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ABSTRACT

In the ranking-and-selection field, many current existing fully sequential procedures are developed under
the indifference-zone (IZ) formulation which assumes an optimality gap between the best alternative and
the others. In this paper, by modifying one classical fully sequential procedure, Paulson’s procedure, we
devise a new type of fully sequential procedure which can provide the probably approximately correct
(PAC) selection guarantee. The procedure is able to select an alternative within a certain distance from the
best one with the desired probability even when the IZ assumption is violated. In order to provide this
selection guarantee, we lose some efficiency on the procedure. However, we show, both theoretically and
numerically, that this efficiency loss is limited and acceptable when the number of alternatives is large.

1 INTRODUCTION

In the simulation literature, using simulation experiments to select the alternative with the best mean
performance among a finite group of candidates is often referred to as the ranking-and-selection (R&S)
problem, see Bechhofer et al. (1995), CKim and Nelson (2006), and Chick (2006) for reviews. Based on
the statistical inference being used, the current existing procedures can be classified into two approaches:
the Bayesian approach and the frequentist approach. The objectives of these two classes of procedures are
quite different. Bayesian procedures, e.g.: Chick and Inoue (2001) and Chick and Frazier (2012), aiming
to minimize the expected opportunity cost, typically have high efficiencies to solve practical problems, but
generally, do not provide any frequentist’s statistical guarantees. Meanwhile, for frequentist procedures,
e.g.: Rinott (1978), Paulson (1964), Kim and Nelson (2001), and Fan et al. (2016), offering certain kind
of statistical guarantee is always the primary goal. Many frequentist procedures are designed to deliver the
desired probability of correct selection (PCS), even under the least favorable configuration of the means.
Therefore, comparing with Bayesian procedures, frequentist procedures are averagely conservative. In this
work, we mainly focus on developing frequentist procedures.

Under the frequentist framework, the goal of selecting the unique best is stringent, because the mean
performance of second best alternative can be arbitrarily close to that of the best one. To avoid such difficulty,
many frequentist procedures adopt the indifference-zone (1Z) formulation, which is initially proposed by
Bechhofer (1954). It assumes that the mean difference between the best and the second best is at least
0 >0, where § is the smallest difference the decision makers feel worth detecting. By suggesting an
optimality gap between the best alternative and the others, the IZ assumption ensures that the best alternative
is identifiable in a finite number of samples.

So far, under the IZ formulation, various types of procedures have been proposed, ranging from the
earliest two-stage procedures, e.g.: Rinott (1978), which are designed to handle problems with k£ < 100, to
the latter fully sequential procedures, which are capable of solving medium size problems (e.g., kK < 500)
by eliminating clearly inferior alternatives in the middle of the selection process. Recently, with the
continuing development of the field, there are growing needs for the possibilities to solve even large-scale
R&S problems (i.e., k > 10%). As pointed out by Luo et al. (2015), the R&S problem can fit easily into the
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parallel computing environments. Both Luo et al. (2015) and Ni et al. (2017) make the attempts to solve
large-scale R&S problems by implementing some variants of current existing procedures in the parallel
computing environments.

A natural question, then, arises: whether the IZ assumption remains solid as the number of alternatives
gets larger and larger? The answer is negative. As illustrated by Ni et al. (2017), when the number of
alternatives is large, there always can exist many J-optimal alternatives which lie within & of the best
alternative. To address the issue, Ni et al. (2017) propose a new form of selection guarantee which
requires the procedures to select a §-optimal alternative with the predefined probability 1 — a even when
the IZ assumption is violated. Ma and Henderson (2017) call it the probably approximately correct (PAC)
guarantee. It turns out that, even though the fully sequential procedures inherently are the best candidates
procedures for solving problems with large k, there is no rigorous proof by far stating that fully sequential
procedures satisfy the PAC guarantee. Without the IZ assumption, the statistical validity of these fully
sequential procedures are questionable, contradicting the primary goal of frequentist procedures.

In this paper, we tackle this problem by redesigning one classical fully sequential procedure, Paulson’s
procedure. We show that after the modifications, the new procedure not only maintains the fully sequential
characteristic but also satisfies the PAC guarantee. To achieve this, we want to notice that, the failure of
proving the PAC guarantee for traditional fully sequential procedures is largely due to the fact that, in the
presence of d-optimal alternatives, the probability that best alternative is eliminated by another d-optimal
alternative in the middle of the selection process is not well controlled and is relatively high. After the best
alternative is eliminated, the procedures run without any statistical guarantee. In light of this, we properly
widen the continuation regions, which are used to conduct pairwise comparisons between alternatives, in
Paulson’s procedure to grant the best alternative more chance of surviving in the competitions with the
other §-optimal alternatives. Essentially, we satisfy the PAC guarantee at the expense of the procedure’s
efficiency loss. Nevertheless, we will show, both theoretically and numerically, that this efficiency loss is
limited and acceptable when the number of alternatives is large.

The rest of the paper is organized as follows. In section 2, with a simple setting, where all the alternatives
share a common known variance, we demonstrate our main idea of designing the procedure and conduct
the efficiency analysis on the procedure. In section 3, we extend our procedure to the case of unknown
and unequal variances followed by some preliminary numerical results in section 4.

2 PROCEDURE FOR A COMMON KNOWN VARIANCE

To facilitate our analysis, we first introduce some standard notations. Let K = {1,2,...,k} be the set
of alternatives. For each alternative i € K, it generates independent and identically distributed (i.i.d.)
observations X;, for £ =1,2,..., from the normal distribution with mean g; and variance 6?. X;(t) is
defined as the sample average of alternative i based on ¢ observations. Without loss of generosity, we
assume that the means are in an ascending order, i.e., U} < Uy < --- < L, and alternative k is the best
alternative. Being different from the IZ formulation, we make no assumption on the configuration of the
means. The parameter § > 0 is defined as the PAC parameter in the rest of the paper. We call an alternative
i §-optimal, if w; — p; < 6. It is possible that whenever the user specifies a positive constant § > 0, there
is more than one d-optimal alternative. Similarly, an alternative j is called d-away, if py —u; > 6. Our
objective is to devise a procedure that can achieve,

Pluwe—w <8)>1—a, €))

where [ is index of the alternative the procedure terminates with, « is the probability of incorrect selection
(PICS), and 1 — « is called the PAC probability in this paper. It means that the procedure needs to produce
a d-optimal alternative with the confidence greater or equal to 1 — a. We call the procedure satisfying
equation (1) the (8, a)-PAC procedure. If the IZ assumption indeed holds, i.e., u; < tp <--- < Wy — 6,
for a (6, a)-PAC procedure, we have,

P(ux — pr < S8l > g1 +0) =PI =kl > 1 +6) > 1 —
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Figure 1: Continuation Region for Paulson’s Procedure.

indicating that the (0, ct)-PAC procedure can still guarantee to select the unique best alternative k, and the
PAC probability is equivalent to the classical PCS under this situation. In the following subsections, with
a brief review on Paulson’s procedure, we show how Paulson’s procedure can be modified to satisfy the
PAC guarantee.

2.1 Paulson’s Procedure

For the traditional fully sequential procedures, it is a convention to break down the problem of selecting
the best alternative to subproblems, which make pairwise comparisons between every two competing
alternatives. The comparison between two alternatives i and j refers to their partial sum difference
process, {Z;; (t) =1-(X;(t)—X; (1)) : 1 =1,2,...}. Once the random process Z;; (t) exists its predetermined
continuation region, a decision can be made. Usually, the continuation regions are constructed to ensure
that, for each comparison between the best alternative (i.e., alternative k) and the other k — 1 alternatives,
falsely eliminating alternative k happens with probability o/ (k— 1), so that,

k—1
P (k is eliminated) = Y P (i eliminates k) < (k— 1) X
i=1

o
k—1

=0«.

There are various ways of constructing the continuation regions. Under the normality assumption, one
common way is to model the partial sum difference process as a Brownian motion (BM) process, and use
the theories of hitting times in the BM process to approximate these continuation regions.

We take Paulson’s procedure as an example to show the underlying mechanisms of constructing these
continuation regions. Particularly, we consider the comparison between two alternatives i and k, where
i # k. As shown by Figure 1, the selection of these two alternatives depends on whether Z; (7) exits the
triangular continuation region from the lower decision boundary L. () = —a+ A - or the upper decision
boundary U (t) =a— A -r. The false elimination occurs if Zy (¢) exists the continuation region from U (7).
From the BM process point of view, the theoretical foundations of constructing the continuation region
(i.e., determining the decision boundaries) are twofold: 1) Throughout this paper, we let % (-) denote the
BM process with unit variance, and %, (+) is defined as the BM process with unit variance and drift A. As
suggested by Theorem 1 of Hong (2006), for any user inputted constant A € (0,0), the random processes
{Zx@)+ A1)/} :t=1,2,...} and {By,_ 42 (t/07) :1=1,2,...} have the same joint distribution,
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where Gl%( = Var (X; ¢ — Xr¢); 2) If the 1Z assumption holds, '%uﬁuﬁ/l (t / Gl%{) always has a drift less or
equal to A — 6. A well known result for the BM process with a negative drift bounded away from zero is
summarized in Lemma 1.

Lemma 1 For a BM with unit variance and drift A < 0, if @’ > 0,

P (sup%’A (t) > a’) =exp (—2Al|d|).

t>0

Therefore, if 07 is known, by simply letting a = o3 -log[(k— 1) /a] /[2- (8 — A)], the upper decision
boundary U (7) with the form a — A -7 satisfies,

P (i eliminates k) =P ( supZy (1) >U(¢) | < S
>1 k—1

In the meantime, the lower decision boundary L () is, by symmetry of the random processes Zj (f) and
Zi; (1), the reflection of U (¢) over x-axis.

The IZ assumption is crucial. Without the IZ assumption, the BM process B, _, 2 (t / 6[%{) may
have a drift arbitrarily close to zero or even a positive drift. Under this situation, with high probability,
alternative k could be eliminated by alternative i during the selection process. Moreover, with the equally
high probability, alternative i could be further eliminated by another alternative j which is 0 away from
alternative k but within 0 of alternative i, leading the procedure to finally choose a d-away alternative.
In view of this, while constructing the continuation region for our (8, a)-PAC procedure, we add an
additional negative drift to the random process Zj (¢) + A - ¢. Particularly, we consider the random process
Zix (1) 4 (A — 8) -t and its corresponding BM process %y, 125 (t/03). Thus, the new process always
has a negative drift bounded away from zero. As we will show in the following subsection, this small
change leads to a wider continuation region. Consequently, the probability that alternative k is eliminated
by alternative i can be well controlled regardless whether alternative i is §-optimal or not.

2.2 Procedure 1

In this subsection, we introduce a fully sequential (8, a)-PAC procedure under the setting of a common
known variance. This is in line with the setting when Paulson’s procedure was first proposed.

Assumption 1 (A Common Known Variance) For each alternative i € K, it generates independently and
identically distributed (i.i.d.) observations X; ¢, for £ =1,2,..., from the normal distribution with unknown
mean g; and known variance 62. The observations generated by different alternatives are independent.

Our procedure operates in almost the same logic as the classical Paulson’s procedure, except the
continuation regions the procedure adopts to conduct pairwise comparisons. Firstly, the procedure constructs
the continuation regions for all the possible pairwise comparisons based on the common known variance.
Then, in the elimination stage, at each round, the procedure screens whether there is a partial sum difference
process Z;; (t) exiting its continuation region. If it is the case, the procedure eliminates one alternative
accordingly. After all the eliminations, the procedure collects one more observation for each surviving
alternative and proceeds to the next round of screening. The procedure stops when there is only one
alternative left or the number of observations for each surviving alternative reaches the maximum. The
detailed descriptions of the procedure are listed below.

Procedure 1 (Normal Observations with a Common Known Variance)
Input: Select the PAC probability 1 — o (0 < oo < 1—1/k). Set parameters 6 >0 and 1 (0 <A < 9).
Initialization: Let I = {1,2,...,k} be the set of alternatives in contention. For each i € I, simulate one
observation X; . Compute

_ o?log[(k—1)/a]
a (6-1)

and N = L%J +1,

1901



Zhong and Hong

Zi (t . |
ik ( ) Select alternative i
Ao oo o BN N CT e ccccnnnnons .
‘\\ 1
U(t) "~ __ :
~ 1
Se 'a
0 slope = —AJ~<_1 4
-1
T
—,’ 1
-~ 1
L(I) ,"’ 1
- 1
‘," 1
—”” :
—a = :
L/ (t) :
Select alternative k i

Figure 2: Continuation Region for Procedure 1.

where |-| indicate truncation of any fractional part, and set 7 = 1.
Screening: Set [°/¢ =1. Let

I= {i el and t- (X (1) —X; (1)) > —a—(§—A)-1,Vj eI j# i}.
Stopping Rule:
e If |I| =1, stop and select the alternative whose index is in I as the best.

e Else if 1 = N, stop and select the alternative whose index is in T having the largest X; () as the best.

e Otherwise, take one additional observation X;, 1 from each alternative i € I, set t =41, and go
to Screening.

Remark 1 Recall that, for Paulson’s procedure, Screening conducts eliminations with milder conditions,
i.e.,

I= {i:ieﬂ”ld and - (X; (t) — X; (1)) > —a—i—?L't,Vje]I"ld,j;éi}.

To better illustrate the changes we have made on Paulson’s procedure, in Figure 2, we plot the decision
boundaries U’ (1) =a+ (6 —A) -t and L' (t) = —a— (6 — 1) - ¢ for the comparison between alternatives i
and k in Procedure 1. It can be observed that, there are two distinct features for the continuation region in
Procedure 1: 1) As we change the random process used to construct the continuation region, the decision
boundaries of Paulson’s procedure have opened up; 2) For Paulson’s procedure, the continuation region
naturally vanishes at a/A, where U (¢) and LL (¢) intersect. As in Procedure 1, there is no such an intersection
point, we force the continuation region in Procedure 1 to end at the same point as Paulson’s procedure
does.

These modifications are quite intuitive. On the one hand, after we widen all the continuation regions,
the new regions are uniformly larger than those of Paulson’s procedure. It suggests that the procedure
becomes more conservative, and requires more observations to eliminate alternatives. This is true, because
the procedure imposes tighter conditions to eliminate alternatives, lowering the chance that the best one
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is falsely eliminated. On the other hand, forcing all the pairwise comparisons to stop at a/A ensures that
every d-away alternative can be properly eliminated. From these two aspects, we are able to establish the
statistical validity for Procedure 1.

Theorem 1 If Assumption 1 holds, Procedure 1 is a (8, @)-PAC procedure.

2.3 Asymptotic Efficiency

Besides the effectiveness (statistical validity), the efficiency is also an important aspect to measure the
performance of a procedure. In this subsection, we establish the efficiency analysis for Procedure 1.
Specifically, we consider the efficiency loss of Procedure 1, compared with Paulson’s procedure, while
solving a problem where the IZ assumption holds. As Procedure 1 is applied, we exam the expected
sample size alternative i can take for i =1,2,...,k— 1, in the asymptotic regime of letting ¢ go to zero,
and compare the expected sample size with that in Paulson’s procedure. The main technique we use is the
mean path analysis provided by Perng (1969).

Theorem 2 Suppose that there are in total k alternatives. For each alternative i € K, it generates i.i.d.
observations X; s, for £ = 1,2, ..., from the normal distribution with unknown mean y; and known variance
o2. The observations generated by different alternatives are independent. Let N; be the sample size

alternative i can take in Paulson’s procedure, i.e.,

N; :min{tj : min Z;; (1) < —a—S-I},
JEL—1

and N/ be the expected sample size alternative i can take in Procedure 1, i.e.,

Ng—min{t: n}lin Zij(t) < —a—(0—A)-t ort—N},
JEL—1

where I;_; is the set of alternatives that have not been eliminated up to time t — 1. If yu; < pp <--- <
W1 < U — 0, 1 —a is defined as the PAC probability, and both procedures are applied, then,

EN]  m—pi+A
ENEN] T -0+ A @

It can be seen that, for equation (2), the ratio on the right hand side quantifies the efficiency loss of
Procedure 1. The larger the ratio the larger loss on the efficiency. As the ratio is always greater than one,
it means that there is always an efficiency loss on Procedure 1. This efficiency loss can be thought as
the price that we pay for the PAC guarantee. For any fixed A, when u, — u; = 0, the largest efficiency
loss is incurred. Under this situation, the sample size alternative i can take in Procedure 1 is (A +38)/A
times as that in Paulson’s procedure. However, when the mean difference u; — u; gets large, the ratio
quickly approaches to one, implying that the difference in efficiency shrinks. It is arguable that when
the number of alternatives is large, most of the alternatives are clearly inferior ones, and the sample size
needed to eliminate these clearly inferior alternatives are almost the same for both procedures. Thus, the
total sample size of Procedure 1 would be similar to that of Paulson’s procedure while solving a large-scale
R&S problem.

3 PROCEDURE FOR UNKNOWN AND UNEQUAL VARIANCES

As the setting of Procedure 1 can hardly be achieved in practice, in this section, we extend Procedure 1
to the case of unknown and unequal variances.
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3.1 Procedure 2

In most simulation studies, variances of the outputs are typically unknown and unequal, and need to be
estimated during the selection process. In this subsection, we introduce a procedure, namely, Procedure 2,
that relaxes the assumption of a common known variance in Procedure 1.

Assumption 2 (Unknown and Unequal Variances) For each alternative i € K, it generates independently
and identically distributed (i.i.d.) observations X;,, for £ =1,2,..., from the normal distribution with
unknown mean g; and unknown variance 6?.

Remark 2 In Assumption 2, we do not emphasize the independence between the observations generated
by different alternatives. It allows the use of the common random numbers (CRNs).

Compared with Procedure 1, Procedure 2 additionally requires the first stage sampling to estimate the
unknown variances for all the alternatives. Once the variance information is collected, the procedure uses
the first stage sample variances to construct the continuation regions needed in the second stage. Then, the
eliminations are conducted in a similar manner to that of Procedure 1. Note that, as the variances of the
alternatives are unequal, the continuation regions in Procedure 2 usually differ from one pairwise comparison
to another. Thus, how to determine the ending point of each continuation region becomes a problem. In
terms of the procedure’s efficiency, it would be appealing to force different continuation regions to end at
different points, making full use of the variance information. However, it directly leads the procedure to the
same problem as that encountered by the traditional fully sequential procedures while satisfying the PAC
guarantee. The probability that alternative k is eliminated by another §-optimal alternative in the middle of
the selection process cannot be controlled. Therefore, in Procedure 2, we keep adopting a universal ending
point for all the continuation regions. We force all the continuation regions to end at the point where the
worst-case scenario does. The details of the procedure are listed below.

Procedure 2 (Normal Observations with Unknown and Unequal Variances)
Input: Select the PAC probability 1 — o (0 < oo < 1—1/k). Set parameters 6 >0 and A (0 <A < 9).

Initialization: Let I = {1,2,... k} be the set of alternatives in contention. For each i € I, simulate
__2
no observations X; 1,X;2,...,Xi,, from alternative i. Let h*> = 4?§:}1) X [(%) T — 1}. For all i # j,
compute
1 0 _ _ 5 hZS.z.
Si2j = Z [Xi,f —ij — (X,' (n()) —Xj (l’lo))] and Nij = Y + 1.
no—1/5 A
Let
N,‘ = maxNij.
J#i

Set the t = ny.
Screening: Set [°/¢ =1. Let

I= {i el andr- (X (1) =X (1) > —h*S;;— (6 —A)-1,¥j €1, j # i}. 3)

Stopping Rule:
e If |I| =1, stop and select the alternative whose index is in I as the best.

e Else if # = max;cx N;, stop and select the alternative whose index is in T having the largest X; (¢)
as the best.

e Otherwise, take one additional observation X;, 1 from each alternative i € I, set t =7+ 1, and go
to Screening.
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Notice that one may argue that if the variances are unequal, our procedure may experience the
conservativeness induced by forcing all the continuation regions to end at the point where the worst-case
scenario does. The technique proposed by Hong (2006) can properly address this issue. By adjusting the
sampling rule, we are not necessary to sample every surviving alternatives the same amount of observations
at each round. We are able to allocate different numbers of observations to different alternatives based on
their variances (or, first stage sample variances) so as to rescale all the continuation region to about the
same size. Like many fully sequential procedures, updating the variance information for each alternative
in the second stage is generally not allowed in Procedure 2. The procedure requires the independence
between the sample variances and the overall sample means in the second stage to guarantee the finite time
statistical validity. In the theorem below, we summarize the statistical validity for Procedure 2.

Theorem 3 If Assumption 2 holds, Procedure 2 is a (6, @)-PAC procedure.

Except the designing of the ending point of each continuation region, the other techniques we used to
extend Procedure 1 to handle the case of unknown and unequal variances are quite standard. Interested
readers may also see Paulson (1964) and Hong (2006) for more details on how these techniques.

3.2 Speed Up Pairwise Comparisons

Many current existing R&S procedures are originally designed for the purpose of solving medium size
problems (i.e., kK < 500). After years of rapid growth of the computing power, many recent works start
to investigate the possibilities of employing these procedures to solve large-scale R&S problems in the
parallel computing environments. For instance, Luo et al. (2015) attempt to use KN procedure proposed
by Kim and Nelson (2001) to solve the problem with more than 10* alternatives, and Ni et al. (2017) even
push the number up to 10°. Both studies reveal the fact that when the number of alternatives gets large, the
nature of all pairwise comparisons at each round of screening becomes a bottleneck in a fully sequential
procedure. The all pairwise comparisons at each round generally require a computational complexity of
7 (kQ) which is significantly larger than the computational complexity of & (k) needed to simulate new
observations in each round of the comparisons.

Without considering the CRNs, Hong et al. (2016) propose a simple but effective technique to reduce
the computational complexity for the all pairwise comparisons at each round to the order of & (k) for some
fully sequential procedures. This technique is applicable to Procedure 2 as well. The general idea works as
follows. With the independence between observations generated by different alternatives, we can replace

§7; in Procedure 2 by the term S7 +S7 where S7 = ﬁ Yoo, (Xie—X; (no))*,Vi € K. If we further let
W (t)=1-X; (t) +h*S? and W, (t) =¢-X; (t) — h*S?,Vi €1,

and i* = argmax;c1W,” () at time ¢, then the screening process (3) in Procedure 2 can be rephrased to
]I:{i:ie]l”’d andw(z)zmg(z)—(a—/l).t}. @)

It suggests that, at each round of screening, one does not need to conduct all pairwise comparisons among
the surviving alternatives; instead one can define a “best” alternative based on certain criteria, and only
compare each surviving alternative with the “best” alternative. Thus, the order of comparisons at each
round reduce to & (k). The proposition below states that after such modifications, the statistical validity of
Procedure 2 remains intact. Proposition 1 provides a theoretical guarantee to apply our procedure to solve
large-scale R&S problems.

Proposition 1 If Assumption 2 holds, without considering the CRNs, as we replace the term S,Zj by $? + S?,
and the screening process (3) by (4), Procedure 2 remains a (&, &)-PAC procedure.
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4 NUMERICAL RESULTS

For the numerical experiments listed below, by default, the desired PAC probability, 1 — «, is set to be
0.95, and we let § = 0.1. We first consider a simple example where there are two alternatives sharing a
common known variance, i.e., 612 = 622 =02=1. We compare the performances of Procedure 1, Paulson’s
procedure, and another famous fully sequential procedure, KN procedure, under different configurations
of the means. We summarize the estimated PAC probability and the average total sample size with 95%
confidence interval over 1,000 macro-replications in Table 1.

Table 1: Comparisons of Procedure 1, Paulson’s Procedure, and KN Procedure.

B Procedure 1: A Paulson’s procedure: A KN: ¢
Ha—H 5/3 572 5/3 572 I
1.00 0.99 0.97 0.98 0.96

o — =86 1.70x 10> 1.72x 103 | 0.66x10°  0.79x10% | 0.60 x 10°
+0.05x 10> +0.04 x 103 | £0.02 x 10>  +0.02 x 103 | £0.02 x 103

1.00 1.00 1.00 1.00 1.00

Ho—p =28 | 0.66x103  0.79x10° | 0.38x10°  049x10° | 0.38x10°
+0.02x 10> +0.02x 103 | £0.01 x 10>  +0.01 x 103 | £0.01 x 103

1.00 1.00 1.00 1.00 1.00

o—p =48 | 027x10%  034x10° | 021x10°  027x10° | 0.21x103
+0.01 x 10> +0.01 x 103 | £0.01 x 10> +0.01 x 103 | £0.01 x 103

1.00 1.00 1.00 1.00 1.00

o—u =88 | 0.13x10%  0.16x10° | 0.11x10>  0.14x10° | 0.11x103
+0.01 x 10> +0.01 x 103 | £0.01 x 10> +0.01 x 103 | £0.01 x 103

For Procedure 1 and Paulson’s procedure, the smaller A we set, the smaller total sample sizes are
required to identify the best alternative (see, each row). This occurs because, for these two procedures,
a small A usually associates with tight continuation regions when ¢ is small. As a result, the partial sum
difference processes may stop early in expectation. Meanwhile, this is at the expense of larger ending
points for the continuation regions, i.e., a worse performance in the worst-case scenario. It also can be
seen that, compared with the other two traditional fully sequential procedures, Procedure 1 requires larger
total sample sizes to solve the problems. This is because KN procedure in general provides the tightest
continuation regions among the traditional fully sequential procedures by employing the Fabian (1974)’s
result, and the continuation regions in Procedure 1 are always larger than those in Paulson’s procedure.
This is the efficiency loss incurred by satisfying the PAC guarantee. However, as the difference in means,
i.e., Up — Uy, increases, the difference in efficiency diminishes. When p, — t; = 86 (the last row), the total
sample sizes needed to solve the problem are almost the same for these three procedures. As in practice,
for large-scale R&S problems, the means of the alternatives are often spread out over a wide range. Most
of the alternatives are clearly inferior ones. It suggests that while solving a large-scale R&S problem, the
performances of these three procedures would not differ far away.

We then exam the performances of these three procedures with a large-scale R&S problem. Particularly,
we consider a problem with 10* alternatives. In this example, for each replication, the means of the
alternatives are drawn from the normal distribution with mean 0 and variance 1652, i.e., ; ~ N (0, 1652)
for i = 1,2,...,104, and are i.i.d. The variances of the alternatives are equal, 612 = 622 =...=1, but
unknown. Thus, the unknown-variance versions of these three procedures are applied. We also let different
alternatives generate independent observations, enabling the use of the technique provided in section 3.2
to reduce the computational complexity of comparisons for all the three procedures. We estimate the
interested statistics based on 100 macro-replications. In Table 2, we report the average number of §-
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optimal alternatives appeared in each replication. For the performance measure, we report estimated the
PAC probability, and the average total sample size for each procedure.

Table 2: Comparisons of Procedure 2, Paulson’s Procedure, and KN Procedure.

k | # of d-optimal alternatives | Procedure 2: A = §/2 | Paulson’s Procedure: A =36/2 | KN: ¢ =1

1.00 1.00 1.00
4
10 2.98 3.02 % 10 2.92 x 108 2.71 x 108

From Table 2, we have several findings. First, on average, for each replication, there exist around 3
J-optimal alternatives. It suggests that the IZ assumption is no longer appropriate for a large-scale R&S
problem. Second, all the three procedures over-deliver the PAC probability in our experiment. This is due to
the fact that, the continuation regions provided by Procedure 2 actually provides a theoretical lower bound
to the PAC guarantee. Because the frequentist procedures are always designed in the most conservative
ways, for most of the cases, the traditional fully sequential procedures can numerically demonstrate the
robustness of PAC guarantee. However, without the theoretical guarantee, the statistical validity of these
procedures is unclear. Third, there are about 3.4% and 11.4% inflation on the total sample size for Procedure
2 compared with Paulson’s procedure and KN procedure respectively, and we think it is tolerable. This is
consistent with our previous analysis that the efficiency of these three procedures are similar while solving
a large-scale R&S problem.

S CONCLUSION

In this paper, we provide a new fully sequential procedure that can satisfy the PAC guarantee by proper
widening the continuation regions of the classical Paulson’s procedure. We show, both theoretically and
numerically, that the new procedure is suitable for solving large-scale R&S problems.
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