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1. Introduction

Every day, simulation users build simulation models to ana-
lyze manufacturing, financial, communication, computer,
and service systems. One important feature of simula-
tion experiments is that users can choose different system
settings to try to improve the performance of their systems.
Therefore, it is natural to search for settings that optimize
the system performance. This is called optimization via
simulation (OvS). OvS is different from deterministic opti-
mization and the typical stochastic programming problem
because there is no explicit form of the objective function,
and function evaluations are stochastic and computationally
expensive.

Recently, research interests have shifted from OvS prob-
lems with continuous decision variables to OvS problems
with discrete decision variables (called discrete OvS or
DOvS). DOvS algorithms include the stochastic ruler
method, with specific implementations being SR1992 (Yan
and Mukai 1992) and SR2001 (Alrefaei and Andraddttir
2001), Andradéttir’s random search methods AR1995 and
AR1996 (Andradéttir 1995, 1996), simulated annealing
algorithm SA (Alrefaei and Andradéttir 1999), stochastic
comparison method SC (Gong et al. 1999), nested par-
titions, with specific implementations being NP2000 (Shi
and Olafsson 2000) and NP2003 (Pichitlamken and Nelson
2003), sample average approximation method (Kleywegt
et al. 2001, Homem-de-Mello 2000), and simultaneous per-
turbation stochastic approximation method (Gerencsér et al.
1999). For a summary of OvS research and practice, see Fu
(2002), Andradéttir (1998), and Olafsson and Kim (2002).
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Many DOvS algorithms are based on random search.
In this paper, we provide an algorithm called convergent
optimization via most-promising-area stochastic search
(COMPASS), which is also based on random search. How-
ever, COMPASS has a unique neighborhood structure that,
to the best of our knowledge, has never been proposed
in the literature. The neighborhood is defined as the most
promising area at each iteration, and the most promising
area is fully adaptive (this differs from nested partitions in
which the “most promising region” is chosen from a pre-
determined collection of nested sets). Initially, we consider
all feasible solutions to be equally promising, so the most
promising area is the set of all feasible solutions. Once
some solutions have been visited (simulated), the promising
index of every feasible solution is the sample mean perfor-
mance of the visited solution that is closest to it. The most
promising area is defined as the set of feasible solutions
that are at least as close to the current sample best solution
as they are to other visited solutions. COMPASS generates
candidate solutions uniformly from the most promising area
in each iteration and then assigns simulation experiments
to every solution in the set of visited solutions according to
a simulation-allocation rule. We show that COMPASS con-
verges with probability 1 to a set of local optimal solutions
and that it has robust finite-time performance.

This paper is organized as follows. We first provide a
literature review of random search algorithms that have
been applied to DOvS in §2. In §§3 and 4, we present
the COMPASS algorithms for fully constrained DOvVS
problems and partially constrained or unconstrained DOvS
problems. Section 5 shows how to construct and sample
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from the most promising area. Numerical examples are pro-
vided in §6, followed by conclusions in §7.

2. Background

Many DOVS algorithms are based on random search. There
are at least three ways to categorize random search algo-
rithms: by neighborhood structure, by the number of feasi-
ble solutions, and by convergence properties.

Random search algorithms typically generate candidate
solutions from the neighborhood of a selected solution in
each iteration. Some algorithms have a fixed neighborhood
structure, while others change their neighborhood structure
based on the information gained through the optimization
process. Among the random search algorithms mentioned
above, SR1992, SR2001, AR1995, AR1996, SA, and SC
all have fixed neighborhood structures. Whenever the algo-
rithm revisits a solution, the candidate solutions are gen-
erated from the same neighborhood. NP2000 and NP2003,
however, have an adaptive neighborhood structure. Roughly
speaking, they use a large neighborhood at the beginning
of the search when knowledge about the location of good
solutions is limited, and the neighborhood shrinks as more
and more information on the objective function is revealed.
When good solutions are clustered together, which is often
true in simulation, algorithms with an adaptive neighbor-
hood structure often work better than algorithms with a
fixed neighborhood structure.

With respect to the number of feasible solutions, random
search algorithms can be divided into two categories: algo-
rithms that solve problems with a finite number of feasible
solutions, and algorithms that solve problems with a count-
ably infinite number of feasible solutions. In this paper, the
feasible solutions are the integer points in a feasible region
that is defined by a collection of constraints. When the deci-
sion variables of a DOvVS problem are fully constrained,
then the problem has a finite number of feasible solutions;
when the decision variables are partially constrained or
unconstrained, then the problem has a countably infinite
number of feasible solutions. One might argue that all local
optimal solutions of any reasonable OvS problem should be
achievable. Therefore, adding an upper bound and a lower
bound for every decision variable can turn a partially con-
strained or unconstrained problem into a fully constrained
problem. However, finding reasonable bounds such that
the optimal solutions are within the feasible region, with-
out making the search space overwhelmingly large, is a
very difficult problem. Therefore, it is worthwhile to design
algorithms that efficiently solve partially constrained or
unconstrained DOvS problems. Among the random search
algorithms in the literature, AR1995 and SR2001 are, to
the best of our knowledge, the only algorithms that solve
problems with a countably infinite number of feasible solu-
tions. AR1995 solves only one-dimensional problems, and
SR2001 requires strong conditions on the distributions of
simulation outputs at each feasible solution.

The convergence properties of DOvS algorithms can be
divided into three categories: no guaranteed convergence,
locally convergent, and globally convergent. Most algo-
rithms used in commercial software are heuristics, such as
tabu search and scatter search in OptQuest' (Glover et al.
1996), that provide no convergence guarantee. These algo-
rithms typically evaluate the objective function by averag-
ing over a small (often fixed) number of replications, and
then treat the average as deterministic. When the variances
of the objective function values are high and they differ
significantly over the feasible region, the heuristics can be
misled. Methods have been proposed to enhance the perfor-
mance of heuristics by providing a statistical inference on
all visited solutions at the end of search; these include ordi-
nal optimization (Ho et al. 2000) and ranking and selection
(Boesel et al. 2003).

Random search algorithms in the literature are often
globally convergent, including SR1992, SR2001, AR1996,
SA, SC, NP2000, and NP2003. Any globally convergent
algorithm that assumes no structure on the objective func-
tion requires visiting every feasible solution infinitely often
to guarantee convergence. However, when the number of
feasible solutions is large or the computational budget is
low, requiring the algorithm to visit a large number of solu-
tions, if not every solution, is unreasonable. Therefore, in
this paper we focus on designing a locally convergent algo-
rithm for both fully constrained and partially constrained or
unconstrained problems. Moreover, if global convergence
is required, we can always make a locally convergent algo-
rithm globally convergent by adding a pure random search
component or by restarting.

Convergent random search algorithms often prove their
convergence by constructing a Markov chain over the solu-
tion space. SR1992 and SC build time-inhomogeneous
Markov chains on the solution space and then show that the
Markov chain degenerates to the set of optimal solutions.
To satisfy Markov properties, SR1992 and SC both dis-
card simulation observations from previous iterations and
require more and more simulation observations per solu-
tion as the iteration count increases. Because simulation
experiments are computationally expensive, we believe it
makes sense to accumulate observations instead of discard-
ing them.

SR2001, AR1995, AR1996, SA, and NP2000 also build
Markov chains. However, their Markov chains are time
homogeneous, and they are shown to visit optimal solutions
most often. Past information is used in these algorithms
through counts of how many visits a solution receives.
Therefore, the optimization process does not slow down
when the iteration count gets large. However, the func-
tion evaluations are still discarded to satisfy the Markov
property.

Andradéttir (1999) provides a scheme to accelerate the
convergence of DOvS algorithms by accumulating previous
observations. Her idea is to keep the original search algo-
rithm but report the solution with the best aggregated sam-
ple mean, the sample mean calculated from all simulation
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observations taken from the solution, as the best. She shows
that the empirical performance of DOvVS algorithms can
be improved significantly by doing so. When her scheme
is applied to Markov-chain-based algorithms, however, the
aggregated sample means are used only to report the best
solution; they are not used to direct the random search so
as to retain the Markov property. NP2003, on the other
hand, exploits Andradéttir’s scheme while also using aggre-
gated sample means to determine the current best solution
and to direct the search. Therefore, it fully utilizes the past
information.

To use past information, either through visit counts or
by aggregated sample means, one needs to keep a list of
all visited solutions, and when a new solution is gener-
ated one needs to check if it has already been visited. The
storage and checking cost can be high if the algorithm
visits a large number of solutions. However, the computa-
tional cost and storage cost are often small compared to
the cost of conducting simulation experiments in practical
real-world, discrete-event simulation models. Therefore, we
believe that the past information should be used in any
practical DOvS algorithm.

The COMPASS algorithms provided in this paper have
an adaptive neighborhood structure, solve both fully con-
strained and partially constrained or unconstrained prob-
lems, and converge to the set of local optimal solutions.

3. COMPASS for Fully Constrained DOvS
Consider the following DOvVS problem:

min B, [G(x, )], Q)

where ® = ®NF4, d is a closed and bounded set in R,
and Z is the set of d-dimensional vectors with integer ele-
ments. To avoid triviality, we assume that ® is nonempty.
Therefore, 0 < |®| < oo, where |-| denotes the cardinality
of a set. Note that Problem (1) is fully constrained because
® is bounded. The quantity ¢ represents the stochastic
input to the simulation, and its distribution might depend
on x. We assume that G(x, ¢) is measurable and integrable
with respect to the distribution of ¢ for all x € ®. Fur-
thermore, we let g(x) = E,[G(x, ¢/)] and assume that g(x)
cannot be evaluated easily (or at all) but the random vari-
able G(x, i) can be observed via a simulation experiment
at x. The ith observation of G(x, ¢) is denoted by G,(x).
We make the following assumption about G;(x).

ASSUMPTION 1. For every x € O, we have
N
P lim =) G,(x)=g(x)|= 1.
r—oo i

Assumption 1 implies that the sample mean of G(x, i)
is an appropriate estimator of g(x). Note that if G,(x),
i=1,2,..., are independent and identically distributed,
Assumption 1 becomes the strong law of large numbers.

If G;(x),i=1,2,..., are ergodic, Assumption 1 becomes
the ergodic theorem. Most simulation output satisfies
Assumption 1.

Let /(x) ={y: ye€ ® and ||x — y| = 1} be the local
neighborhood of x € ©, where |x — y|| denotes the
Euclidean distance between x and y. We define x as a local
minimizer if x € © and either /' (x) = @ or g(x) < g(y) for
all y € /(x). Let / denote the set of local minimizers of
the function g in ©.

In the COMPASS algorithm, we use 7, to denote the
set of all solutions visited through iteration k, and use X}
to denote the solution with the smallest aggregated sam-
ple mean among all x € 7. If there is more than one
solution having the smallest aggregated sample mean, then
we select X; randomly from the set of solutions having
the smallest aggregated sample mean. At the end of itera-
tion k, we construct €, = {x: x € ® and ||x —X;|| < [x -]
Vye Y, and y # X;}, the most promising area at itera-
tion k. The set €, includes all feasible solutions that are
at least as close to X} as to other solutions in 7. At itera-
tion k + 1, we will sample m solutions uniformly from G,
where m can be set to any positive integer. Note that 6,
is never empty because X; is always in €,, and we do not
require the m solutions to be unique.

The COMPASS algorithm needs a simulation-allocation
rule (SAR) to allocate simulation observations to solutions
in %, at each iteration. Let a,(x) be the additional obser-
vations allocated to x at iteration k as determined by the
SAR; a,(x) might depend on all past information such
as ¥, and G,(x),i=1,2,..., for all x € 7. Then, N, (x) =
> ,a,(x) denotes the total number of observations on
solution x at iteration k for every x € %,. We use G,(X)
to denote the sample mean of all N,(x) observations of
G(x, ) at iteration k.

Algorithm 1 (COMPASS for Fully
Constrained DOvVS)

Step 0. Set iteration count k = 0. Find x, € O, set 7, =
{x,} and X} = x,,. Determine a,(x,) according to the SAR.
Take a,(x,) observations from x,, set N,(X,) = a,(X,), and
calculate G,(x,). Let €, = O.

Step 1. Let k = k + 1. Sample Xx,,X,,...,X;, uni-
formly and independently from €,_,. Let 7, = 7,_, U
{X¢1> X325 - - - » Xp |- Determine a, (x) according to the SAR
for every x in %,. For all x € ¥, take a,(x) observations,
and update N, (x) and G, (x).

Step 2. Let X; = argmin
to Step 1.

G, (x). Construct €, and go

XeVy

REMARKS. 1. In Step 1 of Algorithm 1, we sample m solu-
tions independently from €,_,, which means that repeats
in {X;,X;s,...,X;,} are allowed. Indeed, the chance of
getting repeats typically increases as the iteration count
increases, because the most promising areas are getting
smaller as the iteration count increases. If €,_, becomes a
singleton, then all m solutions sampled are X;_,.
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2. We do not specify a stopping rule for Algorithm 1
to prove its convergence. In practice, the algorithm can be
stopped whenever all of the computational budget is con-
sumed, or when X; does not change for many iterations and
all solutions in its local neighborhood have been visited.

3. Algorithm 1 needs to store N (x) and G,(x) (or
equivalently N,(x) and ZNk(x) G,(x)) for all visited solu-
tions and construct the most promising area in each itera-
tion. Compared to the computational effort used to conduct
simulation experiments, however, the storage and construc-
tion costs are often low. Note that no previously visited
solutions can be sampled in Step 1 except the current best.
Therefore, if a candidate solution is not the current best,
then it is a new solution. This property allows us to save
the computational cost of checking if a candidate solution
has already been visited as required in AR1995, AR1996,
SA, NP2000, and NP2003.

4. Algorithm 1 may not visit every solution in ©®, even
if the computational budget is infinite, which is different
from globally convergent DOvS algorithms.

To make Algorithm 1 converge, we make the following
assumption on the SAR.

AsSSUMPTION 2. The SAR guarantees that a,(x) > 1 if X is
a newly visited solution at iteration k (x € V\V,_,), and
lim,_, ., N, (X) = 400 for all visited solutions (x € Ur—q V1)

The simplest SAR satisfying Assumption 2 is an equal
SAR that sets N,(x) = N, for all x € 7, and N, — oo as
k — oo (for instance, N, = k). One can also design adaptive
SARs that satisfy Assumption 2 to make Step 2 of Algo-
rithm 1 more efficient; see Chen et al. (2000) and Hong
and Nelson (2004) for related work.

We have the following convergence theorem.

THEOREM 1. If Assumptions 1 and 2 are satisfied, then
the infinite sequence {X;,X;, ...} generated by Algorithm 1
converges with probability 1 to the set M in the sense that
P{X; ¢ M i.0.}=0.

REMARKS. 1. The conclusion P{X}; ¢ M/ i.0.} =0 is an
almost sure convergence. It implies that, with probability 1,
X; is not a local optimal solution only finitely many times.
It also implies that P{X; € M} — 1 as k — oo.

2. Assumption 1 is the only distributional assumption
we need for the simulation output to guarantee local con-
vergence for Algorithm 1. Therefore, the conclusion of
Theorem 1 holds for both terminating and steady-state
simulation problems. Moreover, we do not need indepen-
dence between G,(x) and G,(y), x #y. Therefore, common
random numbers (CRN) can be used to make Step 2 of
Algorithm 1 more efficient, especially when an equal SAR
is used, because CRN typically increase the probability that
the sample best solution is actually the best solution visited
through that iteration.

3. If /L is a singleton, then the element in / is the global
optimal solution, and Theorem 1 guarantees the global con-
vergence of Algorithm 1.

To prove Theorem 1 we need the following lemma. The
lemma is proved in the appendix.

LEMMA 1. For real numbers a,,a,,...,a, and b,,b,,
.., b,

m1n a; — rmn b;| < max |a; —b,|.

i=1,..., n i=1,...,n l:l AAAAA n

Now we can prove Theorem 1.

PrOOF OF THEOREM 1. For any infinite sequence {7,
Vi, ...} generated by Algorithm 1, 7, = s, 7, exists
and V., C O because V, C ¥, and ¥, C O for all k =
0,1,...; and because O is a finite set,

P{X; g M io}=)Y P{X;¢&Mio.|V,=A}P{V, =A}
ACO
Therefore, proving P{X} & /l i.0.} = 0 is equivalent to prov-
ing P{X; & M i.o. |V, =A} =0 for all nonempty A C O
such that P{7,, = A} > 0.
We first prove that

P{lim ¢(R;) = min g(x) | 7o = A} = 1. @)
— 00 xXeVy,

Equation (2) is equivalent to the statement that for any
€>0,

P{‘g(ﬁz)—mgng(x)‘ >€ i.o.|°Voo=A}=0, (3)
X€Ty
Note that
P{‘g(iZ) — mjVn g(x)’ >€io. |V, = A}
x€Tn,

<P{[e®) - 65| > § o[ 7= 4]

+P{5k(§,’§) - moibng(x)‘ > g 0. |, :A}. @)
XEVy

Consider the sequence {7, 7], ...} generated by Algo-
rithm 1. Because |7,| < oo, there exists a K > 0 (possi-
bly depending on the sequence) such that %}, =V, for all
k > K. Therefore,

4 < {|g(x) G,(x)| > = i.o. for some x €V, |V, A}
_ €
. o S €. _
+P{’g}£ G,(x) irel%gg(x)‘ 25 Lo | /s A}
{|g(x) G,(x)|> —zo for some x€ 7, |V, A}

+P{maX|Gk(x) g(x)| = —10 A —A}
by Lemma 1

2P{|g(X) G (x)|> fzo for some x €, |7, A}

<2ZP{|g(x) G,(x)| > —10|°V —A}

XeA

by the Bonferroni inequality

=22P{|g(x) G,(x)| > —10|Xe°l/} (5)

xXe€A
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The last equality is true because the simulation observations
taken from x when k > K depend only on x € 7, not on
V., = A. By Assumption 2, N,(x) — o< if x € 7V, and by
Assumption 1, lim,_,, G,(x) = g(x) with probability 1 if
N, (x) — oco. Therefore,

P{|g(x)—ék(x)| >§ i.0. |xe°Vw} —0.

Because |A| < oo, this implies that (5) is 0, which
proves (2).

We now prove P{X; ¢ M io. |V, = A} =0 for
any nonempty set A C ® such that P{7, = A} > 0. If
X; & M i.0., then there exists an x € A and x ¢ /I such that
X; =X i.0. Because x & J{, there exists a y € ¥ (x) such
that g(y) < g(x). Note that because ||y —x||=1< ||y — z||
for all z #y, we have

~ 1
Ply € Tiu |8 =x and y ¢ 74) > 15> 0 ©)

for any iteration k + 1. Because X} =X i.o.,
PlyeA|7V ,=Aand X;=xi.0.}=1.

Note that if y € A, then g(x) # min,., g(z) because
g(y) < g(x). Then, by Equation (2) we know that, with
probability 1, X} can only equal x finitely many times. This
is a contradiction. Therefore, P{X; & M i.0. |V, =A}=0
for any nonempty set A C O such that P{7 = A} > 0.
This proves the theorem. [

REMARK. In Algorithm 1 we assume uniform sampling
from the most promising area in each iteration. However,
it is clear from (6) that Theorem 1 holds if

Plye 7 [Xp=xandy g7} >c VyeN(x), ™)

where c is some positive constant. Therefore, one may con-
sider other sampling distributions that satisfy Equation (7)
and have some desirable properties, such as biasing sam-
pling toward solutions closer to the current best.

4. COMPASS for Partially Constrained or
Unconstrained DOvS

In Problem (1), if ® is a closed but unbounded set in R?,
then we call the problem a partially constrained or uncon-
strained problem. If ® = M, then the problem is uncon-
strained; otherwise, it is partially constrained. We make the
following assumption on G(X, ).

ASSUMPTION 3. For any positive constant € and any X € ©,
there exist positive numbers r* and €* such that for all
r>r* and for all 0 < € < €¥,

PH% iGi(x) —g(x)|> e:| < A(r, €),

where A(r,€) is a strictly decreasing function of r and
A(r,e) = 0 as r — oo.

Consider the following two special cases of Assump-
tion 3. Let o*(x) = lim,_,  rVar[}|_, G;(x)/r] be the
asymptotic variance of G;(x), i =1,2,.... Assume that
o?(x) exists for all x € 0, that sup, g 0*(X) < oo, and that
E[G;(x)] = g(x). Then, for any 6 > O there exists a positive
number r* such that

1 r
rVar|:— > Gi(x)] <supo?(x) + 6
r i=1 x€®

for all r > r* and for all x € ©®. By Chebyshev’s inequality,
we have for r > r* and for every x € O,

1 r
[} 260w

2 b
> e:| < SUPrco T IX) T O () + =A(r,€).

re?
(®)

The conditions in this case are satisfied by any i.i.d. se-
quence with finite and uniformly bounded variance, and
they are also satisfied by many stochastic processes.

Here is the second case: Let G,(x), G,(X), ... satisfy the
large deviation principle (LDP, see Dembo and Zeitouni
1998),

1 1<
limsup;logPH; > Gi(x) —g(x)
i=1

r—0o00

>4<4mo,@>

where 0 < I(x,€) < 400 for all € >0 and x € 0. If
inf, o I(X, €) > 0, then there exists a positive number r*
such that for all » > r*,

>4

1 1.
<4%ﬁ}2a@%aw
r r i=1

1ogP| | 326,(3) -

inf,_g (X, €)
2

>e]<

for all x € ®. Therefore, for any € > 0 and r > r* and for
any x € O,

ﬁﬁiG@%«@

> e:| < exp[—r—mf"E@z](X’ 6)]

= \(r, €). (10)

Equation (9) is satisfied by many i.i.d. sequences, for
instance, random variables whose moment-generating func-
tions are finite in a neighborhood of 0. Many dependent
sequences also satisfy Equation (9), including finite-state
Markov chains.

To establish local convergence, we make the following
assumption on the objective function.

ASSUMPTION 4. For the user provided starting point X,
there exists a compact set 11 and a positive constant & such
that x, € 1IN O and g(x) > g(x,) + 6 for any x e [1°N O.
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Many DOVS problems have a benchmark system setting,
say X,, which is often the current system setting. All solu-
tions beyond some (unknown) distance from the benchmark
setting will typically be inferior to the benchmark. There-
fore, Assumption 4 is satisfied.

The basic idea of the COMPASS algorithm for partially
constrained or unconstrained DOvS problems can be
described as follows: We construct a hyper-rectangle %,
B, = ]_[f:][b((f), l_aéi)], around the initial solution x,. Then,
® N %, is a convex and compact set, and we can apply
Algorithm 1. We may expand the rectangle adaptively in
each iteration so it can grow to include local optimal solu-
tions. In each iteration of COMPASS, we sample a set of
candidate solutions from the most promising area, as in
Algorithm 1, and calculate the distance from each solu-
tion to each boundary plane of the rectangle. For instance,
the distances from candidate solution x =[xV, ..., x(@]
to boundary planes b, and b, are x — b’ and
b\ — x, respectively. Whenever a candidate solution is
within A distance from a boundary, we expand the bound-
ary such that the distance to the boundary is A®), The A®,
i=1,2,...,d, are user-provided positive numbers that
control the rate that 98, grows with the restriction that
AD >1foralli=1,2,...,d. The algorithm is as follows.

Algorithm 2 (COMPASS for Partially Constrained
or Unconstrained DOvS)

Step 0. Set iteration counter k = 0. Find x, € O, set
Uy = {x,} and Xj = x,. Determine a,(X,) according to
the SAR. Take a,(x,) observations from x,, set N,(X,) =
a,(x,), and calculate G(x,). Construct %, =[], [b((,i), Z)éi)]
such that by < x{ < by for i=1,2,...,d. Let €, =
0N %,.

Step 1. Let k = k + 1. Sample X, X;,, ..., Xy, uni-
formly and independently from 6,_,. Let ¥, = 7,_, U
{X¢1> X425 - - - » Xp }- Determine a, (x) according to the SAR
for every x in ;. For all x € 7, take a,(x) observations,
and update N, (x) and G, (x).

Step 2. Let X; = argmin, ., G,(x). For each i, i =
1,2,...,d, let i = max{x?, .. x?} and 1 =
mm{xkl, o x T D S A(i), then let b\ = x(') +
AW therw1se let b\ = b(§ If x” < b +A(’> then
let b = x!" — AG), otherw1se let b = b,Esl Let B, =
1 ,[b,£>,bk’>] and €, = {x: x € ®N %, and |x — &} <
[x—y|| Yy €7, and y #X;}, and go to Step 1.

To prove the convergence of Algorithm 2, we make the
following assumption on the SAR. For a more general dis-
cussion on this type of assumption, see Andradéttir (2004).

ASSUMPTION 5. The SAR guarantees that there exists a
sequence {ry,ry,...} such that roy =1, r, = r, for all
k>0 r,— oo as k — oo, mingy N(x) > r, and
lim,_,  k“'A(7,, €) =0 for any € < €*, where €* is defined
in Assumption 3.

For any infinite sequence {%,%],...} generated by
Algorithm 2, let V., = |U;—,7;. To establish local con-
vergence for Algorithm 2 we need the following lemma.
Lemma 2 is proved in the appendix.

LEmMMA 2. The infinite sequence {X5,X}, ..
Algorithm 2 satisfies

.} generated by

P{N(y) C TV, |X; =y io0.}=1.

Let . denote the set of local minimizers in ® where ||

can be infinity. We have the following theorem.

THEOREM 2. If Assumptions 3-5 are satisfied, then the infi-
nite sequence {X;,X;, ...} generated by Algorithm 2 con-
verges with probability 1 to the set Jl in the sense that
P{X; & M i.0o.} =0.

PrROOF. We first show that
P{lim g(i,’f):ming(x)} —1, (11)
k— 00 xXeVy,
which is equivalent to showing for any € > 0,
P{‘g(iz) —ming(x)‘ >e i.o.} —0.
xeT
Because r, — o0 as k — oo and 1, = r, for all k>0
by Assumption 5, there exists K such that r, > r* when
k > K for any sequence {7, 7], ...}, where r* is defined in

Assumption 3. For k > K and € < 2€*, where €* is defined
in Assumption 3,

P{le0) —ming(x)| > €]
XV}

S - o €
<P{|3(Xk)_Gk(Xk >§}+P{Gk(xk)—m}7{1g(x)‘>§}
Xe Uy

<P{|8(X) G,(x)| == f0r somexeol/k}
.= , €
+P“mm G.(x) —mmg(x)\ > —}
X€ T xeVy 2
P{|g(X) G,(x)| >~ for somexe%}
+P{manyGk(X) —s()[> g} by Lemma 1
XEV
<2P{|8(X) G,(x)| >~ for somexe%} (12)

Let B, =17, [bY —kAD, b +kAD]; then %, C B, for
all k. Let V, = B, N Z? be the set of d-dimensional inte-
gers in By then °Vk CV, and |V,| < (b + Ak)?, where b=
max, <y b — B + 1] and A = max, ;. [2A07. Now
suppose that at each iteration k, we allocate r, observa-
tions to all solutions in V,, but we use COMPASS logic to
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determine 7}, and the number of observations allocated to
solutions in 7. Then,

(12) < 2P{|g(x) - Gk(x)| > g for some x € Vk}

_ €
<2Wlsupp{ls00) - Gl > 5

xeVy

<2(b+ Ak)*A(r,, €/2) by Assumptions 3 and 5.

Then, by Assumption 5,

> P{|¢®) — ming(x)| > €]
k=0 xe

<K+ Y 2(b+ Ak)A(r,. €/2) < .
k=K

Thus, the first Borel-Cantelli lemma (Billingsley 1995)
implies that

P{ ‘g(ﬁ,t) — mi7ng(x)l >e i.o.} —0.
xeTy

Therefore, we prove Equation (11).

By Assumption 4, we know that for any 7,
min, ., g(x) < g(X,) < g(z) — 0 for any z € [1°'N O. There-
fore, P{x} € II¢ i.0.} =0.

Now we prove that P{X; & /M i.0.} = 0. Note that
P{R: & M i.0} <PR: €M i0.) =P{&: € NI i0.l,
because P{X; & I1I° i.0.} = 0. Because |/ NII| < oo, X €
M NI i.o. implies there exists y € A N II such that
X} =y infinitely often. Then, ¥ (y) C ., with probability 1
by Lemma 2, which implies lim, _, . g(X;) # min,., g(z)
with probability 1. Note that P(A) < P(B) if A implies
B with probability 1. Then, P{X' € /¢ N 11 i.0.} <
P{lim,_,  g(X;) # min,.,, g(z)}. By Equation (11), we
have P{X; ¢ M i.0.} =0. O

If A(r, €) is as in Equation (8), then the condition on r,
in Assumption 5 becomes

lim k™' /r, =0. (13)

k— o0

One SAR that satisfies Equation (13) is r, = Bk4*'*? for
some positive constants 8 and 7.

Similarly, if A(r, €) is as in Equation (10), then the con-
dition on r, in Assumption 5 becomes

lim k¢e=(€/2) = 0, (14)

k— o0

where 1(e/2) =inf, g (X, €/2)/2. One SAR that satisfies
Equation (14) is

r = B(log(k))'™” (15)

for some positive constants 8 and .

5. Construction and Sampling from
the Most Promising Area

Algorithms 1 and 2 both employ uniform sampling
from €,, the most promising area in each iteration. Sam-
pling uniformly over the set of d-dimensional integers in an
arbitrary d-dimensional real set is difficult, in general. In
this section, we first provide a method for constructing 6,
and then provide a scheme for sampling from it when ® is
a convex set in N, Note that when ® is formed by a set
of linear constraints, ® is a convex set.

If there are two points x, and X, in %, then the points
that are equidistant from x; and x, lie on the plane that
has the normal x, —x, and passes through (x, +x,)/2. The
equation of the plane is

(x, —xz)'<x— Xi Jz”‘?) —0. (16)

For a given x € ¢, if the left-hand side of Equation (16)
is greater than or equal to 0, then ||x —x, || < ||x —X,||; and
vice versa.

At iteration k of Algorithms 1 and 2, we have a set of
visited solutions %, and the current sample best solution Xj.
To unify the presentation, we let {) denote a convex and
compact set, ) = @ in Algorithm 1 and QO =P N %, in
Algorithm 2, where ® = ®N % for both algorithms. Then,

€, = {XGQ: (ﬁ;—y)/(x—xk;y> =0
Vy e, andy;éﬁ,f} (17)

is a compact and convex set and 6, = Cék NZ<. Therefore,
we can use Algorithm Mix-D (Pichitlamken and Nelson
2003) to generate solutions in 6,, which are asymptotically
uniformly distributed.

Algorithm Mix-D is designed to sample the set of inte-
ger solutions s/ within a convex and compact set sq in R
Mix-D starts with an integer point X,, samples an inte-
ger point x uniformly from a hyper-rectangle [T, [/;, u;],
which tightly covers sq, and then forms a line (or a direc-
tion) passing through x and x,. If T is the set of integer
points that are on the line and also in the set s/, then y is
sampled uniformly from T. Let X, =y, so X, is a sample
generated by Algorithm Mix-D. Instead of running Mix-D
one step to get a sample from o/, it is run for ¢ steps. When
t is large, X, is approximately uniform in ${, because X,
becomes uniformly distributed in 4 as t — oc.

Algorithm Mix-D is essentially an acceptance-rejection
type of sampling method, because x, might be the only
point in T. In that case, the Mix-D algorithm stays at
the current point, which can be viewed as rejection of the
direction. If the set s/ is skewed, the acceptance rate of a
direction can be low, so Mix-D can keep sampling the same
point for many steps before moving to a new point.
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We designed a new algorithm to sample from €,, which
is similar to Mix-D. We call it revised Mix-D (RMD).
Instead of generating a direction by sampling uniformly
within the covering hyper-rectangle, RMD uses coordinate
directions. It chooses a direction uniformly from the set of
coordinate directions, and then proceeds as in the Mix-D
algorithm. The advantages of RMD are that the acceptance
rate is typically higher and the algorithm is easier to imple-
ment; the disadvantage is that it converges to the uniform
distribution more slowly. Because the uniformity of the
sampling distribution is not required to prove the conver-
gence of COMPASS algorithms, we use RMD.

Algorithm 3 (RMD)

Input: A compact convex region s € 9, a number of ran-
dom points n to sample, a length of the warm-up period 7,
and a starting solution X, € %, where s{ =/ N 4.

Qutput: n random integer points in 3.

Procedure:

Step 0. Set X, =Xx,, t =0, the set of sampled points
& = @&, and the number of sampled points k =0.

Step 1. Set t =t + 1. Uniformly sample an integer /
from 1 to d. Let £(X,_,,I) be the line passing through
X,_, and parallel to the x; coordinate axis. Then, £(X,_,, I)
intersects with the boundary of st at two points ¢,
and ¢,. Let T(X,_,, /) denote the set of integer points on
£(X,_;,I) and between ¢, and c,.

Step 2. Sample X, uniformly from the set T(X,_,, I).

Step 3. If t < T, go to Step 1; otherwise, let & =
FU{X;} and k =k + 1. If k = n, return the set &; other-
wise, set t =0, X, =X, and go to Step 1.

REMARK. It is worthwhile to note that finding an initial
point X, in & is usually an NP-hard problem. For COM-
PASS algorithms, however, no effort is required to find a
starting point for RMD because X; serves as the starting
point for sampling from €,.

The next theorem shows that the RMD algorithm has a
limiting uniform distribution over 6, if every two integer
points in 6, are accessible to each other via the Markov
chain constructed by RMD. The theorem also shows that
the RMD algorithm always satisfies Inequality (7) if the
algorithm stops in finite time, even if some solutions in €,
are not accessible from x,, and thus guarantees the conver-
gence of Algorithms 1 and 2.

THEOREM 3. Let # be the set of integer points in 91 which
are accessible from x, by RMD. Then, {X,: t = 0} gen-
erated by RMD forms an ergodic Markov chain over ¥,
and the limiting distribution of the Markov chain is uni-
form over #. If the algorithm is run for T steps, then for
all x € N'(x,) there exists a constant ¢ > 0 such that

P{X; =x|X,=x,} > c. (18)

ProoF. Clearly, {X,: # > 0} has the Markov property. If x
and y are both in #, then x communicates with y because

both x and y communicate with x,,. If z ¢ #, then clearly z
is not accessible from any points in #. Therefore, # is a
single closed communicating class and {X,: ¢t > 0} is irre-
ducible. Further, {X,: 7 > 0} is positive recurrent because
|#| < || < oo. It is also aperiodic because P{X, = x |
X, = xo} > 0. Therefore, {X,: ¢+ > 0} forms an ergodic
Markov chain, and it has a limiting distribution.

Let x and y be any two points in # . If the line formed by
x and y is parallel to one of the coordinate axes, denoted
by i(x,y), then P{X, =y | X, =x} =1/[d|T(x, i(x, y))].
Note that T(x, i(x,y)) is the same as T(y, i(y, X)), so
P{X, =y | X, =x} =P{X, =x| X, =y}. Otherwise,
P{X, =y | X, =x} =P{X, =x | X, =y} = 0. Therefore,
{X,: t >0} is a doubly stochastic ergodic Markov chain,
and its limiting distribution is uniform over #.

If y is accessible from x in one step, then

1 1 11

K=y X=X} = g a 7 a i

Thus, for any x € N (x,),

P{X; =x| X, =%}
2 P{X; =x|X;_; =%}
P{Xy =% | X7 =%} P{X =% | X =X}

1 T
>(—) =c.
()

The last inequality follows from the fact that both x,, and x
are accessible from x, in one step. [

It is easy to conclude from Theorem 3 that if all points
in o are accessible to each other (# = sf), then the sam-
pling distribution induced by the RMD algorithm is asymp-
totically uniform over /.

6. Numerical Experiments

In this section, we present numerical results obtained by
applying COMPASS algorithms to solve DOvS problems.
We first study the properties of COMPASS, and we then
apply COMPASS to an inventory problem and compare
COMPASS to other widely used algorithms.

6.1. Local Convergence

Consider the following 10-dimensional quadratic function:
g(X)=xi+x3 4+ +xj,+1, (19)

where x = (x,x,,...,X,y). The problem has only
one local optimal solution, x* = (0,0,...,0), with
g(x*) = 1. We let x; € [—100,100] N Z'° and let x, =
(80, 80, ...,80)". The problem has 1.08 x 10 feasible
solutions. To study local convergence of COMPASS, we let
G(x, ) = g(x), which means the function can be evalu-
ated without noise. Figure 1 shows the number of solutions
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Figure 1. Number of solutions evaluated to singleton.
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evaluated before COMPASS claims that the optimal solu-
tion is founded (i.e., the most promising area is a singleton)
as a function of the number of new solutions sampled, m,
on each iteration, averaged over 50 macroreplications.

From Figure 1 we see that, on average, fewer than 1,000
function evaluations are required not only to visit x*, but
also to claim it is an optimal solution when the number of
solutions sampled in each iteration is set to 1. Note that
to claim that x* is a global optimal solution, one has to
evaluate all 1.08 x 10* solutions. This illustrates the merit
of local convergence.

Figure 1 also suggests that we want to set the number
of solutions sampled in each iteration as small as possi-
ble. Unfortunately, this implies that a most promising area
needs to be constructed for each solution sampled, which
leads to a high computation cost per sample. Another rea-
son to sample more than one solution in each iteration is
that a problem may have multiple local optimal solutions.
Sampling more than one solutions increases the chance to
converge to a better local optimal solution. In the rest of
this section, we set the number of solutions sampled in each
iteration to 5.

6.2. Adaptiveness

Consider a classic (s, S) inventory problem (Koenig and
Law 1985, Pichitlamken and Nelson 2003) in which the
level of inventory of some discrete unit is periodically
reviewed. The goal is to select s and S such that the
steady-state expected inventory cost per review period is
minimized. The constraints on s and S are § — s > 10,
20<s<80, 40 < § <100, and s,S € Z. The optimal
inventory policy is (20, 53) with expected cost/period of
111.1265. To reduce the initial-condition bias, the average
cost per period in each replication is computed after the
first 100 review periods and averaged over the subsequent
30 periods.

We set the computational budget for this problem to
10,000 simulation observations and use the equal SAR
with N, = min{5, [5(logk)'?!'7}. This SAR satisfies Equa-
tion (15) with 8 =15 and y =0.01. We allocate at least five
observations to each newly visited solution. The solutions
visited through iterations 1, 5, 10 and the end of the COM-
PASS run are recorded and plotted. Figures 2 and 3 are two
of the plots, with the optimal solution denoted as x.

Figure 2 shows what happens in a typical run. The vis-
ited solutions concentrate quickly in the neighborhood of
the optimal solution. Figure 3 is a somewhat rare case,
where the visited solutions concentrate far away from the
optimal solution in the beginning, then gradually shift to
the neighborhood of the optimal solution. The reason the
visited solutions initially concentrate in the wrong area is
because of the noise in the simulation outputs, which makes
some inferior solution appear to be a local optimal solution.
Because COMPASS keeps allocating simulation observa-
tions to all visited solutions, it eventually escapes from the
neighborhood of a nonoptimal solution and moves toward
the optimal solution.

6.3. Constrained vs. Partially Constrained or
Unconstrained

Because many partially constrained or unconstrained prob-
lems can be solved as a fully constrained problem by
adding a set of boundary constraints to the feasible region,
one can argue that there is no need to develop an algorithm
for solving partially constrained or unconstrained problems
directly. In this subsection, we study the effect of adding
boundary constraints to partially constrained or uncon-
strained DOvS problems, relative to using Algorithm 2.

We use Problem (19) with G(x) = g(x) + €(x), letting
€(x) be normally distributed with mean O and standard
deviation 0.1g(x). We apply Algorithm 1 to the problem
by adding boundary constraints —500 < x; < 500, i =
1,2,...,10, and also apply Algorithm 2 to the uncon-
strained problem. Both algorithms use the same starting
point (80, 80, ...,80)". Results are shown in Figure 4,
where the solid line is the average sample path over
50 macroreplications from Algorithm 2 and the dashed line
is the average sample path over 50 macroreplications from
Algorithm 1.

We can see that Algorithm 2 works better than Algo-
rithm 1. Therefore, we conclude that adding arbitrary
boundary constraints to a DOvVS problem that is naturally
partially constrained or unconstrained and solving it with
an algorithm for fully constrained problems is not always
an efficient approach, especially when the boundaries are
set excessively large.

6.4. An lllustrative Example

Assemble-to-order systems have been studied recently in
the supply chain management literature (Glasserman and
Wang 1998, Chen et al. 2002, Iravani et al. 2003). The



Hong and Nelson: Discrete Optimization via Simulation Using COMPASS

124 Operations Research 54(1), pp. 115-129, © 2006 INFORMS
Figure 2. Solutions visited by COMPASS in a typical Figure 3. Solutions visited by COMPASS in an atypical
run. run.
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Unconstrained vs. constrained COMPASS
performance.

Figure 4.
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models considered have the following general features:
Items are made to stock to supply variable demands
for finished products, and multiple finished products are
assembled to order from the items. The system operates
using a continuous-review base-stock policy under which
each demand for a unit of an item triggers a replenish-
ment order for that item. Items are produced one at a time
on dedicated facilities, and production intervals are often
stochastic.

In this section we study the following assemble-to-order
system. The system has eight items, 1,,1,,...,I;, and
five types of customers, 7|, T,, ..., T5. Different types of
customers come into the system as Poisson arrival pro-
cesses with different rates, A, A,, ..., As, and each of them
requires a set of key items and a set of nonkey items. If
any of the key items are out of stock, the customer leaves.
If all key items are in stock, the customer buys the product
assembled from all the key items and the available nonkey
items. Each item sold brings a profit, p;,,i=1, 2, ..., 8, and
each item in inventory has a holding cost per period, #;,
i=1,2,...,8. There are inventory capacities for each item,
C,,C,,...,Cg, such that 1 < x; < C,, and the production
time for each item is normally distributed with mean u; and
variance 0'1.2, i=1,2,...,8, truncated at 0. All parameters
used are included in Tables 1 and 2. We are interested in
finding the optimal inventory level for each item to maxi-
mize the expected total profit per period.

Note that this problem cannot be solved by the algo-
rithms in the literature because the production times are
not exponentially distributed. When the production times
are exponentially distributed, Iravani et al. (2003) provide
a numerical approach to evaluate the objective function
when the dimension of the problem is low. However, when
the dimension of the problem is high, as in our example,
the approach becomes extremely slow. When COMPASS

125

Table 1. Parameters related to items.

Item Di h; M J; G
1 1 2 0.15 0.0225 20
2 2 2 0.40 0.0600 20
3 3 2 0.25 0.0375 20
4 4 2 0.15 0.0225 20
5 5 2 0.25 0.0375 20
6 6 2 0.08 0.0120 20
7 7 2 0.13 0.0195 20
8 8 2 0.40 0.0600 20

is used to solve this problem, the production times can be
from any distributions, and the dimension of the problem
can be high.

For the simulation we set a warm-up period of 20 peri-
ods and then averaged profit over the next 50 periods.
We applied Algorithm 1 to solve this problem with ran-
domly generated starting solutions. Because the true func-
tion values are not available, we compare the estimated
profits of the sample best solutions from COMPASS, pure
random search and simulated annealing. In the pure ran-
dom search, we sample solutions uniformly from the fea-
sible region using the RMD algorithm and apply the same
simulation-allocation rule used in Algorithm 1 to allocate
simulation experiments. The simulated annealing algorithm
we use from Alrefaei and Andradéttir (1999) has a con-
stant temperature and is not sensitive to the setting of the
temperature. We set the temperature to 1. We also let the
search neighborhood of x be its local neighborhood /'(x)
and set the number of observations taken from each visit
of a solution to 5. Note that the performance of simu-
lated annealing might be improved by careful selection of
the neighborhood structure. However, the most appropriate
structure is usually problem dependent and hard to deter-
mine, so the local neighborhood is often used in practice.
For both COMPASS and pure random search, we set the
sample size for each visited solution through iteration k as
min{5, [5(logk)'°'7}.

The lines in the left panel of Figure 5 are the sam-
ple paths of COMPASS, simulated annealing and random
search averaged over 30 macroreplications of the algo-
rithms. We see that COMPASS works better than both sim-
ulated annealing and random search. The right panel of
Figure 5 shows all 30 sample paths of COMPASS; all of

Table 2. Parameters related to customers.

Key item Nonkey
Customer A I, L L I, I I, I, I
1 3.6 1 0 0 1 0 1 1 0
2 3.0 1 0 0 0 1 1 1 0
3 2.4 0 1 0 1 0 1 0 0
4 1.8 0 0 1 1 0 1 0 1
5 1.2 0 0 1 0 1 1 1 0
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Figure 5. Assemble-to-order system optimization.
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them converge to similar profits within 30,000 simulation
observations.

We also ran OptQuest for Arena® on this problem, testing
a variety of different customizable settings for that soft-
ware. Directly comparing the performance of COMPASS
to a commercial product like OptQuest is difficult, because
the goals of the two procedures are somewhat different:
COMPASS is designed to, and provably does, converge to
a local optimal solution, while OptQuest attempts to find
the very best solution it can within the time given by the
analyst, without any convergence guarantee. Nevertheless,
some useful general comments can be made that illustrate
the strengths and areas of improvement for COMPASS.

Progress of the Search. Initially, OptQuest makes
more rapid progress toward good solutions than COMPASS
does, as one would expect because OptQuest uses smart
local-improvement schemes for exactly this purpose. Fig-
ure 6 shows an OptQuest performance graph when the
default settings are used; the x-axis shows the number of

Figure 6. OptQuest performance for the assemble-to-
order problem.
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solutions visited, and it is clear that OptQuest’s initial tra-
jectory is quite steep.

Error Control. As the search progresses, COMPASS
refines the estimated performance of every solution visited
during the search. OptQuest, on the other hand, allocates a
fixed number of replications (by default, 1), or a number of
replications within a user-specified range, to each solution
it visits. Thus, COMPASS might waste effort on solutions
that are not competitive, but in the end it will produce a
good estimate of the performance of the locally optimal
solution it identifies. Although OptQuest will not waste
replications on inferior solutions, it will retain whatever
error was present in the initial estimate of each solution’s
performance, and this can be large or small depending on
the variability of the simulation response. In the assemble-
to-order problem, OptQuest typically found good solutions,
but it had poor estimates of their performance if the num-
ber of replications was chosen too small. The performance
graph in Figure 6 shows that the estimated expected profit
is far higher than any solution in the feasible region actu-
ally attains.

Ending the Search. As COMPASS closes in on a local
optimal solution, it stops searching for new solutions while
continuing to refine the estimated performance of the solu-
tions it has visited in a way that guarantees convergence. By
design, OptQuest searches for better and better solutions,
which could require exhausting the feasible space unless
an automatic stopping rule is invoked (terminate the search
when an improved solution has not been found in 50 +
(number of decision variables)” trials). In our experiments
OptQuest visited many more feasible solutions than COM-
PASS did, even when automatic stopping was turned on.

This comparison points out several ways COMPASS
could be improved, the two most obvious being (a) to
incorporate smarter simulation-allocation rules to reduce
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the sampling from (apparently) inferior solutions, and (b) to
incorporate local-improvement schemes to enhance perfor-
mance early in the search. Fortunately, COMPASS provides
an open framework within which such features can be
added without sacrificing provable convergence.

7. Conclusions

In this paper, we present a new algorithm, COMPASS,
which can solve both constrained and partially constrained
or unconstrained DOvS problems with integer-ordered
decision variables for both terminating and steady-state
simulation. We show that, with probability 1, COMPASS
converges to the set of local optimal solutions under mild
conditions. We also show that COMPASS solves a wide
range of problems, including problems with very large
numbers of feasible solutions, and works better than some
of the existing algorithms.

To further improve the performance of COMPASS, we
are investigating smart simulation-allocation rules that take
advantage of sample information obtained in previous iter-
ations, and incorporating local-improvement schemes to
enhance performance early in the search. Investigation of
the behavior and performance of COMPASS in higher
dimensions is another subject of future research.

Appendix

Proor oF LEMMA 1. Note that because

_Erllin b,-—i—;r?in (a; —b;) < min (b;+a; — b;)

i=1

< min b, + max (a; —b;),
i=l,..., n i=1 n

we have
min (a; —b;) < min a;,— min b; < max (a; —b,).
i=1,...,n i=1,...,n i=1,..., n i=1,..., n

Therefore,

min a; — r{lin b;| < max |a;,—b;]. O
i i=1,...,n i=1,...,n

i=l,..., n  i=l,..,n | i=l,..,

PROOF OF LEMMA 2. Let ¥, = {x: x € Z* and ||x —X}|| <
|x —z| Yz € ¥V, and z #x,}, the set of integer points that
are at least as close to X; as to other solutions in ;. Then,
Cr =, NB,NO.

Let

D, ifX5=y,
o =
[T’ if 5 £,

and for k > 1,

Then, 9},, C % for k =0,1,.... Note that if X; =y,
then all new solutions sampled at iteration k 4 1 are sam-
pled from &} because €, C ¥, = %;. For any x € N (y), if
x & U, then x € &} because ||x —y|| = 1. If |Z%| < oo for
some K > 0, then for any k > K,
Pixe Ty, [Ri=y) > —

e R g
Because X; =y infinitely often, then x € 7, with probabil-
ity 1. Therefore, it suffices to prove P{|%,| = o0 i.0.} =0.

To show this, we build a new Cartesian coordinate sys-
tem centered at y with one of its coordinate axis passing
through y + [1,«/5, ﬁ,...,ﬁ]/ in the original coordi-
nate system. Then, the d-dimensional coordinate planes
in the new coordinate system divide the space into 2¢
d-dimensional compartments. See Figure 7 for a two-
dimensional example.

First, we claim that there are no integer solutions (in
the original coordinate system), other than y, on the axes
of the new coordinate systems. Because of symmetry, any
integer solution on any coordinate axis of the new coor-
dinate system has a corresponding integer solution on the
axis passing through y and y +[1,v/2,+/2, ..., v/2]'. Sup-
pose that there is an integer solution on the axis x =
[V, x@ ..., x¥] (in the original coordinate system).
Then, (x@ —y®)/(x® — yD) = ... = (x@ — (@) /(xD —
y) = /2. However, +/2 is an irrational number and it
cannot be represented by p/q where p and g are both inte-
gers. Therefore, there are no integer solutions other than y
on the new coordinate axes.

For every integer solution X, X #y, in a d-dimensional
compartment @, the plane that is perpendicular to, and
passes through the midpoint of the line segment X,y, cuts
off the compartment in the sense that |{z € @: ||z —y| <
|z —x||}| < oc. See Figure 8 for a two-dimensional exam-
ple. In iteration k of Algorithm 2, if Xf =y and %, includes

Figure 7. New Cartesian coordinate system in two-
dimensional space.
«
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Figure 8. The line, formed by x, cuts off quadrant I.

solutions in all compartments, then |%}| < co. See Fig-
ure 9 for a two-dimensional example. Therefore, it suf-
fices to prove that all 2¢ compartments are visited with
probability 1.

Note that when a compartment @ is visited infinitely
many times, then |2 N @\{y}| goes to 0. Because the
number of compartments is finite, no integer solutions are
on the coordinate axes except y, and &} N @\{y} # @ if
compartment @ has never been visited, then every compart-
ment is visited with probability 1.

Therefore, P{|%,| = oo i.0.} =0 because, with probabil-
ity 1, there exists a K > 0, that possibly depends on the
sample path, such that |9, | < |Dg| < oo forall k > K. O

Endnotes

1. OptQuest® is a registered trademark of OptTek Sys-
tems, Inc.

|Z7| < oo if there are solutions in each
quadrant.

Figure 9.

2. Arena® is a registered trademark of Rockwell Soft-
ware, Inc.
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