decision at the boundary between decision regions appears to help flatten the optimality gap distribution

from being concentrated at extremes.
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Figure 6: Histogram of optimality gap for the benchmarking procedure.
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Figure 7: Two only possibilities of Z(x̂;θ) under the plug-in or RO procedure.
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Unfortunately, (7) is not a convex program, and so it raises the question of whether it can be solved for

more general problems. In the next sections, we will look at two alternate procedures that have a similar

effect as (7) but computationally more tractable.

4 BOOTSTRAP AGGREGATION

4.1 Procedure and Empirical Performance

Bootstrap aggregation, or what is known as bagging, is a technique originated from classification problems

that is used to reduce variance and avoid overfitting (Breiman 1996). It is now a widely used technique

embedded in some off-the-shelf machine learning algorithms like random forest (Hastie et al. 2009), and is

known to improve estimation accuracy in settings of joint statistical estimation and model selection (Efron

2014). The main idea of bagging is to resample the data set and repeat the estimation procedures, and at

the end take a sample average of the resampled estimators.

In our setting, bagging consists of:

1. Generate n samples with replacement from {Y1, . . . ,Yn}. Call them Y b
1 , . . . ,Y

b
n . Then solve the

plug-in optimization maxx∈A Z(x;Ȳ b) where Ȳ b is the sample average of Y b
i ’s.

2. Repeat the above B times. Let the B optimal solutions be x1,x2, . . . ,xB.

3. Output x̂ = (1/B)∑
B
j=1 x j.

Figure 8 shows the distribution of G0(x̂) by applying bagging with B = 100. The distribution looks

similar to that in Figure 6, i.e. benchmarking, in that they are both spread out in between the extremes 0

and 1. The probability for the optimality gap being close to 1 in Figure 8 is kept at a low number of 0.02.

In fact, its shape looks even better than that in Figure 6, in the sense that higher frequency occurs at small

optimality gaps. Computationally, bagging requires solving B number of LPs with the same complexity.
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Figure 8: Histogram of optimality gap for the bagging procedure.

4.2 Mathematical Explanation

We discuss how bagging works from a statistical perspective. We decompose the mean square of the optimality

gap, E[G0(x̂)
2], into a bias term and a variance term, given by E[G0(x̂)

2] = (E[G0(x̂)])
2 +Var(G0(x̂)).

Compared to the plug-in procedure, what bagging does is to reduce the variance while retaining a similar

bias, and hence the overall value of E[G0(x̂)
2] is lower than that of the plug-in procedure. This argument
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borrows from the theoretical study of bagging in the setting of classification. In the latter scenario, the loss

function is typically discrete, e.g. 0 or 1 corresponding to correct or incorrect classification, and bagging

improves variance by “smoothing” the loss function at the transition boundary between decision regions.

Translating to the LP setting, one can think of LP as a classification problem where the classification

outcomes are exactly the corner points that are possibly optimal.

To illustrate the above discussion in more detail, we shall show some heuristic calculation to compare

bagging with the plug-in procedure. The argument we shall use borrows largely from the technique in

Büchlmann and Yu (2002). For the rest of this section only, we focus on a simpler LP with one decision

variable:
max θx

subject to a ≤ x ≤ b.
(9)

Say θ0 > 0. The true optimal solution is hence b. Again, we assume that i.i.d. data Y = (Y1, . . . ,Yn) are

available, with Yi ∼ N(θ0,σ
2). For the plug-in procedure, we have x̂ = bI(θ̂ ≥ 0)+aI(θ̂ < 0), where I(·)

is the indicator function. Hence the bias is

θ0E[b− (bI(θ̂ ≥ 0)+aI(θ̂ < 0))] = θ0(b−a)P(θ̂ < 0).

Suppose θ0 = c/nα for some constant c > 0, where n is the number of data. We distinguish three cases:

0 ≤ α < 1/2, α = 1/2 and α > 1/2.

Note that
√

n(θ̂ −θ0)/σ
approx.∼ N(0,1). Writing P(θ̂ < 0)≈ Φ(−√

nθ0/σ), we have:

1. If 0 ≤ α < 1/2, then
√

nθ0

σ
→ ∞ ⇒ P(θ̂ < 0)≈ σ√

2πnθ0
e−nθ0

2/(2σ2)

⇒ bias has exponential decay rate θ 2
0 /(2σ2) as n → ∞.

2. If α = 1/2, then
√

nθ0

σ
→ c ⇒ P(θ̂ < 0)→ Φ(c) ⇒ bias → θ0(b−a)Φ(c).

3. If α > 1/2, then
√

nθ0

σ
→ 0 ⇒ P(θ̂ < 0)→ 1

2
⇒ bias → θ0(b−a)1

2
.

Similarly, we can derive that the variance for plug-in is θ0
2(b−a)2P(θ̂ < 0)P(θ̂ ≥ 0), and we have:

1. If 0 ≤ α < 1/2, then
√

nθ0

σ
→ ∞ ⇒ variance has exponential decay rate θ0

2/(2σ2) as n → ∞.

2. If α = 1/2, then
√

nθ0

σ
→ c ⇒ variance → θ0

2(b−a)2Φ(c)Φ(c).

3. If α > 1/2, then
√

nθ0

σ
→ 0 ⇒ variance → θ0

2(b−a)2 1
4
.

Now consider the case of bagging. For convenience we assume we can take the number of resamples

B = ∞. The adopted solution in this case is x̂ = Ẽ[bI(θ̃ ≥ 0)+aI(θ̃ < 0)] = bP̃(θ̃ ≥ 0)+aP̃(θ̃ < 0), where

θ̃ denotes a bootstrapped estimate of θ given Y and Ẽ and P̃ denote respectively the expectation and

probability with respect to θ̃ , which is distributed approximately as N(θ̂ ,σ 2/n) with θ̂ = Ȳ . Consider the

optimality gap

θ0(b−bP̃(θ̃ ≥ 0)−aP̃(θ̃ < 0)) = θ0(b−a)P̃(θ̃ < 0)

= θ0(b−a)Φ

(√
nθ̂

σ

)

= θ0(b−a)Φ

(√
n(θ̂ −θ0)

σ
+

√
nθ0

σ

)

.
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The bias is given by

θ0(b−a)E

[

Φ

(√
n(θ̂ −θ0)

σ
+

√
nθ0

σ

)]

where the expectation E is on θ̂ . Since
√

n(θ̂−θ0)
σ

∼ N(0,1), we have:

1. If 0 ≤ α < 1/2, then
√

nθ0

σ
→ ∞ ⇒ bias has exponential decay rate θ0

2/(2σ2) as n → ∞.

2. If α = 1/2, then
√

nθ0

σ
→ c ⇒ bias → θ0(b−a)E[Φ(Z + c)] where Z ∼ N(0,1).

3. If α > 1/2, then
√

nθ0

σ
→ 0 ⇒ bias → θ0(b− a)E[Φ(Z)] = θ0(b− a)E[U ] = θ0(b− a) 1

2
where

U ∼Uni f (0,1).

Similarly, the variance is

θ0
2(b−a)2Var

(

Φ

(√
n(θ̂ −θ0)

σ
+

√
nθ0

σ

))

.

Hence:

1. If 0 ≤ α < 1/2, then
√

nθ0

σ
→ ∞ ⇒ variance has exponential decay rate θ0

2/σ2 as n → ∞.

2. If α = 1/2, then
√

nθ0

σ
→ c ⇒ variance → θ0

2(b−a)2Var(Φ(c+Z)).

3. If α > 1/2, then
√

nθ0

σ
→ 0 ⇒ variance → θ0

2(b−a)2Var(Φ(Z)) = θ0
2(b−a)2Var(U) = θ0

2(b−
a)2 1

12
.

We argue that for all three cases 0 ≤ α < 1/2, α = 1/2 and α > 1/2, bagging provides advantages or

is roughly as good as plug-in. If θ0 is close to 0 relative to the sample size, i.e. α > 1/2, then the limiting

variance is strictly smaller in bagging than in plug-in since θ0
2(b− a)2 1

12
< θ0

2(b− a)2 1
4
. On the other

hand, the limiting biases are the same at θ0(b−a)1
2

for both bagging and plug-in. For the case α < 1/2,

both bias and variance have exponential decay in n in both bagging and plug-in, and the difference between

the two schemes is thus negligible. In the case α = 1/2, bagging often leads to a reduction in variance

while maintaining similar bias as plug-in. An illustrative scenario is when c = 0, which reduces to the

same conclusion as the case for α > 1/2. When c > 0, one can still see that bagging has a smaller overall

mean square error for a large range of c (Figure 2 in Büchlmann and Yu 2002). We note that Büchlmann

and Yu (2002) focuses on the case α > 1/2 in their analysis, and we have considered the additional cases

of 0 ≤ α < 1/2 and α = 1/2 here.

5 DECISION-THEORETIC APPROACH

The next approach we consider is inspired from decision theory (e.g. Cox and Hinkley 1979). Viewing x̂

as an estimate of the true optimal solution x∗(θ0), we can evaluate the quality of a statistical estimation

procedure by the use of risk function

EY |θ [l(G(x̂(Y ),θ))] (10)

where EY |θ [·] denotes the expectation taken on the data Y given a true parameter θ , and l(·) : R+ →R is a

convex non-decreasing loss function. One way to minimize (10) while taking into account the uncertainty

of θ is use a minimax estimator, namely by finding x̂(Y ) that solves

min
x̂(Y )

max
θ

EY |θ [l(G(x̂(Y ),θ))]. (11)
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The formulation (11) can be difficult to solve in general, because the decision variable is a procedure, not

a numerical object. We should also point out that the framework in (11) is very different from data-driven

RO discussed in Section 2.2, because finding a solution that minimizes the worst-case loss function over

a calibrated uncertainty set for θ is not equivalent to finding a procedure that minimizes the worst-case

expectation of the loss function with respect to the likelihood of the data Y .

One tractable machinery to handle (10) is to use the Bayesian framework. Consider the Bayes risk

EY,θ [l(G(x̂(Y ),θ))] = Eθ [EY |θ [l(G(x̂(Y ),θ))]] (12)

where Eθ [·] is the expectation taken with respect to some prior distribution on θ . Note that (12) can be

written as

EY [Eθ |Y [l(G(x̂(Y ),θ))]]

where now Eθ |Y [·] denotes the posterior expectation of the parameter θ given the data Y , and EY [·] is taken

with respect to the unconditional distribution of Y . A Bayes procedure minimizes the Bayes risk by solving

min
x∈A

Eθ |Y [l(G(x,θ))]. (13)

Supposing that the distribution of θ given Y can be computed, then (13) is a convex program. In fact, a

more general theorem is available:

Theorem 1 Consider the convex optimization maxx∈A f (x;Θ), where f is a concave objective func-

tion in x with parameter Θ and A is some known convex deterministic set. The Bayes procedure

minx∈A EΘ|Y [l( f (x∗(Θ);Θ)− f (x;Θ))], where l : R+ → R is a convex non-decreasing loss function and

x∗(Θ) is an optimal solution for parameter Θ, is also a convex program.

Proof. Since f (x;Θ) is concave, f (x∗(Θ);Θ)− f (x;Θ) is convex, and moreover it is non-negative by the

definition of x∗(Θ). Therefore, since l is convex non-decreasing on R+, the quantity EΘ|Y [l( f (x∗(Θ);Θ)−
f (x;Θ))] is convex in x.

Moreover, for quadratic loss function, the Bayes procedure is a convex quadratic program (QP) if the

original optimization is an LP:

Theorem 2 Using the notation in Theorem 1, if l(w) =w2 and maxx∈A { f (x;Θ) =Θ′x} is a linear program,

then the Bayes procedure is a convex QP.

Proof. We can write

EΘ|Y [l( f (x∗(Θ);Θ)− f (x;Θ))] = EΘ|Y (Θ
′(x∗(Θ)− x))2

= EΘ|Y [(x
∗(Θ)− x)′ΘΘ′(x∗(Θ)− x)]

= x′EΘ|Y [ΘΘ′]x−2EΘ|Y [x
∗(Θ)′ΘΘ′]x+EΘ|Y [x

∗(Θ)′ΘΘ′x∗(Θ)] (14)

which is a convex quadratic form in x.

We carry out the Bayes procedure using a quadratic loss function for (1). Here we denote Θ = (θ ,1)′.
By the proof of Theorem 2, we need to solve

min
x∈A

x′Eθ |Y [ΘΘ′]x−2Eθ |Y [x
∗(Θ)′ΘΘ′]x+Eθ |Y [x

∗(Θ)′ΘΘ′x∗(Θ)]. (15)

We consider two alternatives:
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1. Put a normal prior on θ , i.e. θ ∼ N(µ,γ2). Then the posterior distribution is (Gelman et al. 2014)

θ |Y ∼ N

(

µ/γ2 +(n/σ2)Ȳ

1/γ2 +n/σ2
,

(

1

γ2
+

n

σ2

)−1
)

.

2. Use the empirical distribution of Y to replace the posterior distribution. The empirical distribution

is not a posterior distribution in theory, but is a good approximation when n is large.

Note that only the first two terms in the objective function in (15) are relevant for finding the optimal

solution. The second term involves the quantity Eθ |Y [x
∗(Θ)′ΘΘ′], which is in general difficult to evaluate

in closed form. Therefore we approximate it by drawing samples from the posterior or the empirical

distribution (depending on which alternatives above). Figures 9 and 10 show the distributions of optimality

gap for using the normal prior and the empirical distribution approximation respectively. We can see that

in both cases the distribution is spread out between 0 and 1, thus remedying the issue in plug-in and RO.

Compared to bagging, i.e. Figure 8, the probabilities of optimality gap close to 1 are slightly higher in the

two Bayes procedures, both being around 0.05, than for bagging, which is around 0.02. However, higher

frequency occurs at smaller values of the optimality gap in the Bayes procedures, being between 0.4 and

0.5 for optimality gap close to zero, compared to around 0.25 for bagging.
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Figure 9: Histogram of optimality gap for Bayes

estimator using normal prior.
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Figure 10: Histogram of optimality gap for Bayes

estimator using empirical distribution approxima-

tion.
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