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Quantiles of a random performance serve as important alternatives to the usual expected value. They are used in the
financial industry as measures of risk and in the service industry as measures of service quality. To manage the quantile of
a performance, we need to know how changes in the input parameters affect the output quantiles, which are called quantile
sensitivities. In this paper, we show that the quantile sensitivities can be written in the form of conditional expectations.
Based on the conditional-expectation form, we first propose an infinitesimal-perturbation-analysis (IPA) estimator. The IPA
estimator is asymptotically unbiased, but it is not consistent. We then obtain a consistent estimator by dividing data into
batches and averaging the IPA estimates of all batches. The estimator satisfies a central limit theorem for the i.i.d. data,
and the rate of convergence is strictly slower than n−1/3. The numerical results show that the estimator works well for
practical problems.
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1. Introduction
Quantiles of a random performance serve as important
alternatives to the usual expected value. The �-quantile
of a continuous random variable Y is a value q� such
that Pr�Y � q�� = � for any prespecified � (0 < � < 1).
When � = 0	5, the corresponding quantile is the median,
which provides information on the location of a distribu-
tion; when � is close to zero or one, the corresponding
quantile provides tail information of a distribution that is
often missed by some other widely used measures, e.g.,
mean and variance.

Quantiles have been adopted by many industries as major
measures of random performance. In the financial industry,
quantiles, also known as value-at-risks (VaRs), are widely
accepted measures of capital adequacy. For example, the
Bank for International Settlement uses the 10-day VaR at
the 99% level to measure the adequacy of bank capital
(Duffie and Pan 1997). In the service industry, quantiles
are often used as measures of service quality. For exam-
ple, the service quality of an out-of-hospital system is fre-
quently measured by the 90th percentile of the times taken
to respond to emergency requests and to transport patients
to a hospital (Austin and Schull 2003). Quantiles have
also been used as billing measures in some circumstances.
For example, some Internet service providers (ISPs) charge
their users based on the 95th percentile of the traffic load
in a billing cycle (Goldenberg et al. 2004).

To improve or optimize the quantile performance of
a system, one needs to understand how changes in the
input parameters affect the output quantile performance.
These effects are often called quantile sensitivities. When

parameters vary continuously, sensitivities are essentially
partial derivatives. The vector of these partial derivatives
is the quantile gradient, which plays an important role
in optimization problems with quantile objectives or con-
straints. One example is robust optimization, where param-
eters in the optimization problems may be noisy. In this
example, the random objective and constraints may be
substituted by their quantiles to obtain a robust solution
(see, for example, Hong and Qi 2007 for a quantile-based
robust linear programming). Another example is optimiza-
tion problems with chance constraints, where each con-
straint is required to be satisfied with at least a certain
probability (Birge and Louveaux 1997). Note that chance
constraints can be transformed into quantile constraints.

1.1. Literature Review

Estimating quantile sensitivities is related to two streams
of literature: quantile estimation and gradient estimation.
Bahadur (1966) provides a quantile estimator for i.i.d. data,
and shows that the estimator is strongly consistent and has
an asymptotic normal distribution. A more recent and thor-
ough review of quantile estimation for i.i.d. data can be
found in Serfling (1980). Sen (1972) extends Bahadur’s
(1966) estimator, and shows that the strong consistency
and the asymptotic normality of the estimator also hold
for dependent data that are 
-mixing. Heidelberger and
Lewis (1984) design new procedures using the maximum
transformation to estimate the extreme quantiles of highly
positively correlated data. In the simulation literature, a
number of variance reduction techniques have been pro-
posed for quantile estimation; for example, Hsu and Nelson
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(1990) and Hesterberg and Nelson (1998) use control
variates, Glynn (1996) applies importance sampling, and
Avramidis and Wilson (1998) employ correlation-induction
techniques. Jin et al. (2003) study the probabilistic error
bounds for simulation quantile estimators using large devi-
ation techniques, and they provide a new quantile estimator
that can be shown to be more efficient than some of the
existing quantile estimators. Glasserman et al. (2000, 2002)
study the problem of estimating portfolio VaR. They utilize
the properties of financial portfolios and apply importance
sampling and stratified sampling to reduce the variances of
their estimators.

Gradient estimation has also been studied extensively
in the simulation literature (see Fu 2006 for an intro-
duction). However, most of the work focuses on estimat-
ing gradient for expectations or long-run averages. There
are three major approaches: finite-difference approxima-
tion, perturbation analysis, and the likelihood ratio/score
function (LR/SF) method. For the finite-difference approx-
imation, the key problem is the trade-off between the bias
and variance of the estimator. This trade-off is analyzed
by Fox and Glynn (1989). In perturbation analysis, the
key problem is the interchangeability of differentiation and
expectation. The research was originated by Ho and Cao
(1983), and is summarized in Glasserman (1991) and Fu
and Hu (1997). For the LR/SF method, the interchangeabil-
ity is often not an issue. However, the variance of the esti-
mator is often high. Related literature includes Reiman and
Weiss (1989), Glynn (1990), and Rubinstein and Shapiro
(1993).

Although both quantile estimation and gradient estima-
tion have been studied extensively, there are very few
papers on the estimation of quantile sensitivities. The only
paper that we are aware of is Hong and Qi (2007), who
study linear programming with noisy parameters. They pro-
pose to minimize the quantile of the noisy objective func-
tion. In that paper, they derive a conditional-expectation
form of the quantile gradient for the linear function and
provide a heuristic estimator. Their numerical results show
that their gradient estimator greatly improves the perfor-
mance of their optimization algorithms when compared to
other gradient estimators.

1.2. Contributions and Organization

In this paper, we are interested in the estimation of quantile
gradient for general functions, either with or without closed
forms. In §2, we define the problem explicitly. In §§3 and 4,
we first derive a conditional-expectation form for the gra-
dient of a probability function under some mild conditions.
We then show that the quantile gradient can also be written
as a conditional expectation based on the relation between
probability and quantile. When the conditional expecta-
tion can be calculated directly, the quantile gradient can be
derived analytically. When it cannot be calculated directly,
the conditional-expectation form can also be used to design
gradient estimators.

In §5, we propose an estimator using infinitesimal per-
turbation analysis (IPA). We show that the IPA estimator
is asymptotically unbiased but fails to be consistent. In §6,
we suggest a new quantile sensitivity estimator by dividing
data into batches and averaging the IPA estimates of all
batches. We show that this new estimator is consistent if
both the number of batches (k) and the number of samples
within each batch (m) go to infinity as the total sample
size (n) goes to infinity. We also show that the estimator
satisfies a central limit theorem when m and k also satisfy
limn→�

√
k/m = 0, and the rate of convergence is k−1/2,

which is strictly slower than n−1/3.
In §7, we apply our approach to two examples: a portfo-

lio management problem and a production-inventory prob-
lem. The numerical results show that the estimator can
appropriately estimate quantile sensitivities, and they also
provide more insights on the quality of the estimator. In §8,
we discuss the estimation of the steady-state quantile sensi-
tivities. The simple numerical example shows that the esti-
mator proposed in this paper also works for dependent data.
Finally, the paper is concluded in §9.

2. Problem Definition
Let h���X� be a function of � and X, where � is the
parameter with respect to which we differentiate and X is a
vector of random variables. In this paper, we assume that �
is one-dimensional and � ∈�, where � ⊂	 is an open set.
If � is multidimensional, we may treat each dimension as a
one-dimensional parameter, while fixing other dimensions
constants. Because simulation output can be viewed as a
function of parameters and random numbers, h���X� is a
general representation of the simulation output. In many
cases, there may exist more meaningful representation of
� and X. In portfolio management, for example, � may be
the percentages of the total fund that are allocated to dif-
ferent assets and X may be the (random) annual rates of
return of the assets. In Markovian queueing systems, for
example, � may represent the arrival and service rates and
X may represent the sequence of exponential random vari-
ables with rate 1.

For any � ∈ �, let q���� be the �-quantile (0 < � < 1)
of h���X�. If h���X� has a density in the neighborhood
of q����, then Pr�h���X� � q����� = �. Suppose that we
have observed X1�X2� 	 	 	 �Xn. Then, q���� can be esti-
mated by the 
n��th order statistic of h���X�; see, for
example, Serfling (1980) for i.i.d. data and Sen (1972) for
dependent data. In this paper, we are interested in estimat-
ing q′

����= dq����/d� using the same data.

3. A Closed Form of Probability
Sensitivity

Let pa���= Pr�h���X�� a� for any real number a. Then,
pa��� is a function of �. We first derive a closed form of
p′

a���= dpa���/d� in this section, and then use it to derive
a closed form of q′

���� in §4.
We make the following assumption on h���X�.
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Assumption 1. The pathwise derivative ��h���X� exists
w.p.1 for any � ∈�, and there exists a function k�X� with
E�k�X�� <�, such that

�h��2�X�−h��1�X��� k�X���2 − �1�
for all �1� �2 ∈�.

Assumption 1 is a typical assumption used in pathwise
derivative estimation. Glasserman (1991) develops the com-
muting conditions for generalized semi-Markov processes
under which this assumption holds. Broadie and Glasser-
man (1996) demonstrate the use of this assumption in
estimating price sensitivities of financial derivatives. This
assumption guarantees that ��E�h���X��= E���h���X��.

Let F �t� �� and f �t� �� denote the cumulative distribu-
tion function and density of h���X�. We make the follow-
ing assumptions on f �t� �� and F �t� ��.

Assumption 2. For any � ∈ �, h���X� has a continuous
density f �t� �� in a neighborhood of t = a, and ��F �t� ��
exists and is continuous with respect to both � and t
at t = a.

Assumption 2 requires that h���X� is a continuous ran-
dom variable in a neighborhood of t = a. Because h���X�
is typically a continuous function of X and some of X may
be continuous random variables, h���X� is typically a con-
tinuous random variable. Furthermore, note that pa��� =
F �a���. Therefore, assuming that F �a��� is differentiable
with respect to � is equivalent to assuming that pa��� is
differentiable with respect to �.

For any � ∈�, let

g�t� ��= E���h���X� � h���X�= t�	

We make the following assumption on g�t� ��.

Assumption 3. For any � ∈ �, g�t� �� is continuous
at t = a.

Note that h���X� is a continuous random variable in the
neighborhood of t = a by Assumption 2. Then, a small
change in t often results in a small change in X, and thus
a small change in ��h���X�. Therefore, g�t� �� is typically
continuous at t = a. Although Assumptions 2 and 3 are
weak assumptions, they are typically difficult to verify for
practical problems.

To establish the closed form of probability sensitivity, we
also need the following lemma that is often used to analyze
pathwise derivatives.

Lemma 1 (Broadie and Glasserman 1996). Let f denote
a Lipschitz continuous function and Df denote the set of
points at which f is differentiable. Suppose that Assump-
tion 1 is satisfied and Pr�h���X� ∈ Df � = 1 for all � ∈ �.
Then, at every � ∈�,

dE�f �h���X���

d�
= E

[
�f �h���X��

��

]
	

Then, we have the following theorem that gives the
closed form of p′

a���.

Theorem 1. Suppose that Assumptions 1 to 3 are satisfied.
Then,

p′
a���=−f �a��� ·E���h���X� � h���X�= a�	 (1)

Proof. By Assumptions 2 and 3, for any � ∈ �, we let
�l�� u�� ⊂ � be the neighborhood of a, i.e., a ∈ �l�� u��,
such that h���X� has a continuous density f �t� �� and
g�t� �� is continuous for any t ∈ �l�� u��. Let

"�t� ��= E
[
�t −h���X�� · 1�h���X��t�

]
for any t ∈ �l�� u��. Then,

"�t� ��= tF �t� ��−E
[
h���X� · 1�h���X��l��

]
−E

[
h���X� · 1�l�<h���X��t�

]
= tF �t���−E

[
h���X�·1�h���X��l��

]−∫ t

l�

vf �v���dv	

Because f �v� �� is continuous at v = t by Assumption 2,
then

�t"�t� ��= F �t� ��+ tf �t� ��− tf �t� ��= F �t� ��

for any t ∈ �l�� u��. Then, �t"�a���= F �a���= pa��� and
p′

a��� = ���t"�a���, where we use the (slightly abusive)
notation �t"�a���= �t"�t� ���t=a.

By Assumption 2, �t"�a��� is continuous at a and �.
Then, by Marsden and Hoffman (1993, Exercise 24,
p. 387),

p′
a���= ���t"�a���= �t��"�a���	 (2)

Let f �z�= �t − z� · 1�z�t�. It is Lipschitz continuous and
differentiable for any z �= t. Because Pr�L��� = t� = 0 for
any t ∈ �l�� u��, then by Assumption 1 and Lemma 1,

��"�t� ��= dE�f �h���X���

d�
= E

[
�f �h���X��

��

]

=−E
[
��h���X� · 1�h���X��t�

]
	

Note that for any t ∈ �l�� u��, we can write

��"�t� ��=−E
[
��h���X� · 1�L����t�

]
=−E

[
��h���X� · 1�h���X��l��

]
−
∫ t

l�

g�v� ��f �v� ��dv	

Then, by the continuity of g�t� �� and f �t� �� (Assump-
tions 2 and 3), �t��"�t� ��=−g�t� ��f �t� ��. Therefore,

�t��"�a���=−g�a���f �a���

=−f �a��� ·E���h���X� � h���X�= a�	

Then, the conclusion of the theorem follows directly from
Equation (2). �
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Remarks. (1) Because the indicator function 1�h���X��a� is
not Lipschitz continuous, we cannot apply Lemma 1 to
direct differentiate pa���= E�1�h���X��a��. This is the major
difficulty of estimating probability sensitivity using path-
wise derivatives. In the proof of Theorem 1, we develop
an approach to overcome this difficulty. We first construct
"�t� �� and show that �t"�a��� = pa���. Then, p′

a��� =
���t"�a���. Using the fact that ���t"�a���= �t��"�a���,
we interchange the order of differentiations to avoid differ-
entiating an indicator function. This approach allows us to
obtain a closed form of p′

a���.
(2) Suppose that h���U� = F −1�U���, where U is a

uniform random variable. Then, a well-known result of per-
turbation analysis (e.g., Suri and Zazanis 1988, Glasserman
1991, and Fu and Hu 1997) states that

��h���U�=−��F �h���U�� ��

�tF �h���U�� ��
	

if �tF �h���U�� �� �= 0. If we let U satisfy h���U� = a,
then

��h���U��h���U�=a =−��F �a���

�tF �a���
=− p′

a���

f �a���
	

Therefore,

p′
a���=−f �a��� · ��h���U��h���U�=a	 (3)

Note that U is uniquely determined by h���U� =
F −1�U���= a. Then, ��h���U��h���U�=a is no longer a ran-
dom variable. It is a constant for any fixed �. Then,

��h���U��h���U�=a = E���h���U� � h���U�= a�	

Therefore, Equation (3) is a special case of Theorem 1.

4. From Probability Sensitivity to
Quantile Sensitivity

Note that

F �a���= pa���� ��F �a� ��= p′
a���� and

�tF �a� ��= f �a���	 (4)

Now we can state and prove the following result on q′
����.

Theorem 2. Suppose that Assumptions 1 to 3 are satisfied
at a= q����. Then,

q′
����= E���h���X� � h���X�= q�����	 (5)

Proof. Because h���X� is a continuous random variable
in the neighborhood of q���� by Assumption 2, then we
have

F �q����� ��= �	 (6)

By differentiating with respect to � on both sides of Equa-
tion (6), we have

�tF �q����� �� · q′
����+ ��F �a� ���a=q���� = 0	

Then, by Theorem 1 and Equation (4),

q′
����=− 1

f �q����� ��
p′

a����a=q����

= E���h���X� � h���X�= q�����	

This concludes the proof of the theorem. �

Although the quantile gradient is of the form of a con-
ditional expectation, direct estimation of it is not easy. The
event �h���X� = q����� is of probability zero. Therefore,
the chance of observing any samples satisfying h���X� =
q���� is zero for any finite number of samples. In the next
two sections, we focus on estimating quantile sensitivities
using an i.i.d. sample of X.

5. An IPA Estimator
In the rest of this paper, we are interested in estimating
q′

���� using an i.i.d. sample �X1�X2� 	 	 	 �Xn�, and we fur-
ther assume that h���X� is a continuous random variable
for simplicity.

Given n i.i.d. observations h���X1��h���X2�� 	 	 	 �
h���Xn�, an estimator of q���� is q̂n

���� = h���X�
n����,
where X�k�, k = 1�2� 	 	 	 � n, satisfy h���X�1�� �

h���X�2�� � · · ·� h���X�n��. Note that X�k� is not the kth
order statistic of X. Because we assume that h���X� is
a continuous random variable, then h���Xk� �= h���Xl�
w.p.1 for any k �= l. Therefore,

h���X�1�� < h���X�2�� < · · ·< h���X�n�� w	p	1	 (7)

Serfling (1980) shows that q̂n
����→ q���� w.p.1 as n→�

for i.i.d. observations.
A natural method to estimate q′

���� is to use the IPA
method. Because h���X� is continuous in �, then by
Equation (7),

h��+ '�X�1�� < h��+ '�X�2�� < · · ·< h��+ '�X�n�� w.p.1

when �'� is small enough. Because h���X� is differentiable
in �, then the IPA estimator of q′

���� can be defined as

Dn = lim
'→0

q̂n
���+ '�− q̂n

����

'

= lim
'→0

h��+ '�X�
n����−h���X�
n����
'

= ��h���X�
n����	 (8)

We may write Dn = ��h���X��h���X�=q̂n
����. Under some

technical conditions, we can show that Dn converges
weakly to ��h���X��h���X�=q���� as n → �. Note that
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h���X�= q���� may not uniquely determine X, e.g., when
X is of multidimension. Then, ��h���X��h���X�=q���� is often
a random variable which cannot be q′

���� because q′
����

is a constant. Therefore, the IPA estimator Dn is not
consistent.

In the next theorem, we show that the expectation of the
IPA estimator converges to the quantile sensitivity. There-
fore, Dn is asymptotically unbiased.

Theorem 3. Suppose that Assumptions 1 to 3 are satisfied
at a = q���� and supn E�D2

n� < �. Then, E�Dn� → q′
����

as n→�.

Proof. Let Fq̂�·� denote the c.d.f. of q̂n
���� and (q̂ denote

the set of values that q̂n
���� may take. Then, for any set

u ∈	,

E�Dn�

= E���h���X�
n�����

=
∫
(q̂

E���h���X�
n���� � q̂n
����= t� dFq̂�t�

=
∫
(q̂

E
[
��h���X�
n����

� h���X�
n����= t� q̂n
����= t

]
dFq̂�t�	 (9)

Note that the event �h���X�
n���� = t� q̂n
���� = t� is equiv-

alent to the event that one of h���Xi�, i = 1�2� 	 	 	 � n, is
equal to t and 
n��−1 of them are less than t and the rest
of them are greater than t w.p.1. Without loss of generality,
we let the last observation Xn satisfy h���Xn�= t. Then,

{
h���X�
n����= t� q̂n

����= t
}

=
{
h���Xn�= t�

n−1∑
i=1

1�h���Xi�<t� = 
n��− 1�

n−1∑
i=1

1�h���Xi�>t� = n− 1−
n��
}

w	p	1	

Because Xn is independent of X1�X2� 	 	 	 �Xn−1, then by
Equation (9),

E�Dn�=
∫
(q̂

E���h���Xn� � h���Xn�= t� dFq̂�t�

=
∫
(q̂

E���h���X� � h���X�= t� dFq̂�t�

=
∫
(q̂

g�t� ��dFq̂�t�= E�g�q̂n
����� ���	 (10)

Because g�t� �� is continuous at t = q���� and q̂n
���� →

q���� w.p.1 as n → �, then by the continuous map-
ping theorem (Durrett 1996), g�q̂n

����� �� ⇒ g�q����� ��
as n → �. Because q′

���� = g�q����� �� by Theorem 2,
then we only need to prove that �g�q̂n

����� ��� is uniformly
integrable.

Note that

E�D2
n�= E����h���X�
n�����

2�

=
∫
(q̂

E����h���X��2 � h���X�= t�dFq̂�t� (11)

�

∫
(q̂

E2���h���X� � h���X�= t� dFq̂�t� (12)

=
∫
(q̂

g2�t� ��dFq̂�t�= E�g2�q̂n
����� ����

where Equation (11) follows from the derivation of
Equation (10) and Equation (12) follows from Jensen’s
inequality (Durrett 1996). Because supn E�D2

n� < �, then
supn E�g2�q̂n

����� ��� < �. Therefore, �g�q̂n
����� ��� is

uniformly integrable. This concludes the proof of the
theorem. �

The IPA estimator is asymptotically unbiased, but it is
not consistent. Therefore, it is not an appropriate estima-
tor of the quantile sensitivities. To illustrate this important
issue, we consider the following example. Let h���X� =
�X1 +X2, where X1 and X2 are independent standard nor-
mal random variables. Then, h���X� follows a normal
distribution with mean zero and variance �2 + 1. Let z�

denote the � quantile of a standard normal distribution.
Then, q���� = z�

√
�2 + 1 and q′

���� = z��/
√

�2 + 1. The
IPA estimator converges to X1 � ��X1 +X2 = q�����, which
follows a normal distribution with mean z��/

√
�2 + 1 and

variance 1/��2 + 1�. It is a random variable. However,
E�X1 � �X1 + X2 = q����� = z��/

√
�2 + 1 = q′

����. This
example shows that the IPA estimator is not consistent, but
it is asymptotically unbiased.

6. A Consistent Estimator
Suppose that there exist positive integers m and k such
that m × k = n. Then, we divide the n i.i.d. observations
into k batches and each batch has m observations. For each
batch, we calculate the IPA estimator Dm. Then, we have
k observations of Dm, denoted as Dm1�Dm2� 	 	 	 �Dmk. Let
�Dmk = �1/k�

∑k
l=1 Dml. In the next theorem, we show that

�Dmk is a consistent estimator of q′
����. In the rest of the

paper, we use
P−→ to denote “converges in probability.”

Theorem 4. Suppose that Assumptions 1–3 are satisfied at
a = q����, supm E�D2

m� < �, and m →� and k →� as
n→�. Then,

�Dmk

P−→ q′
���� as n=mk →�	

Proof. By Theorem 3,

E�Dm�→ q′
���� as m→�	 (13)

For any , > 0, by the Chebyshev’s inequality,

Pr�� �Dmk −E�Dm��� ,��
Var�Dm�

k,2
�

supm E�D2
m�

k,2
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Then, Pr�� �Dmk −E�Dm��� ,�→ 0 as k →�. Therefore,

�Dmk −E�Dm�
P−→ 0 as k →�	 (14)

Because n → � implies both m → � and k → �, then
the conclusion of the theorem follows directly from Equa-
tions (13) and (14). �

From the proof of Theorem 4, we see that the estima-
tion error comes from two parts: the within-batch error,
E�Dm�− q′

����, and the across-batch error, �Dmk − E�Dm�.
The within-batch error is the bias of the estimator, and the
across-batch error is caused by the variance of �Dmk. Theo-
rem 4 shows that both the bias and variance go to zero as
n→�. Therefore, �Dmk is consistent.

In the rest of this section, we show that �Dmk follows a
central limit theorem under some conditions. Then, we may
construct asymptotically valid confidence intervals based
on the theorem. We also discuss the relation between m
and k to balance the bias and variance.

To study the asymptotic normality of �Dmk, we first prove
the following lemmas on the rates of convergence of the
bias and the mean square error (MSE) of q̂m

� ���.

Lemma 2. Suppose that f �t� �� is continuously differen-
tiable at t = q���� and f �q����� �� > 0. Then, both
E�q̂m

� ���− q����� and E��q̂m
� ���− q�����2� are of O�m−1�.

Proof. Let F −1�·� �� be the inverse c.d.f. of h���X�. Then,
by Equations (4.6.3) and (4.6.4) of David (1981),

E�q̂m
� ����

=F −1�pm���+ pm�1−pm�

2�m+2�
�F −1�′′�pm���+o�m−1�� (15)

Var�q̂m
� ����= pm�1−pm�

m+1
��F −1�′�pm����2+o�m−1�� (16)

where pm = 
m��/�m+ 1�. Note that

�F −1�′�pm���= 1
f �F −1�pm���� ��

and

�F −1�′′�pm���=− f ′�F −1�pm���� ��

f 3�F −1�pm���� ��
	

Because f �t� �� exists in a neighborhood of t = q����, then
F −1�y� �� is continuous in a neighborhood of y = �. Fur-
thermore, because

�pm −�� =
∣∣∣∣ 
m��
m+ 1

−�

∣∣∣∣� 1
m+ 1

�

then when m is sufficiently large, F −1�pm��� can be in
any neighborhood of �. Therefore, when f �t� �� is con-
tinuously differentiable at t = q���� and f �q����� �� > 0,
�F −1�′�pm��� and �F −1�′′�pm��� exist and are bounded
when m is sufficiently large.

Because q����= F −1�����, then by Equation (15),

E�q̂m
� ���− q�����

= F −1�pm���− F −1�����

+ pm�1−pm�

2�m+ 2�
�F −1�′′�pm���+ o�m−1�	 (17)

By Taylor’s theorem,

F −1�pm���− F −1�����

= �F −1�′������pm −��+ o��pm −���	
Because �pm − �� � 1/�m+ 1�, then F −1�pm��� −
F −1����� is of O�m−1�. By Equation (17), E�q̂m

� ��� −
q����� is also of O�m−1�.

Note that

E��q̂m
� ���− q�����2�= �E�q̂m

� ���− q������2 +Var�q̂m
� ����	

Because E�q̂m
� ���− q����� is of O�m−1�, then �E�q̂m

� ���−
q������2 is of o�m−1�. By Equation (16), Var�q̂m

� ���� is of
O�m−1�. Therefore, E��q̂m

� ���−q�����2� is of O�m−1�. This
concludes the proof of the lemma. �

From Lemma 2, we see that both the bias and variance
of the quantile estimator converge in the order of m−1. The
numerical experiments also show that both the bias and
variance do not go to zero monotonically as the sample size
increases, and they vary with different � values. To illus-
trate the behaviors of the bias and variance, we compute
the bias and variance of the quantile estimator of the stan-
dard normal distribution and plot them in Figures 1 and 2.
From the figures, we see that both the bias and variance
display oscillatory behaviors as the sample size increases,
and they also increase drastically when � approaches zero
or one.

In the following lemma, we study the rate of convergence
of the bias of �Dmk.

Lemma 3. Suppose that g�t� �� is twice differentiable with
respect to t and ��2

t g�t� ��� � M for some M > 0. Then,
E�Dm�− q′

���� is of O�m−1�.

Proof. ByEquation (10),wehaveE�Dm�= E�g�q̂m
� ���� ���.

Then, it suffices to prove that E�g�q̂m
� ���� ���− q′

���� is of
O�m−1� as m→�.

By Taylor’s theorem,

g�q̂m
� ���� ��= g�q����� ��+ �tg�q����� ���q̂m

� ���− q�����

+ �2
t g�Y � ���q̂m

� ���− q�����2
for some random variable Y . Then,

�E�Dm�− q′
����� = �E�g�q̂m

� ���� ��− g�q����� ����
� ��tg�q����� ��� · �E�q̂m

� ���− q������
+M ·E��q̂m

� ���− q�����2�	 (18)

By Lemma 2, the conclusion of this lemma holds. �

Let 12
m =Var�Dm�. Then, we have the following theorem

that characterizes the asymptotic distribution of �Dmk.
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Figure 1. Bias of the quantile estimator.
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Theorem 5. Suppose that Assumptions 1 to 3 are satisfied
at a= q����, the conditions of Lemmas 2 and 3 hold, and
supm E��Dm�2+2� < � for some 2 > 0. If both k →� and
m→� as n→� and limn→�

√
k/m= 0, and 1m > 0 for

any m > 0, then
√

k

1m

� �Dmk − q′
����� ⇒ N�0�1� as n=mk →�	

Proof. Because supm E��Dm�2+2� < � for some 2 > 0,
by Lyapounov’s central limit theorem (Theorem 27.3 of
Billingsley 1995),
√

k

1m

� �Dmk −E�Dm�� ⇒ N�0�1� as n→�	

Because limn→�
√

k/m = 0 and 1m > 0, then by
Lemma 3,
√

k

1m

�E�Dm�− q′
�����=

√
k

m1m

·m�E�Dm�− q′
�����→ 0

as n→�	

Figure 2. Variance of the quantile estimator.
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Therefore,

√
k

1m

� �Dmk − q′
�����=

√
k

1m

� �Dmk −E�Dm��

+
√

k

1m

�E�Dm�− q′
����� ⇒ N�0�1�

as n = mk → �. This concludes the proof of the
theorem. �

Because 12
m is typically unknown, we can use the sample

variance

S2
mk =

1
k− 1

k∑
i=1

�Dmi − �Dmk�
2

to estimate 12
m. In the appendix, we show that S2

mk/1
2
m → 1

in probability under certain conditions. Therefore,

√
k

Smk

� �Dmk − q′
����� ⇒ N�0�1� as n→�	
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Then, an asymptotically valid 100�1 − 5�% confidence
interval of q′

���� is

� �Dmk − z1−5/2Smk/
√

k� �Dmk + z1−5/2Smk/
√

k�� (19)

where z1−5/2 is the 1−5/2 quantile of the standard normal
distribution.

From Lemma 3 and Theorem 5, we see that the vari-
ance of �Dmk converges in the rate of 1/k and the bias of
�Dmk goes to zero in the rate of 1/m. Therefore, the rate
of convergence of �Dmk is k−1/2, which is always strictly
slower than n−1/3. In practice, one might set k = n2/3−'

and m = n1/3+' for some 0 < ' < 2/3. We suggest to set
'= 1/6, then k =m=√

n. The numerical results reported
in §7 show that it is often a good and robust choice for
both the estimator and confidence intervals. To minimize
the asymptotic MSE of the estimator, however, we may
choose ' that is close to zero. When ' is close to zero,
the bias of �

√
k/1m�� �Dmk − E�Dm�� is often significantly

different from zero when n is not large enough. Then,
the actual coverage probability of the confidence interval
is often less than the nominal coverage probability. Fur-
thermore, by Equation (18), the bias of �Dmk is related to
the bias and variance of the quantile estimator, which both
increase drastically when � approaches zero or one (see
Figures 1 and 2). Therefore, m often needs to be large to
ensure a low bias when � is close to zero or one.

7. Numerical Study
In this section, we study the performances of the quan-
tile sensitivity estimator through two examples: a portfolio
management problem and a production-inventory problem.
For the first example, the analytical quantile sensitivity can
be derived. Then, we use the MSE of the point estimator
and the coverage probability of the 90% confidence inter-
val to evaluate the performances of our estimator. For the
second example, the analytical quantile sensitivity is not
available. Then, we compare the values of the point esti-
mators and the half widths of the confidence intervals of
our method and the finite-difference method.

7.1. A Portfolio Management Problem

A portfolio is composed of three assets. The annual rates
of return of the assets are denoted as X1, X2, and X3, and
the percentages of the total fund allocated to the assets are
denoted as �1, �2, and �3. Suppose that X = �X1�X2�X3�

′

follows a multivariate normal distribution with mean vector
6= �0	06�0	15�0	25�′ and variance-covariance matrix

7=




0	02

0	10

0	22






1 −0	3 −0	2

−0	3 1 0	2

−0	2 0	2 1




·




0	02

0	10

0	22


 	

Then, the portfolio annual rate of return is

h���X�= �1X1 + �2X2 + �3X3�

which follows a normal distribution with mean �′6 and
variance �′7�. Then, the quantile and quantile sensitivities
of h���X� can be calculated analytically. Suppose that we
are interested in the quantile sensitivity with respect to �3,
with � = �0	2�0	3�0	5�′. Then,

��3
q����= 0	25+ 0	2135z��

where z� is the � quantile of the standard normal distri-
bution. In this subsection, we use the method developed in
this paper to estimate the quantile sensitivity, and compare
the estimates to the actual value.

Because ��3
h���X�=X3, we can calculate the IPA esti-

mate for each batch. Then, we can calculate the point esti-
mator �Dmk. In all experiments reported in this subsection,
the results are based on 1,000 independent replications.

We first study the rate of convergence of the estimator.
We fix �= 0	9, let k = n2/3−' and m= n1/3+', and plot the
relations between ' and the MSE for different sample sizes
(see the left panel of Figure 3). Although a smaller ' value
corresponds to a better asymptotic rate of convergence, it
often has a larger bias when the sample size is not large
enough. We also fix sample size n = 10�000, and plot the
relations between ' and the MSE for different � values
(see the right panel of Figure 3). When � becomes closer
to one, the bias becomes larger (as in Figure 1). Therefore,
the MSE also becomes larger. In the rest of this section,
we let m= k =√

n to study the behaviors of the estimator
and confidence interval. However, when � becomes close
to zero or one, we suggest to use larger m.

To verify the consistency and asymptotic normality, we
let � = 0	9 and increase the sample size from 1,000 to
100,000. The MSEs and coverage probabilities are reported
in Figure 4. Note that the oscillatory behaviors of both fig-
ures are caused by the oscillatory behaviors of the bias and
variance of the quantile estimator (see Figures 1 and 2).
The left panel of Figure 4 shows that the MSE becomes
smaller and less oscillatory as the sample size increases.
With 50,000 samples, the square root of the MSE is already
below 1% of the actual quantile sensitivity. Therefore, our
point estimator appears to be consistent. The right panel
of Figure 4 shows that the coverage probability becomes
closer to 90% and less oscillatory as the sample size
increases. Therefore, the confidence interval that we pro-
pose appears to be asymptotically valid.

We also fix the sample size to 40,000 and vary the �
values to study the effect of � to the performances of the
point estimator and the confidence interval. The results are
reported in Figure 5. From the experiments, we see that
the point estimator and the confidence interval work rea-
sonably well for nonextreme � values. However, when �
approaches zero or one, the qualities of the point estimator
and the confidence interval reduce drastically. This is due to
the bias caused by the inaccurate estimation of the extreme
quantiles (see Figures 1 and 2).
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Figure 3. The analysis of the rate of convergence.
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7.2. A Production-Inventory Problem

A capacitated production system operates under a base-
stock inventory policy. It has a base-stock level s > 0,
and it has a capacity of producing maximum c units per
period. Within each period, production of the last period
first arrives. Then, the demands of the period occur, and
they are filled or backlogged based on the available inven-
tory. At the end of the period, the production amount
is determined. Let Ii be the inventory minus backlog in
period i, and Di and Ri be the demand and production
amount in period i, respectively. Then, the system evolves
as follows (Glasserman and Tayur 1995):

Ii+1 = Ii −Di +Ri−1�

Ri =min�c� �s +Di − �Ii +Ri−1��
+��

where a+ =max�a�0�.
In this example, we further assume that there are linear

holding and backorder costs. The holding cost is h per unit

Figure 4. Performances of the point estimator and the 90% confidence interval for different sample sizes.
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per period and the backorder cost is b per unit per period.
Let ci be the cost of period i. Then,

ci = h�Ri−1 + I+i �+ bI−i �

where a− =−min�a�0�. The performance measure we are
interested in is

h�s�D�=
n∑

i=1

ci�

which is the total cost over the first n periods and D =
�D1�D2� 	 	 	 �Dn�. Because the total cost is a random vari-
able and the decision maker is risk averse, we are interested
in the �-quantile of the total cost with �� 0	5. To find an
optimal base-stock level s, we assume that s is a continu-
ous decision variable and we are interested in finding the
quantile sensitivity with respect to it.

Glasserman and Tayur (1995) have studied this problem
under a more general setting. However, they are interested
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Figure 5. Performances of the point estimator and the 90% confidence interval for different � values.
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in the sensitivity of the expected total cost. In the rest of
this subsection, we combine the IPA estimator proposed by
Glasserman and Tayur (1995) and the consistent estimator
of this paper to estimate the quantile sensitivity. We set s =
1	5, c = 0	5, h = 0	1, b = 0	2, n = 20, I1 = s, and R0 = 0.
We further let Di follow an exponential distribution with
rate 1 for all n periods.

To compute �sh�s�D�=∑n
i=1 �sci, we need to know how

to calculate �sci. Note that

�sci = �sRi−1 h+ 1�Ii>0��sIih− 1�Ii<0��sIib�

where 1�·� is the indicator function. From the recursive
relations of Ii and Ri, we can show that �sIi = 1 and
�sRi = 0 for all i = 1�2� 	 	 	 � n. Here, we give an intuitive
explanation of the results: if we increase the base-stock
level by one, the inventory level Ii will be one unit higher
for all periods because the unsatisfied inventory will be
backlogged. Therefore, �sIi = 1. Because the production Ri

tries to bring the inventory level to the base-stock level if
the capacity is allowed, it does not depend on the base-
stock level—it only depends on the inventory consumption
(which is the demand) and capacity. Therefore, �sRi = 0.
Then,

�sci = 1�Ii>0�h− 1�Ii<0�b	

We let m = k = 1�000. Then, the total sample size n =
1×106. We apply our method to estimate the quantile sen-
sitivities with � = 0	5�0	6� 	 	 	 �0	9. The estimates and the
half widths of the 90% confidence intervals are reported
in Table 1, and compared to the finite-difference estima-
tor calculated by setting s1 = 1	4975 and s2 = 1	5025, each
with 1× 1010 observations. In the finite-difference estima-
tion, we use independent observations for s1 and s2. From
Table 1, we see that our estimators are statistically indif-
ferent from the finite-difference estimators. They achieve
good precisions with a reasonable sample size.

8. Discussions on Estimating
Steady-State Quantile Sensitivities

So far in the paper we assume that h���X1��h���X2�� 	 	 	 �
h���Xn� are a sequence of i.i.d. data. In many simula-
tion studies, especially the simulation of queueing sys-
tems, we are often interested in the steady-state behavior of
the system. In such cases, h���X1��h���X2�� 	 	 	 � h���Xn�
are often a sequence of dependent data. For example,
h���Xl�, l = 1�2� 	 	 	 � may be the waiting time of the
lth customer. Then, it is certainly correlated to h���Xl−1�.
Sen (1972) shows that, under some conditions, q̂n

���� =
h���X�
n���� is still a strongly consistent estimator of q����
and

√
n�q̂n

����− q����� converges in distribution to a nor-
mal random variable as well.

To estimate the quantile sensitivities using dependent
data, we also suggest to use the estimator developed in this
paper. Note that, by Sen (1972), the within-batch depen-
dence does not affect the property of Dm, i.e., Dm still
converges to the conditional random variable ��h���X� �
�h���X� = q�����. The across-batch dependence certainly
affects the quality of �Dmk. However, as m → �, the
dependences among the batches often become negligible,
as studied in the batch-means literature (Law and Kelton
2000). Therefore, it appears possible to prove that �Dmk is
also consistent as n→� for the dependent data under cer-
tain conditions. Because q̂n

���� has an asymptotic normal

Table 1. Quantile sensitivity estimators for the
production-inventory problem.

Finite difference Our method
(2× 1010 obs.) (1× 106 obs.)

� Estimate Half width Estimate Half width

0.5 −2	7005 0	0512 −2	7598 0	0321
0.6 −2	8455 0	0554 −2	8864 0	0291
0.7 −2	9645 0	0617 −2	9431 0	0292
0.8 −3	0478 0	0720 −3	0709 0	0246
0.9 −3	1645 0	0947 −3	2071 0	0215
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Figure 6. Actual values of the quantile sensitivities for the M/M/1 queueing model.
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distribution for the dependent data, it may also be possible
to prove that �Dmk also has an asymptotic normal distribu-
tion under certain conditions.

Establishing the consistency and asymptotic normality
of the quantile sensitivity estimator for the steady-state
simulation is beyond the scope of this paper. However,
in this section, we use a simple M/M/1 queueing model
to show that our estimator may still work for the depen-
dent sequences. Let � = �E�A��E�S��′, where E�A� and
E�S� are the mean interarrival time and mean service time,
respectively, let X be the sequence of random variables that
are exponentially distributed with rate 1, and let h���X�
be the customer’s waiting time in the system, including
both waiting time in the queue and service time, in the
steady state of an M/M/1 queue. We are interested in
the estimation of �q����/�E�A� and �q����/�E�S�, where
q���� is the � quantile of h���X�.

When the queue is stable, i.e., E�A� > E�S�, h���X�
is exponentially distributed with rate �1/E�S��− �1/E�A��
(Ross 1996). Therefore, for any 0 < � < 1,

q����=− E�A�E�S�

E�A�−E�S�
log�1−���

Figure 7. MSEs of the sensitivity estimators for the M/M/1 queueing model.
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�q����

�E�A�
=
[

E�S�

E�A�−E�S�

]2

log�1−��� (20)

�q����

�E�S�
=−

[
E�A�

E�A�−E�S�

]2

log�1−��	 (21)

To obtain the point estimator �Dmk, we need
�h���X�/�E�A� and �h���X�/�E�S�, which can be
computed through the IPA method (Glasserman 1991).

Let E�A� = 10 and E�S� = 8. Then, the actual quan-
tile sensitivities can be computed using Equations (20)
and (21). We plot them against different � values in Figure
6, with the left panel being the sensitivities with respect to
E�A� and the right panel being the sensitivities with respect
to E�S�. To estimate the quantile sensitivities, we use a
total sample size 1 × 106 for various � values. Because
quantiles are more difficult to estimate for dependent data
than for i.i.d. data, we divide the 1× 106 observations into
100 batches and each batch has 10,000 observations.

In Figure 7, we report the MSE of the estimators.
Although the MSEs increase as � increases, the actual sen-
sitivities also increase as � increases (see Figure 6). With
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Figure 8. Coverage probabilities of the 90% confidence intervals for the M/M/1 queueing model.
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�� 0	90, the square roots of the MSEs are less than 10% of
the actual sensitivities. Therefore, the estimators can appro-
priately estimate the steady-state quantile sensitivities for
the M/M/1 queue. In Figure 8, we report the coverage
probabilities of the 90% confidence intervals. When � is
not close to zero or one, the coverage probabilities are close
to 0.9. When � is close to zero or one, it appears that more
within-batch samples are needed to keep the biases low.

9. Conclusions
In this paper, we study the estimation of quantile sensi-
tivities. We first show that the quantile sensitivity can be
written in the form of a conditional expectation. Based on
this conditional-expectation form, we propose an estimator
that is consistent and follows a central limit theorem for the
i.i.d. data. The numerical results show that the estimator
works well for the test problems. Even though the theory
is established for i.i.d. data, the numerical experiments on
the steady-state behavior of the M/M/1 queue show that
our estimator also appears to work for dependent data.

Appendix

In this appendix, we prove that S2
mk/1

2
m

P−→ 1 as n→� if
the conditions of Theorem 5 hold for 2 = 2.

Proof. Note that

S2
mk =

1
k− 1

k∑
i=1

�Dmi − �Dmk�
2

= k

k− 1

{
1
k

k∑
i=1

�Dmi −E�Dm��2 − � �Dmk −E�Dm��2

}
	

By Equation (14) and the continuous mapping theorem,

� �Dmk −E�Dm��2
P−→ 0	

Then, it suffices to prove that, as n→�,

1
k

k∑
i=1

�Dmi −E�Dm��2 −12
m

P−→ 0	 (22)

Note that

E

{
1
k

k∑
i=1

�Dmi −E�Dm��2

}
=Var�Dm�= 12

m

and

Var

{
1
k

k∑
i=1

�Dmi −E�Dm��2

}
= 1

k
Var��Dm −E�Dm��2�

�
1
k
E��Dm −E�Dm��4�	

Note that supm E�D4
m� < � implies that supm E��Dm −

E�Dm��4� < �. Then, by Cheybeshev’s inequality, as
k →�,

1
k

k∑
i=1

�Dmi −E�Dm��2 −12
m

P−→ 0	

This concludes the proof. �
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