
D
ow

nl
oa

de
d

B
y:

 [H
on

g
K

on
g

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 &
 T

ec
h]

 A
t:

09
:4

8
19

 N
ov

em
be

r 2
00

7

IIE Transactions (2007) 39, 723–734
Copyright C© “IIE”
ISSN: 0740-817X print / 1545-8830 online
DOI: 10.1080/07408170600838415

Selecting the best system when systems
are revealed sequentially

L. JEFF HONG1 and BARRY L. NELSON2,∗

1Department of Industrial Engineering & Logistics Management, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
E-mail: hongl@ust.hk
2Department of Industrial Engineering & Management Sciences, Northwestern University, 2145 Sheridan Road, Evanston, IL
60208-3119, USA
E-mail: nelsonb@northwestern.edu

Received June 2004 and accepted March 2005

Statistical Ranking and Selection (R&S) is a collection of experiment design and analysis techniques for selecting the system with the
largest or smallest mean performance from among a finite set of alternatives. R&S procedures have received considerable research
attention in the stochastic simulation community, and they have been incorporated in commercial simulation software. All existing
procedures assume that the set of alternatives is available at the beginning of the experiment. In many situations, however, the
alternatives are revealed (generated) sequentially during the experiment. We introduce procedures that are capable of selecting the
best alternative in these situations and provide the desired statistical guarantees.

Keywords: Ranking and selection, system design, optimization via simulation

1. Introduction

Ranking-and-Selection (R&S) procedures have been pro-
posed to select the simulated system with the largest or
smallest mean performance from among a finite number of
alternative systems (see Bechhofer et al. (1995) for a sum-
mary). These procedures require that all alternative systems
are known at the beginning of the experiment. In many
cases, however, some alternative systems may not be known
at the beginning and they may be revealed during the pro-
cess of the experiment.

One instance of this situation is iterative system design.
System design is naturally a sequential process. New designs
are created based on the evaluation of the current designs.
The design process typically lasts several rounds and the
design selected in the end should at least be the best design
among all alternatives that have been evaluated. Another
instance is optimization via simulation (see Fu (2002) for a
thorough review). The optimization-via-simulation process
can be thought of as a system-design process with no human
interaction. Optimization algorithms, e.g., the simulated
annealing algorithm of Alrefaei and Andradóttir (1999),
the nest partitions algorithm of Shi and Ólafsson (2000),

∗Corresponding author

and the COMPASS algorithm of Hong and Nelson (2006)
decide what new solutions to visit on each iteration based
on information on the current best solution. For example,
in the COMPASS algorithm new candidate solutions are
generated on each iteration based on the location of the
selected best solution among all solutions visited through
the previous iteration. In iterative system design and opti-
mization via simulation the experiment may terminate when
some stopping rule is satisfied, and then the selected system
on that iteration is treated as the best system among all
alternative systems generated. Therefore, it is important to
find the best system (design or solution) on each iteration to
help generate better systems on the next iteration, and also
to provide a certain (statistical) guarantee that the selected
system is the true best whenever the experiment terminates.

This problem is different from the typical R&S problem
since the number of alternative systems is not known at the
beginning of the experiment, and a selection decision has
to be made each time new alternative systems are revealed.
The existing selection procedures cannot be applied directly
to solve this problem. In this paper, we propose two general
approaches to solve the problem, the single-elimination ap-
proach and the stop-and-go approach, and design several
procedures accordingly.

There are two types of R&S procedures: frequentist pro-
cedures and Bayesian procedures. Frequentist procedures

0740-817X C© 2007 “IIE”

D
ow

nl
oa

de
d

B
y:

 [H
on

g
K

on
g

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 &
 T

ec
h]

 A
t:

09
:4

8
19

 N
ov

em
be

r 2
00

7

724 Hong and Nelson

such as Rinott (1978) and Kim and Nelson (2001) allocate
simulation effort to different systems to ensure a probability
of correct selection even for the least favorable configura-
tion. They are typically conservative for an average case.
Bayesian procedures such as Chen et al. (2000) and Chick
and Inoue (2001a, 2001b) maximize the posterior proba-
bility of correct selection or minimize an opportunity cost
given a simulation budget. However, they do not provide
a guaranteed probability of correct selection. In this paper
we take the frequentist viewpoint and the procedures pro-
posed in this paper all guarantee a prespecified probability
of correct selection.

The procedures provided in this paper are also sequential
procedures. Among the frequentist procedures, Kim and
Nelson (2001) first introduce a fully sequential procedure
to solve simulation selection problems. They approximate
the sum of differences between two systems as a Brownian
motion process and use a triangular continuation region
to determine the stopping time of the selection process.
Like other frequentist procedures, sequential selection pro-
cedures are designed for the least favorable configuration
where the differences between the true mean of the best
system and the true means of all other systems are exactly
the Indifference-Zone (IZ) parameter, δ. However, unlike
the popular two-stage procedures such as Rinott (1978),
sequential selection procedures terminate faster if the sys-
tems are not in this unfavorable configuration.

Boesel et al. (2003) and Pichitlamken et al. (2006) have
applied R&S in the optimization-via-simulation context.
Boesel et al. (2003) propose efficient R&S procedures that
can be used at the end of the optimization process to guar-
antee that the chosen solution is the true best among all
solutions visited by the optimization process with a certain
confidence. However, their procedures do not help make
correct selection decisions on each iteration of the opti-
mization process. Pichitlamken et al. (2006) propose a se-
lection procedure that can be applied on each iteration of
the optimization process to provide a statistical guarantee
on that iteration. However, their procedure does not pro-
vide an overall statistical guarantee on all visited solutions.

The procedures proposed in this paper combine aspects
of Boesel et al. (2003) and Pichitlamken et al. (2006) to help
make selection decisions on each iteration and provide an
overall statistical guarantee at the end of the design or op-
timization process. However, there is a price to pay for this
very strong inference. Providing a statistical guarantee of
correct selection on each iteration, especially when the num-
ber of candidate solutions that the optimization process
visits is large, is very demanding. Therefore, our proposed
procedures are only applicable to iterative system-design
problems and small-scale optimization problems. Exten-
sions of these procedures to optimization problems with
a very large number of alternatives is a subject of ongoing
research.

The paper is organized as follows. The mathematical for-
mulation of the problem is provided in Section 2. We dis-

cuss the single-elimination approach and the stop-and-go
approach in Sections 3 and 4, respectively. Numerical exam-
ples are presented in Section 5, followed by the conclusions
and possible future research directions in Section 6.

2. The mathematical formulation

Consider the following generic algorithm for generating
new alternative systems.

System Generating Algorithm (SGA)

Step 0. We start with k0 simulated systems, π1, π2, . . . , πk0 ,
and k0 ≥ 2. Let i and Ki denote the iteration count
and the total number of alternative systems gener-
ated through iteration i, respectively. Set i = 0 and
K0 = k0. Go to Step 2.

Step 1. Let i = i + 1. Generate ki ≥ 1 alternatives, πKi−1+1,

πKi−1+2, . . . , πKi−1+ki . Let Ki = Ki−1 + ki.
Step 2. Select the best system in all Ki alternatives π1,

π2, . . . , πKi .
Step 3. If the stopping rule is satisfied, stop; otherwise, go

to Step 1.

Remark 1. In Step 1 of SGA ki is determined by the designer
or the optimization algorithm, and it may depend on the
simulation budget (i.e., available time to solve the problem).
However, the selection procedures provided in this paper
work for any deterministic ki ≥ 1.

Clearly, Step 2 of SGA is where R&S should be applied.
IZ selection procedures select the best system with a Prob-
ability of Correct Selection (PCS) greater than or equal to
1 − α from a given set of alternative systems whenever the
true mean performance of the best system in the set is at
least δ greater than the true mean of the second-best sys-
tem. The IZ parameter δ > 0 is set by the experimenter
to the minimum difference in expected performance that it
is important to detect. Differences of less than δ are con-
sidered practically insignificant. In this paper, we assume
that the best system is the system with the largest mean
performance.

IZ selection procedures for SGA are different from typ-
ical IZ selection procedures, since the total number of sys-
tems for comparison is not fixed. Since SGA generates new
alternative systems iteration by iteration, it is natural to
design IZ selection procedures that compare the new al-
ternative systems to only the previous best system, and sys-
tems determined not to be the best are eliminated and never
considered again. For this type of procedure, allocating the
Probability of Incorrect Selection (PICS) among the dif-
ferent comparisons can solve the problem of changing the
total number of alternatives. When the total number of al-
ternatives that SGA will generate can be bounded, one can
allocate the PICS uniformly. When the total number can-
not be bounded, one can design an infinite sequence, whose

D
ow

nl
oa

de
d

B
y:

 [H
on

g
K

on
g

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 &
 T

ec
h]

 A
t:

09
:4

8
19

 N
ov

em
be

r 2
00

7

Selecting the best system sequentially 725

sum converges to PICS, to allocate the PICS. As we show
in Section 3, both approaches guarantee the overall PCS
whenever SGA terminates.

Another approach is to solve a R&S problem with Ki
alternatives on the ith iteration. We can apply an IZ se-
lection procedure to all alternatives, whether or not they
have been eliminated during previous iterations. In Section
4, we show that this approach can be efficient in terms of
sampling; however, it does require more switches among
the simulated alternative systems, which can be costly for
computer simulations.

Let Xi�, � = 1, 2, . . ., denote the observations taken from
system πi, i = 1, 2, In this paper, we assume the follow-
ing:

Assumption 1. The Xi� are normally distributed with un-
known mean µi and unknown variance σ 2

i for all i =
1, 2, . . . and Xi� is independent of Xjm if either i �= j or � �= m
or both.

Assumption 1 is a standard assumption used in R&S. Since
most simulation models are used to study the average be-
havior of a system, it is reasonable to make the normality
assumption because of the Central Limit Theorem. Inde-
pendence of Xi�, � = 1, 2, . . . , is a direct result of making
replications. When simulation observations are obtained
within a single replication of a steady-state simulation, then
techniques such as batch means allow assumption 1 to hold
approximately (see, for instance, Law and Kelton (2000)).
Assuming Xi� independent of Xj� implies that we do not use
common random numbers. Although we expect our proce-
dures to work, in the sense of delivering at least the desired
probability of correct selection in the presence of common
random numbers, we do not exploit them.

3. Single-elimination approach

An ideal selection procedure for SGA is a single-elimination
procedure. Whenever a system is declared inferior on any
iteration, it never needs to be evaluated again. In the
iterative system-design context, this means that system
designers always compare the newly generated designs to
the best design from previous rounds. In the optimization-
via-simulation context, this is analogous to deterministic
optimization where solutions can be evaluated without
noise. Two single-elimination sequential-selection proce-
dures, called SEB and SEU, are provided in this section.
SEB assumes the existence of a bound on the total number
of alternatives SGA generates. SEU does not need this
assumption; however, it requires an infinite sequence of
positive numbers whose sum equals the PICS.

3.1. Single elimination with bound

In many cases one may have an upper bound on how many
systems will be evaluated before the selection process starts.

In the iterative system-design context, for instance, the sys-
tem designers may know that they have time to evaluate at
most 30 designs, or that there are at most 60 possible de-
signs. Similarly, in the optimization-via-simulation context
one may be able to determine the maximum number of so-
lutions that could be simulated in advance. Although the
system designer or optimization algorithm could exhaust
the set of all possible designs, they likely will not, making it
more efficient to do iterative design or use an optimization
via simulation algorithm rather than run a R&S procedure
on all feasible designs from the beginning.

We assume there exists a known bound on the to-
tal number of alternatives SGA will generate, say K.
On iteration i there are ki + 1 systems in comparison,
πKi−1+1, πKi−1+2, . . . , πKi−1+ki , and π̂∗

i−1, where π̂∗
i−1 is the se-

lected best on iteration i − 1. If we use π∗
i to denote the true

best system through iteration i, then π̂∗
i−1 may not be π∗

i−1
because of selection error. Let µ∗

i denote the mean perfor-
mance of π∗

i . The following SEB procedure is called from
Step 2 of SGA on iteration i:

Single-Elimination with Bound (SEB)

Input: Let I denote the set of systems in contention.
If the iteration counter i = 0, then set I =
{π1, π2, . . . , πk1} and K−1 = 0; otherwise, set I =
{πKi−1+1, πKi−1+2, . . . , πKi−1+ki , π̂

∗
i−1}, and input the

overall sample size, overall sample mean and first-
stage sample variance of system π̂∗

i−1.

Return: The system π̂∗
i along with its overall sample size,

overall sample mean and first-stage sample vari-
ance.

Procedure:

Setup: Select the PCS 1/2 < 1 − α < 1, IZ parameter δ >

0, and first-stage sample size n0 ≥ 2. Let λ = δ/2.

Initialization: For all p = Ki−1 + 1, Ki−1 + 2, . . . , Ki−1 +
ki, take n0 observations from πp, set the to-
tal number of observations for πp to rp = n0,
and calculate the first-stage sample mean
X̄p(n0) and the first-stage sample variance:

S2
p(n0) = 1

n0 − 1

[n0∑
�=1

X2
p� − n0(X̄p(n0))2

]
.

(1)
Let r = n0 denote the current check point.

Computing parameters: Let β = α/(K − 1). For any πp
and πq in I and p �= q, calculate:

apq = η(n0 − 1)
[
S2

p(n0) + S2
q (n0)

]
2δ

,

(2)
where

η = (2β)−
2

n0−1 − 1. (3)

D
ow

nl
oa

de
d

B
y:

 [H
on

g
K

on
g

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 &
 T

ec
h]

 A
t:

09
:4

8
19

 N
ov

em
be

r 2
00

7

726 Hong and Nelson

Elimination: Set Iold = I , and update I to be

I = {πp : πp ∈ Iold and r [X̄p(rp) − X̄q (rq)]

≥ − max(0, apq − rλ), ∀πq ∈ Iold, p �= q}.

Stopping rule: If |I | = 1, then let π̂∗
i be the system in I and

Return. Otherwise, for every πp ∈ I such
that rp = r , take an observation of system
πp, let rp = rp + 1, and update X̄p(rp). Set
r = r + 1 and go back to Elimination.

Suppose the second-best system among π1, π2, . . . , πKi is
denoted as π∗∗

i with mean µ∗∗
i . Then we have the following

theorem.

Theorem 1. Suppose that assumption 1 holds, and that the
total number of alternatives SGA will generate is bounded by
K. Then at the end of any iteration i of SGA, SEB guarantees
that:

Pr
{
π∗

i is selected
} ≥ 1 − α,

if µ∗
i − µ∗∗

i ≥ δ.

To prove Theorem 1 we need the following definitions and
lemmas.

We use B(t ; δ, σ 2) to denote the Brownian motion
process with drift such that E[B(t ; δ, σ 2)] = δt and
Var[B(t ; δ, σ 2)] = σ 2t . We define a triangular continuation
region by L(t) = −a + λt and U(t) = a − λt , where a > 0

Fig. 1. Triangular continuation region with a drifted Brownian motion process.

and λ > 0, and let T be the first time when B(t ; δ, σ 2) exits
the triangular continuation region (Fig. 1).

For any two systems πp and πq , let δpq = µp − µq and
σ 2

pq = σ 2
p + σ 2

q . For any positive integers np and nq , define
the stochastic process:

A
(
t ; δpq , σ

2
pq , np, nq

) ≡ I{t ≤ np}
tBp

(
np; µp, σ

2
p

)
np

+ I{t > np}Bp
(
t ; µp, σ

2
p

)
− I{t ≤ nq}

tBq
(
nq ; µq , σ

2
q

)
nq

− I{t > nq}Bq
(
t ; µq , σ

2
q

)
,

where Bp(t ; µp, σ
2
p) and Bq (t ; µq , σ

2
q) are two independent

Brownian motion processes with drift, andI(·) is the indica-
tor function. The process A(t ; δpq , σ

2
pq , np, nq) corresponds

to having already observed Bp(t ; µp, σ
2
p) and Bq (t ; µq , σ

2
q)

up to times np and nq , respectively. The process A(·) can be
thought of as a continuous-time counterpart of the process
r [X̄p(rp) − X̄q (rq)] that SEB considers during the elimina-
tion step. Let T∗ be the first time when A(t ; δpq , σ

2
pq , np, nq)

exits the triangular continuation. Then we have the follow-
ing two lemmas.

Lemma 1. (Fabian, 1974) For a fixed triangular region de-
fined by a and λ, if the triangular-region parameter λ = δ/2
and δ > 0, then:

Pr
{
B

(
T ; δ, σ 2

pq

)
< 0

} = 1
2

e−aδ/σ 2
pq .

D
ow

nl
oa

de
d

B
y:

 [H
on

g
K

on
g

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 &
 T

ec
h]

 A
t:

09
:4

8
19

 N
ov

em
be

r 2
00

7

Selecting the best system sequentially 727

Lemma 2. (Pichitlamken et al., 2006) For a fixed triangular
region defined by a and λ, if δpq ≥ δ > 0, then for positive
np, nq and σ 2

pq :

Pr
{
A

(
T∗; δpq , σ

2
pq , np, nq

)
< 0

} ≤ Pr
{
B

(
T ; δ, σ 2

pq

)
< 0

}
.

Remark 2. In both Lemmas 1 and 2 we require that the
triangular region is fixed. Notice that in the SEB procedure
λ is fixed, but apq is not fixed. The value of apq depends on
S2

p(n0) and S2
q (n0). However, if we condition on S2

p(n0) and
S2

q (n0), then apq is fixed and we can apply Lemmas 1 and 2.

Now we can prove Theorem 1.

Proof of Theorem 1. Let Ypq (r) = r [X̄p(rp) − X̄q (rq)]. Let
r∗

pq be the first integer time that Ypq (r) exits the triangular
continuation region. If systems πp and πq are compared
and if µp − µq ≥ δ, then:

Pr{πq eliminates πp} = Pr{Ypq
(
r∗

pq

)
< 0} = E

[
Pr

{
Ypq (r∗

pq)

< 0|S2
p(n0), S2

q (n0)
}]

.

Notice that Ypq (r) is independent of S2
p(n0) and S2

q (n0) (e.g.,
Stein (1945)). Therefore, when we condition on S2

p(n0) and
S2

q (n0), the triangular region is fixed and Ypq (r) is indepen-
dent of the region. By Jennison et al. (1980), for a fixed
triangular region:

Pr{Ypq (r∗
pq) < 0} ≤ Pr

{
A

(
T∗; δpq , σ

2
pq , np, nq

)
< 0

}
. (4)

Then,

Pr{πq eliminates πp}
≤ E

[
Pr

{
A

(
T∗; δpq , σ

2
pq , np, nq

)
< 0

∣∣S2
p(n0), S2

q (n0)
}]

by Equation (4)
≤ E

[
Pr

{
B

(
T ; δ, σ 2

pq

)
< 0

∣∣S2
p(n0), S2

q (n0)
}]

by Lemma 2

= E
{

1
2

exp
[
− η(n0 − 1)

(
S2

p(n0) + S2
q (n0)

)
2
(
σ 2

p + σ 2
q

)]}
by Lemma 1

= 1
2

E
{

exp
[

− η

2

σ 2
p

σ 2
p + σ 2

q

(n0 − 1)S2
p(n0)

σ 2
p

]}

E
{

exp
[

− η

2

σ 2
q

σ 2
p + σ 2

q

(n0 − 1)S2
q (n0)

σ 2
q

]}
. (5)

Notice that (n0 − 1)S2
p(n0)/σ 2

p and (n0 − 1)S2
q (n0)/σ 2

q are in-
dependent χ2

n0−1 random variables, where χ2
f denotes a chi-

square random variable with f degrees of freedom, and
E[etχ2

f] = (1 − 2t)−f/2. Then,

Right-hand side of Equation (5)

= 1
2

{[
1 + ησ 2

q

σ 2
p + σ 2

q

] [
1 + ησ 2

p

σ 2
p + σ 2

q

]}−(n0−1)/2

≤ 1
2

(1 + η)−(n0−1)/2

= β.

If π1 is the best system, then the PICS is the largest, since
π1 has to survive the comparisons on all iterations to be
selected at the end of iteration i. So in this case, ifµ∗

i − µ∗∗
i ≥

δ, then µ1 − µp ≥ δ for all p = 2, 3, . . . , Ki. Thus,

Pr{incorrect selection}
≤ Pr{π1 is eliminated}

≤
Ki∑

p=2

Pr{π1 is eliminated by πp} Bonferroni inequality

≤
Ki∑

p=2

β = Ki − 1
K − 1

α ≤ α.

This concludes the proof. �

One disadvantage of SEB is the requirement of an up-
per bound on the number of alternatives. Ideally we want
the upper bound to be close to the number of alternatives
actually evaluated. In many cases, however, such an upper
bound is difficult to obtain. Even if it can be estimated, it is
often much larger than the actual number. When the bound
is larger than the actual number of alternatives, β is smaller
than need be, which implies a larger continuation region.
Therefore, many more observations than necessary will be
taken to make the elimination decisions.

3.2. Single-elimination unbounded

To keep the advantages of SEB and avoid the requirement
of knowing K, we design a new procedure called Single-
Elimination Unbounded (SEU). To do so we require an
infinite sequence of positive numbers αi, i = 0, 1, . . ., such
that

∑∞
i=0 αi = α. For instance, αi = 2−(i+1)α. SEB requires

that the selection decision among πKi−1+1, πKi−1+2, . . . , πKi

and π̂∗
i−1 on iteration i is correct with probability at least

1 − αi if π∗
i is among them and µ∗

i − µ∗∗
i ≥ δ.

The SEU procedure is the same as the SEB procedure
except for the Computing Parameters step. The following
is the Computing Parameters step of SEU.

Computing parameters: Let βi = αi/ki. For any πp and πq
in I and p �= q, calculate:

apq = ηi(n0 − 1)
[
S2

p(n0) + S2
q (n0)

]
2δ

,

where

ηi = (2βi)
− 2

n0−1 − 1.

Theorem 2. Suppose that assumption 1 holds, and the infinite
sequence αi, i = 0, 1, . . ., satisfies αi > 0 and

∑∞
i=0 αi = α.

Then at the end of any iteration i of SGA, SEU guarantees
that:

Pr
{
π∗

i is selected
} ≥ 1 − α,

if µ∗
i − µ∗∗

i ≥ δ.

D
ow

nl
oa

de
d

B
y:

 [H
on

g
K

on
g

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 &
 T

ec
h]

 A
t:

09
:4

8
19

 N
ov

em
be

r 2
00

7

728 Hong and Nelson

Proof. By the proof of Theorem 1, for any system πp and on
any iteration i, if µ∗

i − µp ≥ δ and π∗
i and πp are compared

on iteration i, then:

Pr{system πp eliminates system π∗
i } ≤ βi.

Similar to the proof of Theorem 1, PICS is largest if π1 is
the best system. So if µ∗

i − µ∗∗
i ≥ δ, then µ1 − µp ≥ δ for

all p = 2, 3, . . . , Ki. Thus,

Pr{incorrect selection through iteration i}

≤
i∑

j=0

Pr{π1 is eliminated on iteration j}

=
k0∑

p=2

Pr{πp eliminates π1}

+
i∑

j=1

{
Kj−1+kj∑

p=Kj−1+1

Pr{πp eliminates π1}
}

≤ (k0 − 1)β0 +
i∑

j=1

kjβj ≤
i∑

j=0

kjβj ≤
i∑

j=0

αj ≤ α.

This concludes the proof, since the result holds for any i. �

Although SEU does not require an upper bound on the
number of alternatives, finding a good scheme to allocate
PICS is not easy. For instance, if αi = 2−(i+1)α is used and
α equals 0.1, then after ten iterations (including iteration
0), α9 < 0.0001, which causes the elimination decision to
be very difficult to make. A good strategy is to first estimate
the number of iterations that SGA may conduct, say I , and
allocate a fixed proportion of α, e.g., 0.9α, evenly to the first
I iterations. Then we can use a power series, e.g., 2−(i−I), to
allocate the rest of α among the remaining iterations.

Single-elimination procedures eliminate alternatives per-
manently. This makes SGA simple and easy to imple-
ment. They also provide a statistical guarantee whenever
SGA terminates. However, neither single-elimination pro-
cedure is efficient in total sample size. In both the iter-
ative system-design and optimization-via-simulation con-
texts, better systems tend to be discovered on later iterations.
Therefore, systems generated by SGA on earlier iterations
can easily be eliminated by good systems generated on later
iterations. In both single-elimination procedures, however,
systems that are generated on the same iteration or con-
secutive iterations are often used to eliminate each other.
Since the alternatives generated on the same iteration or
consecutive iterations often are close in mean performance,
the procedures may require an excessive number of obser-
vations to make the selection decision. We address these
shortcomings in the next section.

4. Stop-and-Go procedures

A shortcoming in single-elimination procedures is in the
allocation of PICS, specifically that all of PICS is allocated
before starting SGA. However, it seems natural to allocate
PICS according to the number of alternatives SGA gener-
ates. Stated differently, we will let the number of alternatives
compared on iteration i be the cumulative number of alter-
natives generated through iteration i of SGA.

Notice that the boundary of the continuation region for
comparing two systems, πp and πq , is determined by apq ,
which depends on the PICS assigned to the comparison.
Given the total PICS, the PICS assigned to each paired
comparison is a function of the total number of alternatives
through the Bonferroni inequality. One can easily check
that, given the first-stage sample variances of the two sys-
tems under comparison, the size of the continuation re-
gion increases as the total number of alternatives increases.
Therefore, if system πp eliminates system πq on iteration i,
the mean difference process r [X̄p(rp) − X̄q (rq)] stops at the
boundary crossing point, say r∗

pq (i). Then on iteration i + 1,
since more alternatives are added to the set of alternatives by
SGA, the boundary of the continuation region for compar-
ison between πp and πq widens. To confirm the elimination
decision between system πp and πq , more observations from
them may be needed. Therefore, we let the mean difference
process take off again from the previous boundary crossing
point. The elimination decision is made when the process
crosses the new boundary at, say r∗

pq (i + 1). See Fig. 2 for an
illustration. For this reason the procedures presented here
are called Stop-and-Go (SaG) procedures.

Suppose SGA tends to generate better systems on later
iterations. If system πp is eliminated by system πq on itera-
tion i, and a better system, say system πs , is generated on a
later iteration, then πs can eliminate πp more easily than πq
can. Therefore, fewer observations are needed for πp. SaG
is in general more efficient than single elimination, even if
we know exactly how many alternatives SGA will gener-
ate, since better systems generated on later iterations are
used to eliminated inferior systems generated on earlier it-
erations. Compared to single-elimination procedures, SaG
procedures also have disadvantages. In SaG procedures, an
alternative that has previously been eliminated needs to be
considered again whenever a new alternative is generated;
this complicates the iterative system-design/optimization-
via-simulation process, and it may not be intuitive for users.

4.1. SaG with fixed first-stage sample size

If we fix the first-stage sample size n0, as in the SEB and
SEU procedures, then the following SaG-F procedure is
called at Step 2 on iteration i of SGA.

SaG with Fixed First-stage Sample Size (SaG-F)

Input: If the iteration counter i = 0, then set I =
{π1, π2, . . . , πk1} and K−1 = 0; otherwise, set I =

D
ow

nl
oa

de
d

B
y:

 [H
on

g
K

on
g

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 &
 T

ec
h]

 A
t:

09
:4

8
19

 N
ov

em
be

r 2
00

7

Selecting the best system sequentially 729

Fig. 2. Mean difference process in the Stop-and-Go procedure.

{
π1, π2, . . . , πKi−1, πKi−1+1, πKi−1+2, . . . , πKi−1+ki

}
,

and input the overall sample sizes, overall sample
means and first-stage sample variances of systems
π1, π2, . . . , πKi−1 .

Return: System π̂∗
i and the overall sample sizes, overall

sample means and first-stage sample variances of
systems π1, π2, . . . , πKi .

Procedure:

Setup: Select the PCS 1/2 < 1 − α < 1, IZ parameter δ >

0, and first-stage sample size n0 ≥ 2. Let λ = δ/2.

Initialization: For all p = Ki−1 + 1, Ki−1 + 2 . . . , Ki, take
n0 observations from πp, calculate the first-
stage sample mean X̄p(n0) and the first-stage
sample variance S2

p(n0) using Equation (1),
and set rp = n0. Let r = n0.

Computing parameters: Let βi = α/(Ki − 1). For any πp
and πq in I and p �= q, calculate:

apq = ηi(n0 − 1)
[
S2

p(n0) + S2
q (n0)

]
2δ

,

where

ηi = (2βi)
− 2

n0−1 − 1.

Elimination: Set Iold = I , and update I to be

I = {πp : πp ∈ Iold and r [X̄p(rp) − X̄q (rq)]

≥ − max(0, apq − rλ), ∀πq ∈ Iold, p �= q }.
Stopping rule: If |I | = 1, then let π̂∗

i be the system in I , and
Return. Otherwise, for every πp ∈ I such
that rp = r , take an observation of system
πp, let rp = rp + 1, and update X̄p(rp). Set
r = r + 1 and go back to Elimination.

Theorem 3. Suppose that assumption 1 holds. Then at the end
of iteration i of SGA, SaG-F guarantees that:

Pr
{
π∗

i is selected
} ≥ 1 − α,

if µ∗
i − µ∗∗

i ≥ δ.

Proof. By the proof of Theorem 1, for any system πp and
on any iteration i, if µ∗

i − µp ≥ δ, then:

Pr{πp eliminates π∗
i } ≤ βi.

If µ∗
i − µ∗∗

i ≥ δ, then µ∗
i − µp ≥ δ for all πp ∈

{π1, π2, . . . , πKi} \ {π∗
i }. Thus,

Pr{incorrect selection}
≤

∑
πp∈{π1,...,πKi }\{π∗

i }
Pr{πp eliminates π∗

i } ≤ (Ki − 1)βi = α.

This concludes the proof of Theorem 3. �

When SaG-F is applied in SGA, the PICS is allocated
according to the current cumulative number of systems.
On earlier iterations of SGA, since the total number of
generated systems is small, the sizes of the continuation
regions are relatively small due to the fixed overall PCS.
Therefore, the elimination decisions are relatively easy to
make even if the differences between the systems are small.
When the total number of the generated systems gets larger
on later iterations, the better systems generated on later
iterations can eliminate the inferior systems generated on
earlier iterations easily. The following analysis shows why
SaG-F on average needs fewer observations than the single-
elimination procedures.

Let B(i) = {p : πp = π∗
i }. Then πB(i) = π∗

i on iteration i.
For any πq that is not equal to πB(i), the probability of
incorrect selection, βi, between πB(i) and πq goes to zero
as Ki → ∞. If βi → 0, then aB(i)q → ∞. The number of
observations required to make an elimination decision also

D
ow

nl
oa

de
d

B
y:

 [H
on

g
K

on
g

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 &
 T

ec
h]

 A
t:

09
:4

8
19

 N
ov

em
be

r 2
00

7

730 Hong and Nelson

Fig. 3. Optimistic analysis of πB(i) vs. πq .

goes to infinity. Therefore, when the number of systems
generated by SGA is large (Ki is large) we can approximate
the difference process as r (µB(i) − µq) by the Strong Law
of Large Numbers (see Fig. 3), and approximate E[Rq], the
expected number of observations from πq that are required
to eliminate πq , as

E[Rq] ≈ E[aB(i)q]
λ + µB(i) − µq

= E[aB(i)q]
δ/2 + µB(i) − µq

. (6)

Since δ/2 is usually small compared to the difference be-
tween mean values, E[Rq] is approximately inversely pro-
portional to µB(i) − µq . Therefore, when better systems
(higher µB(i)) are generated on later iterations of SGA,
the number of observations required to eliminate an in-
ferior system can be significantly reduced. The observa-
tions obtained on early iterations for a system (say πq)
may be enough for it to be eliminated by a good sys-
tem generated on later iterations even though the PICS
allocated to the comparison is smaller due to the larger
number of systems. This explains why the SaG procedures
are on average more efficient than the single-elimination
procedures.

The disadvantage of SaG-F is that it may need to go
back to a large number of previously simulated systems on
each iteration to acquire more observations. This leads to
high switching costs between simulations of different sys-
tems. Switching between complicated simulation models
can be computationally cumbersome. For an example of
controlling switching cost in R&S, see Hong and Nelson
(2005).

4.2. SaG with variable first-stage sample size

SaG-F uses a fixed first-stage sample size, n0, for all systems.
At the beginning of iteration i, systems π1, π2, . . . , πKi−1

usually have more than n0 observations. Since a larger n0
often results in a smaller continuation region because of the
greater degrees of freedom of the variance estimators, one
may ask: why we do not treat all the observations acquired
before iteration i as the first-stage samples for the purpose
of computing variance estimates? The answer is that if we
do this, then the numbers of observations obtained on pre-
vious iterations depend on the variance estimators. If we
use the observations as the first-stage samples, then the in-
dependence between the overall sample mean and the first-
stage sample variance is destroyed. To prove the validity of
the SaG procedures, we have to maintain the independence
between the variance estimator and the overall sample
mean.

If we let n0 be a function n0(Ki), where Ki is the total
number of systems generated through the ith iteration, and
choose the appropriate n0(Ki) before running SGA, then
the independence property still holds. Now at Step 2 of
each iteration of SGA, one first updates n0(Ki) based on the
total number of the generated alternatives. If the previously
generated systems have more than n0(Ki) observations, then
only the first n0(Ki) observations are considered as the first-
stage samples in the variance calculation. If the previously
generated systems have fewer than n0(Ki) observations, then
we take additional observations from the systems to get
n0(Ki) observations. We then take n0(Ki) observations for
the newly generated systems, and run an SaG procedure.
The following is the new SaG procedure.

D
ow

nl
oa

de
d

B
y:

 [H
on

g
K

on
g

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 &
 T

ec
h]

 A
t:

09
:4

8
19

 N
ov

em
be

r 2
00

7

Selecting the best system sequentially 731

SaG procedure with variable first-stage sample size (SaG-V)

Input: Systems π1, π2, . . . , πKi and all sample information
on systems π1, π2, . . . , πKi−1 . If iteration counter i
equals zero, let K−1 = 0 and let the identities and
all sample information on previously generated sys-
tems be null.

Return: System π̂∗
i and all the sample information on sys-

tems π1, π2, . . . , πKi .

Procedure:

Setup: Select the PCS 1/2 < 1 − α < 1, IZ parameter δ >

0 and first-stage sample size function n0(·). Let λ =
δ/2.

Initialization: Take max{0, n0(Ki) − rp} observations from
πp and set rp = rp + max{0, n0(Ki) − rp} for
all p = 1, 2, . . . , Ki−1; also take n0(Ki) ob-
servations from πp and set rp = n0(Ki)
for all p = Ki−1 + 1, . . . , Ki. Calculate the
first-stage sample mean X̄p(n0(Ki)) and the
first-stage sample variance S2

p(n0(Ki)) using
Equation (1) for all p = 1, 2, . . . , Ki. Let
r = n0(Ki) and I = {π1, π2, . . . , πKi}.

Computing parameters: Same as the step in SaG-F, but
using n0(Ki) instead of n0.

Elimination: Same as the step in SaG-F.

Stopping rule: Same as the step in SaG-F.

Theorem 4. Suppose that assumption 1 holds, then at the end
of iteration i of SGA, SaG-V guarantees that:

Pr
{
π∗

i is selected
} ≥ 1 − α,

if µ∗
i − µ∗∗

i ≥ δ.

Proof. The proof of Theorem 4 is the same as the proof of
Theorem 3, except that we change n0 to n0(Ki). �

One natural question when using the SaG-F procedure
is how to choose n0(k), where k is the number of systems in
comparison. Ideally, we want to choose n0(k) to minimize
the expected total number of observations needed to make
the selection decision. However, this is a difficult, if not
impossible, task since it requires knowing the true means
and variances of all generated alternatives before starting
the experiment. Instead we try to find a family of functions
n0(k) to minimize the growth rate (as k → ∞) of an upper
bound on the expected sample size. In the following analy-
sis, we assume that there exists a finite positive number M
such that σ 2

p ≤ M for all p = 1, 2,

If systems πp and πq are in comparison, then the max-
imum number of observations required for both of them
is �apq/λ
, which is the end of the triangular continuation
region, if it is not smaller than n0. At the end of the ith

iteration, if E[apq/λ] ≥ n0, then

ηi =
(

Ki − 1
2α

)
2/(n0(Ki) − 1) − 1,

E
[

apq

λ

]
= E

{
ηi(n0(Ki) − 1)

[
S2

p(n0(Ki)) + S2
q (n0(Ki))

]
2δλ

}

≤ 2M
δ2

[n0(Ki) − 1]
[(

Ki − 1
2α

)
2/(n0(Ki) − 1) − 1

]
.

Since apq/λ → ∞ as Ki → ∞, the difference between
�apq/λ
 and apq/λ can be omitted. Therefore, the expected
total sample size of SaG-V at the end of ith iteration,
E[R(Ki)], is bounded by

E[R(Ki)] ≤ Ki max
p,q∈{1,2,...,Ki}

E
[

apq

λ

]

≤ 2M
δ2

Ki[n0(Ki) − 1]
[(

Ki−1
α

)
2/(n0(Ki) − 1) − 1

]
.

(7)

Since x1/ log(x) = e, the Right-Hand Side (RHS) of Equation
(7) equals:

2M
δ2

Ki[n0(Ki) − 1]
[
e2 log((Ki−1)/2α)/[n0(Ki)−1] − 1

]
,

which increases to infinity at the same rate as

Kin0(Ki)
[
elog(Ki)/n0(Ki) − 1

]
,

as i goes to infinity (implying Ki → ∞). To avoid over-
sampling we want n0(Ki) to satisfy limKi→∞ Kin0(Ki)/
E[R(Ki)] < ∞, which means that the first-stage sample size
should not dominate the expected total sample size in the
growth rate. Therefore, we need limKi→∞ log(Ki)/n0(Ki) >

0. Let n0(Ki) = log(Ki)/f (Ki), where f (Ki) > 0 for all Ki > 0
and limKi→∞ f (Ki) > 0. Then the RHS of Equation (7)
grows at the same rate as

1
f (Ki)

ef (Ki)Ki log(ki).

Therefore, the RHS of Equation (7) achieves the minimum
growth rate when f (Ki) is a constant. Thus n0(Ki) grows
at the rate of log(Ki) and E[N(Ki)] grows at the rate of
Ki log(Ki) (often written as k log ((k − 1)/α) in the R&S lit-
erature where k denotes the total number of alternatives),
which is an efficient growth rate common to many IZ se-
lection procedures with known variances (see Dudewicz
(1969)). An example of n0(k) that satisfies these conditions
is

n0(k) = n0�log(k)
 k = 2, 3, (8)

The implementation of SaG-V is more complicated than
SaG-F. In SaG-F, only the first-stage sample variances and
the current sample means need to be stored. But in SaG-
V the first-stage sample size is increasing and it typically
does not equal to the current sample sizes of the systems in
comparison. Therefore, to implement SaG-V, the previous

D
ow

nl
oa

de
d

B
y:

 [H
on

g
K

on
g

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 &
 T

ec
h]

 A
t:

09
:4

8
19

 N
ov

em
be

r 2
00

7

732 Hong and Nelson

samples need to be stored such that the first-stage sample
variances of all systems can be calculated given a first-stage
sample size.

5. Empirical evaluation

In this section we give two examples to compare differ-
ent procedures and to illustrate the usefulness of the pro-
posed procedures. In the first example, we mimic the it-
erative system-design/optimization-via-simulation context
and compare the performances of the proposed procedures.
We also compare the procedures to a fully sequential pro-
cedure assuming that the set of evaluated alternatives is
known in advance. In the second example, we give a re-
alistic iterative system-design/optimization-via-simulation
problem and show the advantages of our procedures.

5.1. A simple test problem

In both iterative system design and optimization via simu-
lation, we expect to find better solutions on every iteration.
But we will also generate some not-so-good solutions on ev-
ery iteration. As the number of iterations increases, the im-
provement in solutions may diminish, and the solutions that
are generated on each iteration may get closer to each other
in terms of mean performance. Moreover, several more it-
erations are often needed after finding the optimal solution
to conclude that the optimal solution has been found.

To incorporate all these considerations, we designed the
following test problem. Consider the functions:

y1(x) = −|x − 16|1.25 + 68,

y2(x) = −|x − 16|1.5 + 65,

y3(x) = 1
3

y1(x) + 2
3

y2(x),

y4(x) = 2
3

y1(x) + 1
3

y2(x),

where 0 ≤ x ≤ 20. Suppose that we start with x = 0 and
four initial systems each normally distributed with mean
yp(0) and standard deviation 0.1yp(0), p = 1, 2, 3, 4. Also
suppose that on iteration i, we have x = i ×
, where

 > 0, and four new systems, each normally distributed
with mean yp(x) and standard deviation 0.1yp(x), p =
1, 2, 3, 4, are generated (see Fig. 4). The goal is to select
the system with the largest mean performance when we
stop at x = 20. This example mimics the iterative system-
design/optimization-via-simulation process in the way that
systems are generated on each iteration. What is missing
here is the search process, in which the quality of the sys-
tems generated on an iteration depends on the quality of
the selection decisions made on the previous iterations.

In this example, we let the IZ parameter be δ = 1 so that
the difference in the mean performance between the best
system and the second-best system is exactly δ. We let the
first-stage sample size be n0 = 10 and a PCS value of 0.9.

Fig. 4. The test problem used in Section 5.1 with
 = 4.

We consider three configurations where
 = 4, 2 or 1. The
total numbers of alternatives (K) of the three configurations
are 24, 44 and 84, respectively.

The results are shown in Table 1. KN is the fully
sequential procedure from Kim and Nelson (2001). KN
is used only as a benchmark for comparison; it cannot be
applied to this problem because it requires all systems to be
available from the beginning. SEB1 is the SEB procedure
with the bound equal to exactly the total number of
systems, and SEB2 is the SEB procedure with the bound
equal to 100. In SEU we use αi = 0.025(4/5)i+1, and in
SaG-V we use n0(k) = 10�log2(k/2)
. The results reported
in the table are the averages over 100 macroreplications of
the entire experiment.

We see from Table 1 that the SaG procedures consume
fewer observations than the single-elimination procedures.
When the total number of systems that SGA will visit is
known, SEB works better than SEU; however, when the
total number of systems is not known and we only have a
large bound, then SEB may not be as good as SEU. When
the total number of systems that SGA will visit is large,
SEU may be less efficient since the PICS allocated to the
later iterations can be very small. For the SaG procedures,
SaG-V is more efficient than SaG-F as we expect. We also
see that the differences between KN and SaG-V are not very

Table 1. Observed PCS and average total number of observations

 = 4/K = 24
 = 2/K = 44
 = 1/K = 84

Procedures PCS Avg. # PCS Avg. # PCS Avg. #

KN 0.99 2285.1 1.00 4213.7 1.00 8790.5
SEB1 1.00 4019.7 1.00 9349.8 1.00 25 393.5
SEB2 1.00 6309.6 1.00 11 955.2 1.00 26 885.7
SEU 1.00 4977.7 1.00 11 934.5 1.00 40 301.8
SaG-F 1.00 3753.5 1.00 8 562.7 1.00 22 720.0
SaG-V 1.00 2585.7 1.00 5 384.5 1.00 13 373.8

D
ow

nl
oa

de
d

B
y:

 [H
on

g
K

on
g

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 &
 T

ec
h]

 A
t:

09
:4

8
19

 N
ov

em
be

r 2
00

7

Selecting the best system sequentially 733

Table 2. The routings for various job types

Job type Work station routing

1 3, 1, 2, 5
2 4, 1, 3
3 2, 5, 1, 4, 3

large when the total number of alternatives SGA generates
is not large.

5.2. A job shop example

In this section we study a job-shop improvement problem
(see Section 2.7.1 of Law and Kelton (2000) for the simu-
lation model). The job shop consists of five work stations,
and at present stations 1, 2, . . . , 5 consist of three, two,
four, three and one parallel machines, respectively. Assume
that jobs arrive to the system with interarrival times that
are independent and identically distributed exponential
random variables with mean 0.25 hour. There are three
types of jobs, and arriving jobs are of type 1, 2 and 3 with
respective probabilities 0.3, 0.5 and 0.2. Job types 1, 2 and
3 require four, three and five tasks to be done, respectively,
and each task must be done at a specified station and in
a prescribed order. The routings for the different job types
are as listed in Table 2.

If a job arrives at a particular station and finds all ma-
chines in that station already busy, the job joins a single
first-in-first out queue at the station. The service times are
Erlang-2 random variables whose mean depends on the job
type and the station to which the machine belongs, and they
are independent. The mean service times for each job type
and each task are as listed in Table 3.

Given these parameters we build a simulation model to
estimate the long-run mean job waiting time, regardless of
job type. For each replication, we start with the empty job
shop and simulate it for 365 days. The length of the simu-
laton is long enough to overcome the initial-condition bias
and to ensure that the average waiting time is approximately
normally distributed.

Suppose that the owner of the job shop is concerned that
the job waiting times are too long and is considering im-
proving the performance of the shop. Each machine costs
approximately $200 000 and the budget for improvement is
$1000 000. The owner estimates that 1 hour of waiting time
is equivalent to a present value of $100 000 of loss of good-
will or potential sales in the future, and wants to improve

Table 3. The mean service times for the various job types

Mean service time for
Job type successive tasks (hours)

1 0.50, 0.60, 0.85, 0.50
2 1.10, 0.80, 0.75
3 1.20, 0.25, 0.70, 0.90, 1.00

the performance of the job shop to minimize the expected
total cost, including both machine cost and waiting-time
cost.

We can solve this problem using (at least) three different
approaches. The first is to enumerate all system designs
and use KN to select the system with the lowest cost. For
this approach, we need to consider the cases where up to
five machines can be purchased; this yields 256 potential
designs. We ran KN with confidence level 1 − α = 0.9 and
an IZ parameter δ = $200 000, which is the cost of one
machine or the present value of 2 hours of waiting time. At
the end of the process, the optimal solution was to add one
machine to work stations 1, 2 and 4, respectively.

The second approach is to use a myopic optimization-
via-simulation algorithm. In this approach, we add one ma-
chine at a time. In each iteration, we simulate all five options
of adding an additional machine to each workstation of the
best design from the previous iteration, compare these new
options to the previous best design to determine where to
add the machine, and stop if the best design on the current
iteration is same as the best design on the previous itera-
tion. When using this algorithm, we could simulate at most
26 designs; that is, the initial design with five new designs
on each of the five possible iterations. So we set K = 26,
δ = $200 000 and 1 − α = 0.9 and ran the optimization in
conjunction with the SEB procedure. After the first itera-
tion, the best option was to add a machine to work station
2; on the second iteration, the best alternative was to add
another machine to work station 4; while on the third iter-
ation, the best choice was to add another machine to work
station 1. On the fourth iteration, the best design was still
the best design from the third iteration, so the algorithm
stopped and did not perform a fifth iteration. The optimal
design was same as the design found by the first approach,
but only 21 designs were evaluated as compared to the 256
designs of using the KN procedure, a huge saving.

In the third approach, the designers are involved in deci-
sion making, and they use SEB with the same parameters
as the second approach. They use the myopic algorithm
on the first iteration, but then select the system designs to
evaluate on the subsequent iterations based on the results
they have seen and stop when they believe that an optimal
design has been found. The following is one realization of
this approach. After the first iteration, adding one machine
to work station 2 yielded the best design with average cost
$1160 000, and adding one machine to work stations 4, 1,
3 and 5 had average total costs of $1440 000, $1680 000,
$1800 000 and $1990 000, respectively. Therefore, on the
second iteration they evaluated two new designs: adding
a total of two machines to work station 2, and adding one
machine to each of work stations 2 and 4. The latter design
was the best on this iteration with an average total cost of
$870 000. On the third iteration, they evaluated three new
designs: adding a total of two machines to work station 2
and one machine to work station 4; adding one machine
to work station 2 and two machines to work station 4; and

D
ow

nl
oa

de
d

B
y:

 [H
on

g
K

on
g

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 &
 T

ec
h]

 A
t:

09
:4

8
19

 N
ov

em
be

r 2
00

7

734 Hong and Nelson

adding one machine to each of work stations 2, 4 and 1.
The third design was the best on this iteration with an av-
erage total cost of $750 000. Notice that adding a fourth
or a fifth machine requires a total investment of $800 000
or $1000 000, then the total expected cost will be at least
$800 000 or $1000 000. Therefore, better solutions cannot
be found by adding a fourth or fifth machine. Then the de-
signers stopped and accepted the current design as the best.
In this approach, only 11 designs were evaluated, demon-
strating the value of using human intelligence to guide the
search with SEB to help guarantee that the best design is
actually retained on each iteration they made.

This example demonstrates the usefulness of having R&S
procedures for situations where systems are revealed se-
quentially.

6. Conclusions and future research

In this paper we present two approaches, the single-
elimination approach and the SaG approach to solve R&S
problems where the systems are revealed sequentially dur-
ing the experiment. The single-elimination procedures, in-
cluding SEB and SEU, are easier to understand and imple-
ment, but they often require a large number of observations
to provide the statistical guarantee. The SaG procedures, in-
cluding SaG-F and SaG-V, are more difficult to implement,
but they typically require fewer observations. The empirical
evaluation shows that the proposed procedures are useful
in solving practical problems.

In terms of future research we suggest to consider the
following two possible directions. First, one may consider
to use the variance-dependent sampling of Hong (2006) to
further improve the overall efficiency of the procedures pro-
posed in this paper. Second, the design of efficient selection
procedures for large-scale optimization-via-simulation al-
gorithms is certainly an interesting and important research
issue that deserves further study.

Acknowledgements

The authors thank Dr. Sigrún Andradóttir of Georgia Tech
for her ideas and assistance leading to the development of
the SEU procedure, and the department editor and two
referees for their insightful comments that significantly im-
proved the quality of this paper. This research was partially
supported by National Science Foundation grant number
DMI-0217690, Hong Kong Research Grants Council grant
number CERG 613305, and General Motors R&D.

References

Alrefaei, M.H. and Andradóttir, S. (1999) A simulated annealing algo-
rithm with constant temperature for discrete stochastic optimiza-
tion. Management Science, 45, 748–764.

Bechhofer, R.E., Santner, T.J. and Goldsman, D.M. (1995) Design and
Analysis of Experiments for Statistical Selection, Screening, and Mul-
tiple Comparisons, Wiley, New York, NY.

Boesel, J., Nelson, B.L. and Kim, S.-H. (2003) Using ranking and selection
to ‘clean up’ after simulation optimization. Operations Research, 51,
814–825.

Chen, C.H., Lin, J., Yücesan, E. and Chick, S.E. (2000) Simulation budget
allocation for further enhancing the efficiency of ordinal optimiza-
tion. Discrete Event Dynamic Systems: Theory & Applications, 10,
251–270.

Chick, S.E. and Inoue, K. (2001a) New two-stage and sequential proce-
dures for selecting the best simulated system. Operations Research,
49, 732–743.

Chick, S.E. and Inoue, K. (2001b) New procedures to select the best simu-
lated system using common random numbers. Management Science,
47, 1133–1149.

Dudewicz, E.J. (1969) An approximation to the sample size in selection
problems. The Annals of Mathematical Statistics, 40, 492–497.

Fabian, V. (1974) Note on Anderson’s sequential procedures with trian-
gular boundary. Annals of Statistics, 2, 170–176.

Fu, M.C. (2002) Optimization for simulation: theory vs. practice. IN-
FORMS Journal on Computing, 14, 192–215.

Hong, L.J. (2006) Fully sequential indifference-zone selection procedures
with variance-dependent sampling. Naval Research Logistics, 53,
464–476.

Hong, L.J. and Nelson, B.L. (2005) The trade-off between sampling and
switching: new sequential procedures for indifference-zone selection.
IIE Transactions, 37, 623–634.

Hong, L.J. and Nelson, B.L. (2006) Discrete optimization via simulation
using COMPASS. Operations Research, 54, 115–129.

Jennison, C., Johnston, I.M. and Turnbull, B.W. (1980) Asymptotically
optimal procedures for sequential adaptive selection of the best of
several normal means. Technical report, Department of Operations
Research and Industrial Engineering, Cornell University, Ithaca,
NY 14853.

Kim, S.-H. and Nelson, B.L. (2001) A fully sequential procedure for
indifference-zone selection in simulation. ACM Transactions on
Modeling and Computer Simulation, 11, 251–273.

Law, A.M. and Kelton, W.D. (2000) Simulation Modeling and Analysis,
3rd edn., McGraw-Hill, New York, NY.

Pichitlamken, J., Nelson, B.L. and Hong, L.J. (2006) A sequential pro-
cedure for neighborhood selection-of-the-best in optimization via
simulation. European Journal of Operational Research, 173, 283–298.

Rinott, Y. (1978) On two-stage selection procedures and related
probability-inequalities. Communications in Statistics, A7, 799–811.

Shi, L. and Ólafsson, S. (2000) Nested partitions method for stochastic
optimization. Methodology and Computing in Applied Probability,
2, 271–291.

Stein, C. (1945) A two-sample test for a linear hypothesis whose power is
independent of the variance. Annals of Mathematical Statistics, 16,
243–258.

Biographies

L. Jeff Hong is an Assistant Professor in the Department of Industrial
Engineering and Logistics Management at the Hong Kong University of
Science and Technology. He obtained his Ph.D. in Industrial Engineering
and Management Sciences from Northwestern University. His research
interests include design and analysis of simulation experiments, optimiza-
tion via simulation and robust optimization. He is currently an Associate
Editor of Naval Research Logistics.

Barry L. Nelson is the Charles Deering McCormick Professor in the De-
partment of Industrial Engineering and Management Sciences at North-
western University, and is the Editor in Chief of Naval Research Logistics.
He is interested in the design and analysis of computer simulation experi-
ments, particularly statistical efficiency, multivariate output analysis, and
input modeling. He is a Fellow of the Institute for Operations Research
and the Management Sciences.

