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Abstract: Fully sequential indifference-zone selection procedures have been proposed in the simulation literature to select the
system with the best mean performance from a group of simulated systems. However, the existing sequential indifference-zone
procedures allocate an equal number of samples to the two systems in comparison even if their variances are drastically different.
In this paper we propose new fully sequential indifference-zone procedures that allocate samples according to the variances. We
show that the procedures work better than several existing sequential indifference-zone procedures when variances of the systems
are different. © 2006 Wiley Periodicals, Inc. Naval Research Logistics 53: 464–476, 2006
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1. INTRODUCTION

Selecting the best system is a common problem in com-
puter simulation, where the best system is defined as the
system with the largest or smallest mean performance. There
are two general approaches to solve this problem: a fre-
quentist approach and a Bayesian approach. The frequentist
approach (see Bechhofer, Santner, and Goldsman [3] for a
summary) guarantees that the selected system is the best
system with a pre-specified probability of correct selection
(PCS). To achieve this objective Bechhofer [2] suggested an
indifference-zone formulation: guarantee to select the single
best system whenever the difference between the mean of the
best system and the mean of the second-best system is greater
than or equal to δ, where δ > 0 is the smallest difference the
experimenter feels worth detecting. Indifference-zone selec-
tion procedures, e.g., the two-stage procedure of Rinott [24]
and the fully sequential procedure of Kim and Nelson [18,19],
allocate samples to different systems to guarantee the PCS
even for the slippage configuration (SC), where the differ-
ences between the best system and all other systems are all δ.
They are typically conservative for average cases in which the
differences between the best systems and some other systems
are greater than δ. Bayesian procedures, e.g., Chen et al. [5]
and Chick and Inoue [7,8], attempt to allocate a finite compu-
tation budget to maximize the posterior PCS. They typically
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allocate different numbers of samples to different systems
based on the sample means and sample variances, and the
allocation can be done in stages or sequentially. They do not
provide a guaranteed (frequentist’s) PCS, except for Chen
and Yücesan [6], who guarantee a posterior PCS, but they
work well for average cases. In this paper we take the fre-
quentist viewpoint. The procedures provided in this paper
guarantee a pre-specified PCS under the indifference-zone
formulation.

Rinott’s procedure [24] and the KN procedure of Kim and
Nelson [18] are representative procedures for indifference-
zone selection. Rinott’s procedure has two stages. In the first
stage it takes an initial number of samples from all systems,
calculates the sample variances, and determines the second-
stage sample sizes. In the second stage it takes the required
number of samples from all systems and calculates the over-
all sample means. Suppose that we want to select the system
with the largest mean. Then the system with the largest over-
all sample mean is selected as the best system. KN procedure
is fully sequential. It approximates the sum of differences
between two systems as a Brownian motion process with
drift and uses a triangular continuation region to determine
the stopping time of the selection process. Figure 1 illustrates
how a triangular continuation region works. KN procedure
also needs a first stage to estimate variances and to determine
the corresponding triangular region for each pair of systems.
It then keeps allocating one sample to each surviving sys-
tem and checking whether any system(s) can be eliminated.

© 2006 Wiley Periodicals, Inc.



L. Jeff Hong: Indifference-Zone Selection Procedures 465

Figure 1. Triangular continuation region for sequential
indifference-zone procedures. Selection of system 1 or 2 as best
depends on whether the sum of differences exits the region from
the top or bottom.

It stops when there is only one system left, and that system
is selected as the best.

While both procedures provide a guaranteed PCS, KN
often requires a smaller sample size to select the best sys-
tem than Rinott’s procedure when the systems are not in the
SC. This is because KN adapts to the difference between the
two systems in comparison. When the difference between
the two systems is larger than δ, the Brownian motion pro-
cess constructed in KN has a drift larger than δ, and it tends
to exit the triangular continuation region earlier. Then the
procedure requires fewer samples than Rinott’s procedure to
eliminate the inferior system. Rinott’s procedure, however,
does not adapt to the difference between systems. It requires
the same number of samples even if the systems are not in
the SC.

KN procedure also has disadvantages when compared to
Rinott’s procedure. For instance, KN procedure does not
adapt to variances of individual systems. Instead, it adjusts to
the variance of the difference between each pair of systems.
When variances of the two systems in comparison are signifi-
cantly different, Rinott’s procedure allocates more samples to
the system with larger variance and fewer samples to the sys-
tem with smaller variance, but KN allocates an equal number
of samples to both systems. In an extreme case where one
system has a zero variance and the other has a large vari-
ance, Rinott’s procedure allocates no second-stage samples
to the system with zero variance, but KN may allocate a large
number of samples to it after the first stage.

It is common in simulation study to have systems with dif-
ferent variances. Simulation is often used to study queueing
systems, e.g., production facilities, communication networks,
or service systems, where mean and variance often have a

functional relationship. For example, the steady-state mean
and variance of the number of customers in an M/M/1 queue-
ing system are ρ/(1−ρ) and ρ/(1−ρ)2, respectively, where
ρ is the traffic intensity (Kulkarni [20]). Therefore, a larger
mean also implies a larger variance.

In this paper we first propose a new approach, in Section 2,
to construct a Brownian motion process with drift that allows
different sample sizes and different variances for different
systems. We show that the Brownian motion process con-
structed in KN procedure is a special case of our construction.
In Section 3 we introduce a fully sequential procedure assum-
ing all variances are known in advance and use the procedure
to illustrate how to control the sampling using variance infor-
mation. In Section 4 we introduce a fully sequential procedure
that allows for unknown variances. Results of a compre-
hensive empirical study are summarized and reported in
Section 5, followed by the conclusions in Section 6.

2. CONSTRUCTION OF BROWNIAN MOTION

Suppose that there are two systems, systems 1 and 2, each
normally distributed with mean µi and variance σ 2

i , i = 1, 2.
Let Xi� denote the �th sample from system i and we require
that Xi�, i = 1, 2 and � = 1, 2, . . . , are mutually independent.
We also let �Xi(n) = ∑n

�=1 Xi�/n for i = 1, 2 and n =
1, 2, . . . .

Let B�(t) denote the Brownian motion process with drift
�. When comparing the means of two systems, there are
two approaches to approximate the Brownian motion pro-
cess in the sequential-analysis literature: using equal sample
sizes but allowing unequal variances for both systems (as
in Kim and Nelson [18]) or assuming unit variance but
allow unequal sample sizes for both systems (as in Rob-
bins and Siegmund [25]). The first approach uses the fact
that, for any non-decreasing sequence n of positive inte-
gers, the random sequences n[�X1(n) − �X2(n)]/√σ 2

1 + σ 2
2

and B
(µ1−µ2)/

√
σ 2

1 +σ 2
2

(n) have the same joint distribution.

The second approach shows that, for any sequence of pairs
(m, n) of positive integers that is non-decreasing in each coor-
dinate, the random sequences mn/(m + n)[�X1(m) − �X2(n)]
and Bµ1−µ2(mn/(m + n)) have the same joint distribution if
σ 2

1 = σ 2
2 = 1.

In this section we generalize these two approaches to allow
both unequal sample sizes and unequal variances. Let

Z(m, n) =
[
σ 2

1

m
+ σ 2

2

n

]−1 [�X1(m) − �X2(n)
]

.

The next theorem shows that the sequences Z(m, n) and
Bµ1−µ2([σ 2

1 /m + σ 2
2 /n]−1) have the same joint distribution.

Note that the approaches of Kim and Nelson [18] and Robbins
and Siegmund [25] are both special cases of the theorem.
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THEOREM 1: For any sequence of pairs (m, n) of positive
integers that is non-decreasing in each coordinate, the random
sequences Z(m, n) and Bµ1−µ2([σ 2

1 /m + σ 2
2 /n]−1) have the

same joint distribution.

PROOF: For any finite sequence of (m, n), since Z(m, n)’s
are linear functions of jointly normal variables, they are

jointly normally distributed. Moreover,

E[Z(m, n)] = [σ 2
1 /m + σ 2

2 /n]−1(µ1 − µ2),

Var[Z(m, n)] = [σ 2
1 /m + σ 2

2 /n]−1,

and for any non-negative integers p and q,

Cov[Z(m + p, n + q), Z(m, n)] = [σ 2
1 /(m + p) + σ 2

2 /(n + q)]−1[σ 2
1 /m + σ 2

2 /n]−1Cov[�X1(m + p), �X1(m)]
+ [σ 2

1 /(m + p) + σ 2
2 /(n + q)]−1[σ 2

1 /m + σ 2
2 /n]−1Cov[�X2(n + q), �X2(n)]

= [σ 2
1 /(m + p) + σ 2

2 /(n + q)]−1[σ 2
1 /m + σ 2

2 /n]−1[σ 2
1 /(m + p) + σ 2

2 /(n + q)]
= [σ 2

1 /m + σ 2
2 /n]−1.

Therefore, for any finite sequence of (m, n), Z(m, n) and
Bµ1−µ2([σ 2

1 /m + σ 2
2 /n]−1) have the same joint distribution.

By the Kolmogorov’s Extension Theorem (Durrett [9]), the
conclusion also holds for any infinite sequence of (m, n). �

Theorem 1 gives a general framework that allows unequal
sample sizes and unequal variances for both systems. We can
combine it with the triangular continuation region to design
indifference-zone selection procedures that allow variance-
dependent sampling.

3. KNOWN-VARIANCES PROCEDURE

Suppose there are k systems each normally distributed with
unknown mean µi and known variance σ 2

i , i = 1, 2, . . . , k.
In indifference-zone selection we design an experiment to
select a system and to guarantee that the selected system
has the largest mean among all k systems with a probabil-
ity at least 1 − α if the difference between means of the
best and the second best systems is greater than or equal to
the indifference-zone parameter δ. In this section we assume
that σ 2

i , i = 1, 2, . . . , k, are known, but can be unequal. We
assume known variances to illustrate the essence and benefit
of variance-dependent sampling in fully sequential selection
procedures. The case of unknown variances is discussed in
Section 4.

3.1. The Procedure

In this subsection we introduce a fully sequential proce-
dure for the known-variances case. The procedure works as
follows: We first design a sampling rule and then samples are
taken one at a time according to the rule. After taking each
sample, the procedure checks whether any of the remaining
systems can be eliminated. It stops when there is only one
system left and the system is selected as the best system. The

sampling rule defines clearly how to allocate each sample to
the k systems, and it may depend only on the variances of
the systems. The selection of sampling rule is discussed in
Section 3.3.

Let Xi� denote the �th sample from system i. We require
that Xi�, i = 1, 2, . . . , k and � = 1, 2, . . . , are mutually inde-
pendent. Independence of Xi�, � = 1, 2, . . . is a direct result
of making replications. When samples are obtained within
a single replication of a steady-state simulation then tech-
niques such as batch means allow the independence to hold
approximately (see, for instance, Law and Kelton [21]). Inde-
pendence between Xi� and of Xj� implies that we do not use
common random numbers. Although we expect our proce-
dures to work, in the sense of delivering at least the desired
PCS, in the presence of common random numbers, they do
not exploit them.

Known-Variances Procedure (KVP)

Setup. Select confidence level 1/k < 1 − α < 1 and
indifference-zone parameter δ > 0. Let λ = δ/2 and

a = −1

δ
ln
[
2 − 2(1 − α)

1
k−1

]
. (1)

Note that λ and a define the triangular continuation region
(see Figure 1).

Initialization. Let I = {1, 2, . . . , k} be the set of systems
still in contention. Let r be the counter of the total number
of samples allocated to all k systems, and let ni(r) be the
number of samples allocated to system i, i = 1, 2, . . . , k.
Note that

∑k
i=1 ni(r) = r . Set r = 0 and n1(r) = n2(r)

= · · · = nk(r) = 0.

Determining sampling rule. Select a sampling rule that
may depend only on σ 2

1 , σ 2
2 , . . . , σ 2

k . A suggested sampling
rule, Sampling Rule 1, can be found in Section 3.3.
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Screening. Let r = r + 1. Take the rth sample according
to the sampling rule, and update ni(r) for all i ∈ I . For all
i, j ∈ I , and i �= j , if ni(r) ≥ 1 and nj (r) ≥ 1, let

tij (r) =
[

σ 2
i

ni(r)
+ σ 2

j

nj (r)

]−1

and (2)

Zij (tij (r)) = tij (r)
[�Xi(ni(r)) − �Xj(nj (r))

]
; (3)

otherwise, let tij (r) = 0 and Zij (tij (r)) = 0. Let I old = I

and let

I = I old
∖{

i ∈ I old : Zij (tij (r)) < min[0, −a + λtij (r)]
for some j ∈ I old and j �= i

}
, (4)

where A\B = {x : x ∈ A and x /∈ B}.
Stopping Rule. If |I | = 1, then stop and select the system
whose index is in I as the best. Otherwise, go to Screening.

REMARKS:

1. Any sampling rule that depends only on variances
of the systems can be used in KVP. However, the
sampling rule may not depend on sample means of
the systems. Therefore, Bayesian sampling rules that
exploits the information on sample means, e.g., the
OCBA rule of Chen et al. [5] and the LL rule of Chick
and Inoue [7], may not be used in KVP.

2. In the Screening step, we use Eq. (4) to construct I .
However, if the rth sample is allocated to system i,
only the comparisons involving system i need to be
checked to see whether any system(s) can be elimi-
nated. The comparisons not involving system i will
not eliminate any systems, since tpq(r) = tpq(r − 1)

and Zpq(r) = Zpq(r − 1) for all p, q ∈ I and
p, q �= i.

3. The procedure checks whether any system can be
eliminated after every sample is taken. If the compu-
tational cost of checking is relatively high compared
to the cost of taking samples, the procedure can also
check after a batch of samples is taken. In practical
problems, however, checking cost is often negligible
compared to sampling cost.

The idea of forming a sequential test statistic that is equiv-
alent to examining a Brownian motion process at a variable
time index tij (r) is not new. Robbins and Siegmund [25] use
it to study the comparison between two systems. Jennison,
Johnston, and Turnbull [15] and Jennison and Turnbull [16]
use it to study the selection among k systems. However, they
all assume equal variances.

3.2. Statistical Validity

Let � denote the triangular continuation region formed
by a − λt and −a + λt , where a > 0, λ > 0 and t ≥ 0
(see Figure 1). Let T = inf{t > 0 : B�(t) /∈ �}, T is the
random time that B�(t) first exits �. Then Lemma 1 gives the
probability of B�(t) exiting � from the side that corresponds
to an incorrect selection.

LEMMA 1 (Fabian [10]): For a fixed triangular continua-
tion region �, if λ = �/2 and � > 0, then

Pr{B�(T ) < 0} = 1

2
e−a�.

If we can only observe the Brownian motion process at
a set of discrete times t1, t2, . . . , then Lemma 1 cannot be
applied directly. The next lemma shows that, under general
conditions, the probability of incorrect selection (PICS) of
the continuous-time process is an upper bound for the PICS
of the discrete-time process.

Let 	 be a symmetric continuation region formed by
g(t) ≥ 0 and −g(t). For instance, if we let

g(t) =
{
a − λt : if 0 ≤ t ≤ a/λ

0 : if t > a/λ
,

then 	 becomes �. Let Tc = inf{t : B�(t) /∈ 	} and Td =
inf{ti : B�(ti) /∈ 	}. Tc is the time that B�(t) first exits 	

and Td is the time that B�(t) first exits 	 at an observed time
ti , i = 1, 2, . . . . Then we have the following lemma.

LEMMA 2 (Jennison, Johnstone, and Turnbull [14]): A
discrete-time process is obtained by observing B�(t) at an
increasing sequence of times {ti ; i = 1, 2, . . .} taking values
in a given countable set. The value of ti depends on B�(t)

only through its values in the period [0, ti−1]. If Td < ∞
almost surely and the conditional distribution of {ti} given
B�(t) = b is the same as that given B�(t) = −b, then

Pr{B�(Td) < 0} ≤ Pr{B�(Tc) < 0}.
By Theorem 1 we know that the sequence Zij (tij (r)),

r = 1, 2, . . . , behaves like a drifted Brownian motion pro-
cess Bµi−µj

(t) observed at a discrete sequence of times
tij (r), r = 1, 2, . . . . Since tij (r) does not depend on Bµi−µj

(t)

and Td is finite, the conditions of Lemma 2 are satisfied. Then
the lemma shows that the PICS caused by Zij (tij (r)) exiting
the incorrect side of � is bounded above by the probability
of Bµi−µj

(t) exiting the incorrect side of �.
We also need the following lemma to allocate the PICS to

all pairs of comparisons when k > 2.

LEMMA 3 (Tamhane [27]): Let V1, V2, . . . , Vk be inde-
pendent random variables, and let gj (v1, v2, . . . , vk), j = 1,
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2, . . . , p, be non-negative, real-valued functions, each one
nondecreasing in each of its arguments. Then

E


 p∏

j=1

gj (V1, V2, . . . , Vk)


≥

p∏
j=1

E[gj (V1, V2, . . . , Vk)].

Now we are in a position to state and prove the statistical
validity of KVP. Without loss of generality, suppose that the
true means of the systems are indexed so that µk ≥ µk−1

≥ · · · ≥ µ1.

THEOREM 2: Suppose that Xi�, � = 1, 2, . . . , are i.i.d.
normally distributed and that Xip and Xjq are independent
for i �= j and any positive integers p and q. Then the Known-
Variances Procedure selects system k with probability at least
1 − α whenever µk − µk−1 ≥ δ.

PROOF: Let � denote the triangular continuation region
formed by a and λ. We define T

(1)
ij , Tij and T be the first times

that Zij (tij (r)), Bµi−µj
(t) and Bδ(t) exit �, respectively.

Then for any i = 1, 2, . . . , k − 1,

Pr{system i eliminates system k} = Pr
{
Zki

(
T

(1)
ki

)
< 0

}
≤ Pr

{Bµk−µi
(Tki) < 0

}
by Theorem 1, Lemma 2, and µk − µi > 0

≤ Pr {Bδ(T ) < 0} since µk − µi ≥ δ = 1

2
e−aδ by Lemma 1 = 1 − (1 − α)

1
k−1 .

Then

Pr{selecting system k}

= Pr

{
k−1⋂
i=1

{system k eliminates system i}
}

= E

[
Pr

{
k−1⋂
i=1

{system k eliminates system i}

∣∣Xk1, Xk2, . . .

}]
. (5)

Conditioned on Xk1, Xk2, . . . , the events that system k

eliminates system i are mutually independent for all i =
1, 2, . . . , k − 1, and the probability that system k eliminates
system i is nondecreasing in Xk1, Xk2, . . . . Therefore,

Eq. (5) = E

[
k−1∏
i=1

Pr {system k eliminates system i|Xk1, Xk2, . . .}
]

by independence of the events

≥
k−1∏
i=1

E
[
Pr {system k eliminates system i|Xk1, Xk2, . . .}] by Lemma 3

=
k−1∏
i=1

Pr {system k eliminates system i} ≥
k−1∏
i=1

[
1 −

(
1 − (1 − α)

1
k−1

)]
= 1 − α.

This concludes the proof. �

When there are systems whose means are within δ to the
mean of the best system, KVP guarantees that one of the good

systems, either the best system or a system that is within δ

to the best system, will be selected with a probability at least
1 − α. This result follows directly from Corollary 1 of Kim
and Nelson [18] and Theorem 2.

Naval Research Logistics DOI 10.1002/nav



L. Jeff Hong: Indifference-Zone Selection Procedures 469

3.3. Selection of Sampling Rule

Suppose there are only two systems 1 and 2 and we want
to select the system with the larger mean. Then the sampling
process stops if

t12(r) = T
(1)

12 , (6)

where T
(1)

12 is the first time Z12(t12(r)), r = 1, 2, . . . , exits the
triangular region. To reduce the total sample size required to
select the better system from systems 1 and 2 by the sampling
rule, we want to make Eq. (6) easier to satisfy. Therefore, for a
given r > 0, either increasing the left-hand side or decreasing
the right-hand side of Eq. (6) may do it.

The right-hand side of Eq. (6) can be approximated by T12,
the first time Bµ1−µ2(t), t > 0, exits the triangular region.
Since the distribution of T12 is not affected by the sampling
rule, we cannot reduce the right-hand side of Eq. (6). How-
ever, increasing the left-hand side of Eq. (6) can be achieved
by maximizing t12(r) for any r = 1, 2, . . . . By the definition
of t12(r) in Eq. (2), we can formulate the problem as

max

[
σ 2

1

n1(r)
+ σ 2

2

n2(r)

]−1

(7)

s.t. n1(r) + n2(r) = r ,

n1(r) and n2(r) are non-negative integers.

If we relax the integrality constraints on n1(r) and n2(r), it is
easy to show that the optimal solution to Problem (7) satisfies

n1(r)

σ1
= n2(r)

σ2
, (8)

which suggests that the optimal sampling rule allocates sam-
ples proportionally to the standard deviations of the systems
in comparison. Note that the OCBA rules, e.g., Chen et al. [5]
and Fu et al. [11], also satisfy Eq. (8) when there are only two
systems.

Equation (8) is an interesting result. It minimizes the vari-
ance of �X1(n1(r))−�X2(n2(r)) given a fixed r and maximizes
Pr{�X1(n1(r)) ≥ �X2(n2(r))} given a fixed r if µ1 > µ2. How-
ever, it is different from Rinott’s procedure, which allocates
samples proportionally to the (estimated) variances instead
of the standard deviations.

When there are k > 2 systems in comparison, the optimal
sampling rule depends on the means of the systems (see, for
instance, Chen et al. [5]). Since the means of the systems are
not known in advance and the sample means cannot be used,
we suggest using the sampling rules that satisfy

n1(r)

σ1
= n2(r)

σ2
= · · · = nk(r)

σk

. (9)

By Eq. (8), we know that Eq. (9) guarantees optimality for
the comparisons between any pair of systems.

When samples are allocated one at a time, Eq. (9) cannot
be satisfied by all r , r = 1, 2, . . . . We use the following
sampling rule.

SAMPLING RULE 1: Allocate the first sample to the sys-
tem (or any system if there are more than one) with the
lowest σi . Then allocate the next sample, the (r + 1)st sam-
ple, r = 1, 2, . . . , to the surviving system with the lowest
ni(r)/σi . If there are systems with the same ni(r)/σi , allo-
cate to the system (or any system if there are more than one)
with the lowest σi among them.

Sampling Rule 1 approximates Eq. (9) to let all systems
have similar ni(r)/σi . When σ1 = σ2 = · · · = σk , Sam-
pling Rule 1 becomes the sampling rule used in KN. When
the variances of the k systems are significantly different,
however, Sampling Rule 1 can be significantly better than
the KN rule. For instance, if there are two systems with
σ1 = 1 and σ2 = 10 and we let r = 22, then KN rule
gives t12(r) = 0.109, which is significantly smaller than
t12(r) = 0.198 of Sampling Rule 1.

4. UNKNOWN-VARIANCES PROCEDURE

In most simulation studies the variances of the systems are
not known in advance. Therefore, indifference-zone selection
procedures used in simulation typically have two or more
stages, with the first stage providing variance estimates that
help determine the sampling rule in the subsequent stages.
If the sampling rule determined at the end of the first stage
depends only on the first-stage sample variances, Stein [26]
showed that the overall sample means are independent of the
first-stage sample variances. In this section we also exploit
this property and design a fully sequential procedure that
allows unknown variances and variance-dependent sampling
and also guarantees the PCS.

4.1. The Procedure

In this subsection we introduce a fully sequential proce-
dure, called the Unknown Variance Procedure (UVP). UVP
is similar to KVP except that it requires a first stage to esti-
mate the variances of the systems, since the variances are not
known in advance. Once the variances are estimated, the pro-
cedure determines a sampling rule and samples according to
the rule. The elimination decisions of UVP are made similar
to those of KVP. The sampling rule of UVP may depend
on the first-stage sample variances. However, it may not
depend on the first-stage sample means. Otherwise, the over-
all sample means are no longer independent of the sampling
rule.
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Unknown-Variances Procedure (UVP)

Setup. Select confidence level 1/k < 1 − α < 1, indif-
ference-zone parameter δ > 0, and first-stage sample size
n0 ≥ 2. Let λ = δ/2 and a be the solution of the equation

E

[
1

2
exp

(
− aδ

n0 − 1



)]
= 1 − (1 − α)

1
k−1 , (10)

where 
 is a random variable whose density function is

f
(x) = 2
[
1 − Fχ2

n0−1
(x)

]
fχ2

n0−1
(x),

and Fχ2
n0−1

(x) and fχ2
n0−1

(x) are the distribution function and

density function of a χ2 distribution with n0 − 1 degrees of
freedom.

Initialization. Take n0 samples Xi�, � = 1, 2, . . . , n0, from
each system i = 1, 2, . . . , k. For all i = 1, 2, . . . , k, calculate

S2
i = 1

n0 − 1

n0∑
�=1

(
Xi� − �Xi(n0)

)2
, (11)

the first-stage sample variance of systems i. Let I =
{1, 2, . . . , k} be the set of systems still in contention. Let r

be the counter of the total number of samples allocated to
all systems and ni(r) be the number of samples allocated to
system i, i = 1, 2, . . . , k. Set r = kn0, and n1(r) = n2(r)

= · · · = nk(r) = n0.

Determining sampling rule. Select a sampling rule that
may depend only on S2

1 , S2
2 , . . . , S2

k . A suggested sampling
rule, Sampling Rule 2, is given at the end of this subsection.

Screening. For all i, j ∈ I and i �= j , let

τij (r) =
[

S2
i

ni(r)
+ S2

j

nj (r)

]−1

and (12)

Yij (τij (r)) = τij (r)
[�Xi(ni(r)) − �Xj(nj (r))

]
.

Let I old = I and let

I = I old
∖{

i ∈ I old : Yij (τij (r)) < min[0, −a + λτij (r)]
for some j ∈ I old and j �= i

}
. (13)

Stopping rule. If |I | = 1, then stop and select the system
whose index is in I as the best. Otherwise, let r = r +1. Take

the rth sample according to the sampling rule, and update
ni(r) for all i ∈ I . Then go to Screening.

Comparing the definitions of tij (r) in Eq. (2) and τij (r) in
Eq. (12), we suggest using the following sampling rule.

SAMPLING RULE 2: After the first stage, allocate the
next sample, the (r + 1)st sample, r = kn0, kn0 + 1, . . . ,
to the surviving system with the lowest ni(r)/Si . If there are
systems with the same ni(r)/Si , allocate to the system (or any
system if there are more that one) with the lowest Si among
them.

4.2. Statistical Validity

Let 	1 and 	2 be two symmetric continuation regions.
	1 is formed by g1(t) ≥ 0 and −g1(t), 	2 is formed by
g2(t) ≥ 0 and −g2(t), and g2(t) ≥ g1(t) for all t ≥ 0 (see
Figure 2 for an example). Let T1 = inf{t : B�(t) /∈ 	1}
and T2 = inf{t : B�(t) /∈ 	2}. Note that to exit 	2, B�(t)

must first exit 	1. Therefore, for each realization of B�(t),
T1 ≤ T2. Then we have the following lemma.

LEMMA 4: If �>0, then Pr{B�(T1)<0}≥ Pr{B�(T2)<

0}.

PROOF: Let P�(ω) denote the probability distribution on
the space with elements ω = {b(t); 0 ≤ t ≤ T2}, where b(t)

is the realization of a Brownian motion B�(t). Then by
Jennison, Johnston, and Turnbull [14],

dP�

dP−�

(ω) = e2�b(T2),

where the derivative is taken relative to the σ -field σ {b(t);
0 ≤ t ≤ T2}. Then

Figure 2. Example of two symmetric continuation regions where
g1(t) ≤ g2(t) for all t ≥ 0.
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Pr{B�(T1) < 0} − Pr{B�(T2) < 0} = Pr{ω : b(T1) < 0} − Pr {ω : b(T2) < 0}
= [

Pr{ω : b(T1) < 0, b(T2) < 0} + Pr{ω : b(T1) < 0, b(T2) > 0}]
− [

Pr{ω : b(T1) < 0, b(T2) < 0} + Pr{ω : b(T1) > 0, b(T2) < 0}]
= Pr{ω : b(T1) < 0, b(T2) > 0} − Pr {ω : b(T1) > 0, b(T2) < 0} =

∫
�1

dP�(ω) −
∫

�2

dP�(ω),

where we define �1 = {ω : b(T1) < 0, b(T2) > 0} and �2 =
{ω : b(T1) > 0, b(T2) < 0}. Note that �2 can be obtained
from �1 by replacing b(t), t ≥ 0 by −b(t), t ≥ 0. By sym-
metry of 	1 and 	2,

Pr{B�(T1) < 0} − Pr{B�(T2) < 0}

=
∫

�1

dP�(ω) −
∫

�1

dP−�(ω)

=
∫

�1

[
dP�

dP−�

(ω) − 1

]
dP−�(ω)

=
∫

�1

[
e2�b(T2) − 1

]
dP−�(ω) ≥ 0.

The last equation follows from the fact that b(T2) > 0
in �1. �

Now we are in a position to state and prove the statistical
validity of UVP. Without loss of generality, suppose that the
true means of the systems are indexed so that µk ≥ µk−1

≥ · · · ≥ µ1.

THEOREM 3: Suppose that Xi�, � = 1, 2, . . . , are i.i.d.
normally distributed and that Xip and Xjq are independent for
i �= j and any positive integers p and q. Then the Unknown-
Variances Procedure selects system k with probability at least
1 − α whenever µk − µk−1 ≥ δ.

PROOF: In UVP we compare Yij (τij (r)) to a − λτij (r)

and −a +λτij (r), which is equivalent to compare Zij (tij (r))

to a′
ij − λtij (r) and −a′

ij + λt , where tij (r) and Zij (tij (r))

are defined in Eqs. (2) and (3), and

a′
ij = S2

i /ni(r) + S2
j /nj (r)

σ 2
i /ni(r) + σ 2

j /nj (r)
a.

Let

γ (r) = σ 2
i /ni(r)

σ 2
i /ni(r) + σ 2

j /nj (r)
.

Then γ (r) ∈ (0, 1) and

a′
ij =

[
γ (r)

S2
i

σ 2
i

+ (1 − γ (r))
S2

j

σ 2
j

]
a. (14)

Conditioned on S2
i , i = 1, 2, . . . , k, a′

ij is independent of
Zij (tij (r)). However, a′

ij is not a constant since it changes
with respect to r . If we let a′

ij stay constant between r and
r + 1, then the boundary of the continuation region is piece-
wise linear with the same slope λ as illustrated in Figure 3.
Lemma 1 cannot be applied directly on the continuation
region.

For all i, j = 1, 2, . . . , k and i �= j , let

a′′
ij = min

{
S2

i

σ 2
i

,
S2

j

σ 2
j

}
a;

a′′
ij is a constant given S2

i and S2
j . From Eq. (14), it is clear

that a′′
ij ≤ a′

ij for any r such that ni(r) > 0 and nj (r) > 0.

Let 	
(1)
ij be the continuation region formed by a′′

ij and λ and
	

(2)
ij be the continuation region formed by a′

ij and λ. It is clear
that 	(1)

ij is completely inside of 	
(2)
ij (Figure 3). Let T (1)

ij and
T

(2)
ij be the first times that Bµi−µj

(t) exits 	
(1)
ij and 	

(2)
ij ,

respectively, T
(3)
ij be the first time that Zij (tij (r)) exits 	

(2)
ij ,

and Tij be the first time that Bδ(t) exits 	
(1)
ij . Then,

Figure 3. 	
(1)
ij and 	

(2)
ij .
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Pr{system i eliminates system k} = E
[
Pr

{
system i eliminates system k|S2

k , S2
i

}] = E
[
Pr

{
Zki(T

(3)
ki ) < 0|S2

k , S2
i

}]
≤ E

[
Pr

{
Bµk−µi

(T
(2)
ki ) < 0|S2

k , S2
i

}]
by Theorem 1, Lemma 2, and µk − µi > 0

≤ E
[
Pr

{
Bµk−µi

(T
(1)
ki ) < 0|S2

k , S2
i

}]
by Lemma 4

≤ E
[
Pr

{Bδ(Tki) < 0|S2
k , S2

i

}]
since µk − µi ≥ δ

≤ E

[
1

2
e−a′′

ki δ

]
by Lemma 1

= E

[
1

2
exp

(
− aδ

n0 − 1
min

{
(n0 − 1)S2

k

σ 2
k

,
(n0 − 1)S2

i

σ 2
i

})]
. (15)

Let


 = min

{
(n0 − 1)S2

k

σ 2
k

,
(n0 − 1)S2

i

σ 2
i

}
.

Since both (n0 − 1)S2
k /σ

2
k and (n0 − 1)S2

i /σ
2
i are indepen-

dent χ2
n0−1 random variables, where χ2

f denotes a chi-square
random variable with f degrees of freedom, then 
 has the
density function

f
(x) = 2
[
1 − Fχ2

n0−1
(x)

]
fχ2

n0−1
(x),

where Fχ2
n0−1

(x) and fχ2
n0−1

(x) are the distribution function

and density function of a χ2 distribution with n0 − 1 degrees
of freedom. By Eq. (10),

Eq. (15) = 1 − (1 − α)
1

k−1 .

The rest of the proof follows from the proof of Theorem 2.
�

Similarly, when there are systems whose means are within
δ to the mean of the best system, UVP guarantees that one of
the good systems, either the best system or a system that is
within δ to the best system, will be selected with a probability
at least 1 − α. This result follows directly from Corollary 1
of Kim and Nelson [18] and Theorem 3.

4.3. The Choice of a

To find a using Eq. (10) we must numerically solve an
equation that involves integration. Since the left-hand side of
Eq. (10) is monotone, the equation is not difficult to solve.
Moreover, all pairwise comparisons use the same a, we only
need to solve the equation once. In the rest of this subsection
we give an upper bound and a lower bound of a and show the
connections of the two bounds to some well-known results
in ranking and selection. Having an upper bound and a lower
bound also helps solve Eq. (10).

Note that

Eq. (15) =
∫ ∞

0

1

2
exp

(
− aδ

n0 − 1
x

)
f
(x)dx

=
∫ ∞

0

1

2
exp

(
− aδ

n0 − 1
x

)
2
[
1 − Fχ2

n0−1
(x)

]
fχ2

n0−1
(x)dx

≤
∫ ∞

0
exp

(
− aδ

n0 − 1
x

)
fχ2

n0−1
(x)dx

= E

[
exp

(
− aδ

n0 − 1
χ2

n0−1

)]

=
[

1 + 2aδ

n0 − 1

]−(n0−1)/2

. (16)

If we set Eq. (16) equal to 1−(1−α)1/(k−1), we obtain that

au = n0 − 1

2δ

{[
1 − (1 − α)1/(k−1)

]−2/(n0−1) − 1
}
.

It is easy to show that au is greater than or equal to the a

obtained by solving Eq. (10). If we substitute a by au in
UVP, the statistical validity of UVP still holds.

Note that

Eq. (15) ≥ E

[
1

2
exp

(
− aδ

n0 − 1

(n0 − 1)S2
k

σ 2
k

)]

= E

[
1

2
exp

(
− aδ

n0 − 1
χ2

n0−1

)]

= 1

2

[
1 + 2aδ

n0 − 1

]−(n0−1)/2

. (17)

If we set Eq. (17) equal to 1 − (1 − α)1/(k−1), we obtain that

a� = n0 − 1

2δ

{[
2 − 2(1 − α)1/(k−1)

]−2/(n0−1) − 1
}
.

It is easy to show that a� is less than or equal to the a obtained
by solving Eq. (10).
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Both au and a� correspond to some well-known results
in ranking and selection. au is often used in sequential pro-
cedures that apply the Paulson probability bound [22] to
construct the triangular continuation region, e.g., Hong and
Nelson [12], and a� is often used in sequential procedures that
apply the Fabian probability bound of Lemma 1, e.g., Kim
and Nelson [18] and Pichitlamken, Nelson, and Hong [23].
The Paulson probability bound is generally easier to apply
but less tight than the Fabian probability bound.

Although a� is a lower bound of a, we conjecture that
the use of a� in UVP can also deliver the desired statistical

validity. Suppose that we substitute γ (r) and a by any con-
stant γ ∈ (0, 1) and a� in Eq. (14) and denote the resulting
a′

ij as ãij . Then

ãij =
[
γ

S2
i

σ 2
i

+ (1 − γ )
S2

j

σ 2
j

]
a�.

Note that ãij is a constant conditioned on S2
i and S2

j . Let Tij

be the first time that Bδ(t) exits the triangular continuation
region formed by ãij and λ. Then,

Pr{Bδ(Tki) < 0} = E

[
1

2
e−ãki δ

]
condition on S2

k and S2
i and then apply Lemma 1

= 1

2
E

[
exp

(
− γ a�δ

n0 − 1

(n0 − 1)S2
k

σ 2
k

)]
E

[
exp

(
− (1 − γ )a�δ

n0 − 1

(n0 − 1)S2
i

σ 2
i

)]
by the independence of S2

k and S2
i

= 1

2

{[
1 + 2γ a�δ

n0 − 1

] [
1 + 2(1 − γ )a�δ

n0 − 1

]}−(n0−1)/2

≤ 1

2

[
1 + 2a�δ

n0 − 1

]−(n0−1)/2

= 1 − (1 − α)1/k−1.

Although γ (r) is not a constant, it is independent of
Bµk−µi

(t), since it is determined by the sampling rule. Hence,
the variation of γ (r) does not particularly cause Bµk−µi

(t) to
exit from the lower side of the triangular region. Therefore,
the above analysis gives us reason to conjecture that using
a� instead of a in UVP can also deliver the desired statisti-
cal validity. The numerical tests conducted in Section 5 also
support our conjecture. Therefore, we recommend using a�

instead of a in UVP.

5. NUMERICAL EXPERIMENTS

In this section we summarize the results of an extensive
empirical evaluation of KVP and UVP relative to KN proce-
dure. The original KN procedure is for unknown-variances
case. To study the empirical performance of KVP, we also
designed a KN-like procedure for known-variances cases.
We call the procedure KNknown procedure.

Except for the job-shop example in Section 5.3, the sys-
tems are represented by various configurations of k normal
distributions with system k being the best (having the largest
mean). Two configurations of means were used: the slip-
page configuration (SC) and the monotone-increasing-means
configuration (MIM). In SC, µk was set to δ and µ1 = µ2

= . . . = µk−1 = 0. This is a difficult configuration in terms

of statistical validity since all inferior systems are exactly
δ from the best. In MIM µi = iδ, i = 1, 2, . . . , k. MIM is
used to investigate the effectiveness of the procedures in more
favorable settings. We also examined the effect of variances.
There are three configurations of variances: equal-variances
configuration (EV), increasing-variances configuration (IV)
and decreasing-variances configuration (DV). In EV, σ1 =
σ2 = . . . = σk = 10; in IV, σi = 1 + 9(i − 1)/(k − 1); and
in DV, σi = 10 − 9(i − 1)/(k − 1). For each configuration of
mean and variance, 1000 macroreplications (complete rep-
etitions) of each procedure were carried out to compare the
performance measures, including the observed PCS and the
average sample size. In all cases we set α = 0.05 and δ = 1.
If variances are unknown, we set n0 = 10.

5.1. Validity Check

In Sections 3 and 4 we proved the statistical validity of
KVP and UVP with a and au. We also conjectured that UVP
with a� can also deliver the desired PCS. In this subsection
we test the statistical validity of the procedures by checking
the observed PCS. We use the SC of means with all three
configurations of variances and set k = 2. Note that the SC
with k = 2 is the most difficult case to deliver the desired
PCS. The results in Table 1 show that all procedures have the
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Table 1. Observed PCS of KVP and UVP.

Var. config. KVP UVP with a UVP with au UVP with a�

EV 0.953 0.973 0.978 0.961
IV 0.954 0.967 0.982 0.960
DV 0.953 0.978 0.990 0.956

desired PCS. They also support our conjecture of using a� in
UVP. Therefore, we recommend using a� in UVP. In the rest
of this section, we use UVP with a� to represent UVP.

We also run KVP and UVP for the MIM configuration of
means with the three variance configurations and k = 10.
The observed PCS in all cases are at least 0.99 although the
required PCS is only 0.95. Therefore, the procedures gener-
ally require more samples than necessary to select the best
system, which is a major drawback of almost all of the exist-
ing indifference-zone selection procedures (see the empirical
study of Branke, Chick, and Schmidt [4]).

5.2. Effectiveness of Variance-Dependent Sampling

We compare the efficiency of KVP and UVP to KN pro-
cedures based on the average sample sizes used to select
the best system. Results in Tables 2 and 3 show the aver-
age sample sizes in different configurations when k = 2
and k = 10, respectively. Note that the SC and MIM are
identical when k = 2. For each comparison, either between
KVP and KNknown or between UVP and KN, we conducted
a t test to check whether the average sample sizes of two
procedures are equal. When the sample sizes of the two pro-
cedures in comparison are different at 95% confidence level,
we calculated the percentages of reduction of KVP(or UVP)
to KNknown(or KN) and reported them in Tables 2 and 3.

The results in Tables 2 and 3 show that the procedures
with variance-dependent sampling reduce the total sample
size required to select the best system when the variances of
the systems are unequal. They are more effective when the
number of systems is small. From Table 3 we see that KVP
and UVP are less effective in the MIM+DV configuration.
In this configuration, both KVP and UVP tend to allocate
more samples to systems that are eliminated soon and fewer
samples to systems that will survive longer. But ideally, we

want systems that survive longer to have more samples since
we need more samples to eliminate them. To further reduce
the sample size of the fully sequential procedures, informa-
tion on sample means may be used in the design of sampling
rules. It is a topic for future research.

Note that KN allows the use of common random numbers
(CRN), which often reduce the variances of pairwise differ-
ences and make eliminations easier, and our procedures do
not. Therefore, for problems in which CRN are very effective,
the modest gains of our procedures may disappear. However,
CRN is not always effective and it may not be easy to imple-
ment. In Section 5.3 we compare UVP to KN with CRN using
a queueing example. For this example, UVP works better than
KN with CRN.

5.3. An Illustrative Example

In this section we study a job-shop improvement problem
(see Law and Kelton [21] for the simulation model). The job
shop consists of five work stations, and at present stations
1, 2, . . . , 5 consist of, respectively, 3, 2, 4, 3, and 1 parallel
machines. Assume that jobs arrive to the system with inter-
arrival times that are i.i.d. exponential random variables with
mean 0.25 h. There are three types of jobs, and arriving jobs
are of type 1, 2, and 3 with respective probabilities 0.3, 0.5,
and 0.2. Job types 1, 2, and 3 require 4, 3, and 5 tasks to be
done, respectively, and each task must be done at a speci-
fied station and in a prescribed order. The routings for the
different job types are

Job type Work station routing

1 3, 1, 2, 5
2 4, 1, 3
3 2, 5, 1, 4, 3

If a job arrives at a particular station and finds all machines
in that station already busy, the job joins a single FIFO queue
at the station. The time to perform a task at a particular
machine is an independent Erlang-2 random variable whose
mean depends on the job type and the station to which the

Table 2. Average sample size of KVP and UVP when k = 2.

Known variances Unknown variances

Var. config. KNknown KVP Reduction KN UVP Reduction

SC + EV 589.96 602.17 — 788.35 753.88 —
SC + IV 305.67 179.66 41.2% 412.56 253.91 38.5%
SC + DV 304.87 180.18 40.1% 386.17 236.15 38.8%
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Table 3. Average sample size of KVP and UVP when k = 10.

Known variances Unknown variances

Configuration KNknown KVP Reduction KN UVP Reduction

SC + EV 6098.4 6057.2 — 10232 10094 —
SC + IV 2841.7 2527.2 11.1% 4909.5 4296.0 12.5%
SC + DV 1561.6 1384.9 11.3% 2804.8 2378.3 15.2%

MIM + EV 2600.7 2614.9 — 4365.5 4314.8 —
MIM + IV 1918.1 1692.8 11.7% 3169.7 2818.1 11.1%
MIM + DV 334.47 325.72 2.7% 595.75 540.94 9.2%

machine belongs. The mean service times for each job type
and each task are

Job type Mean service time for successive tasks, in h

1 0.50, 0.60, 0.85, 0.50
2 1.10, 0.80, 0.75
3 1.20, 0.25, 0.70, 0.90, 1.00

Suppose that the owner of the job shop is concerned that
the product waiting times are too long, and he or she is
considering improving the performance of the job shop. All
machines cost approximately $300,000 and the owner can
at most afford three new machines. He or she also estimates
that 1 h of waiting time is equivalent to $100,000 of loss of
goodwill or potential sales and wants to improve the perfor-
mance of the job shop to minimize the total expected cost,
including both machine cost and waiting-time cost (where
waiting time is taken to be the weighted average total waiting
time, weighted by the fraction of jobs of each type). The engi-
neer of the job shop suggests considering work stations 1, 2,
and 4, since the queues of these three stations are often long.
The owner decides to compare eight alternatives: keeping the
current configuration, adding one machine to one of stations
1, 2, and 4 (totally three alternatives), adding two machines
to two of stations 1, 2, and 4 (totally three alternatives), or
adding one machine to each of stations 1, 2, and 4. He or she
wants to select the alternative with the lowest total expected
cost.

We use ranking and selection to solve this problem. Sup-
pose that the owner decides that δ = $50, 000 and α = 0.05
are sufficient for making correct decision. Then we can use
both KN and UVP to solve this problem since the variances of
the alternatives are not known in advance. We set n0 = 10 for
both procedures. We run 1000 macroreplications to compare
the two procedures. KN procedure selects the last alternative,
adding three machines, as the best design 994 times of 1000
times and UVP procedure selects the same alternative 993
times of 1000 times. The average sample size of KN proce-
dure is 601.8 with a standard error 5.9; the average sample
size of UVP is 468.9 with a standard error 4.4. UVP is clearly
better than KN, with a 22.9% savings in average sample size.

We also implement CRN for this problem where we syn-
chronize the interarrival times, job types, and service times.
The (accurately estimated) correlation coefficients of all pairs
of systems range from 0.162 to 0.644. Therefore, the CRN is
effective for this problem. Then we run the KN procedure that
exploits CRN for this problem. KN selects the best design 994
times of 1000 macroreplications and the average sample size
is 568.1 with a standard error 8.8. It requires fewer samples
compared to the KN procedure that does not exploit CRN, but
it requires more samples compared to UVP. The reason that
CRN does not bring significant benefit to KN in this prob-
lem is because the systems in comparison have significantly
different variances. For example, the variance of the origi-
nal design is more than 3000 times higher than the variance
of the best design. Therefore, the variance of the difference
of the two design is completely dominated by the variance
of the original system no matter whether CRN is used. For
problems in which the variances of the systems are not dras-
tically different, CRN may bring more benefit to the KN
procedure.

6. CONCLUSIONS

In this paper we present a general approach to construct
a Brownian motion process with drift to compare the means
of two different systems. This approach allows unequal vari-
ances and unequal sample sizes for both systems. We then
combine the construction and the triangular continuation
region and design fully sequential indifference-zone proce-
dures that allow variance-dependent sampling. We show that
the procedures deliver the desired PCS and require fewer
samples than the popular KN procedure.

There are several ways in which we might be able to extend
the approach developed in this paper. First, it appears possi-
ble to combine our construction of Brownian motion process
with other types of continuation regions, e.g., the parabolic
continuation region by Batur and Kim [1], to design new
indifference-zone selection sequential procedures. Second, it
seems possible to extend our approach to comparison with a
standard using the formulation of Kim [17]. Third, it may be
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possible to apply the methodology of Kim and Nelson [19] to
UVP to allow autocorrelated samples and deliver the desired
asymptotic validity when δ → 0. Another possible exten-
sion is to combine our construction of Brownian motion
process with sequential indifference-zone selection proce-
dures used in optimization via simulation [13, 23], where
systems are generated sequentially based on previous selec-
tion decisions and they often have different numbers of
samples.
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