
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

ESTIMATING SENSITIVITY TO INPUT MODEL VARIANCE

Wendy Xi Jiang
Barry L. Nelson

Dept. of Industrial Engr. & Mgmt. Sci.
Northwestern University

Evanston, IL 60208-3119, USA

L. Jeff Hong

School of Management
School of Data Science

Fudan University
Shanghai 200433, P. R. CHINA

ABSTRACT

Simple question: How sensitive is your simulation output to the variance of your simulation input models?
Unfortunately, the answer is not simple because the variance of many standard parametric input distributions
can achieve the same change in multiple ways as a function of the parameters. In this paper we propose
a family of output-mean-with-respect-to-input-variance sensitivity measures and identify two particularly
useful members of it. A further benefit of this family is that there is a straightforward estimator of any
member with no additional simulation effort beyond the nominal experiment. A numerical example is
provided to illustrate the method and interpretation of results.

1 INTRODUCTION

A computer model maps its inputs into outputs via a collection of rules and algorithms that mimic the
features of the target system. The output of a model can be regarded as a function of the inputs, i.e.,
Y = g(θθθ), where each element θi of θθθ could be a constant, such as the planned release rate of wafers in
a semiconductor manufacturing line or the thermal property of a material; or a quantity that is inherently
variable such as the daily air temperature or the time that an agent in a call center spends on a call.
Computer models are never perfect representations of complex real-life systems or processes, and this
includes the inputs that are uncertain due to lack of information, errors of measurement or estimation error
due to sampling (Saltelli et al. 2000). Uncertainties in the inputs will imply uncertainty in the outputs.
Broadly speaking, sensitivity analysis (SA) studies how the model output responses are affected by the
inputs so as to better understand system performance, to quantify risk, or to indicate where input change or
management may be desirable. Depending on the type of input and the goals of the analysis, SA methods
can be grouped into two categories, global SA and local SA, and further subdivisions within each. This
paper deals with a problem in local SA.

Global SA often addresses the case when inputs would be deterministic, if known. To study the effect
of uncertainty in the input factors due to lack of information, global SA may impose a distribution, Θi ∼ Fi,
on each input factor based on prior knowledge or data. Then the measured output variability caused by
variation in the input factors, Var(g(ΘΘΘ)), is apportioned to each input factor as a measure of its contribution
to output uncertainty. Measures of global SA provide guidance as to which inputs to control or study to
reduce their uncertainty, and which are not significant sources of output uncertainty. The most commonly
known global SA measures are variance-based, such as the first-order and total effects in Homma and
Saltelli (1996), and the Shapley effects in Song et al. (2016).

Local SA, on the other hand, focuses on the impact of small perturbations of θi on the outputs, often in
the form of a partial derivative of the output with respect to the input. One justification for this approach
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is the Taylor Series approximation of g around a nominal value of the input θθθ = θθθ 0 (Saltelli et al. 2000):

g(θθθ 0 +∆θθθ) = g(θθθ 0)+∑
j

∂g
∂θ j

∆θ j +
1
2 ∑

j
∑

l

∂ 2g
∂θ j∂θl

∆θ j∆θl + · · · .

As the partial derivatives implied by a computer model typically have to be estimated via numerical methods,
the first-order or gradient terms ∂g(θθθ)/∂θi usually have to suffice, meaning the SA is truly local, applying
only to an infinitesimal perturbation around the nominal setting. Our SA measure is a partial derivative.

In the context of stochastic simulation models, SA is more complicated because the input factors θθθ

might be parameters of the input distributions that represent the inherent randomness in the system. In this
case there is both sensitivity to the values of these parameters, and also uncertainty about their nominal
values θθθ 0 if they were estimated from data. Much recent work has been done on quantifying or hedging
against the uncertainty in the simulation output due to the uncertainties in the values of the input parameters,
which is referred as “input uncertainty” in the simulation literature (Lam 2016; Song et al. 2014).

Our goal is to assess the local sensitivity of the simulation output with respect to the variance of the
input models, assuming the nominal values θθθ 0 are known. Thus we go beyond sensitivity of the output to
the input distribution mean, which is common and even implemented in some commercial software (e.g.,
Simio R©). We consider parameteric input distributions having parameters such as mean, variance, shape,
scale, rate, etc. However, sensitivity of the output with respect to the natural input parameters themselves
is often difficult to interpret; this can be true even when the variance of the distribution is one of the
parameters. Therefore, we propose a new family of local sensitivity measures that enable us to quantify the
sensitivity of the output mean to a change in the variance of the input models along a specified direction
in the input-parameter space.

Like other local SA measures for stochastic simulation, our proposed measure requires the estimation of
a stochastic gradient. Existing simulation-based techniques can be categorized into two groups: indirect and
direct methods. Indirect methods include finite differences (brute force) and the simultaneous perturbation
method, both of which require additional simulation runs that increase with the dimensionality of the
problem (Fu 2015). The direct methods includes infinitesimal perturbation analysis, likelihood ratio (score
function) method, and measure-valued differentiation (Fu 2015), which all require information about the
underlying simulation model. Instead of using these techniques, we incorporate the method of Wieland
and Schmeiser (2006) which is particularly well-suited to estimating output gradients with respect to input
parameters without additional simulation effort beyond the nominal experiment.

The paper is organized as follows. We define our new family of sensitivity measures in Section 2,
and provide an estimator and establish its properties in Sections 3–4. An empirical illustration is found in
Section 5, followed by conclusions in Section 6.

2 A NEW FAMILY OF SENSITIVITY MEASURES

Consider a simulation model with K independent, scalar, parametric input distributions denoted
F(1)(·|θθθ (1)),F(2)(·|θθθ (2)), . . . ,F(K)(·|θθθ (K)), having in total q≥ K input parameters (because for some distri-
butions θθθ is a vector). The simulation output of interest can be represented as

Y (θθθ (1),θθθ (2), . . . ,θθθ (K)) = η(θθθ (1),θθθ (2), . . . ,θθθ (K))+ ε(θθθ (1),θθθ (2), . . . ,θθθ (K))

where θθθ (i) ∈ ℜpi , with pi ≥ 1 represents the parameters of input distribution i, η(θθθ (1),θθθ (2), . . . ,θθθ (K)) is
the expected value of the simulation output given the parameters, and ε(·) is the corresponding stochastic
noise with mean 0. In this paper we consider the parameters θθθ (i) to be fixed, so where no confusion will
arise we will simply write Y . We also let X (i) represent a random variable with distribution F(i).

Consider the M/G/∞ queue as an example. If “G” is the gamma distribution, then there are K = 2 input
random variables with q = 3 parameters: the interarrival time following an exponential distribution with
θθθ (1) = λ (X (1) ∼ exponential(λ )), and the service time following a gamma distribution with θθθ (2) = (α,β )
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(X (2) ∼ gamma(α,β )). The output, Y, could be, for instance, the number of customers in the system, and
we are interested in E(Y ). For each input distribution F(k) with parameter θθθ (k), denote its mean and variance
by µk(θθθ

(k)) and σ2
k (θθθ

(k)), respectively. In the case of the M/G/∞ queue, µ1(θθθ
(1)) = 1/λ , σ2

1 (θθθ
(1)) = 1/λ 2,

µ2(θθθ
(2)) = α/β , and σ2

2 (θθθ
(2)) = α/β 2.

Our local sensitivity analysis is with respect to each input distribution separately, so for ease of
exponsition we focus first on a single input distribution X ∼ F(·|θθθ), with parameter θθθ ∈ℜp implying mean
µ = µ(θθθ) and variance σ2 = σ(θθθ).

In this paper we address sensitivity of the output mean, E(Y ) = η(θθθ), with respect to the variance of the
input F ; we call this the mean sensitivity to variance (MSV). What we want, conceptually, is ∂E(Y )/∂σ2,
but this partial derivative is not well defined when there are multiple ways to achieve a change in σ2.
Again consider the M/G/∞ when Y is the number of customers in the system in steady state and σ2

is the variance of the service-time distribution. We know that Y ∼ Poisson(λα/β ), E(Y ) = λα/β , and
σ2 = α/β 2. Therefore, the MSV when changing α with β fixed, or vice versa, are, respectively,

∂E(Y )α

∂σ2 =
∂E(Y )

∂α

∂α

∂σ2 =
λ

β
β

2 = λβ

∂E(Y )β

∂σ2 =
∂E(Y )

∂β

∂β

∂σ2 =
−λα

β 2

(
−β 3

2α

)
=

λβ

2
.

Clearly different changes in θθθ may lead to the same change in σ2 but different changes in E(Y ). Therefore,
the direction of the change in (α,β ) needs to be specified to obtain a unique MSV. This ambiguity will
occur unless θ is scalar, or X = µ +σW where W has mean 0 and variance 1.

When a function g(·) of a vector argument x is differentiable, then the directional derivative of the
function in the direction ~p is given by

D(g(x);~p)) def
= lim

ε→0

g(x+ ε~p)−g(x)
ε‖~p‖

= ∇g(x)T ~p
‖~p‖

where ∇ denotes the gradient operator. The directional derivative can be interpreted as the rate of increase
of g(·) per unit of distance moved in the direction given by ~p.

From here on we let θθθ denote the vector of parameters, treated as a variable, and θθθ 0 as the nominal
(fixed) setting. Throughout this paper we assume that θθθ 0 is known, i.e., no input uncertainty. We propose
the family of MSV measures obtained from the directional derivative of E(Y ) with respect to σ2 along the
normed direction ~d from the nominal parameter setting θθθ 0. Then by using the chain rule for directional
derivatives we obtain

MSV~d =
∂E(Y )
∂σ2

~d

=
~dT ∇θθθ 0E(Y )
~dT ∇θθθ 0σ2

. (1)

The gradient of the variance of the input X with respect its input parameters θθθ at θθθ 0, ∇θθθ 0σ2, will typically
be known in closed form or easily computed numerically. Thus, estimating MSV reduces to estimation of
∇θθθ 0E(Y ); we describe a method to do this in Section 3 below.

Although MSV can be computed along any direction, our definition of variance sensitivity will only
be valuable if there are practically useful directions. The useful directions we see are the steepest-ascent
direction, the minimum-mean-change direction, or a problem-specific “bring your own direction.” We
describe and illusrate the first two of these in the next two subsections.
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2.1 Steepest-Ascent Direction

The steepest-ascent direction is the θθθ direction along which σ2 increases the fastest: ~d = ∇θθθ 0σ2/‖∇θθθ 0σ
2‖.

Plugging this direction into (1) we have

MSV~d =
∂E(Y )
∂σ2

~d

=
~d>∇θθθ 0E(Y )
~d>∇θθθ 0σ2

=
(∇θθθ 0σ2)>∇θθθ 0E(Y )
‖∇θθθ 0σ2‖2 .

Writing each term explicitly, we have ~d =

(
∂σ2

∂θ1

(√
∑

p
i=1(

∂σ2

∂θi
)2
)−1

, . . . , ∂σ2

∂θp

(√
∑

p
i=1(

∂σ2

∂θi
)2
)−1
)>

=

(d1,d2, . . . ,dp)
> and the resulting MSV~d is

∂E(Y )
∂σ2

~d

=
d1

∂E(Y )
∂θ1

+ · · ·+dp
∂E(Y )

∂θp

d1
∂σ2

∂θ1
+ · · ·+dp

∂σ2

∂θp

=

(
d1

∂σ2

∂θ1

∑
p
i=1 di

∂σ2

∂θi

)
∂E(Y )

∂θ1

∂σ2

∂θ1

+ · · ·+

 dp
∂σ2

∂θp

∑
p
i=1 di

∂σ2

∂θi

 ∂E(Y )
∂θp

∂σ2

∂θp

=

(
( ∂σ2

∂θ1
)2

∑
p
i=1(

∂σ2

∂θi
)2

)
∂E(Y )

∂θ1

∂σ2

∂θ1

+ · · ·+

 ( ∂σ2

∂θp
)2

∑
p
i=1(

∂σ2

∂θp
)2

 ∂E(Y )
∂θp

∂σ2

∂θp

= w1

∂E(Y )
∂θ1

∂σ2

∂θ1

+ · · ·+wp

∂E(Y )
∂θp

∂σ2

∂θp

.

Notice that ∑
p
i=1 wi = 1. In fact it is easy to show that the MSV for any direction can be expressed as a

convex combination of the terms ∂E(Y )
∂θi

/ ∂σ2

∂θi
for i = 1,2, . . . , p.

For the M/G/∞ queue when Y is the number of customers in the system in steady state, the unit-norm,
steepest-ascent direction of the service process is

~d =

(
β√

4α2 +β 2
, − 2α√

4α2 +β 2

)

which results in the MSV~d of

∂E(Y )
∂σ2

~d

=
~d>∇θθθ E(Y )
~d>∇θθθ σ2

=

(
β√

4α2+β 2
, − 2α√

4α2+β 2

)> λ

β

−λα

β 2


(

β√
4α2+β 2

, − 2α√
4α2+β 2

)>( 1
β 2

−2α

β 3

) =
λβ 3 +2λα2β

β 2 +4α2 > 0 (2)

evaluated at θθθ = θθθ 0 = (λ 0,α0,β 0)>.
The steepest-ascent direction is a defensive choice: Change θθθ 0 in the direction that most rapidly

increases the variance of the input distribution. Assuming an increase in variance is bad, this is the direction
nature would choose to be the most disruptive.
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2.2 Minimum-Mean-Change Direction

This direction minimizes the rate of change in the mean of the input while increasing its variance:

Minimize:
~d∈ℜp

∣∣∣~d>∇θθθ 0 µ(θθθ)
∣∣∣

subject to: ~d>∇θθθ 0σ
2(θθθ) > 0

‖~d‖ = 1.

For many common input distributions with p≥ 2 parameters the optimal objective function value of 0
is achieved at the direction perpendicular to the steep-ascent direction of µ(θθθ); this includes the normal,
gamma, beta, Weibull, inverse Gaussian, and Pareto distributions. When the input parameter is a scalar,
p = 1, then the optimal objective function value is typically greater than zero because µ(θθθ) is a function
of σ2(θθθ); e.g., the Bernoulli, exponential, geometric and Rayleigh distributions.

For the M/G/∞ queue when Y is the number of customers in the system in steady state, consider the
MSV~d with~d the minimum-mean-change direction of the service process. The solution to the optimization
problem, which has objective function value 0, is

~d =

(
− α√

α2 +β 2
, − β√

α2 +β 2

)

which results in the MSV~d of

∂E(Y )
∂σ2

~d

=
~d>∇θθθ E(Y )
~d>∇θθθ σ2

=

(
− α√

α2+β 2
, − β√

α2+β 2

)> λ

β

−λα

β 2


~d>∇θθθ σ2

= 0. (3)

This result makes sense because the expected number of customers in an M/G/∞ queue in steady state
does not depend on the variance of the service-time distribution, only the mean. Comparing (2) with (3)
we see that the MSVs along different directions are dramatically different.

The minimum-mean-change direction is a natural choice for isolating the effect of input-distribution
variance with minimal change to its location.

3 ESTIMATING MSV

The key to estimating MSV~d in (1) is estimating ∇θθθ E(Y ). Because ∇θθθ E(Y ) is the gradient with respect to
the simulation input-distribution parameters, we are able to use and extend the gradient estimation method of
Wieland and Schmeiser (2006) that is easy to implement, computationally cheap, and requires no alteration
of the simulation model or supplementary experiments; see also Lin et al. (2015). We describe this method
below.

Suppose there is one input distribution with a scalar parameter θ . To execute the simulation we set
its value to θ 0. To be concrete, let θ be the rate parameter of the exponential distribution describing the
interarrival times in the M/G/∞ queue. Among a total of n replications, the jth replication generates m j
independent and identically distributed (i.i.d.) interarrival times, Xi j, i = 1,2, . . . ,m j, where m j could be
random. The input parameter of X under the nominal setting, θ 0, can be estimated (e.g., via maximum
likelihood estimation (MLE)) from the random variates generated in each replication. In the M/G/∞ queue,
θ̂ j = 1/(∑

m j
i=1 Xi j/m j) is the MLE of θ 0 from replication j.

Replication j also generates output Yj. For instance, in the M/G/∞ queue, if Z j(t) is the number of
customers in the system at time t during a specified period of time [0,T ], then Yj = T−1 ∫ T

0 Z j(t)dt could
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be the output of interest to estimate the expected number of customers in the system in steady state. Thus,
from n replications we observe i.i.d. pairs (Yj, θ̂ j), j = 1,2, . . . ,n.

Suppose that the distribution of (Yj, θ̂ j) is bivariate normal with mean (η(θ 0),θ 0). Then

E(Y |θ̂ j) = β0 +β θ̂

Y D
= β0 +β θ̂ + ε

(4)

where ε is independent of θ̂ , is normally distributed with mean zero, and β = Cov(Y, θ̂)/Var(θ̂). Therefore,
the ∂E(Y )/∂θ under the nominal setting θ 0 is β , and the ordinary least squares estimator of β is

β̂ =
∑

n
j=1(Yj− Ȳ )(θ̂ j− θ̄)

∑
n
j=1(Yj− Ȳ )2

where Ȳ = ∑
n
j=1Yj/n and θ̄ = ∑

n
j=1 θ̂ j/n. This is the key idea of Wieland and Schmeiser (2006): fix the

value of θ at θ 0 and estimate the sensitivity of the response Yj to the realized parameter θ̂ j as it varies
across n replications. Because this relationship is linear when they are bivariate normal, the derivative at
θ = θ 0 can be obtained.

When θθθ = (θ1,θ2, . . . ,θp)
> is a vector parameter, relationship (4) still applies if the distribution of

(Yj,θ̂θθ j) is multivariate normal: βββ> = ΣY,θ̂θθ

(
Σ

θ̂θθ ,θ̂θθ

)−1
(Anderson 1984). Therefore, βββ is the gradient of E(Y )

with respect to θθθ evaluated at θθθ = θθθ 0, and we can estimate βββ by

β̂ββ
>
= Σ̂Y,θ̂θθ

(
Σ̂

θ̂θθ ,θ̂θθ

)−1
(5)

where Σ̂Y,θ̂θθ is the sample covariance matrix between Y and θ̂θθ and Σ̂
θ̂θθ ,θ̂θθ

is the sample variance matrix of θ̂θθ .
Thus, the estimator of the gradient of E(Y ) with respect to θθθ under the nominal setting is

∇̂θθθ 0E(Y )≡ β̂ββ (6)

(Lin et al. 2015).
Notice that a sufficient condition to apply the method of Wieland and Schmeiser (2006) is the normality

of (Yj,θ̂θθ j). When both Yj and θ̂θθ j are the average of a large number of outputs within replication j, or
MLEs of their respective parameters, then it is plausible to approximate the distribution as normal. When
this is not the case batching the replications can be used to induce normality, as suggested in Wieland and
Schmeiser (2006).

4 VARIANCE OF THE MSV ESTIMATOR

In this section we derive the variance of the MSV estimator when (Yj, θ̂θθ j) are multivariate normal. From
here on θθθ and θ̂θθ j are q×1, containing the parameters across all K input distributions.

Plugging (6) into (1), the estimator of MSV under the nominal setting is

M̂SV~d =~d>β̂ββ

(
~d>∇θθθ 0σ

2
)−1

. (7)

The estimator is clearly unbiased as it is a linear combination of unbiased estimators. The only random
quantity in (7) is β̂ββ . Therefore,

Var
(

M̂SV~d

)
=~d>Var(β̂ββ )~d

(
~d>∇θθθ 0σ

2
)−2

. (8)
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We know that β̂ββ in (5) is equivalent to the ordinary least-squares (OLS) estimator of the slope coefficients:

β̂ββ = β̂ββ 1,OLS where β̂ββ OLS = (X>X)−1X>Y =

[
β̂0,OLS

β̂ββ 1,OLS

]
,

Y = (Y1,Y2, . . . ,Yn)
> and

X =


1 θ̂11 · · · θ̂1q

1 θ̂21 · · · θ̂2q
...

...
. . .

...
1 θ̂n1 · · · θ̂nq

 .
Here θ̂ ji is the ith element of θ̂θθ j obtained from the jth replication. Therefore, by the law of total variance
we have

Var
[
β̂ββ OLS

]
= E

[
Var
(

β̂ββ OLS|X
)]

+Var
[
E
(

β̂ββ OLS|X
)]

= E
[

σ
2
ε

(
X>X

)−1
]
+Var[βββ OLS]

= σ
2
ε E
[(

X>X
)−1
]
+0

where σ2
ε is the conditional variance of Y given X and βββ OLS is the true regression coefficient. Here the

first term in the second equality is derived via standard multiple linear regression analysis and the third
equality is because the OLS estimators are unbiased under our assumptions.

To obtain the variance of β̂ββ = β̂ββ 1,OLS, we need to focus on the lower right sub-matrix of E
[(

X>X
)−1
]
.

In the Appendix we show that it is equivalent to the inverse of (n−1)Σ̂ΣΣ
θ̂θθ ,θ̂θθ

, which under the multivariate

normality assumption has a Wq

(
ΣΣΣ

θ̂θθ ,θ̂θθ
,n−1

)
distribution, i.e., a Wishart distribution of dimension q with

n−1 degrees of freedom and variance matrix ΣΣΣ
θ̂θθ ,θ̂θθ

. Thus,

Σ̂
θ̂θθ ,θ̂θθ
∼ 1

n−1
Wq

(
ΣΣΣ

θ̂θθ ,θ̂θθ
,n−1

)
⇒
(

Σ̂
θ̂θθ ,θ̂θθ

)−1
∼ (n−1)W−1

q

(
ΣΣΣ
−1
θ̂θθ ,θ̂θθ

,n−1
)

⇒ E
[(

Σ̂
θ̂θθ ,θ̂θθ

)−1
]
=

n−1
n−q−2

ΣΣΣ
−1
θ̂θθ ,θ̂θθ

.

Therefore,

Var(β̂ββ ) = σ
2
ε E
[

1
n−1

(
Σ̂

θ̂θθ ,θ̂θθ

)−1
]
=

σ2
ε

n−q−2
ΣΣΣ
−1
θ̂θθ ,θ̂θθ

.

To estimate Var(β̂ββ ), we estimate σ2
ε using s2

ε = SSE/(n− q− 1), where SSE is the sum of squared
errors of the multiple linear regression of Y on θ̂θθ , and estimate ΣΣΣ

θ̂θθ ,θ̂θθ
by the sample variance-covariance

matrix Σ̂
θ̂θθ ,θ̂θθ

. Therefore, our estimator of the variance of β̂ββ is

V̂ar(β̂ββ ) =
s2

ε

n−q−2

(
Σ̂

θ̂θθ ,θ̂θθ

)−1
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which can be plugged into (8) to obtain an estimator of the variance of the MSV estimator:

V̂ar
[
M̂SV~d

]
=~d>

(
s2

ε

n−q−2

(
Σ̂

θ̂θθ ,θ̂θθ

)−1
)
~d
(
~d>∇θθθ 0σ

2
)−2

.

When there is concern that (Yj,θ̂θθ j) may not be approximately normally distributed, then batching can
be used to improve the approximation. Let 1≤ b≤ bn/2c be the batch size and k = bn/bc be the number
of batches; for convenience of exposition we assume n = kb from here on. The batch means are

Ȳh(b) =
1
b

hb

∑
j=(h−1)b+1

Yj

θ̄θθ h(b) =
1
b

hb

∑
j=(h−1)b+1

θ̂θθ j

for h = 1,2, . . . ,k. Both Ȳj(b) and θ̄θθ j(b) are the average of b replications. As b increases it is more and
more plausible that approximate multivariate normality of (Ȳj(b),θ̄θθ j(b)) holds, and we may estimate the
gradient (and therefore MSV) from the batch means rather than the raw replication results. However, there
is a loss of degrees of freedom: If the batch means are multivariate normal then

Var(β̂ββ (b)) =
σ2

ε

k−q−2
ΣΣΣ
−1
θ̂θθ ,θ̂θθ

.

One way to quantify the loss is to note that if multivariate normality holds without batching, then the
variance inflation due to batching is

Var
[
M̂SV~d(b)

]
Var
[
M̂SV~d

] =
n−q−2
k−q−2

≥ 1.

5 ILLUSTRATION

In this section we illustrate the estimation and interpretation of MSV for a simulation model of a simplified
semiconductor wafer fab. The process consists of two basic steps, diffusion and lithography, each of which
contains sub-steps as indicated in Figure 1.

In this fab cassettes are released exactly 1 every hour, 24 hours a day, 7 days a week. The raw cassette
begins at the Clean station of diffusion, and passes through diffusion and lithography three times before
leaving the process. The times spent at Oxidize, Coat, and Stepper are deterministic, specifically 2 hours,
1.5 hours, and 1.5 hours, respectively. The times spent at Clean, Load, Unload and Develop are variable
with the K = 4 distributions having the q = 7 parameters specified in Table 1. The goal is to estimate
the sensitivity of the mean cycle time of the manufactured cassettes to the variance of each of the four
input distributions when their variances change along the steepest-ascent and the minimum-mean-change
directions. The simulation was run for 900 replications, each with a run-length of 7 days (168 hours).

Because the distributions of the MLEs of these parameters are asymptotically normal and the mean
cycle time is the average of a large number of cycle times collected within each replication, it is plausible
to approximate the distribution of (Y,θ̂θθ) as multivariate normal. If so, then the relationship between the
conditional expectation of the mean cycle time and the MLE estimators is linear and we can obtain the
gradient estimator, β̂ββ , with its variance via multiple linear regression. The summary of the fitted model is
shown in Table 2.

In Table 2 we see that all predictors are significant and the Clean time is the largest one, which is
not surprising because the Clean time has the largest mean among the four input models and the main
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Figure 1: Diagram of a simplified wafer fab.

Table 1: Experiment setup.

Input Distribution Parameter Nominal Value
Clean Time exponential rate λ 0 = 0.5490
Develop Time gamma (shape, scale) (α0,β 0) = (5.0,10.1297)
Load & Unload Time lognormal (meanlog, sdlog) (µ0,σ0) = (−1.4283,0.5762)

driver of the congestion in the queue is the mean. Also, it makes sense that the coefficient associated
with CL MLE is negative because the increase of the rate of the exponential distribution will decrease its
mean which in turn helps mitigate the congestion of the station. The adjusted R2 of 0.812 suggests that
this linear model fits well to the set of 900 observations. We also verified the normality, homoscedasticity,
and linearity assumptions of the model via diagnostic plots including Q-Q plot, Residual vs. Fitted Values
plot, and Added Variable plot. Multicollinearity and outliers were checked through calculating variance
inflation factors of the coefficients and Cook’s distance of each observation. In summary, we conclude that
the linear model fits well to the data.

The MSV estimators and their corresponding standard errors were obtained through plugging the values
of the coefficients into Equations (7) and (8). The gradients of the variances of the input distributions,
∇θθθ σ2, for Clean (exponential), Develop (gamma), and load/unload (lognormal) are

∇θθθ σ
2
CL =− 2

λ 3

∇θθθ σ
2
DE =

(
1

β 2 , −
2α

β 3

)
∇θθθ σ

2
L/UL =

(
2(eσ2−1)e2µ+σ2

, 2σ(2eσ2−1)e2µ+σ2
)
.

The MSV estimates are shown in Table 3. Consider MSVDE, the sensitivity of mean cycle time to the
variance of the Develop station, as an example. The sensitivity in the steepest-ascent and minimum-mean-
change directions are signficantly different; this is because the mean processing time is the primary driver
of queueing congestion, and the steepest-ascent direction changes the mean as well as the variance, while
the minimum-mean-change direction does not. Throughout we see that the sensitivity to variance when the
mean is held constant is less, and in some cases may not be statistically significant. To illustrate why, the
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Table 2: Regression results (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 2e−16).

Parameter Coefficient Significance StdErr
CL Rate −10.714 ∗∗∗∗ (0.177)
DE Alpha 0.346 ∗∗∗ (0.047)
DE Beta −0.173 ∗∗∗ (0.022)
L LMean 0.916 ∗∗∗ (0.181)
L LStDev 0.736 ∗∗ (0.245)
UL LMean 0.821 ∗∗∗ (0.177)
UL LStDev 0.851 ∗∗∗ (0.248)
Intercept 31.544 ∗∗∗∗ (0.431)
Observations 900
R2 0.813
Adjusted R2 0.812
Residual Std. Error 0.140 (df = 892)
F Statistic 554.042∗∗∗ (df = 7; 892)

Table 3: MSV values with standard errors.

MSVInput,Direction Direction MSV (hr/hr2) Std. Error (hr/hr2) ∆µ (hr)
MSVCL Steepest Ascent 0.8870 0.0146 0.0249
MSVDE,A Steepest Ascent 26.848 3.4814 7.6299
MSVDE,M Min Mean Change 0.3343 1.6009 0
MSVL,A Steepest Ascent 5.7417 1.3413 1.4344
MSVL,M Min Mean Change 1.6170 2.0725 0
MSVUL,A Steepest Ascent 6.1576 1.3665 1.4344
MSVUL,M Min Mean Change 2.9342 2.0745 0

∆µ column shows ∆µ(θθθ 0) =~dT ∇θθθ 0 µ/~dT ∇θθθ 0σ2 which is approximately how much the mean of each input
distribution, µ(θ), would change if the variance of the distribution σ2(θθθ) changed one unit. Of course
this is 0 in the minimum-mean-change direction. Notice in particular the substantial change in the mean
develop time when the variance of the develop time changes in the steepest-ascent direction. Of course,
for the exponential distribution of cleaning time there is only a steepest-ascent direction since the mean
and variance are linked.

6 CONCLUSIONS

In this paper we defined a new family of sensitivity measures for the expected value of a simulation output
with respect to the variances of its parametric input distributions, which we call mean sensitivity to variance
(MSV). Since probabilities may be represented as expected values, MSV addresses probability sensitivities
as well. As variance is often the “corrupting influence” in system performance (e.g., Hopp and Spearman
2011), identifying the inputs whose variance reduction or inflation has the greatest impact is relevant for
system design and control. Two members of our new family seem particularly relevant for applications,
and any member of the family is easy to estimate requiring no more than OLS regression.

The definition of MSV does not depend on the gradient estimator in use, but the properties of our
estimator of MSV do. Further theoretical and empirical evaluation of estimator performance is clearly
in order, including consideration of the infinitesimal-perturbation-analysis, likelihood-ratio and measure-
valued-differentiation gradient-estimation methods (Fu 2015) for situations when the method of Wieland
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and Schmeiser (2006) is not effective. Empirical evaluation is challengining in that MSV is only derivable
mathematically for very simple examples such as the M/G/∞ queue. Therefore, substantial off-line
simulation using, say, finite differences, is required to create challenging examples with known MSV.

Sensitivity measures for the variance of a simulation output with respect to the variance of its input
distributions, which we call variance sensitivity to variance (VSV), may be defined analogously to MSV.
However, estimation of VSV is more challenging, so we will present these results in a later paper.
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APPENDIX

Claim: The lower right sub-matrix of the matrix (X>X)−1 is equivalent to
[
(n−1)Σ̂

θ̂θθ ,θ̂θθ

]−1
, where

X = [1,θ̂θθ
(1)
, . . . ,θ̂θθ

(q)
], 1 = [1,1, . . . ,1]>, θ̂θθ

(i)
= [θ̂i1, θ̂i2, . . . , θ̂in]

> for i = 1,2, . . . ,q, and Σ̂
θ̂θθ ,θ̂θθ

is the sample

variance-covariance matrix of θ̂θθ . Here θ̂i j is the ith element of θ̂θθ j obtained from the jth replication.

Proof. We first write matrix X>X as a block matrix and find its inverse

X>X =


1>1 1>θ̂θθ

(1)
. . . 1>θ̂θθ

(q)

(θ̂θθ
(1)
)>1

...

(θ̂θθ
(q)
)>1

(θ̂θθ
(1)
)>θ̂θθ

(1)
. . . (θ̂θθ

(1)
)>θ̂θθ

(q)

...
. . .

...

(θ̂θθ
(q)
)>θ̂θθ

(1)
. . . (θ̂θθ

(q)
)>θ̂θθ

(q)

=

[
A11 A12

A21 A22

]

⇒ (X>X)−1 =

[
C−1

1 −A−1
11 A12C−1

2
−C−1

2 A21A−1
11 C−1

2

]
where C1 = A11−A12A−1

22 A21 and C2 = A22−A21A−1
11 A12. Writing out C2 explicitly we have

C2 = A22−A21A−1
11 A12

=


(θ̂θθ

(1)
)>θ̂θθ

(1)
. . . (θ̂θθ

(1)
)>θ̂θθ

(q)

...
. . .

...

(θ̂θθ
(q)
)>θ̂θθ

(1)
. . . (θ̂θθ

(q)
)>θ̂θθ

(q)

− 1
n


(θ̂θθ

(1)
)>1

...

(θ̂θθ
(q)
)>1

[1>θ̂θθ
(1)

. . . 1>θ̂θθ
(q)
]

=


(θ̂θθ

(1)
)>θ̂θθ

(1)
. . . (θ̂θθ

(1)
)>θ̂θθ

(q)

...
. . .

...

(θ̂θθ
(q)
)>θ̂θθ

(1)
. . . (θ̂θθ

(q)
)>θ̂θθ

(q)

−n

θ̄1
...

θ̄p

[θ̄1 . . . θ̄p
]

=


(θ̂θθ

(1)
)>θ̂θθ

(1)
−n(θ̄1)

2 (θ̂θθ
(1)
)>θ̂θθ

(2)
−nθ̄1θ̄2 . . . (θ̂θθ

(1)
)>θ̂θθ

(q)
−nθ̄1θ̄p

(θ̂θθ
(2)
)>θ̂θθ

(1)
−nθ̄2θ̄1 (θ̂θθ

(2)
)>θ̂θθ

(2)
−n(θ̄2)

2 . . . (θ̂θθ
(2)
)>θ̂θθ

(q)
−nθ̄2θ̄p

...
...

. . .
...

(θ̂θθ
(q)
)>θ̂θθ

(1)
−nθ̄pθ̄1 (θ̂θθ

(q)
)>θ̂θθ

(2)
−nθ̄pθ̄2 . . . (θ̂θθ

(q)
)>θ̂θθ

(q)
−n(θ̄p)

2


= (n−1)Σ̂

θ̂θθ ,θ̂θθ
where θ̄i = ∑

n
k=1 θ̂ik/n.
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