
Training Artificial Neural Networks by Generalized Likelihood Ratio
Method: An Effective Way to Improve Robustness

Li Xiao, Yijie Peng, L. Jeff Hong, Zewu Ke, and Shuhuai Yang

Abstract— In this work, we proposed a generalized likelihood
ratio method capable of training the artificial neural networks
with more flexibility: (a)training with discrete activation and
loss functions, while the traditional back propagation method
cannot train the artificial neural networks with such activations
and loss; (b)involving neuronal noises during training and
prediction, which will improve the freedom of the model and
make it more adaptable to the real environment, especially
when environmental noises exist. Numerical results show that
the robustness of various artificial neural networks trained by
the new method is significantly improved when the input data
is affected by both the natural noises and adversarial attacks.

I. INTRODUCTION

Artificial neural network (ANN) has been used as a uni-
versal classifier. In recent years, there have been tremendous
successes in applying ANNs to image processing, speech
recognition, game, and medical diagnosis([1], [2], [3], [4],
[5]). In ANN, the inputs such as texts and images are
turned into a vector, and each neuron performs a nonlinear
transformation on the input vector. A deep learning ANN
typically contains multiple layers of convoluted neurons.
This complicated machinery maps the input space to the
target space. There are synaptic weights in each neuron to
be adapted to the surrounding environment based on the
loss between the ANN output and target data. The back
propagation (BP) method has been the most widely used
technique to train ANNs. However, the BP method requires
the loss function and activation function to be smooth in
ANNs, which limits the capability of ANNs to fit well with
the surrounding environments.

Recent work in deep learning has demonstrated that ANNs
can be more easily confused by small noises added to the
images via snowing, blurring, and pixelation than human
being ([6], [7], [8], [9]). Moreover, ANNs are vulnerable
to adversarial attacks, where a very small perturbation of the
inputs can drastically alter the classification result ([10], [11],
[12], [13], [14]). In contrast, the adversarial phenomenon
rarely happens for human being ([15]).

Then some interesting questions arise: what are the dif-
ferences between biological neural networks in the human
brains and ANNs? Can we borrow some mechanisms from
the biological brain neural networks to improve the ro-
bustness of ANNs? There are some noticeable differences

Li Xiao is with Institute of Computing Technology, Chinese Academy of
Science, Beijing, 100871 China (xiaoli@ict.ac.cn). Yijie Peng and Shuhuai
Yang are with the Department of Management Science and Information
Systems, Guanghua School of Management, Peking University, Beijing,
100871 China (pengyijie@pku.edu.cn, 1801214092@pku.edu.cn). L. Jeff
Hong is with the Department of Management Science, School of Manage-
ment, Fudan University, Shanghai, 200433, China (hong liu@fudan.edu.cn).

between the neurons in human brain and the neurons used
in traditional ANNs ([16], [17], [18]). Firstly, the activation
of the brain neuron is via an electric impulse, which means
the activation function is more like discontinuous rather than
Sigmoid or Relu as currently been used. Secondly, human
brain perceives an object as a specific category, e.g., dog
or cat, which means that the loss function capturing the
mechanism of a human brain should be a discontinuous
zero-one function, whereas the loss functions in ANNs are
smooth, e,g., the cross-entropy function. Furthermore, the
brain neuron network is effected directly by the electronic
signal sent by a sensory system and the chemical signal from
the endocrine, therefore the biological brain functions like
learning from the loss value itself rather than the gradient of
the loss, which the BP method uses.

In this work, a generalized likelihood ratio (GLR) method
is proposed to train ANNs with neuronal noises. Unlike
the BP method, GLR trains ANNs directly by the loss
value, rather than the gradient of the loss. GLR does not
differentiate the sample path of the loss, and it can train
ANNs with discontinuous activation and loss functions.
Therefore, the new training method generalizes the scope of
ANNs to be used in practice, which allows some mechanisms
which may more close to what happens in the brain, i.e.,
(a) learning by the loss value and (b) learning via neurons
with discrete activation functions and neuronal noises. The
complexity in calculating the GLR estimator is also simpler
than the BP method, because there is no need to calculate
the backward propagation for the derivatives of the error
signals. Furthermore, our method involves neuronal noises
during training and prediction, which will improve the free-
dom of the model and make it more adaptable to the real
environment, especially when environmental noises exist.

The GLR method is a recent advance in stochastic gra-
dient estimation studied actively in the area of simulation
optimization ([19], [20], [21]). Infinitesimal perturbation
analysis (IPA) and the likelihood ratio (LR) method are two
classic unbiased stochastic gradient estimation techniques
([22], [23], [24], [25], [26], [27]). IPA allows the parameters
in the performance function but requires the continuity
(differentiability) of the performance function; LR does not
allow the parameters in the performance function, whereas
it does not require continuity of the performance function.
The GLR method extends two classic methods to a setting
allowing both the parameters in the performance function
and discontinuous performance function, so that it can be
applied to train the parameters in discontinuous ANNs.

We test the classification results of various trained ANNs

2020 16th IEEE International Conference on Automation Science and Engineering (CASE)
August 20-21, 2020, Online Zoom Meeting

978-1-7281-6904-0/20/$31.00 ©2020 IEEE 1343

Authorized licensed use limited to: Carleton University. Downloaded on November 04,2020 at 05:12:09 UTC from IEEE Xplore. Restrictions apply.

when the input data is corrupted by both the natural noises
and the adversarial attacks. The robustness of all ANNs
trained by the GLR method is significantly improved com-
pared with the ANN with the Sigmoid activation function
and cross-entropy loss function trained by the BP method.
Especially, the GLR method can bring as high as 20%
performance improvement under adversarial attacks. It can
also bring as high as 13% performance improvement with
corruption noises attack, and the improvement can be further
increased to 21% when we use Laplacian instead of Gaussian
as neuronal noises.

II. METHOD

A. Setup and Background

Suppose we have inputs ~X(1)(n) := (x
(1)
1 (n), .., x

(1)
m1(n)),

n = 1, . . . , N . For the nth input, the ith output of the tth
level of neurons is given by

v
(t)
i (n) :=

mt∑
j=0

θ
(t)
i,jx

(t)
j (n) + r

(t)
i (n),

x
(t+1)
i (n) := ϕ

(
v
(t)
i (n)

)
, i = 1, . . . ,mt+1 ,

where x(t)j (n) is the jth input of the tth level of neurons (jth
output of the (t − 1)th level of neurons), θ(t)i,j is a synaptic
weight, r(t)i (n) is a noise with density function fi,t(r

(t)
i (n)) ,

v
(t)
i (n) is the ith signal, and ϕ is the activation function. The

synaptic weights θ(t)i,j , j = 0, . . . ,mt, are the parameters to
be trained in the ANN. It is required that x(t)0 (n) ≡ 1, and
θ
(t)
i,0 is called a bias. Figure 1 illustrates the structure of a

neuron in the ANN.

Fig. 1. Structure of a neuron.

The classic ANN does not include the noise, i.e., r(t)i (n) ≡
0, and the ANN considered in our work generalizes the
classic one by adding a (random) noise to the neurons. The
activation function ϕ is a nonlinear function. The Sigmoid
function is a popular activation function defined by

ϕs(v) := 1/(1 + exp(−sv)),

where s > 0 is a constant. The Sigmoid function is smooth.
Notice that with parameter s increasing to infinity, the
Sigmoid function converges to a threshold function, i.e.,

lim
s→∞

ϕs(v) = ϕo(v) :=

{
1 if v > 0,

0 if v < 0.

In Figure 2, we can see the curves of the Sigmoid functions
with different parameters and the threshold function.

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold function

Sigmoid function (s=1)

Sigmoid function (s=2)

Sigmoid function (s=3)

Fig. 2. Threshold and Sigmoid activation functions.

Suppose the ANN has τ levels of neurons, and ~X(τ)(n) :=

(x
(τ)
1 (n), . . . , x

(τ)
mτ (n)) is the output vector of the ANN given

the nth input data. Let ~O(n) := (o1(n), . . . , omτ (n)) be
the real observation vector given the nth input data, and
L(~X(τ)(n), ~O(n)) be a loss function of the outputs of ANN
and observations. In classification, a popular loss function is
the cross-entropy loss function given by

Lc(~X
(τ)(n), ~O(n)) = −

mτ∑
i=1

oi(n) log
(
pi(~X

(τ)(n))
)
,

where

pi(~X
(τ)(n)) :=

exp
(
x
(τ)
i (n)

)
∑mτ
j=1 exp

(
x
(τ)
j (n)

) , i = 1, . . . ,mτ .

The functions pi, i = 1, . . . ,mτ , are called softmax func-
tions. Note that the cross-entropy loss function is smooth.
Alternatively, we can also use the following 0 − 1 loss
function:

Lo(~X
(τ)(n), ~O(n)) =

1

{
max

i=1,...,mτ
pi(~X

(τ)(n)) = max
i=1,...,mτ

oi(~X
(τ)(n))

}
.

To train the ANN, we want to minimize the expected loss:

E(θ) = E
[
L(~X(τ)(n), ~O(n))

]
where θ is a vector containing all synaptic weights. To solve
the optimization, the stochastic approximation (SA) ([28]) is
applied

θ(n) = θ(n− 1)− λnG(n) , (1)

1344

Authorized licensed use limited to: Carleton University. Downloaded on November 04,2020 at 05:12:09 UTC from IEEE Xplore. Restrictions apply.

where λn is the learning rate and G(n) is an unbiased
stochastic gradient estimator of E(θ), i.e.,

E[G(n)] = ∇θE(θ)|θ=θ(n−1) . (2)

The BP method is the most popular stochastic gradient
estimator ([29]):

B
(l)
a,b(n) := δ(l+1)

a (n)x
(l)
b (n),

where B(l)
a,b(n) is an unbiased stochastic derivative estimator

with respect to synaptic weight θ(l)a,b, and

δ
(t)
i (n) :=

e
(τ)
i (n)ϕ′

(
v
(τ−1)
i (n)

)
, if t = τ ,

ϕ′
(
v
(t−1)
i (n)

)(∑mt
j=1 θ

(t)
j,i δ

(t+1)
j (n)

)
, if t < τ,

(3)
with the error signal e(τ)i (n) defined by

e
(τ)
i (n) :=

∂L(~Xτ (n), ~O(n))

∂x
(τ)
i (n)

.

B. Generalized Likelihood Ratio method
BP directly differentiates the sample path of the output and

it is shown to be a special form of IPA in the journal version
archived in Researchgate with DOI: 10.2139/ssrn.3318847,
so it requires the sample path of the output is Lipchitz contin-
uous and differentiable almost surely to ensure unbiasedness
in (2). Therefore, BP cannot deal with the stochastic gradient
estimation for ANN with discontinuous activation function
and loss function. ANN used in our work may contain a
threshold activation function, which leads to a discontinuous
sample path of the output. In this work, we derive a GLR
estimator under a special case with the Sigmoid activation
and a bounded loss function with a bounded gradient. The
derivation shows the connection between the GLR method
and the BP method. We construct an ANN with the Sigmoid
activation function:

u
(t)
i (n) :=

mt∑
j=0

θ
(t)
i,j y

(t)
j (n) + r

(t)
i (n)

y
(t+1)
i (n) := ϕs

(
u
(t)
i (n)

)
, i = 1, . . . ,mt+1,

and an ANN with the threshold activation function:

η
(t)
i (n) :=

mt∑
j=0

θ
(t)
i,j z

(t)
j (n) + r

(t)
i (n)

z
(t+1)
i (n) := ϕo

(
η
(t)
i (n)

)
, i = 1, . . . ,mt+1 .

Theorem 1: Assuming that density function fa,l(·) of the
noise rla(n) (added to the a-th output of the (l−1)-th level of
neurons) is differentiable and loss function L(·) is bounded
and with a bounded gradient w.r.t. ~X(τ)(n), we have

∂

∂θ
(l)
a,b

E
[
L(~Z(n), ~O(n))

]
=E

[
−L(~Z(n), ~O(n)) z

(l)
b (n)

∂ log fa,l(r
(l)
a (n))

∂r
(l)
a (n)

]
.

Remark 1: The proof can be found in the journal version
archived in Researchgate with DOI: 10.2139/ssrn.3318847.

We can show that for an ANN with certain smoothness in
activation and loss functions,

B
(l)
a,b(n) =

∂L(~X(τ)(n), ~O(n))

∂θ
(l)
a,b

.

The GLR estimator is defined by

L
(l)
a,b(n) := L(~X(n), ~O(n)) ω

(l)
a,b(n), (4)

where

ω
(l)
a,b(n) := −x

(l)
b (n)

∂ log fa,l(r
(l)
a (n))

∂r
(l)
a (n)

.

From the proof of Theorem 1, we can see that for an
ANN under certain regularity conditions, the estimator of
the BP algorithm and the GLR estimator can be linked via
integration by parts. For an ANN with a threshold activation
function, the GLR estimator is derived by first smoothing the
threshold activation function, which becomes the Sigmoid
function, then integration by parts, and last taking limit to
retrieve the threshold activation in the derivative estimator.
These three components have also been used to derive
the GLR method in a general framework [21], where we
can find the smoothing technique is applied to a general
discontinuous sample performance function without actually
explicitly constructing the smoothing function. The GLR
method can be generalized to deal with stochastic gradient
estimation or even higher order gradient for the ANN with
more general discontinuous activation and loss functions.

Remark 2: The BP method differentiates the loss and
transmits the error signal from the output layer backward
throughout the entire ANN via the chain rule of the deriva-
tive, whereas in Eq.4, the GLR method does not differentiate
the loss and directly uses the loss function scaled by a weight
function, which can be viewed as an interaction between the
interior mechanism of ANN and the loss in a surrounding
environment, to train the ANN.

Remark 3: The BP method is computationally efficient
because it only requires simulating a forward function prop-
agation and backward error propagation for once, and the
derivatives w.r.t. all synaptic weights θ(t)i,j , j = 1, . . . ,mt,
i = 1, . . . ,mt+1, t = 1, . . . , τ − 1, are estimated. The GLR
method is even faster than BP, since its computation only
contains one forward function propagation for estimating
the derivatives w.r.t. all parameters. The analysis on com-
putational complexity of the BP and GLR methods can be
found in the journal version archived in Researchgate with
DOI: 10.2139/ssrn.3318847. For a Gaussian random noise
r
(t)
i with zero mean and variance σ2

i,t, we have

∂ log fi,t(r
(t)
i)

∂r
(t)
i

= −r
(t)
i

σ2
i,t

.

C. Implementation Details

In implementation, we add a Gaussian noise with zero
mean and certain variance to each neuron. Then, the GLR

1345

Authorized licensed use limited to: Carleton University. Downloaded on November 04,2020 at 05:12:09 UTC from IEEE Xplore. Restrictions apply.

gradient estimator used in Eq.4 for a synaptic weight asso-
ciated with the signal from the b-th neuron at the l-th level
to the a-th neuron at the (l + 1)-th level is

L(~X(n), ~O(n))x
(l)
b (n)r

(l)
a

σ2
a,l

. (5)

Here x(l)b is the signal from the b-th neuron at the l-th level
and r

(l)
a is the noise of the a-th neuron at the (l + 1)-th

level, L(~X(n), ~O(n)) is the loss. For simplicity, we choose
a common variance σ2 for the noises in all neurons. The
training procedure by the GLR method is summarized in
Algorithm 1.

Algorithm 1: Setup: Input ~X(1)(n), observations ~O(n),
and variance σ2.

Step One: Calculate loss output L(~X(n), ~O(n)) and the
GLR gradient G(n) in Eq.2 via Eq.5.

Iterations: Replicate the above procedure K times to
generate i.i.d. gradient estimates G1(n), G2(n), ..., GK(n).

Output: An average of GLR gradient estimates
1
K

∑K
i=1Gi(n), which is used in Eq.1 for updating parame-

ter.

III. EXPERIMENTS

A. Dataset Preparation and Network Structure

We test the performance of the GLR method for training
ANNs in the example of identifying the numbers from 0-9 of
the MNIST dataset, where there are 10000 images in total.
The images are split into the training set and testing set in a
6:4 ratio. Each image is resized to be a 14×14-pixels vector
for facilitating the training. The appearance of the images is
shown in Figure.3.

Fig. 3. Images of the numbers in the MNIST dataset.

The ANN to be trained in the experiments have three
layers: an input layer, a hidden layer, and an output layer.
The structure of the ANN is depicted in Figure.4(a). The
dimension of the input layer is 196, the same as the size of
the image. The hidden layer has 20 neurons, and the output
layer has 10 neurons representing 10 numbers. The integer
value of the label needs to be converted into a 10-unit array
as the target of the ANN. For example, when the label is
2, the target vector should be [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]. The
operations between the layers are illustrated in Figure.1. The
inputs of the input layer and hidden layer first go through
linear operations with Gaussian noises added on and then
nonlinear activation functions are operated. The bias term in
our ANN is set to be 1 at the head of each input array.

B. Training Procedure

The number of replications in Algorithm 1 is set as K =
10000. We apply the SA in Eq.1 with mini-batches and the
batch size is set as 25, which takes about 12 seconds to run

(a) (b)

Fig. 4. (a) Structure of ANN trained by the GLR method; (b) Structure
of ANN for generating adversarial samples with two hidden layers.

in python in a desktop with Intel i7-6700 CPU @ 3.40 GHz
for each iteration. Each epoch contains 1680 iterations which
takes about five hours to run. The step size is set as 0.1 and
the noise variance is set as σ2 = 4. In Figure.5, we show
the training and validation errors of ANNs with the Sigmoid
and threshold activation functions (as plotted in Figure.2) in
the MNIST dataset, and the errors of ANNs converge fast
after 12 epochs (≈ 20000 iterations).

(a) (b)

Fig. 5. Losses in the training and validation sets of a single hidden
layer ANN trained by GLR with activation functions as Sigmoid in (a)
and threshold in (b), respectively.

C. Robustness to Adversarial Attacks

1) Adversarial Samples: We generate the adversarial
samples by an ANN with two hidden layers (as de-
picted in (b) of Figure.4). The ANNs are trained and
validated by the BP method. The limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS)([10]) and fast
gradient sign method (FGSM)([11]) are used to generate
the adversarial samples of 5000 images randomly chosen
from the testing set. The adversarial samples of the images
generated by FGSM are shown in Figure.6.

2) Adversarial Test: Adversarial test is performed on
several single hidden layer ANNs (Figure.4(a)) with different
activation and loss functions. The accuracy is measured by
the percentage of correct predictions over all adversarial
samples. The ANN with the same structure in (a) of Figure.4
trained by BP is used as the baseline for comparisons.
Table.I presents the results when adversarial samples are
generated by the ANN with two hidden layers (Figure.4(b)).
The accuracies of the prediction on the original samples and
the adversarial samples generated by the aforementioned two
methods are reported.

Besides the Sigmoid and threshold activation functions,
three other discontinuous activation functions are also used

1346

Authorized licensed use limited to: Carleton University. Downloaded on November 04,2020 at 05:12:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Samples of the paired images of the original samples (left) and
adversarial samples (right). The adversarial samples are generated by the
FGSM.

Activations + Entropy Orig Adv L BFGS Adv FGSM
Sigmoid (trained by BP) 0.96 0.57 0.28

Sigmoid 0.94 0.77 0.45
Threshold 0.93 0.73 0.52
y = |x| 0.94 0.78 0.53

Activations + 0-1 loss Orig Adv L BFGS Adv FGSM
Sigmoid 0.84 0.76 0.58

Threshold 0.83 0.72 0.57

TABLE I
ADVERSARIAL TESTS FOR ANNS WITH DIFFERENT ACTIVATION AND

LOSS FUNCTIONS TRAINED BY GLR. THE ADVERSARIAL SAMPLES ARE

GENERATED BY AN ANN WITH TWO HIDDEN LAYERS. ORIG MEANS

THE ACCURACY TESTED ON ORIGINAL SAMPLES. ADV L BFGS MEANS

THE ACCURACY TESTED ON SAMPLES GENERATED BY THE L BFGS
METHOD. ADV FGSM MEANS THE ACCURACY TESTED ON SAMPLES

GENERATED BY FGSM.

in the experiments. Each test runs for 12 epochs and all of
them demonstrate high accuracies on predicting the original
samples after training. We also test the performance of an
ANN with 0-1 loss function (the loss is 0 for a correct
prediction and 1 otherwise), trained by the GLR. The ANN
with 0-1 loss converges slower than the classic cross entropy
loss (see Table.I), so we run 24 epochs in training.

In Tables.I , an ANN with one hidden layer trained by
the BP method reaches an accuracy of 0.96 in predicting
the original samples. However, the accuracy of the same
ANN reduces dramatically to 0.57 and 0.28 in predicting
the adversarial samples generated by L BFGS and FGSM,
respectively. This substantiates an observation in literature,
i.e., the same adversarial samples can effectively attack
ANNs under different architectures.

All ANNs with the cross-entropy loss function trained by
the GLR method achieve accuracies in predicting original
samples comparable to the ANN trained by the BP method
(above 93% in accuracy). Notice that GLR can train the
ANNs with discontinuous activation functions, e.g., threshold
function, and discontinuous loss functions, e.g, 0-1 loss,
which cannot be handled by BP. Moreover, the ANNs trained

by the GLR method have much higher accuracies (about 20%
increase) in predicting adversarial samples compared to the
ANN trained by the BP method. Another interesting obser-
vation is that although the ANNs with 0-1 loss only reach
accuracies less than 90% in predicting original samples,
they might lead to even higher accuracies in predicting the
adversarial samples than the ANNs with the cross-entropy
loss.

D. Robustness to Natural Noises

Different from adversarial attack where the input images
are affected by small, additive, classifier-tailored perturba-
tions, natural noises add small, general, classifier-agnostic
perturbations to the input images. In [6], an IMAGENET-C
benchmark generated from IMAGENET [30] offers various
corruption types with five severity levels for each type. In
this work, we apply four algorithms to generate the corrupted
samples for the MINST dataset. Assume the accuracy of the
corruption type c at the severity level s(1 ≤ s ≤ 5) for
model f is defined as Accfs,c, and then the average accuracy
is defined as the evaluation metrics:

Accfc =
1

5

5∑
s=1

Accfs,c . (6)

Sigmoid
(trained by BP) Sigmoid Sigmoid

(0-1 loss)
Orig 0.96 0.94 0.84

Gaussian 0.64 0.75 0.72
Impulse 0.40 0.51 0.55

Glass 0.38 0.44 0.44
Contrast 0.25 0.45 0.46
Average 0.418 0.538 0.543

y = |x| Threshold Threshold
(with 0-1 loss)

Orig 0.94 0.93 0.83
Gaussian 0.74 0.75 0.72
Impulse 0.51 0.51 0.51

Glass 0.42 0.44 0.43
Contrast 0.38 0.39 0.41
Average 0.513 0.523 0.518

TABLE II
TEST ROBUSTNESS TO NATURAL NOISES FOR ANNS WITH DIFFERENT

ACTIVATION AND LOSS FUNCTIONS TRAINED BY GLR. FOUR TYPES OF

CORRUPTION NOISES ARE ADOPTED AND THE AVERAGE ACCURACY IS

COMPUTED.

We compute the average accuracy under four types of
natural noises. The images corrupted by the Gaussian noises
under five levels of severity are shown in Figure 7. In
Table.II, the ANN trained by the GLR method has a better
performance than that trained by the BP method. Although
the performance of the ANN with 0-1 loss is worse than that
with a cross-entropy loss, an ANN with 0-1 loss achieves the
best performance in predicting the images corrupted by the
natural noises.

1347

Authorized licensed use limited to: Carleton University. Downloaded on November 04,2020 at 05:12:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. A sample corrupted by different levels of Gaussian noises.

IV. CONCLUSIONS

In this work, a GLR method is proposed for training ANNs
with neuronal noises. Unlike the classic BP method, the
GLR trains ANNs directly by the loss value rather than the
gradient of loss and can handle ANNs with discontinuous
activation and loss functions because it does not differentiate
the loss output. Therefore, the GLR method could be a pow-
erful tool to explore some brain-like learning mechanisms
which allow more freedom to better represent the surround-
ing environment. The robustness of all ANNs trained by the
GLR method is significantly improved compared with the
ANN with the Sigmoid activation function and cross-entropy
loss function trained by the BP method, which indicates
that the new training method is a very promising tool for
enhancing the security of ANNs used in practice.

Other direction lies in reducing the variance of the stochas-
tic gradient estimation for ANNs and speed up the training
procedure, so that our method can be used in the deep
learning ANNs with higher complexity. Adding regulariza-
tion functions to the loss function for further improving
robustness also deserves future research.

ACKNOWLEDGMENT

This work was supported in part by the National Nat-
ural Science Foundation of China (NSFC) under Grants
71901003, 71571048, 71720107003, 71690232, 91846301,
and 71790615, and by CAS Pioneer Hundred Talents Pro-
gram (2017-074).

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[2] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 2013, pp. 6645–
6649.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D.
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, and
M. Lanctot, “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[4] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu,
A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams,
J. Cuadros, R. Kim, R. Raman, P. Q. Nelson, J. Mega, and D. Webster,
“Development and validation of a deep learning algorithm for detec-
tion of diabetic retinopathy in retinal fundus photographs,” JAMA,
2016.

[5] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, pp. 115–, 2017.

[6] D. Hendrycks and T. G. Dietterich, “Benchmarking neural
network robustness to common corruptions and perturba-
tions,” CoRR, vol. abs/1807.01697, 2018. [Online]. Available:
http://arxiv.org/abs/1807.01697

[7] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do CIFAR-10
classifiers generalize to cifar-10?” CoRR, vol. abs/1806.00451, 2018.
[Online]. Available: http://arxiv.org/abs/1806.00451

[8] A. Azulay and Y. Weiss, “Why do deep convolutional
networks generalize so poorly to small image transforma-
tions?” CoRR, vol. abs/1805.12177, 2018. [Online]. Available:
http://arxiv.org/abs/1805.12177

[9] H. Dan, M. Mazeika, D. Wilson, and K. Gimpel, “Using trusted data
to train deep networks on labels corrupted by severe noise,” NeurIPS,
2018.

[10] I. S. J. B. D. E. I. G. C. Szegedy, W. Zaremba and R. Fergus,
“Intriguing properties of neural networks,” In International Conference
on Learning Representations, 2014.

[11] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv, vol. preprint arXiv:1412.6572, 2014.

[12] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” In Security and Privacy (SP), 2017 IEEE Symposium
on, p. 39–57, 2017.

[13] A. F. Seyed-Mohsen Moosavi-Dezfooli and P. Frossard, “Deepfool:
a simple and accurate method to fool deep neural networks,” In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, p. 2574–2582, 2016.

[14] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori,
and A. Criminisi, “Measuring neural net robustness with constraints,”
NeurIPS, 2016.

[15] G. F. Elsayed, S. Shankar, B. Cheung, N. Papernot, A. Kurakin, I. J.
Goodfellow, and J. Sohl-Dickstein, “Adversarial examples that fool
both human and computer vision,” CoRR, vol. abs/1802.08195, 2018.

[16] P. Dayan and L. Abbott, Theoretical Neuroscience. The MIT Press,
2018.

[17] D. Hebb, The Organization of Behavior. The Wiley and Sons, 1949.
[18] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas im-

manent in nervous activity,” The Bulletin of Mathematical Biophysics,
1943.

[19] S. Asmussen and P. W. Glynn, Stochastic Simulation: Algorithms and
Analysis. Springer Science & Business Media, 2007, vol. 57.

[20] M. C. Fu, “Stochastic gradient estimation,” in Fu, Michael C. (ed.),
Chapter 5 in Handbooks of Simulation Optimization. Springer, 2015,
pp. 105–147.

[21] Y. Peng, M. C. Fu, J.-Q. Hu, and B. Heidergott, “A new unbiased
stochastic derivative estimator for discontinuous sample performances
with structural parameters,” Operations Research, vol. 66, no. 2, pp.
487–499, 2018.

[22] Y.-C. Ho and X.-R. Cao, Discrete Event Dynamic Systems and
Perturbation Analysis. Kluwer Academic Publishers, Boston, MA,
1991.

[23] P. Glasserman, Gradient Estimation via Perturbation Analysis.
Kluwer Academic Publishers, Boston, 1991.

[24] L. J. Hong, “Estimating quantile sensitivities,” Operations Research,
vol. 57, no. 1, pp. 118–130, 2009.

[25] R. Y. Rubinstein and A. Shapiro, Discrete Event Systems: Sensitivity
Analysis and Stochastic Optimization by the Score Function Method.
Wiley, New York, 1993.

[26] G. C. Pflug, Optimization of Stochastic Models. Kluwer Academic,
Boston, 1996.

[27] B. Heidergott and H. Leahu, “Weak differentiability of product mea-
sures,” Mathematics of Operations Research, vol. 35, no. 1, pp. 27–51,
2010.

[28] H. J. Kushner and G. G. Yin, Stochastic Approximation and Recursive
Algorithms and Applications. Springer, 2003.

[29] S. S. Haykin, Neural Networks and Learning Machines. Pearson
Upper Saddle River, NJ, USA:, 2009, vol. 3.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” 2012.

1348

Authorized licensed use limited to: Carleton University. Downloaded on November 04,2020 at 05:12:09 UTC from IEEE Xplore. Restrictions apply.

