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Statistical Ranking and Selection (R&S) is a collection of experiment design and analysis techniques for selecting the “population”
with the largest or smallest mean performance from among a finite set of alternatives. R&S procedures have received considerable
research attention in the stochastic simulation community, and they have been incorporated in commercial simulation software. One
of the ways that R&S procedures are evaluated and compared is via the expected number of samples (often replications) that must
be generated to reach a decision. In this paper we argue that sampling cost alone does not adequately characterize the efficiency
of ranking-and-selection procedures, and the cost of switching among the simulations of the alternative systems should also be
considered. We introduce two new, adaptive procedures, the minimum switching sequential procedure and the multi-stage sequential
procedure with tradeoff, that provide the same statistical guarantees as existing procedures and significantly reduce the expected total
computational cost of application, especially when applied to favorable configurations of the competing means.

1. Introduction

Ranking-and-Selection (R&S) procedures based on the
indifference-zone formulation have been proposed to se-
lect the simulated system with the largest or smallest mean
performance from among a finite number of alternative sys-
tems (see Bechhofer et al. (1995) for a summary). Among
these, fully sequential procedures, which approximate the
sum of differences between two systems as a Brownian mo-
tion process and use a triangular continuation region to
determine the stopping time of the selection process, were
first proposed by Paulson (1964). Figure 1 illustrates how a
triangular continuation works. Hartmann (1988, 1991) im-
proved Paulson’s procedure by replacing Boole’s inequality
with a geometric inequality and replacing a large-deviation
bound by a Brownian motion bound. These procedures
were intended for the case of normally-distributed data
with a known or unknown common variance across sys-
tems. Recently, Kim and Nelson (2001, 2003) further ex-
tended Hartmann’s work to allow for unknown and un-
equal variances, the use of common random numbers and
single-replication experiment designs, yielding procedures
that are more applicable in computer simulation experi-
ments. In this paper we also refine sequential selection pro-
cedures with a triangular continuation region by consider-

ing the computation costs that are incurred in simulation
experiments.

One important, and relatively recent, application of
R&S procedures is within optimization-via-simulation al-
gorithms (see, for instance, Pichitlamken and Nelson (2003)
and Hong and Nelson (2004)). Many optimization algo-
rithms attempt to move from a current good solution to an
improved solution on each iteration by selecting the best
from among a small set of candidates or neighbors. R&S
procedures can be embedded within these algorithms to
help recognize improved solutions efficiently, and with a sta-
tistical guarantee of correctness. Since some optimization
algorithms are sequential and attempt to revisit solutions
to ensure convergence, Pichitlamken et al. (2004) developed
fully-sequential selection procedures that exploit the data
already obtained on previous visits, even if the sample sizes
are unequal. The procedures we introduce in the current pa-
per also extend easily to unequal initial samples, and they
are particularly well suited to the optimization setting.

R&S procedures are typically evaluated in terms of the
expected number of samples required to reach termination.
Sequential procedures with elimination (such as the pro-
cedure of Kim and Nelson (2001, 2003) hereafter desig-
nated as KN) and Bayesian procedures (such as Chick and
Inoue (2001)) reduce the expected total number of samples
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Fig. 1. Triangular continuation region for sequential, indifference-
zone procedures. The selection of system i or j as being the best
depends on whether the sum of differences exits the region from
the top or bottom. In this example, system i has the largest mean
so a correct selection exits upwards.

relative to the well-known two-stage indifference-zone se-
lection procedures, such as the procedure of Rinott (1978)
hereafter designated as R. Two-stage procedures were de-
signed to provide their guarantees in the face of a “least-
favorable configuration”, and not to try to adapt to more
favorable situations (two-stage procedures with elimination
at the first stage have been discussed in, for instance, Nelson
et al. (2001) and these can be more efficient than procedures
such as R).

The focus in R&S research has been on developing proce-
dures that reduce the cost of sampling, which means gener-
ating data (typically replications) from a simulation model.
To achieve this reduction, fully sequential procedures such
as KN repeatedly switch among the different simulation
models, where a switch occurs when changing the model in-
stance from which samples are generated. In fact, the KN
procedure requires one switch for each new sample gener-
ated after an initial stage of sampling.

Unfortunately, the computational overhead of switching
can be significant, sometimes orders of magnitude more
than sampling. Furthermore, the cost of switching may be
incurred thousands of times if the R&S procedure is em-
bedded within an optimization algorithm that explores a
large solution space. The work required to switch from one
simulated system to another usually includes storing state
information about the current system (including values of
the random number seeds); saving all relevant output data;
swapping the executable code for the current system out of,
and the code for the next system into, active memory; and
restoring the state information for the next system to the
values it had on the last call. Therefore, focusing solely on
the sampling cost is misleading in many applications. One
way to solve this problem is to use multiple parallel proces-
sors. However, the work required to implement the parallel
structure may be substantial and most of the state-of-the-
art simulation optimization algorithms are designed for a

single processor. Therefore, we focus on the situation of a
single processor.

Two-stage indifference-zone selection procedures, such
as R, minimize the number of switches; however, they do
not adapt to the observed differences among the systems
as the sampling progresses. Thus, they are efficient from a
switching perspective, but inefficient from a sampling per-
spective. KN, and similar procedures, are efficient from a
sampling perspective, but may not be efficient when switch-
ing is considered. In this paper we propose sequential pro-
cedures that are adaptive, like the KN procedure, but also
balance the cost of sampling and switching to reduce the
total cost of the experiment. Furthermore, our procedures
tend to allocate more samples to the better systems, which is
desirable when R&S is also used to add statistical inference
after an optimization algorithm has terminated (Boesel
et al. (2003)).

In Section 2 we provide a new procedure, the Minimum
Switching Sequential (MSS) procedure, that consumes the
minimal number of switches, just as do the two-stage proce-
dures, while still maintaining sequential sampling. In Sec-
tion 3 a multi-stage framework is given within which the
MSS and KN procedures can be applied adaptively. A pro-
cedure for determining the number of stages (switches) and
the sample size within each stage for the multi-stage frame-
work is discussed in Section 4. Numerical examples are
given in Section 5.

2. A minimum switching procedure

In this section we describe a sequential procedure that guar-
antees, with a confidence level greater than or equal to
1 − α, that the system ultimately selected has the largest
true mean if the true mean of the best system is at least δ

better than the second best. When there are inferior systems
whose means are within δ of the best, then the procedure
guarantees to find one of these good systems with the same
probability. The parameter δ, which defines the indifference
zone, is set by the experimenter as the minimum difference in
expected performance that it is important to detect. Differ-
ences of less than δ are considered practically insignificant.

The MSS procedure, has two stages, similar to the R
procedure. A stage is a checkpoint at which the maximum
number of samples that can be taken from each system until
the next checkpoint is determined; it is the “maximum”
number of samples because fewer samples may be needed if
some systems are eliminated from consideration. All of the
procedures considered in this paper, including R and KN,
assume unknown output variances, and for that reason they
require an initial stage of sampling that is not adaptive and
whose size is somewhat arbitrary; we refer to this as the
“zeroth stage”. The first decision about how to proceed
occurs after the zeroth stage.

The MSS procedure works as follows: after obtaining
n0 ≥ 2 samples from each system in the zeroth stage, it esti-
mates the parameters of the triangular continuation region
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and checks if any system can be eliminated immediately.
Let I be the set of systems still in play at the end of the
zeroth stage, and let B and S always denote the systems in I
with the best and the second-best first-stage sample means.
In stage 1, the MSS procedure takes the maximum number
of samples implied by the continuation region from system
B, so that no more samples are needed for system B un-
der any circumstances (this contrasts with the R procedure
which takes the maximum number of samples from all sys-
tems, and the KN procedure which obtains one sample at
a time from all systems still in play). Then the MSS proce-
dure obtains one sample at a time from system S, compar-
ing a weighted sample mean from system S to a weighted
sample mean from system B, with elimination decisions af-
ter each sample. If B eliminates S, then the identity of S
is updated (since the former system S is no longer in the
now-updated set I , and S is always the system in I with
the second-largest zeroth-stage sample mean), and the pro-
cess starts over again. If S eliminates B, then the identities
of both B and S are updated, the new system B gets the
maximum number of samples, and the process continues.
The procedure always examines only two systems at a time,
eliminating one, and stopping when there is only one sys-
tem remaining in I . The MSS procedure is sequential in
the way that it obtains samples, but it requires at most k
switches after the zeroth stage, where k is the number of
systems.

Throughout this paper we use xi to denote the ith system
and use Xi� to denote the �th independent sample from
system i. Think of xi as the vector of decision variables that
define the ith system. We assume that Xi� ∼ N(µi, σ

2
i ), with

both µi and σ 2
i unknown. The procedure has two stages,

denoted by s = 0, 1. Let ¯̄Xi(m) = m−1 ∑m
�=1 Xi� denote the

sample mean of the first m samples from system i, and let
X̄ i(n; s) denote the sample mean of the first n samples from
system i taken in stage s, where i = 1, 2, . . . , k.

Minimum switching sequential procedure

Setup: Select confidence level 1/k < 1 − α < 1, indiff-
erence-zone parameter δ > 0 and zeroth-stage sample size
n0 ≥ 2. Select λ such that 0 < λ < δ (λ = δ/4 is recom-
mended by Paulson (1964)).

Initialization: Take n0 samples Xi�, � = 1, 2, . . . , n0, from
each system i = 1, 2, . . . , k. For all i �= j, calculate:

S2
ij = 1

n0 − 1

n0∑
�=1

(Xi� − Xj� − [X̄ i(n0; 0) − X̄ j(n0; 0)])2, (1)

the sample variance of the difference between systems i and
j, and let:

aij = (n0 − 1)S2
ij

4(δ − λ)

{[
1 − (1 − α)1/(k−1)]−2/(n0−1) − 1

}
. (2)

The parameters aij and λ define the triangular continuation
region for systems i and j. Let

Nij = max
{

0,

⌈
aij

λ

⌉
− n0

}
,

where �c� denotes the smallest integer greater than or equal
to c, be the maximum additional number of observations
required for systems i and j when comparing them, and
Nij ≥ 0. Notice that aij/λ is the end of the triangular con-
tinuation region.

Initial screening: For all i �= j, calculate the first-stage sum-
mary statistic:

Zij(n0) = n0[X̄ i(n0; 0) − X̄ j(n0; 0)].

Let

I = {i : Zij(n0) ≥ min{0, −aij + n0λ},
i, j = 1, 2, . . . , k, i �= j},

be the set of systems still in play. If |I | = 1, then stop and
select the system whose index is in I as the best. Otherwise,
sort the elements in I based on the zeroth-stage sample
means X̄ i(n0; 0) and let B and S always be the systems in
I with the best and the second-best zeroth-stage sample
means. Let

NB = max
j∈I,j �=B

NBj,

be the maximum additional number of observations re-
quired for system B when comparing it against all other
systems in I . Take NB additional samples from system B.
Let r be the number of samples taken from system S in stage
1, and set r = 0. Let ψ be an elimination indicator. If ψ = 0
then system B is still in contention; otherwise, system B has
been eliminated. Set ψ = 0.

Screening: Take one sample from system S, and let r =
r + 1. Calculate the combined two-stage summary statistic:

ZBS(n0 + r ) = ZBS(n0) + r [X̄B(NB; 1) − X̄S(r ; 1)], (3)

and let

WBS = max{0, aBS − λ(n0 + r )}.
If ZBS(n0 + r ) ≥ WBS, then let I = I \ {S} and update S; if
ZBS(n0 + r ) ≤ −WBS, then let I = I \ {B}, update B and S,
and let ψ = 1; otherwise, go to Screening.

Stopping rule: If |I | = 1, then stop and select the system
whose index is in I as the best. Otherwise, if ψ = 1, then
let:

NB = max
j∈I,j �=B

NBj,

and take max{0, NB − r} samples from system B. Always
let r = 0 and ψ = 0, then go to Screening.
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Remark 1. ZBS(n0 + r ) is defined by Equation (3) instead
of the more-natural cumulative difference:

ZBS(n0 + r ) =
n0+r∑
�=1

( ¯̄XB(n0 + NB) − XS�). (4)

Jennison et al. (1982) have shown that when k > 2 the sam-
pling rule can only depend on the difference between sample
means, not on the individual sample means, if Equation (4)
is used. However, the individual sample means are required
for sorting in the MSS procedure. Therefore, we use Equa-
tion (3) to ensure independence between stages 0 and 1.

To prove the validity of the procedure, we need the fol-
lowing lemmas.

Lemma 1. (Slepian’s Inequality, see Tong (1980).) Let Y =
(Y1, Y2, . . . , Yr )T be distributed according to a multivariate
normal distribution N(0, �), where � is a correlation ma-
trix. Let R = (ρij) and T = (τij) be two positive semidefinite
correlation matrices. If ρij ≥ τij holds for all i, j, then:

PrΣ=R

[
r⋂

i=1

{Yi ≥ ai}
]

≥ PrΣ=T

[
r⋂

i=1

{Yi ≥ ai}
]
,

holds for all a = (a1, a2, . . . , ar )T . The inequality is strict if
R and T are positive definite and if the strict inequality ρij >

τij holds for some i �= j.

Lemma 2. (After Paulson (1964).) Let Y1, Y2, . . . be i.i.d.
N(δ, σ 2) random variables with δ > 0. Then for any r0 and
r1, where r0 < r1:

Pr

{
r1⋂

r=r0

[
r∑

�=1

Y� ≥ min{0, −a + λr}
]}

≥ 1 − e−2(δ−λ)a/σ 2
,

where a > 0 and 0 < λ < δ.

Remark 2. Suppose there is a triangular continuation region
defined by:

L(r ) = −a + rλ,

U(r ) = a − rλ.

Let E denote the event that
∑r

�=1 Y� leaves the continua-
tion region for the first time through the upper boundary.
Then

Pr{E} ≥ Pr

{ �a/λ�⋂
r=n0

[
r∑

�=1

Y� ≥ min{0, −a + λr}
]}

,

≥ 1 − e−2(δ−λ)a/σ 2
.

Cov[Pij(n0 + r1), Pij(n0 + r2)] = n0
(
σ 2

i + σ 2
j

) + r1
(
(r2/Ni)σ 2

i + σ 2
j

)
√

n0
(
σ 2

i + σ 2
j

) + r1
(
(r1/Ni)σ 2

i + σ 2
j

)√
n0

(
σ 2

i + σ 2
j

) + r2
(
(r2/Ni)σ 2

i + σ 2
j

) ,

Cov[Qij(n0 + r1), Qij(n0 + r2)] =
√

n0 + r1

n0 + r2
.

This is the probability bound used in Paulson (1964) for his
sequential selection procedures using a triangular continu-
ation region.

Lemma 3. (After Tamhane (1977).) Let V1, V2, . . . , Vk be
independent random variables, and let gj(v1, v2, . . . , vk), j =
1, 2, . . . , p, be non-negative, real-valued functions, each one
nondecreasing in each of its arguments. Then

E

[
p∏

j=1

gj(V1, V2, . . . , Vk)

]
≥

p∏
j=1

E[gj(V1, V2, . . . , Vk)].

We are now in a position to prove the main result. With-
out loss of generality, suppose that the true means of the
systems are indexed so that µk ≥ µk−1 ≥ · · · ≥ µ1.

Theorem 1. Suppose that Xi�, � = 1, 2, . . . ,are i.i.d. normally
distributed, and that Xip and Xjq are independent for i �= j.
Then the MSS procedure selects xk with a probability of at
least 1 − α whenever µk − µi ≥ δ for i = 1, 2, . . . , k − 1.

Proof. We start with the case of two systems, since only
two systems are compared at a time, with one having the
maximum number of samples. Let these systems be i and j
with system i having Ni samples. For any two systems i and
j, i �= j, and for any 0 ≤ r ≤ Ni, let,

Pij(n0 + r ) = Zij(n0 + r ) − (n0 + r )(µi − µj)√
Var(Zij(n0 + r ))

,

be the standardized Zij(n0 + r ) process. For any two systems
i and j, i �= j, and for any 0 ≤ r ≤ Ni, define:

Yij(n0 + r ) =
n0+r∑
�=1

(Xi� − Xj�).

Then we can let

Qij(n0 + r ) = Yij(n0 + r ) − (n0 + r )(µi − µj)√
Var(Yij(n0 + r ))

,

be the standardized Yij(n0 + r ) process.
Notice that

Var[Zij(n0 + r )] = n0
(
σ 2

i + σ 2
j

) + r
(

r
Ni

σ 2
i + σ 2

j

)
,

Var[Yij(n0 + r )] = (n0 + r )
(
σ 2

i + σ 2
j

)
.

Since 0 ≤ r ≤ Ni we have that:

Var[Zij(n0 + r )] ≤ Var[Yij(n0 + r )]. (5)

For 0 ≤ r1 ≤ r2 ≤ Ni:
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One can easily check that:
Cov[Pij(n0 + r1), Pij(n0 + r2)]

≥ Cov[Qij(n0 + r1), Qij(n0 + r2)].
Notice that covariance and correlation are the same here,
since Pij and Qij are standardized. Since Pij(n0 + r ) and
Qij(n0 + r ), r = 0, 1, . . . , Ni, are all normally distributed,
then by Lemma 1 we have:

Pr

[
N⋂

r=0

{Pij(n0 + r ) ≥ ar }
]

≥ Pr

[
N⋂

r=0

{Qij(n0 + r ) ≥ ar }
]
,

(6)

for any 0 ≤ N ≤ Ni.
Now we can find a lower bound on the probability that

system k eliminates system i.

Pr {xk eliminates xi}

≥ E

[
Pr

{
Nki⋂
r=0

[Zki(n0 + r )

≥ min{0, −aki + (n0 + r )λ}]∣∣S2
ki

}]
,

= E

[
Pr

{
Nki⋂
r=0

[
Pki(n0 + r )

≥ min{0, −aki + (n0 + r )λ} − (n0 + r )(µk − µi)
Var[Zki(n0 + r )]

]∣∣S2
ki

}]
,

≥ E

[
Pr

{
Nki⋂
r=0

[
Qki(n0 + r )

≥ min{0, −aki + (n0 + r )λ} − (n0 + r )(µk − µi)
Var [Zki(n0 + r )]

]∣∣S2
ki

}]

(by the inequality of Equation (6), since Nki ≤ Ni),

≥ E

[
Pr

{
Nki⋂
r=0

[
Qki(n0 + r )

≥ min{0, −aki + (n0 + r )λ} − (n0 + r )(µk − µi)
Var [Yki(n0 + r )]

]∣∣S2
ki

}]

(by the inequality of Equation (5), since min{0, −aki + (n0

+r )λ} − (n0 + r )(µk − µi) < 0),

= E

[
Pr

{
Nki⋂
r=0

[
n0+r∑
l=1

(Xkl − Xil)

≥ min{0, −aki + (n0 + r )λ}
]∣∣S2

ki

}]
,

≥ E
[

1 − exp
{−2(µk − µi − λ)aki

σ 2
ki

}∣∣S2
ki

]
(by Lemma 2),

≥ E
[

1 − exp
{−2(δ − λ)aki

σ 2
ki

}∣∣S2
ki

]
(since µk − µi ≥ δ) ,

= E
[

1 − exp
{

− 1
2

{[
1 − (1 − α)1/(k−1)]−2/(n0−1) − 1

}
× (n0 − 1)S2

ki

σ 2
ki

}]
,

= (1 − α)1/(k−1)(
since (n0 − 1)S2

ki/σ
2
ki ∼ χ2

n0−1

and E
[
etχ2

n0−1
] = (1 − 2t)−(n0−1)/2).

Let CSi denote the event that system k eliminates system i.
Then

Pr {select xk} ≥ Pr

{
k−1⋂
i=1

CSi

}
,

because system i, i �= k, could be eliminated by system j,
j �= k. Therefore,

Pr{select xk} ≥ Pr

{
k−1⋂
i=1

CSi

}
,

= E

[
Pr

{
k−1⋂
i=1

CSi
∣∣Xk1, . . . , Xk,n0+Ni , S2

k1, . . . , S2
k,k−1

}]
,

= E

[
k−1∏
i=1

Pr
{
CSi

∣∣Xk1, . . . , Xk,n0+Ni , S2
ki

}]

(the events are conditionally independent),

≥
k−1∏
i=1

E
[

Pr
{
CSi

∣∣Xk1, . . . , Xk,n0+Ni , S2
ki

}]
(
by Lemma 3, since Pr

{
CSi

∣∣Xk1, . . . , Xk,n0+Ni , S2
ki

}
is nondecreasing in Xkl and S2

ki

)
,

=
k−1∏
i=1

Pr
{
xk eliminates xi

}
,

≥
k−1∏
i=1

(1 − α)1/(k−1),

= 1 − α.

This proves that Pr {select xk} ≥ 1 − α whenever µk − µi ≥
δ for i = 1, 2, . . . , k. �

Corollary 1. Suppose µk − µk−1 < δ. Then the MSS pro-
cedure selects a solution whose mean is within δ of µk with
probability at least 1 − α.

Proof. Suppose µk ≥ µk−1 ≥ · · · ≥ µ1. The statement is
trivially true if µk − µ1 < δ, as we can select any system to
satisfy the claim. Let t > 1 be the first system index within
δ of µk, i.e., µk − µt < δ, and µk − µt−1 ≥ δ. The correct
(“good”) selection in this context is that all elements in the
set A = {x1, x2, . . . , xt−1} get eliminated.

Pr{eliminate A} ≥ Pr

{
t−1⋂
i=1

CSi

}
,
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≥
t−1∏
i=1

Pr{xk eliminates xi},

≥
t−1∏
i=1

(1 − α)1/(k−1),

= (1 − α)(t−1)/(k−1),

≥ 1 − α.

This proves Corollary 1. �

Remark 3. We proved the use of aij defined in Equation
(2) by using Paulson’s probability bound. The proof based
on this bound is concise and provides intuition about why
the result is true (greater induced dependence by obtaining
more samples on one system). Pichitlamken et al. (2002)
showed that the probability bound of Fabian (1974) which
is the basis of the KN procedure, can also be used, and that
the proof carries over directly to our context. Fabian’s prob-
ability bound is a Brownian motion bound that is tighter
than Paulson’s probability bound which is a large-deviation
bound. If Fabian’s probability bound is used, we have:

aij = (n0 − 1)S2
ij

4(δ − λ)

{[
2 − 2(1 − α)1/(k−1)]−2/(n0−1) − 1

}
, (7)

for λ = δ/2. The quantity aij in Equation (7) is smaller
than it is in Equation (2); thus the procedure may termi-
nate sooner.

Remark 4. If some systems have been previously sampled, as
discussed in Pichitlamken et al. (2004), the MSS procedure
can be easily extended to fit the situation. Assume there are
nB and nS initial samples for systems B and S. Without loss
of generality, we assume nB > n0 and nS > n0; otherwise,
simply consider them as the zeroth-stage samples. Then take
NB + n0 − nB samples from system B, calculate ZBS(n0 + r )
using Equation (3) and start screening from r = nS − n0
instead of r = 1.

The MSS procedure has the same number of switches as
two-stage procedures, such as R, when both take additional
samples for all systems after stage 0. However, the MSS pro-
cedure can eliminate clearly inferior systems at the end of
stage 0, whereas the R procedure only ceases sampling if n0
happens to be larger than the total number of samples that
it requires. Not surprisingly, our experiments show that the
average sample size of the MSS procedure is less than or
equal to that of the R procedure in all situations. When the
true difference between any system and the best system is
larger than the indifference amount δ, which is the usual
case in practice, the MSS procedure has a much smaller
average sample size than the R procedure. Since two-stage
procedures have been implemented in commercial simula-
tion software, such as Automod (Brooks-PRI Automation)
and Awesim (Frontstep), the MSS procedure is a good sub-
stitute for them.

In fully sequential procedures such as KN, the elimina-
tion decisions between the better and the inferior systems
occur with each having the same number of samples, since
the sampling is synchronized. In the MSS procedure the
inferior systems are typically eliminated by one of the (ap-
parently) better systems that has received all of the samples
that the MSS procedure will ever allocate to it. In some
cases this fact will allow the MSS procedure to be more ef-
ficient than the KN procedure, even if the switching cost is
not significant. Consider, for instance, the case that among
k > 2 systems the true mean difference between the best and
second-best systems is small (less than or equal to δ), and
the other systems are clearly inferior to these two. In this
case, it is very likely that both the MSS and KN procedures
will end up taking nearly the maximum number of samples
from the two good systems. However, the MSS procedure
will tend to eliminate the clearly inferior systems earlier
(fewer samples), because the inferior systems are typically
compared to a good system that has received all of its sam-
ples (since it is likely that one of the two good systems will
have the largest zeroth-stage sample mean, and therefore
will immediately be allocated all of its samples).

The disadvantage that the MSS procedure has is that at
least one system always gets the maximum number of sam-
ples, which may be more than needed when true differences
between systems are much larger than the indifference-zone
parameter δ. In that case the wasted sampling may over-
come the savings from not switching. In the next two sec-
tions, a multi-stage procedure, and a heuristic for determin-
ing the sample size in each stage, are provided to solve this
problem.

3. A multi-stage procedure

In this section, we provide a multi-stage sequential frame-
work that yields procedures having the same probability
guarantee as the MSS procedure but allowing much more
sampling flexibility. The framework/procedure is called the
Multi-stage Sequential procedure with Tradeoff (MST). In
the MST procedure, a sampling rule for the next stage, in-
cluding the sampling order and the sample size, can be de-
termined at the end of the previous stage using all infor-
mation available through that stage. This procedure allows
the control of sample size, number of switches and number
of stages. Both the KN and MSS procedures fit into this
framework: when the number of samples in each stage for
each system is fixed to be one, and using Fabian’s prob-
ability bound, it becomes the KN procedure. When the
number of stages is fixed to be two, it becomes the MSS
procedure.

As with the MSS procedure, the MST procedure starts
by taking n0 ≥ 2 samples from each system in the zeroth
stage, estimating the parameters of the continuation region
and checking if any system can be eliminated. The MST
procedure then uses all available information to determine
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the maximum number of samples for the next stage, which
may (and likely will) be less than the maximum number re-
quired to reach the end of the continuation region. Stage 1
is then executed in a manner that is essentially the same as
in the MSS procedure (with the additional feature that all
surviving systems are used in elimination decisions). Any
systems that survive go on to stage 2, whose maximum num-
ber of samples is determined before the stage begins using
all of the information at hand. The process continues un-
til there is only a single system left in play. In this section
we present the procedure in complete generality, and de-
fer proposing a specific sampling rule until Section 4. Let
s be the stage count, ns be the maximum number of sam-
ples allocated to a contending system in stage s, and Ns =∑s

t=0 nt be the total (cumulative) sample size at the end of
stage s.

Multi-stage sequential procedure with tradeoff

Setup: Select the confidence level 1/k < 1 − α < 1,
indifference-zone parameter δ > 0 and first-stage sample
size n0 ≥ 2. Set s = 0 and define N−1 = 0.

Initialization: Take n0 samples Xi�, � = 1, 2, . . . , n0 from
each system i = 1, 2, . . . , k. For all i �= j, calculate S2

ij, the
sample variance of the difference between systems i and j,
using Equation (1), and calculate aij either using Equation
(2) and λ = δ/4, or using Equation (7) and λ = δ/2.

Initial screening: For all i �= j, calculate:

Zij(n0) = n0[X̄ i(n0; 0) − X̄ j(n0; 0)].

Let

I = {i: Zij(n0) ≥ min{0, −aij + n0λ}, i, j = 1, 2, . . . , k, i �= j}.
If |I | = 1, then stop and select the system whose index is in
I as the best.

Determine sampling rule: Let Ns = Ns−1 + ns . Sort the el-
ements in I by ¯̄Xi(Ns) from largest to smallest. Let [i] be
the system with the ith largest sample mean. Determine
the sample size ns+1 for stage s + 1 using Zij(n0), Zij(n0 +
1), . . . , Zij(Ns) for all i �= j (one possible rule is provided in
Section 4). Notice that Zij(Ns), for all i �= j in I , provide
enough information to sort ¯̄Xi(Ns) for all i ∈ I .

Update the stage to s = s + 1, and take ns samples from
system [1]. Let J be the set of systems that have completed
sampling in stage s and have not been eliminated. Set J =
{[1]}.

Screening: In this step, all surviving systems that are cur-
rently not in the set J are compared to the systems in J to see
if they can enter J and if some systems in J can be removed
from J. Let r be the number of samples taken from system
[t ] so far in this stage. Let ψ be an elimination indicator:

If ψ = 0 then system [t ] is still in contention; otherwise,
system [t ] has been eliminated.
Let t = 2.

While t ≤ |I | do
Set r = 0 and ψ = 0.
While (r < ns) and (J �= ∅) and (ψ = 0) do

Take one observation from system [t ] and let r =
r + 1. For every i ∈ J, calculate:

Zi[t ](Ns−1 + r ) = Zi[t ](Ns−1) + r
[
X̄ i(ns ; s)

−X̄ [t ](r ; s)
]
, (8)

Wi[t ] = max{0, ai[t ]

− λ(Ns−1 + r )},
Set Jold = J. Let:

J = {
i : i ∈ Jold and Zi[t ](Ns−1 + r )

≥ −Wi[t ], ∀i ∈ Jold},
If Zi[t ] (Ns−1 + r ) ≥ Wi[t ] for some i ∈ Jold then set

ψ = 1.
End while
If (J = ∅) or (ψ = 0), then J = J ∪ {[t ]} and take

max{ns − r, 0} samples from system [t ].
t = t + 1.

End while
Let I = J.

Stopping rule: If |I | = 1, then stop and select the system
whose index is in I as the best. Otherwise, go to Determine
sampling rule.

Remark 5. Notice that:

Zij(Ns) =
Ns∑
�=1

(Xi� − Xj�),

Thus, the first s stages can be viewed as a single stage with
Ns samples for any two systems in contention at stage s + 1.
Therefore, the validity of the MST procedure can be proved
easily using repeated application of the same techniques as
those in the proof of the MSS procedure.

The MST procedure provides a general framework to
design procedures that consider both sampling cost and
switching cost. One can determine the sample size for the
next stage, and therefore the number of stages and number
of switches, based on the information available at the cur-
rent stage. In the next section we propose a sampling rule
that takes advantage of this flexibility.

4. A heuristic for determining the sampling rule

The sampling rule in the MST procedure must specify the
maximum number of samples to take from each system
in the next stage. Ideally, we want an optimal allocation
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considering all systems and all situations. This turns out to
be very difficult since the Zij(n) processes defined in Equa-
tion (8) are not independent of each other and the decision
must be made based on sample information.

One approach is to approximate the processes by inde-
pendent Brownian motion processes assuming that the sam-
ple means and variances are true means and variances, and
then formulate an optimization problem where the objec-
tive includes the probability that a Brownian motion pro-
cess exits a triangular region before some time t ; this in-
volves difficult numerical integrations (Hall, 1997). Solving
this optimization problem is also time consuming and the
quality of the result depends heavily on how well the sam-
ple means and variances approximate the true means and
variances.

We have found that a crude approximation still yields
significant improvements. To derive the algorithm we
need the following result from Kamien and Schwartz
(1981).

Lemma 4. (Optimal inspection.) If a system can fail at any
time t, 0 ≤ t ≤ T, let F(t) be the (known) probability of
failure between time 0 and t, where F is a nondecreasing
differentiable function with F(0) = 0 and F(T) = 1. Let c0
be the cost per inspection, τ be the time between the failure
and its detection, and L(τ ) be the loss caused by not detecting
the system failure for a period of τ time units. If L(τ ) is linear,
L(τ ) = c1τ , then the optimal inspection rate function r (t)
(number of inspections per unit time at t) is:

r (t) =
{

c1F ′(t)
2c0[1 − F(t)]

}1/2

. (9)

Thus, the optimal number of inspections between 0 and
t is

∫ t
0 r (s)ds, and the optimal time for the first inspection

can be approximated by solving:∫ t

0
r (s)ds = 1, (10)

for t . Notice that
∫ t

0 r (s)ds is an increasing function of t ,
since r (s) is positive. An approximate solution for Equa-
tion (10) can therefore be obtained by finding the smallest
positive integer h, h ≥ 1, such that

∑h
i=1 r (i�)� ≥ 1, for

some � > 0, and then approximating the optimal first-
inspection time by min{T, h�}. The quality of the approxi-
mation depends on the size of �. The smaller � is, the more
accurate the solution is, but also the more computational
effort needed to compute it.

In the MST procedure, let c be the cost of switching
in units of the cost of sampling, so that c = (cost of one
switch)/(cost of taking one sample), something that can
be estimated during the zeroth stage if it is not known.
We assume that the switching cost and sampling cost are
the same for all systems. Without loss of generality, we
let the sampling cost be one and switching cost be c. Then
the total cost is also in units of sampling cost.

Consider two systems, i and j. By analogy to the opti-
mal inspection problem, leaving the triangular continua-
tion region corresponds to a failure; a stage corresponds
to an inspection, with cost c0 = 2c since two additional
switches will be required when starting the next stage;
and sampling beyond the point at which one of the sys-
tems has been eliminated corresponds to the loss, with
approximate cost L(τ ) = c1τ = 2τ if elimination occurred
τ samples before the end of the stage. To complete the
analogy, we assume that the Zij(t) are continuous pro-
cesses, and use Zij(Ns)/Ns and S2

ij to approximate the
true mean difference µij = µi − µj and true variance of
the difference σ 2

ij = σ 2
i + σ 2

j for all i, j = 1, 2, . . . , k and
i �= j.

To approximate the probability that Zij(Ns + t) leaves
the triangular region between [0, t ], we use the probabil-
ity that Zij(Ns + t) is outside the triangular region at time
t . We know that Zij(Ns + t) − Zij(Ns) has a normal distri-
bution with mean µijt and variance σ 2

ij t . Therefore, con-
ditional on Zij(Ns) = zij and S2

ij = s2
ij, we treat Zij(Ns + t)

as having approximately a normal distribution with mean
zij + tzij/Ns and variance ts2

ij. Let �ij(x) and φij(x)
denote the cumulative distribution function and the den-
sity, respectively, of this random variable. Then the
probability that process Zij(Ns + t) is outside the tri-
angular continuation region at time t can be written
as:

Fij(t) = 1 − {�ij[aij − λ(Ns + t)] − �ij[−aij + λ(Ns + t)]}.

Clearly, Fij(t) is a nondecreasing differentiable function. Let
Tij be the end of the triangular region, Tij = aij/λ, so that
Fij(0) = 0 and Fij(Tij) = 1. Thus, Fij(t) satisfies the condi-
tions on F(t) in Lemma 4. Taking the derivative of Fij(t)
we get:

F ′
ij(t) = 1

2t

{
φij[aij − λ(Ns + t)]

×
(

aij − λ(Ns − t) + Ns − t
Ns

zij

)
+ φij[−aij + λ(Ns + t)]

×
(

aij − λ(Ns − t) − Ns − t
Ns

zij

)}
.

Now we can easily calculate the optimal inspection rate
function, rij(t), using Equation (9). As described above, we
can solve

∫ t
0 rij(s) = 1 by using �ij = max{Tij/m, 1}, where

m is the maximum number of evaluations of rij(s) we want
to spend. Let t∗

ij denote the approximate solution. Since
we need an integer solution and also need to consider all
systems that are still in contention at the end of stage s, we
let ns+1 = maxj∈I,j �=[1]{�t∗

[1]j�}. In the experiments reported
in Section 5 we let m = 50.
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5. Empirical evaluation

In this section we summarize the results of an extensive
empirical evaluation of the MSS procedure and MST
procedures relative to the R and KN procedures, which
are representatives of two-stage procedures and fully
sequential procedures, respectively. The systems are repre-
sented by various configurations of k normal distributions
and, to assess the impact of non-normality, lognormal
distributions whose skewness and kurtosis (standardized
third and fourth moments) differed from those of the
normal distribution. In all cases system k is the true best
(has the largest true mean). We evaluated each procedure
on different variations of the systems, examining factors
including the number of systems, the configuration of
means, the configuration of variances and the relative
cost of sampling and switching. The configurations, the
experiment design and the results are described below.

5.1. Configurations and experiment design

Two configurations of the true means were used: the Slip-
page Configuration (SC) and the Monotone Increasing
Means (MIMs) configuration. In SC, µk was set to δ and
µ1 = µ2 = · · · = µk−1 = 0. This is a difficult configuration
in terms of procedure performance since all inferior systems
are exactly δ from the best. In MIMs µi = (i − 1)δ, i =
1, 2, . . . , k. MIMs is used to investigate the effectiveness of
the procedures in more favorable settings.

For each configuration of the means, we examined the
effect of variances. There are three configurations of vari-
ances: Equal Variances (EVs), Increasing Variances (IVs)
and Decreasing Variances (DVs). In EVs, σ1 = σ2 = · · · =
σk = 1; in IVs, σi = i; and in DVs, σi = k + 1 − i.

Let c denote the switching cost in units of sampling cost
(the cost of generating a sample). We used c = 1, c = 10,
c = 100 and c = 1000 to represent different cost structures.
Considering the current status of computer simulation soft-
ware, even c = 1000 is not excessive.

We also varied the number of systems in each experiment,
with k = 2, 5 and 10. In all experiments, the nominal Prob-
ability of Correct Selection (PCS) was 1 − α = 0.95 and the
first-stage sample size n0 was 10. The indifference-zone pa-
rameter was set to δ = σk/

√
n0, where σk is the standard

deviation of the best system. Thus, δ is one standard devia-
tion of the first-stage sample mean of the best system. For
each configuration, 1000 macroreplications (complete rep-
etitions) of each procedure were carried out to compare the
performance measures, including the observed PCS, Av-
erage Number of Samples (ANSas.), Average Number of
Switches (ANSws) and Average Total Cost (ATC).

5.2. Summary of results

The experiments showed that the MST procedure is supe-
rior to the other procedures across all of the configurations

Table 1. Observed PCS of the MST and MSS procedures using
Paulson’s and Fabian’s bounds

Procedure k = 2 k = 5 k = 10

MSS Paulson 0.987 0.993 0.995
MSS Fabian 0.969 0.987 0.995
MST Paulson 0.974 0.984 0.993
MST Fabian 0.965 0.973 0.986

we examined in terms of the ATC. The difference between
the MST procedure and the best of the KN and MSS pro-
cedures is significant when c = 10. The MST and KN pro-
cedures behave similarly when c is low, whereas the MST
and MSS procedures behave similarly when c is high. The
MSS procedure is very close to the R procedure in the slip-
page configuration, but has much better performance than
the R procedure in the MIMs configuration, which is more
typical in practice. Therefore, the MSS procedure can be a
good substitute for the widely used R procedure. We also
found that the variance configuration does not significantly
change the relative performances of all four procedures.

5.3. Some specific results

We do not attempt to present comprehensive results from
such a large simulation study. Instead, we present selected
results that emphasize the key conclusions.

5.3.1. Validity check
In Sections 2 and 3 we proved the validity of the MSS and
MST procedures using Paulson’s probability bound. How-
ever, we also pointed out that Pichitlamken et al. (2004) sup-
port the use of Fabian’s probability bound which is tighter
than Paulson’s bound. To evaluate how much improvement
is possible, we checked the use of both bounds under the
slippage configuration, EVs, and c = 10 for different k. The
results in Table 1 show that Paulson’s probability bound
is very conservative and that Fabian’s probability bound is
closer to the nominal PCS. In the rest of the paper, the MST
and MSS procedures refer to the MST and MSS procedures
using Fabian’s probability bound.

5.3.2. Effect of mean configuration
We compared the four procedures using the slippage con-
figuration and a MIMs configuration. We used EVs, c = 10

Table 2. Effect of mean configuration

SC MIM

Procedure ANSas ANSws ATC ANSas ANSws ATC

R 1845.2 20.0 2045.2 1845.2 20.0 2045.2
KN 977.2 887.2 9848.8 426.6 336.6 3792.4
MSS 1950.2 19.9 2149.3 981.7 18.5 1167.0
MST 1185.7 23.8 1424.1 489.9 20.4 694.2
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Table 3. Effect of cost structure

ATC

Procedure ANSas ANSws c = 1 c = 10 c = 100 c = 1000

R 1845.2 20.0 1865.2 2045.2 3845.2 21 845
KN 426.6 336.6 763.2 3792.4 34084.0 337 000
MSS 981.7 18.5 1000.2 1167.0 2835.0 19 510
MST(c = 1) 453.6 24.1 477.7
MST 489.7 20.3 693.1

(c = 10)
MST 720.8 18.5 2574.8

(c = 100)
MST 793.3 18.5 19 327.3

(c = 1000)

and k = 10 in both configurations. The results in Table 2
show that the R procedure does not depend on the con-
figuration of means while the other procedures require less
work when the mean configuration deviates from the slip-
page configuration. In both configurations KN has the low-
est ANSas, MSS has the lowest ANSws and MST has the
lowest ATC. The reason why the MSS procedure has a lower
ANSws than the R procedure is because some clearly infe-
rior systems can be eliminated based on zeroth-stage sam-
ples in the MSS procedure.

5.3.3. Effect of the cost structure
To see the effect of the cost structure in usual situations
we used the MIMs and EVs conditions for k = 10 systems.
Table 3 summarizes the results of experiments. ANSas and
ANSws do not change for the R, KN and MSS procedures
when cost changes, but the ATC does change linearly as a
function of c. We observed a different pattern for the MST
procedure. As c goes up, ANSas goes up, ANSws goes down
and ATC is constantly below the other three procedures.
As we expected, the performance of the MST procedure is
closer to the KN procedure when c is low, and is closer to
the MSS procedure when c is high.

5.3.4. Robustness study
To assess the impact of non-normal data on the procedures,
they were applied to lognormally-distributed data with
increasing levels of skewness and kurtosis, relative to the

Table 4. Observed PCS of the MSS and MST procedures in the robustness study with a nominal level of 0.95

Normal Low deviation Medium deviation High deviation

MSS MST MSS MST MSS MST MSS MST

k = 2 0.969 0.965 0.970 0.972 0.960 0.946 0.941 0.926
k = 5 0.987 0.973 0.980 0.954 0.953 0.915 0.922 0.901
k = 10 0.995 0.986 0.979 0.967 0.950 0.932 0.926 0.888

Table 5. The five alternative inventory policies

Policy (i) s S Expected cost

1 20 40 114.176
2 20 80 112.742
3 40 60 130.550
4 40 100 130.699
5 60 100 147.382

normal distribution (which has a skewness of zero and a
kurtosis of three). The configurations of the means and vari-
ances are the same as the Nelson et al. (2001). In all cases
n0 = 10, c = 10, σi = 1 for all i, δ = 1/

√
n0, µ1 = µ2 =

· · · = µk−1 = 0 and µk = δ. We also used different numbers
of systems, k = 2, 5, 10. In the low-deviation case the skew-
ness and kurtosis are 1.8 and 9.1; in the medium-deviation
case they are 4.0 and 41.0; and in the high-deviation case
they are 6.2 and 113.2. Notice that the mean configuration
is the slippage configuration which is a difficult configura-
tion with respect to achieving the nominal PCS.

Table 4 shows the estimated PCS for the three lognormal
cases for the MSS and MST procedures with the corre-
sponding normal case included for comparison. When the
level of deviation from the normal distribution increases,
the observed PCS decreases. However, the observed PCS
is close to the nominal value until the deviation is quite
significant.

5.3.5. An illustrative example
We provide a system simulation example to compare our
procedures with the R and KN procedures. Consider the
(s, S) inventory system for the k = 5 inventory policies pro-
vided in Koenig and Law (1985). The objective of the study
is to compare the five policies given in Table 5 on the basis
of their corresponding expected average cost per month for
the first 30 months of operation and select the policy with
the minimum expected cost. The expected costs, which can
be analytically computed, are also given in Table 5. We set
δ = 1, n0 = 10 and c = 10. Table 6 includes the results of
the simulation study based on 1000 complete macroreplica-
tions. The results are consistent with our observations in the
previous experiments. Notice that δ is smaller than the true
difference between the best and the second-best systems,
which explains the high value of the observed PCS.
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Table 6. Simulation study of the illustrative example

Procedure PCS ANSas ANSws ATC

R 1.000 1033.1 10.0 1133.0
KN 0.998 235.7 190.7 2142.6
MSS 0.999 635.0 7.56 710.7
MST 0.998 268.5 9.42 362.7

6. Conclusions

In this paper we have presented two sequential indifference-
zone selection procedures: MSS and MST. As we discussed
in Section 5, the MSS procedure has a similar performance
(in both ANSa and ANSws) in the slippage configuration,
but a much better performance in more typical configura-
tions, than the widely used R procedure. Therefore, it can
be a substitute for the R procedure.

MST is a multi-stage procedure that decides the num-
ber of stages and the sample size in each stage based on
the tradeoff between sampling cost and switching cost. To
minimize the total cost of sampling and switching, we pro-
vided a simple heuristic algorithm. Although the algorithm
is very crude, it works well based on the numerical examples
in Section 5. With the heuristic, the MST procedure is uni-
formly superior to both the minimum switching procedures
(e.g., R and MSS) and the fully sequential procedures (e.g.,
KN) in terms of the ATC value.
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