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Conditional value at risk (CVaR) is both a coherent risk measure and a natural risk statistic. It is often used
to measure the risk associated with large losses. In this paper, we study how to estimate the sensitivities

of CVaR using Monte Carlo simulation. We first prove that the CVaR sensitivity can be written as a conditional
expectation for general loss distributions. We then propose an estimator of the CVaR sensitivity and analyze its
asymptotic properties. The numerical results show that the estimator works well. Furthermore, we demonstrate
how to use the estimator to solve optimization problems with CVaR objective and/or constraints, and compare
it to a popular linear programming-based algorithm.
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1. Introduction
Value at risk (VaR) and conditional value at risk
(CVaR) are two widely used risk measures. The �-VaR
of a random loss L is the � quantile of L, and the
�-CVaR of L is the average of all �-VaR of L with
� ∈ ���1�, where 0<�< 1 is typically close to 1. If we
define the large losses to be the losses in the upper
�1−��-tail of the loss distribution, then �-VaR is the
lower bound of the large losses, �-CVaR is the mean
of the large losses, and �� + 1�/2-VaR, also known
as the tail conditional median (Heyde et al. 2007), is
the median of the large losses. They provide informa-
tion on the potential large losses that an investor may
suffer.

Both VaR and CVaR have been used in practice
and have also been studied extensively in the litera-
ture. There has been debate on which one is a bet-
ter risk measure. Artzner et al. (1999) define a set of
axioms and call the risk measures that satisfy these
axioms coherent risk measures. One of the axioms is
the subadditivity axiom, which requires a risk mea-
sure 	 to satisfy 	�L1 + L2� ≤ 	�L1�+ 	�L2�. The sub-
additivity axiom basically means that “a merger does
not create extra risk” (Artzner et al. 1999). They show
that VaR does not always satisfy the subadditivity
and, therefore, is not a coherent risk measure. CVaR,
on the other hand, always satisfies the subadditiv-
ity and is a coherent risk measure (Rockafellar and
Uryasev 2002).

Heyde et al. (2007), however, argue that the require-
ment of subadditivity may lead to risk measures that
are not robust with respect to the underlying models

and data, and thus are not suitable for regulatory
purposes. They also provide other evidence that sup-
ports the relaxation of the subadditivity, including
evidence from utility theory, bankruptcy risk related
to merger, psychology theory, and the study of the tail
subadditivity of VaR (see also Daníelsson et al. 2005).
Heyde et al. (2007) suggest replacing the subadditiv-
ity axiom by the comonotonic subadditivity axiom,
which requires the subadditivity to hold only for the
random variables that always move in the same direc-
tion. They call risk measures that satisfy their new set
of axioms natural risk statistics. They show that both
VaR and CVaR are natural risk statistics but that VaR
is more robust, i.e., it is less sensitive to the tail distri-
bution, which is often difficult to characterize in prac-
tice (see also Heyde and Kou 2004). In this paper, we
focus on CVaR. Though it may not be suitable as a
regulatory or external risk measure, it is nevertheless
widely used in practice and in academic research, and
it may also be an excellent internal risk measure for
financial institutions.

VaR and CVaR have also been used in stochastic
optimization, where the stochastic objective or con-
straint functions may be substituted by their VaRs or
CVaRs to obtain robust solutions. Because a coher-
ent risk measure of a stochastic convex function is
also convex (Ruszczyński and Shapiro 2006), CVaR
is more popular in stochastic convex optimization.
For instance, Rockafellar and Uryasev (2000) and
Ruszczyński and Shapiro (2006) study the use of
CVaR in stochastic linear programming and stochastic
convex optimization, respectively. VaR has also been
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used in this context. For instance, Hong and Qi
(2007) suggest using VaR in the stochastic linear
programming.

Suppose that the loss is a function of some parame-
ters, e.g., the loss of a portfolio is often a random func-
tion of the interest rate and the volatilities of the assets.
Then, the VaR and CVaR of the loss are both func-
tions of these parameters. The partial derivatives of
these functions are called VaR and CVaR sensitivities,
which provide information on how changes in these
parameters affect the output risk measures. These
sensitivities are useful in managing risk, verifying
model adequacy, and solving stochastic optimization
problems.

If the parameters of the loss model are controllable,
i.e., the risk managers can adjust these parameters,
then their sensitivities can be used for risk manage-
ment. For instance, if the parameters are the percent-
ages of the total portfolio value allocated to different
financial assets, then their sensitivities can be used to
adjust the portfolio to ensure that the VaR or CVaR of
the loss is below certain level.

If the parameters are uncontrollable, e.g., they are
modeled as constants in the loss model, then their
sensitivities are measures of model adequacy. In any
loss models, there are constants. Some of them may be
estimated through historical data, e.g., the volatilities
of the financial assets. They are subject to estimation
errors. Some of them may be modeled as constants for
convenience, e.g., the interest rate may be modeled as
a constant in a short period. They are subject to mod-
eling errors. In both situations, if the sensitivity with
respect to a certain parameter is high, then we can
conclude that the information about this parameter is
valuable and it may be necessary to reconsider the
model or estimate the parameter accurately, because
there are often errors in the specification of the param-
eter and the VaR or CVaR may change significantly
with respect to a small error in the specification.

When the VaR and CVaR are used in stochastic
optimization, their sensitivities are the partial deriva-
tives which form the gradients. If we know how to
calculate the gradients, we can then apply gradient-
based nonlinear optimization algorithms, e.g., the
quasi-Newton method (Nocedal and Wright 1999), to
solve the optimization problems. The rates of conver-
gence of these algorithms are generally much faster
than gradient-free algorithms.

In this paper, we assume that there exists a model
of the loss function and that we may simulate the
model to obtain independent and identically dis-
tributed observations of the loss. Under this assump-
tion, the estimation of VaR sensitivities for general
loss functions has been studied in Hong (2008). Hong
(2008) shows that the VaR sensitivity can be writ-
ten as a conditional expectation and also provides a

batching estimator to consistently estimate the sen-
sitivity. The estimation of CVaR sensitivities for lin-
ear loss functions has been studied by Scaillet (2004).
Scaillet (2004) provides a kernel estimator of the sen-
sitivity and shows that the estimator is consistent and
follows an asymptotic normal distribution.

In practice, however, many loss functions are non-
linear. For instance, the loss functions of portfolios
with financial derivatives are often nonlinear func-
tions of the interest rate and volatilities, and the objec-
tive and constraints functions of stochastic convex
optimization problems may also be nonlinear. There-
fore, we need to have CVaR sensitivity estimators that
can be applied to nonlinear loss functions. Further-
more, the performances of the kernel estimator pro-
posed in Scaillet (2004) are sensitive to the choices of
kernel function and bandwidth, which may be diffi-
cult to choose well in practice. In this paper, we study
the estimation of CVaR sensitivities for general loss
functions and we propose an estimator that is easier
to compute than the kernel estimator. We prove that
the estimator is consistent and follows an asymptotic
normal distribution.

The general problem of sensitivity estimation has
been studied extensively in the simulation litera-
ture (see, for instance, Fu 2006 for a recent review).
Many approaches have been proposed, including
finite-difference approximations, perturbation analy-
sis, and the likelihood ratio method. The key problem
of the finite-difference approximation is the trade-
off between the bias and variance of the estimator
(e.g., Fox and Glynn 1989). The perturbation analy-
sis uses the pathwise derivatives of the random loss
function in the estimation (e.g., Glasserman 1991). It
often results in estimators with lower variances when
it is applicable. In the likelihood ratio method, the
probability density of the loss function is differenti-
ated (e.g., Glynn 1990). It is more widely applicable
than the perturbation analysis. However, its estima-
tors often have large variances. The CVaR sensitiv-
ity estimator proposed in this paper uses pathwise
derivatives. It belongs to the category of the pertur-
bation analysis.

The rest of this paper is organized as follows: In §2,
we introduce the background of CVaR and discuss
its estimation. In §3, we derive a closed-form expres-
sion of the CVaR sensitivity for general loss functions.
Then, in §4, we study the asymptotic properties of the
estimator, including consistency, asymptotic bias and
variance, and asymptotic normality. Numerical results
are reported in §5, followed by the conclusions in §6.
Some of the lengthy proofs are included in the online
appendix (provided in the e-companion).1

1 An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.
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2. Background and Estimation
of CVaR

Let L be the random loss and FL�y�= Pr�L≤ y be the
cumulative distribution function (c.d.f.) of L. Then,
the inverse c.d.f. of L can be defined as F −1

L ��� =
inf�y� FL�y�≥ �. Following the definitions of Trindade
et al. (2007), for any � ∈ �0�1�, we define the �-VaR
of L as v� = F −1

L ��� and define the �-CVaR of L as
c� = 1/�1−��

∫ 1
�
v� d�. Pflug (2000) shows that c� can

also be written as the following stochastic program:

c� = inf
t∈�

{
t+ 1

1−�
E�L− t�+

}
� (1)

where �a�+ = max�0� a. Let T be the set of opti-
mal solutions to the stochastic program defined
in Equation (1). Trindade et al. (2007) show that
T = �u��v��, where u� = sup�t� FL�t� ≤ �. In particu-
lar, note that v� ∈ T . Therefore,

c� = v� +
1

1−�
E�L− v��

+� (2)

When L has a density in the neighborhood of v�,
then v� = u�. Therefore, the stochastic program
defined in Equation (1) has a unique solution. Then,
c� = E�L � L≥ v��, where the right-hand side of the
equation is also known as the expected shortfall or
the tail conditional expectation.

Suppose that L1�L2� � � � �Ln are n independent and
identically distributed (i.i.d.) observations from the
loss L. Then, the �-VaR of L can be estimated by
	vn
� = L
n�� � n, where Li �n is the ith order statistic from

the n observations. Serfling (1980) shows that 	vn
� → v�

with probability 1 (w.p.1) as n→. If L has a den-
sity fL�·� in the neighborhood of v� and fL�v�� > 0,
Serfling (1980) also shows that

√
n�	vn

� − v�� ⇒
√
��1−��

fL�v��
N �0�1� as n→� (3)

where “⇒” denotes “converge in distribution” and
N�0�1� represents the standard normal random
variable.

Trindade et al. (2007) suggest using the estimator

ĉn� = inf
t∈�

{
t+ 1

n�1−��

n∑
i=1

�Li − t�+
}

(4)

to estimate the �-CVaR of L. Let Fn�y� = �1/n� ·∑n
i=1 1�Li≤y be the empirical c.d.f. constructed from

L1�L2� � � � �Ln, where 1�· is the indicator function.
Then

ĉn� = inf
t∈�

{
t+ 1

1−�
E�L̃− t�+

}
�

where the c.d.f. of L̃ is Fn. Because 	vn
� = F −1

n ���, then
by Equation (2), we have

ĉn� = 	vn
� +

1
n�1−��

n∑
i=1

�Li − 	vn
��

+� (5)

Therefore, we can apply Equation (5) to directly esti-
mate c� instead of solving the stochastic program in
Equation (4).

By the stochastic-program form of ĉn�, Trindade
et al. (2007) show that when E�L2� <, ĉn� is a con-
sistent estimator of c�, i.e., ĉn� → c� in probability as
n→. Furthermore, if v� = u�, then

√
n�ĉn� − c�� ⇒ �� ·N�0�1� as n→�

where

��2
= lim

n→nVar�ĉn��=
1

�1−��2
·Var��L−v��·1�L≥v�

�� (6)

3. A Closed-Form Expression of
CVaR Sensitivity

Suppose that the random loss can be modeled as a
function L� �, where  is the parameter with respect to
which we differentiate. In this paper, we assume that  
is one-dimensional and that  ∈!, where ! ⊂� is an
open set. If  is multidimensional, we may treat each
dimension as a one-dimensional parameter while fix-
ing other dimensions constants. Let L′� �= dL� �/d 
be the sample path derivative of L� �. If L� �= h� �X�
with some function h and random variable (or vec-
tor) X, then L′� � = $h� �X�/$ . For instance, L� �
may be the random annual loss of a financial portfolio
which contains  shares of a stock with an annual loss
X, i.e., L� �=  X+Y , where Y denotes the annual loss
of other assets. Then, L′� �=X. When L� � cannot be
represented by a closed-form function, L′� � may still
be evaluated numerically through perturbation anal-
ysis (PA) in many situations (Glasserman 1991). For
instance, L� � may be the negative of the value of an
asset that is modeled as a diffusion process and  may
be the volatility of the asset. Though the closed form
of L� � is often not available, L′� � may be computed
through PA (see, for instance, Broadie and Glasserman
1996). In this paper, we assume that L′� � is available
for any  ∈!.

Let v�� � and c�� � be the �-VaR and �-CVaR of
L� � for any  , where 0 < � < 1. They are both
functions of  . We make the following assumptions
on L� �.

Assumption 1. There exists a random variable K with
E�K� <  such that �L� 2� − L� 1�� ≤ K� 2 −  1� for all
 1�  2 ∈!, and L′� � exists w.p.1 for all  ∈!.

Assumption 2. The VaR function v�� � is differen-
tiable for any  ∈!.

Assumption 3. For any  ∈!, Pr�L� �= v�� �= 0.

Assumption 1 is a typical assumption used in
pathwise derivative estimation (e.g., Broadie and
Glasserman 1996). Assumption 2 implies that there
exists some constant ' > 0 such that �v�� + ( � −
v�� �� ≤ ' �( � when ( is small enough for any



Hong and Liu: Simulating Sensitivities of Conditional Value at Risk
284 Management Science 55(2), pp. 281–293, © 2009 INFORMS

 ∈!, i.e., v�� � is locally Lipschitz continuous.
Assumption 3 implies that Pr�L� � ≥ v�� � = 1 − �.
Then, by Equation (2),

c�� � = v�� �+
1

1−�
E�L� �− v�� ��

+

= E�L� � � L� �≥ v�� ���

To establish a closed-from expression of the CVaR
sensitivity, we need the following lemma that is often
used to analyze pathwise derivatives.

Lemma 3.1 (Broadie and Glasserman 1996). Let f
denote a Lipschitz continuous function and Df denote the
set of points at which f is differentiable. Suppose that
Assumption 1 is satisfied on an open set � ⊂ !, and
Pr�L� � ∈ Df  = 1 for all  ∈ �. Then, at every  ∈ �,
dE�f �L� ���/d = E�f ′�L� �� ·L′� ��.

Then, we have the following theorem that gives a
closed-form expression of c′�� �.

Theorem 3.1. Suppose that Assumptions 1–3 are sat-
isfied. Then, for any  ∈!,

c′�� �= E�L′� � � L� �≥ v�� ���

Proof. To prove the theorem, we prove that
c′�� 

∗�= E�L′� ∗� � L� ∗�≥ v�� 
∗�� for any  ∗ ∈!.

Note that, by Assumption 3, for any  ∈!,

c�� � = E�L� � �L� �≥v�� ��=
1

1−�
E�L� �·1�L� �≥v�� �

�

= 1
1−�

E
{
�L� �−v�� ��·1�L� �−v�� �≥0

}+v�� �� (7)

For any  ∗ ∈!, by Assumption 2, there exists a neigh-
borhood of  ∗, denoted as (a ∗� b ∗ ), and a constant
' ∗ such that  ∗ ∈ �a ∗� b ∗�, �a ∗� b ∗�⊂!, and �v�� 1�−
v�� 2�� ≤ ' ∗ � 1 −  2� for all  1�  2 ∈ �a ∗� b ∗�. Then by
Assumption 1,

��L� 2�− v�� 2��− �L� 1�− v�� 1��� ≤ �K+' ∗� · � 2 −  1�
for all  1�  2 ∈ �a ∗� b ∗�, and E�K + ' ∗� = E�K� + ' ∗
<. Note that f �x� = x · 1�x≥0 is a Lipschitz contin-
uous function and f ′�x�= 1�x≥0 when x �= 0. Because
Pr�L� � − v�� � �= 0 = 1 by Assumption 3, then by
Lemma 3.1 with �= �a ∗� b ∗�, at every  ∈ �a ∗� b ∗�,

d

d 
E
{
�L� �−v�� ��·1�L� �−v�� �≥0

}= d

d 
E�f �L� �−v�� ���

= E
{
�L′� �− v′

�� �� · 1�L� �−v�� �≥0

}
�

Then, by Equation (7), at every  ∈ �a ∗� b ∗�,

c′�� � =
1

1−�
E
{
�L′� �− v′

�� �� · 1�L� �−v�� �≥0

}+ v′
�� �

= 1
1−�

E�L′� �·1�L� �≥v�� �
�=E�L′� � �L� �≥v�� ���

Because  ∗ ∈ �a ∗� b ∗�, then c′�� 
∗� = E�L′� ∗� � L� ∗� ≥

v�� 
∗��. This concludes the proof of the theorem. �

Remark 3.1. The conclusion of Theorem 3.1 can
also be obtained by differentiating the stochastic pro-
gram representation of c�� � �see Equation (1)�, where

c�� �= inf
t∈�

{
t+ 1

1−�
E�L� �− t�+

}
�

Because �d/d �E�L� � − t�+ = E�L′� � · 1�L� �≥t� by
Lemma 3.1 and t∗ = v�� �, then by Danskin’s theorem
�see Bernhard and Rapaport 1995�,

c′�� �=
1

1−�
E�L′� �·1�L� �≥t�

∣∣∣∣
t=t∗

=E�L′� � �L� �≥v�� ��

under some technical conditions.
Remark 3.2. Note that �1 − ��c�� � =

∫ 1
�
v�� �d�.

Then,

�1−��c′�� �=
∫ 1

�
v′
�� �d� (8)

under some technical conditions. By Theorem 3.1,

�1−��c′�� � = E�L′� � · 1�L� �≥v�� �
�

=
∫ 1

�
E�L′� � � L� �= v�� �� d�� (9)

By Equations �8� and �9�, v′
�� � = E�L′� � � L� � =

v�� �� under some technical conditions. This result is
the same as the result derived in Hong (2008).

Theorem 3.1 gives a closed-form expression of the
CVaR sensitivity. When the closed-form expression
can be evaluated, the theorem provides an approach
to calculating CVaR sensitivity directly. When the
closed-form expression cannot be evaluated, the the-
orem may be used to derive estimators of CVaR sen-
sitivity, as we do in the next section.

4. Estimation of CVaR Sensitivity
To simplify the notation, we let L and D denote L� �
and L′� �, respectively, and let c� and v� denote c�� �
and v�� �, respectively, when there is no ambiguity.
Suppose that we have n i.i.d. observations of �L�D�,
denoted as �L1�D1�� �L2�D2�� � � � � �Ln�Dn�. In this sec-
tion, we are interested in estimating CVaR sensitivity
c′�� � using the observations.

By Theorem 3.1,

c′�� �= E�D � L≥ v��=
1

1−�
E�D · 1�L≥v�

�� (10)

Then, we propose the following estimator of c′�� �:

�Yn =
1

n�1−��

n∑
j=1

Dj · 1�Lj≥	vn�� (11)

where 	vn
� = L
n�� � n is a strongly consistent estimator

of v�. Compared to the kernel estimator proposed in
Scaillet (2004) for linear loss functions, this estimator
is more intuitive and does not require the selection of
kernel function and bandwidth.
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4.1. Strong Consistency
In this subsection, we prove that �Yn is a strongly
consistent estimator of c′�� �. We need the following
proposition, which is proved in the online appendix:

Proposition 4.1. If Pr�L = v� = 0, then �1/n� ·∑n
j=1�1�Lj≥	vn� − 1�Lj≥v�

�→ 0 w.p.1 as n→.

Now, we can state and prove the strong consistency
of �Yn in estimating c′�� �.

Theorem 4.1. Suppose that Assumptions 1–3 are satis-
fied and E��D�1+�� < for some � > 0. Then, �Yn → c′�� �
w.p.1 as n→.

Proof. By the strong law of large numbers (Durrett
1996),

1
n

n∑
j=1

Dj · 1�Lj≥v�
→ E�D · 1�L≥v�

� w�p�1

as n→. Then, it suffices to prove that

1
n

n∑
j=1

Dj · �1�Lj≥	vn� − 1�Lj≥v�
�→ 0 w�p�1�

By Hölder’s inequality (Rudin 1987),∣∣∣∣ 1n
n∑

j=1

Dj · �1�Lj≥	vn� − 1�Lj≥v�
�

∣∣∣∣
≤
[

1
n

n∑
j=1

�Dj �1+�

]1/�1+��

·
[

1
n

n∑
j=1

∣∣∣1�Lj≥	vn� − 1�Lj≥v�

∣∣∣1+1/�
]�/�1+��

� (12)

Because E��D�1+�� < , then by the strong law of
large numbers and the continuous mapping theorem
(Durrett 1996),[

1
n

n∑
j=1

�Dj �1+�

]1/�1+��

→ �E��D�1+���1/�1+�� < w�p�1� (13)

Furthermore, note that

1
n

n∑
j=1

∣∣1�Lj≥	vn� − 1�Lj≥v�

∣∣1+1/�

= 1
n

n∑
j=1

∣∣1�Lj≥	vn� − 1�Lj≥v�

∣∣
= �1�	vn�≤v�

− 1�	vn�>v�
� · 1

n

n∑
j=1

�1�Lj≥	vn� − 1�Lj≥v�
�� (14)

By Assumption 3, Pr�L = v� = 0. Then, �1/n� ·∑n
j=1�1�Lj≥	vn� − 1�Lj≥v�

� → 0 w.p.1 by Proposition 4.1.

Then, Equation (14) goes to 0 w.p.1 as n→. By the
continuous mapping theorem,

[
1
n

n∑
j=1

∣∣1�Lj≥	vn� − 1�Lj≥v�

∣∣1+1/�
]�/�1+��

→ 0 w�p�1� (15)

Therefore, by Equations (12), (13), and (15), the con-
clusion of the theorem holds. �

4.2. Asymptotic Bias
Let L be a continuous random variable with den-
sity fL�y� and define g�y�= E�D � L= y�. Hong (2008)
proves that v′

�� � = g�v��. In the following two sub-
sections, we make the following assumptions.

Assumption 4. For all  ∈ !, L is a continuous ran-
dom variable with a density function fL�y�. Furthermore,
fL�y� and g�y� are continuous at y = v�, and fL�v�� > 0.

Assumption 5. For all  ∈ !, E�L2� <  and
E�D2� < .

Given Assumptions 4 and 5, we have the following
lemma, which is proved in the online appendix:

Lemma 4.1. Suppose that Assumptions 4 and 5 are
satisfied. Let bn = 2�logn�1/2/fL�v��n

1/2 and Sn =
�/� �L
n��+k �n − v��> bn, where / denotes the realization
of the random variable. Then, for any 0 < � < 1 and any
fixed constant J > 0, there exists a constant B > 0 such
that Pr�Sn�≤ 2/n2 and E�L2


n��+k �n� < B for all sufficiently
large n and all integers k such that �k� ≤ J .

Let h�y�= E�D · 1�L≥y�, then h�y�= ∫ +
y

g�t�fL�t� dt.
If fL�·� and g�·� are continuous at y, then h�·� is dif-
ferentiable at y and

h′�y�=−g�y�fL�y�� (16)

Therefore, by Assumption 4, h′�v�� = −g�v��fL�v��.
Furthermore, by Equation (10),

c′�� �=
1

1−�
h�v��� (17)

Because L is a continuous random variable by
Assumption 4, then

1�L1≥	vn� = 1�L1≥L
n�� � n = 1�L1>L
n��−1 � n
= 1�L1>L
n��−1 � n−1

w�p�1� (18)

where 	vn
� is calculated from L1�L2� � � � �Ln and

L
n��−1 � n−1 is calculated from L2� � � � �Ln. Therefore, L1
is independent of L
n��−1 � n−1.

Note that

E��Yn� =
1

1−�
E�D1 ·1�L1≥	vn��=

1
1−�

E�D1 ·1�L1>L
n��−1�n−1
�

= 1
1−�

E�h�L
n��−1�n−1���
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By Equation (17),

E��Yn�− c′�� �=
1

1−�
·E�h�L
n��−1 � n−1�−h�v���� (19)

In the next theorem, we show that the bias of �Yn is
of o�n−1/2�.

Theorem 4.2. Suppose that Assumptions 1–5 are sat-
isfied. Then, E��Yn�− c′�� � is of o�n

−1/2�.

Proof. By Equation (19), we only need to show that
√
n ·E�h � F −1

L �U
n��−1 � n−1�−h � F −1
L ����→ 0�

where Uk�n−1 is the kth order statistic of n−1 standard
uniform random variables.

Note that

�h � F −1
L �′���= h′�v��/fL�v��=−g�v��

by Equation (16), and
√
n�U
n��−1 � n−1 −�� ⇒ √

��1−�� ·N�0�1�

by Equation (3). Then, by the delta method (Lehmann
1999), we have

√
n · �h � F −1

L �U
n��−1 � n−1�−h � F −1
L ����

⇒ −g�v��
√
��1−�� ·N�0�1��

Then, it suffices to show that the sequence �
√
n�h �

F −1
L �U
n��−1 � n−1�−h�F −1

L �����n= 2�3� � � � is uniformly
integrable.

Define bn and Sn as those in Lemma 4.1. Then,
Pr�Sn−1� is of O�n−2� by Lemma 4.1. Because �h�y�� =
�E�D · 1�L≥y�� ≤ E��D� · 1�L≥y�≤ E��D�� <, then

nE��h � F −1
L �U
n��−1 � n−1�−h � F −1

L ����2 · 1�/∈Sn−1


≤ 4nE2��D��Pr�Sn−1�=O�n−1�� (20)

Because fL�y� and g�y� are continuous at y = v�

with fL�v�� > 0 and �h � F −1
L �′��� = −g�F −1

L ����, by
Taylor’s theorem (Lehmann 1999), we have

nE
{
�h � F −1

L �U
n��−1 � n−1�−h � F −1
L ����2 · 1�/�∈Sn−1

}
= nE

[
g2�6n��U
n��−1 � n−1 −��2 · 1�/�∈Sn−1

]
�

where 6n is a random variable between v� and
L
n��−1 � n−1. By continuity of g�y� at y = v�, there exists
7 > 0 and B > 0 such that �g�y�� ≤ B for all y ∈ �v�− 7�
v� + 7�. When / �∈ Sn−1, �L
n��−1 � n−1 − v�� ≤ bn−1, where
bn → 0 as n→ 0. Therefore, when n is large enough,
bn−1 < 7 and �g�6n�� ≤ B. Hence,

nE
{[
h � F −1

L �U
n��−1 � n−1�−h � F −1
L ���

]2 · 1�/�∈Sn−1

}
≤ nB2E

[
�U
n��−1 � n−1 −��2

]
� (21)

It is known that nE��U
n��−1 � n−1 − ��2� converges to
a constant (David 1981). Then, by Equations (20)
and (21),

sup
n

nE��h � F −1
L �U
n��−1 � n−1�−h � F −1

L ����2 <�

Therefore, the sequence �
√
n�h � F −1

L �U
n��−1 � n−1�− h �
F −1
L �����n= 2�3� � � � is uniformly integrable. �

4.3. Asymptotic Variance
Let

�Mn = �1−���Yn =
1
n

n∑
j=1

Dj · 1�Lj≥	vn�� (22)

In this subsection, we first study the asymptotic vari-
ance of �Mn. Then, the asymptotic variance of �Yn can
be easily derived using Equation (22).

Note that

Var� �Mn� =
1
n

Var�D1 ·1�L1≥	vn��+
(

1− 1
n

)
·Cov�D1 ·1�L1≥	vn��D2 ·1�L2≥	vn��

= 1
n

Var�D1 ·1�L1≥	vn��+
(

1− 1
n

)

·�E�D1D2 ·1�L1≥	vn�1�L2≥	vn��−E2�D1 ·1�L1≥	vn����

Furthermore, note that

1�L1≥	vn� · 1�L2≥	vn� = 1�L1≥	vn��L2≥	vn� = 1�L1>L
n��−1 � n�L2>L
n��−1 � n

= 1�L1>L
n��−1 � n−2�L2>L
n��−1 � n−2

= 1�L1>L
n��−1 � n−2
· 1�L2>L
n��−1 � n−2

w�p�1�

where L
n��−1 � n−2 is formed by L3�L4� � � � �Ln. It is inde-
pendent of L1 and L2. Then,

E�D1D2 ·1�L1≥	vn�1�L2≥	vn��

=E�D1D2 ·1�L1>L
n��−1�n−2
·1�L2>L
n��−1�n−2

�

=E�E2�D1 ·1�L1>L
n��−1�n−2
�L
n��−1�n−2��

=E�h2�L
n��−1�n−2���

Similarly, by Equation (18), E2�D1 · 1�L1≥	vn�� =
E2�h�L
n��−1 � n−1��. Therefore,

nVar� �Mn�

=Var�D1 · 1�L1≥	vn��+ �n− 1�Var�h�L
n��−1 � n−2��+ �n− 1�

· �E2�h�L
n��−1 � n−2��−E2�h�L
n��−1 � n−1��� (23)

In the following three propositions, we show that all
three terms on the right-hand side of Equation (23)
converge to constants as n → . The proofs of the
propositions are included in the online appendix.
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Proposition 4.2. Suppose that Assumptions 1–5 are
satisfied. Then,

lim
n→Var�D1 · 1�L1≥	vn��=Var�D · 1�L≥v�

��

Proposition 4.3. Suppose that Assumptions 1–5 are
satisfied. Then,

lim
n→�n− 1�Var�h�L
n��−1 � n−2��= ��1−��g2�v���

Proposition 4.4. Suppose that Assumptions 1–5 are
satisfied. Then,

lim
n→�n− 1��E2�h�L
n��−1 � n−2��−E2�h�L
n��−1 � n−1��

=−2�h�v��g�v���

Combining Propositions 4.2, 4.3, and 4.4, we have
the following theorem that characterizes the asymp-
totic variance of �Yn.

Theorem 4.3. Suppose that Assumptions 1–5 are sat-
isfied. Then,

lim
n→nVar��Yn�=

1
�1−��2

Var��D− g�v��� · 1�L≥v�
��

Proof. By Propositions 4.2–4.4, we have

lim
n→nVar� �Mn�

=Var�D · 1�L≥v�
�+��1−��g2�v��− 2�h�v��g�v���

Because h�v��= E�D · 1�L≥v�
�, then

lim
n→nVar� �Mn�

={E�D2 ·1�L≥v�
�−E2�D ·1�L≥v�

�
}

+{�1−��g2�v��−�1−��2g2�v��
}

−{2g�v��E�D ·1�L≥v�
�−2�1−��g�v��E�D ·1�L≥v�

�
}

={E�D2 ·1�L≥v�
�+�1−��g2�v��−2g�v��E�D ·1�L≥v�

�
}

−{E2�D ·1�L≥v�
�+�1−��2g2�v��

−2�1−��g�v��E�D ·1�L≥v�
�
}

=E
{
�D−g�v���

2 ·1�L≥v�

}−E2
{
�D−g�v���·1�L≥v�

}
=Var��D−g�v���·1�L≥v�

��

Because �Yn = �1−��−1 · �Mn by Equation (22), then the
conclusion of the theorem holds. �

Hong (2008) shows that v′
�� � = g�v��. Then, the

conclusion of Theorem 4.3 becomes

lim
n→nVar��Yn�=

1
�1−��2

Var��D− v′
�� �� · 1�L≥v�

�� (24)

Comparing Equation (6) to Equation (24), we see clear
resemblance between the two.

4.4. Asymptotic Normality
Let g2�y�= E�D2 � L= y� and q�y�= fL�y�E��D� � L= y�.
To analyze the asymptotic normality of �Yn, we make
the following additional assumption.

Assumption 6. The functions g′�y�, f ′
L�y�, q�y�, and

g2�y� are continuous at y = v�.

Remark 4.1. Assumption 6 ensures that L has good
mathematical properties in the neighborhood of v�.
Let r�x� = fL�y�g�y�. The continuity of g′�y� and
f ′
L�y� at y = v� implies that there exists 7 > 0 and
B > 0 such that �r ′�y�� ≤ B and �r�y�� ≤ B, for any
y ∈ �v� − 7�v� + 7�.

Analyzing the asymptotic normality of �Yn is equiv-
alent to analyzing the asymptotic normality of �Mn.
Note that

�Mn =
1
n

n∑
j=1

Dj · 1�Lj≥	vn� =
1
n

n∑
j=1

Dj · 1�	vn�−Lj≤0�

There are two major difficulties in analyzing the
asymptotic normality of �Mn. The first difficulty is
that Dj · 1�	vn�−Lj≤0, j = 1�2� � � � �n, are not independent
because 	vn

� is estimated from L1�L2� � � � �Ln. To solve
this problem, we let

�Mn�v��=
1
n

n∑
j=1

Dj · 1�v�−Lj≤0�

Then, the asymptotic normality of �Mn�v�� can be ana-
lyzed by the classical central limit theorem (Durrett
1996). The second difficulty is that �Mn− �Mn�v�� is dif-
ficult to analyze because it involves an indicator func-
tion 1�x≤0 that is nonsmooth. To solve this problem,
we define

;n�x�=




1 if x≤−<n�

1
2
− 1

2
sin

(
x

2<n

=

)
if − <n < x < <n�

0 if x≥ <n�

where we require that <n satisfies that n<3
n → and

n<4
n → 0, e.g., <n = n−7/24. Note that ;n�·� is a smooth

approximation of 1�x≤0 (Figure 1), and ;n�x�→ 1�x≤0

as n→ for any x �= 0. Furthermore, we let

�Zn =
1
n

n∑
j=1

Dj ·;n�	vn
� −Lj��

�Zn�v��=
1
n

n∑
j=1

Dj ·;n�v� −Lj��

They are approximations of �Mn and �Mn�v��, respec-
tively.
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Figure 1 A Smooth Approximation of 1�x≤0�

1

0–δn δn

Then, we may write
√
n��Yn − c′�� ��

= 1
1−�

·√n� �Mn − �1−��c′�� ��

= 1
1−�

·√n� �Mn − �Zn�+
1

1−�
·√n� �Zn − �Zn�v���

+ 1
1−�

·√n� �Zn�v��− �Mn�v���

+ 1
1−�

·√n� �Mn�v��− �1−��c′�� ���

In the online appendix, we prove that both√
n� �Mn − �Zn� and

√
n� �Zn�v��− �Mn�v��� converge to

zero in probability as n → , and that
√
n� �Zn −

�Zn�v��� has the same asymptotic distribution as
Tn = −g�v��

√
n��1/n�

∑n
j=1 1�Lj≥v�

− �1 − ���. Then,√
n��Yn−c′�� �� has the same asymptotic distribution as

1
1−�

�Tn +
√
n� �Mn�v��− �1−��c′�� ��

= 1
1−�

·√n

{
1
n

n∑
j=1

�Dj − g�v��� · 1�Lj≥v�

− �1−���c′�� �− g�v���

}
�

which converges in distribution to � ·N�0�1� by the
classical central limit theorem, where

�2
 = 1

�1−��2
Var��D− g�v��� · 1�L≥v�

��

Note that �2
 is the same as the asymptotic variance

we obtain in Theorem 4.3. Therefore, we have the fol-
lowing theorem on the asymptotic normality of �Yn.
The detailed proof of the theorem can be found in the
online appendix.

Theorem 4.4. Suppose that Assumptions 1–6 are sat-
isfied. Then,

√
n��Yn − c′�� �� ⇒ � ·N�0�1�

as n→.

4.5. Constructing Confidence Intervals
In some situations, we may need to know the pre-
cision of the estimator or determine the sample size
to achieve a certain level of precision. Then, confi-
dence intervals of the estimator can be used (Law and
Kelton 2000).

To construct asymptotically valid confidence inter-
vals of c′�� �, we may use Theorem 4.4. However, �2


is typically unknown. To estimate �2

, we first use the
following procedure to estimate g�v��.

1. Divide �Lj�Dj�, j = 1�2� � � � �n, into k groups.
Each group has m observations, where k and m sat-
isfy that k →  and m →  as n → . Denote the
observations as �Lil�Dil�, where i = 1�2� � � � � k and
l= 1�2� � � � �m.

2. For each group, sort Lil such that Li�1� ≤ Li�2�
≤ · · · ≤ Li�m�, and denote the corresponding Dil as
Di�1��Di�2�� � � � �Di�m�. Let Qi =Di�
m���.

3. Let �Qn = �1/k�
∑k

i=1 Qi.
Hong (2008) shows that �Qn converges in probabil-

ity to g�v�� as n→. Let

Wj =
1

1−�
�Dj − �Qn� · 1�Lj≥	vn�

and

S2
n =

1
n− 1

n∑
j=1

�Wj − �W�2�

where �W = �1/n�
∑n

j=1 Wj . Then, we have the follow-
ing lemma, which is proved in the online appendix:

Lemma 4.2. Suppose that Assumptions 1–6 are satis-
fied and E��D�2+�� < for some � > 0. Then, S2

n → �2
 in

probability as n→.

Because S2
n → �2

 in probability as n →  by
Lemma 4.2, then by Theorem 4.4, we have

S−1
n ·√n��Yn − c′�� �� ⇒ N�0�1��

Then, an asymptotically valid 100�1−��% confidence
interval of c′�� � is

��Yn − z1−�/2Sn/
√
n� �Yn + z1−�/2Sn/

√
n��

where z1−�/2 is the 1 − �/2 quantile of the standard
normal distribution. The numerical results reported
in §5 show that the confidence intervals have appro-
priate coverage probabilities.

5. Numerical Study
In this section, we study the performances of the
CVaR sensitivity estimators through numerical exper-
iments. We first consider an example where the port-
folio CVaR depends on some input parameters that
may have estimation errors. Therefore, we may be
interested in their sensitivities. The numerical results
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show that the estimators and confidence intervals we
proposed in this paper can appropriately estimate the
sensitivities. We then consider an example on CVaR
sensitivity with respect to the tail parameter for a
heavy-tailed distribution, to study the impact of the
tail parameter on the CVaR. Lastly, we consider a
portfolio optimization problem that is subject to a
CVaR constraint. We show how to use the CVaR sen-
sitivity estimator to conduct optimization. Compared
to the linear programming method of Krokhmal et al.
(2002), which is often used to solve this type of prob-
lems, our method generally achieves the same level
of accuracy but requires significantly lower computa-
tional effort.

5.1. Portfolio CVaR Sensitivities with Respect to
Input Parameters

Suppose there is a portfolio of many assets, e.g.,
stocks, options, and securities, that may depend on a
number of risk factors. We are interested in estimating
the CVaR of the portfolio loss in a given time period.
In such a case, we often have a simulation model that
can simulate the changes of risk factors and then cal-
culate the future portfolio losses. The portfolio CVaR
can then be computed based on the simulated losses.
We often assume that the risk factors follow some
known distributions, and the parameters of the dis-
tributions are often estimated from historical or sim-
ulated data. These parameters may have estimation
errors. The CVaR sensitivities with respect to these
parameters provide measures of model adequacy. If
the sensitivities are high, a small error in the param-
eters may result in a large change in the estimated
CVaR value. We can then conclude that the informa-
tion about these parameters is valuable and it may
be necessary to reconsider the model or estimate the
parameters more accurately.

In the rest of this subsection, we consider a very
simple loss model and illustrate the performances of
our CVaR sensitivity estimators. Let (S denote the
changes in the risk factors in the time period. It is a
random vector. Suppose that we model the loss as the
following quadratic function of (S:

L= a0 + a′(S+(S ′A(S�

where a0, a, and A are known. For instance, the
loss L is often approximated by the delta-gamma
approximation (Glasserman 2004), which follows this
quadratic model. In this example, we suppose that
a0 = 0�3, a= �0�8�1�5�′, and

A=
(

1�2 0�6

0�6 1�5

)
�

Furthermore, we suppose that (S follows a multi-
variate normal distribution with mean E= �E1�E2�

′ =
�0�01�0�03�′ and covariance

F= 0�02

(
1 0�5

0�5 1

)
�

where E and F are estimated from historical data. Let
c��E� denote the �-CVaR of L, where � = 95%. Sup-
pose that the estimation error of E1 may be large, e.g.,
as large as 50% of the estimated value, then we are
interested in estimating $c��E�/$E1 to see if it is sen-
sitive to changes in E1.

To analyze the performances of our CVaR sensitiv-
ity estimator, we need to know the theoretical value
of the sensitivity. Because it is difficult to compute
the sensitivity analytically, we use finite difference
approximation with 1,000 replications, each using
106 independent samples, to remove the estimation
error. We estimate $c��E�/$E1 = 1�7391. We then use
this value as a benchmark to test the performances
of our estimator. Specifically, we treat the benchmark
as the theoretical value and consider the bias, vari-
ance, and mean square error (MSE) of our estimator
of the CVaR sensitivity as well as the coverage proba-
bility of the 90% confidence intervals. To compute the
CVaR sensitivity estimator �Yn, we also need $L/$E1,
which we compute through the infinitesimal pertur-
bation analysis (see, for instance, Glasserman 1991).

The performances of the estimator and confidence
intervals are reported in Figure 2. The plots are the
average performance based on 1,000 independent
replications. In the left panel of Figure 2, we plot
the estimated absolute biases, the standard deviations,
and the square roots of the MSEs relative to the sen-
sitivity value with respect to different sample sizes.
From the plot, we see that the errors in the estimator
decrease as the sample size increases. The square root
of the MSE is below 2% of the sensitivity value when
the sample size is 5,000. In the right panel of Fig-
ure 2, we plot the observed coverage probabilities of
the confidence intervals with respect to different sam-
ple sizes. We see that the coverage probabilities are
close to 90%, which is the nominal coverage probabil-
ity, when the sample sizes are larger than 2,000. From
the plots, we see that both the point estimator and the
confidence interval have the desired properties.

As explained in the example, the estimation error of
E1 may be large, e.g., as large as 50% of the estimated
value. We study the effect of the estimation error to
the CVaR of the portfolio through a simulation study.
We obtain 1,000 observations of �L�D�, and find out
that the estimated CVaR is 1.26 with a 90% confidence
interval �1�18�1�33� and the estimated CVaR sensitiv-
ity with respect to E1 is 1.73 with a 90% confidence
interval �1�66�1�80�. Because the estimated E1 = 0�01,
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Figure 2 Estimated Absolute Bias, Square Root Variance, and Square Root MSE of the Point Estimator (Left) and Observed Coverage Probabilities of
the 90% Confidence Intervals (Right) with Respect to Different Sample Sizes for the Portfolio CVaR Sensitivity Example
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then a 50% error in the estimation of E1, i.e., (E1 =
0�005, may change the CVaR value by approximately
$c��E�/$E1 · (E1. Considering the worst case in the
confidence intervals, a 50% error in E1 may change
the estimated CVaR value by approximately 0.76%.
Therefore, we conclude that the estimated CVaR value
is insensitive to the estimation error in E1 even when
the error may be as large as 50%.

5.2. CVaR Sensitivity with Respect to Tail
Parameter for Heavy-Tailed Distribution

Financial data such as daily returns of stock prices
often possess heavy tails. Many heavy-tailed distri-
butions have been adopted to model this phenomena
in financial and economic applications. In this sec-
tion, we consider an example where the loss L follows
a stable distribution (Nolan 2007) with characteris-
tic function E�exp�iuL��= exp�−�u�6� where 6 ∈ �0�2�.
When 6 = 2, the stable distribution is a normal distri-
bution. When 6 ∈ �0�2�, however, the distribution is
heavy-tailed, e.g., a Cauchy distribution when 6 = 1.
In this example, we are interested in estimating the
CVaR sensitivity with respect to the tail parameter 6.

By Chambers et al. (1976), when 6 �= 1, L can be
simulated by

L= sin�6M�

�cos�M��1/6

[
cos��1− 6�M�

W

]�1−6�/6

�

where random variables M and W follow a uni-
form distribution on �−=/2�=/2� and an exponential
distribution with mean 1, respectively. The sample-
path derivative $L/$6 can also be obtained. We can
apply the method developed in this paper to estimate
$c��6�/$6. In the numerical example, we let �= 95%
and 6 = 1�7.

With 106 independent samples, we find out the esti-
mated c��6� value is 5.0 and the estimated $c��6�/$6
value is −10�3. As pointed out by Heyde and Kou

(2004), the tail behaviors of distributions are often dif-
ficult to distinguish using practical data. For instance,
we plot the densities of the stable distributions with
6 = 1�7 and 6 = 1�8 in Figure 3. In practice, it
is very difficult to distinguish them. However, by
Taylor’s approximation, changing 6 from 1.7 to 1.8,
i.e., (6 = 0�1, will cause c��6� to change approximately
$c��6�/$6 · (6 ≈ −1�03, which is about 20.6% of the
estimated c��6� value. This shows that the CVaR is
difficult to estimate, which is consistent with the mes-
sage in Heyde and Kou (2004).

To compare the robustness of VaR and CVaR with
respect to the tail parameter, we also estimate v��6�
and $v��6�/$6 with � = 95% and 6 = 1�7 using the
method of Hong (2008). With 106 independent sam-
ples, we find that the estimated v��6� and $v��6�/$6
values are 2.6 and −1.7, respectively. Then, changing
6 by 0.1 will cause v��6� to change about 6.5%. This
shows that the VaR is significantly more robust to the
tail parameter than the CVaR, which is consistent with
the message in Heyde et al. (2007).

Figure 3 Densities of Stable Distributions with � = 1�7 and � = 1�8
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5.3. Portfolio Optimization with CVaR Constraint
The portfolio optimization problem often tries to find
a portfolio that has the maximum expected return and
limited downside risk. In this subsection, we consider
the problem where the downside risk is measured by
the portfolio CVaR. The problem can be formulated
as follows:

maximize E�p�t�′x−p�0�′x� (25)

subject to c��p�0�
′x−p�t�′x�≤K

p�0�′x≤W

xi ≥ 0 ∀ i= 1�2� � � � � k�

where p�0� is the (deterministic) price vector of all
securities at the current time and p�t� is the (random)
price vector at time t in the future, K is the allowed
�-CVaR limit at time t, and W is the upper limit of
the total wealth of the portfolio at time 0. In prob-
lem (25), � is often set as 0.9 or 0.95. To simplify the
problem, we assume that short sales are not allowed
for all securities, i.e., xi ≥ 0 for all i= 1�2� � � � � k.

Because CVaR is a coherent risk measure,
problem (25) is a convex programming problem
(Rockafellar and Uryasev 2000). Then, we can use
nonlinear optimization algorithms, e.g., sequential
quadratic programming (Nocedal and Wright 1999),
to solve the problem. Based on the model of p�t�,
closed-from expressions for the objective function and
the constraint function may be difficult to obtain.
In this section, we suggest using the estimates of the
objective function and its gradient and the estimates
of the constraint function and its gradient to con-
duct optimization. We first generate n observations of
p�t�−p�0�. Then, the objective function and constraint
function and their gradients may be estimated for any
given x and used to solve the optimization problem.

Figure 4 Absolute Error of Objective Value Relative to the True Optimal (Left) and CPU Time Gradient Method With Respect to n logn Where n Is
the Sample Size (Right) for the Portfolio Optimization Problem
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To test the performance of the algorithm, we let
p�t� − p�0� take a multivariate normal distribution.
Then, closed-form expressions for the objective and
constraint functions can be derived and the optimal
solution to problem (25) can be obtained. This solu-
tion enables us to study the performance of our algo-
rithm. When p�t� − p�0� follows more complicated
models, closed-form expressions for the objective and
constraint may not be available but our algorithm can
still be applied.

We let k = 100, and let E�pi�t� − pi�0�� evenly
spread between 0.04 and 0.50 and the standard devi-
ation Std�pi�t� − pi�0�� = E�pi�t� − pi�0�� − 0�03 for all
i = 1�2� � � � � k. We let the coefficients of correlation
between pi�t�− pi�0� and pj�t�− pj�0� be 0.35 for any
i �= j . We also let pi�0�= 1 for all i= 1�2� � � � � k, W = 1,
K = 0�2, and � = 0�95. Based on closed-form expres-
sions for the objective and constraints, we find that
the optimal objective value is 0.4901.

To solve the above problem using simulation, we
use Matlab 7.3 function fmincon to conduct the opti-
mization with estimated objective function values,
constraint function values and their gradients, and
randomly generated starting points. The function
fmincon implements a version of sequential quadratic
programming to solve constrained nonlinear opti-
mization problems (http://www.mathworks.com).
After fmincon reports the optimal solution, we com-
pute the actual objective value of the solution and the
0.95 CVaR of the loss at the solution. We can calculate
them because p�t�−p�0� takes a multivariate normal
distribution. These values can be used to analyze the
performance of the algorithm.

In the left panel of Figure 4, we plot the rela-
tive differences between the optimal objective value
from our method and the actual optimal with respect
to different sample sizes. We see that the difference
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decreases as the sample size increases. The differences
are below 0.1% of the actual optimal when the sam-
ple sizes are larger than 20,000. In the right panel of
Figure 4, we plot the computational time with respect
to n logn, where n is the sample size. We see that
the computational time increases linearly with respect
to n logn. Note that to solve the problem using our
method, the only computational time that is related
to the sample size is the estimation of the CVaR and
CVaR sensitivities, which is an O�n logn� operation
due to the sorting of the samples. This explains why
the total computational time increases in a scale of
n logn. Both plots of Figure 4 are averages of 100 inde-
pendent replications conducted on a PC with Pen-
tium(R)4 3 GHz CPU and 1 GB of RAM.

Krokhmal et al. (2002) also propose a method to
solve this problem based on the stochastic program
representation of CVaR. Let Lj denote the loss of the
jth sample path, i.e., Lj = �p�0� − p�t��j . Then, the
problem can be formulated as the following linear
programming problem:

maximize E�p�t�′x−p�0�′x� (26)

subject to v+ 1
1−�

1
n

n∑
j=1

zj ≤K

zj ≥ L′
jx− v� zj ≥ 0� ∀ j = 1� � � � �n

p�0�′x≤W

xi ≥ 0� ∀ i= 1�2� � � � � k�

The problem can be solved by the Matlab 7.3 function
linprog, which solves linear programming problems.

We compare the performances of Krokhmal et al.
(2002), denoted as the linear method, with our
method, denoted as the gradient method, through
numerical experiments. The comparison results are
reported in Figures 5 and 6. In Figure 5, we plot
the average relative errors of the objective values

Figure 5 Performances of the Optimal Solutions Found by the Linear Method and the Gradient Method
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Figure 6 CPU Time Ratio of the Linear Method to the Gradient
Method
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(left panel) and the average violations of the CVaR
constraint (right panel) for both methods. We see
that both methods have excellent performances and
the gradient method has smaller constraint violations
when the sample size is small. In Figure 6, we plot the
ratios of the CPU times of the linear method to the
gradient method. We see that this ratio grows fast as
the sample size grows. When the sample size is 3,000,
the linear method uses 40 times more computational
time than the gradient method. Note that the num-
ber of constraints in the linear programming formu-
lation grows linearly with respect o the sample size n.
Therefore, when n becomes larger, the linear program
becomes much more difficult to solve and the compu-
tational time grows faster than n log�n�. This explains
why the gradient method is more efficient than the
linear method when the sample size becomes large.

6. Conclusions
In this paper, we study the estimation of CVaR sensi-
tivity using simulation. We first show that the CVaR



Hong and Liu: Simulating Sensitivities of Conditional Value at Risk
Management Science 55(2), pp. 281–293, © 2009 INFORMS 293

sensitivity can be written as a conditional expectation.
Based on this result, we propose an estimator of CVaR
sensitivity and study its asymptotic properties. The
numerical results show that the estimators and confi-
dence intervals we propose in the paper work well.

7. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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