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Abstract: Quantiles, also known as value-at-risks in the financial industry, are important measures of random performances.
Quantile sensitivities provide information on how changes in input parameters affect output quantiles. They are very useful in
risk management. In this article, we study the estimation of quantile sensitivities using stochastic simulation. We propose a kernel
estimator and prove that it is consistent and asymptotically normally distributed for outputs from both terminating and steady-state
simulations. The theoretical analysis and numerical experiments both show that the kernel estimator is more efficient than the
batching estimator of Hong [9]. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 56: 511–525, 2009
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1. INTRODUCTION

Quantiles are also known as value-at-risks (VaRs) in the
financial industry. They are widely used as measures of ran-
dom performances. In the financial industry, for instance,
VaRs are used to measure the default risks of banks and they
have been used by various regulatory agencies to regulate the
capital adequacy of banks (Jorion [1]). In the service indus-
try, for instance, the quantiles of the time taken to respond to
emergency requests and to transport patients to the hospital
are used to measure the service qualities of an out-of-hospital
system (Austin and Schull [2]).

In practice, random performance often depends on many
parameters. The quantile also depends on these parameters.
Quantile sensitivities are first-order derivatives of the quantile
with respect to these parameters. They provide information
on how changes in the parameters affect the quantile value.
Quantile sensitivities are useful in quantifying model ade-
quacy. For instance, models of financial losses often have
parameters that need to be estimated and are subject to estima-
tion errors. If the VaR sensitivity with respect to a parameter
is high, then the loss model may not be adequate since a small
error in the estimation of the parameter may cause the VaR
to change significantly. Quantile sensitivities are also useful
in optimizing quantile performances. For instance, portfolio
optimization problems can often be modeled as minimizing
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portfolio risk subject to a certain level of expected returns.
When the risk is measured by VaR, then VaR sensitivities can
be used to solve the optimization problems efficiently.

Estimating sensitivities of expectations has been stud-
ied extensively in the simulation literature. Typical methods
include perturbation analysis, the likelihood ratio (or score
function) method and the weak derivative method. Readers
are referred to Fu [3] and L’Ecuyer [4] for comprehensive
reviews. Estimating VaR sensitivities with respect to port-
folio allocation parameters has been studied in the finance
literature. Gourieroux et al. [5] used a kernel-based recur-
sive algorithm to approximate VaR and its sensitivities with
respect to the portfolio allocation parameters. Recently, for
the capital allocation problem for credit portfolios, Tasche [6]
and Epperlein and Smillie [7] applied kernel methods to
estimate risk contributions of VaR, and Glasserman [8] con-
sidered the importance sampling issue for estimating risk
contributions of VaR and expected shortfall, where the risk
contributions are the sensitivities of the VaR or the expected
shortfalls associated with individual obligors or transactions.
The estimation of quantile sensitivities for general functions
was recently studied by Hong [9], who showed that a quan-
tile sensitivity can be written as a conditional expectation.
He then proposed a batching estimator and proved its consis-
tency and asymptotic normality. Hong and Liu [10] studied
the sensitivity estimation of conditional VaR (CVaR), which
is another widely used risk measure. They showed that the
conditional-expectation form of the quantile sensitivity of
Hong [9] can also be derived by differentiating the CVaR
sensitivity.
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In this article, we propose a kernel estimator for esti-
mating quantile sensitivities. We prove the consistency and
asymptotic normality of the estimator for observations from
both terminating simulations and steady-state simulations.
In the case of terminating simulations, we consider that the
simulation observations are independent and identically dis-
tributed (i.i.d.), and in the case of steady-state simulations,
we consider that simulation observations are φ-mixing. These
setups are also used by Hong and Liu [11] to study the esti-
mation of probability sensitivities. However, the asymptotic
analysis of our kernel estimator is more challenging than
that of the probability sensitivity of [11] for two reasons.
First, our estimator is a ratio estimator. Second, our estima-
tor uses a quantile estimator that depends on all the simulation
observations.

In short, the contributions of this article are twofold. First,
we propose a kernel estimator for estimating quantile sen-
sitivities that converges faster than the batching estimator
proposed by Hong [9]. Specifically, the optimal rate of con-
vergence of the kernel estimator is n−2/5 while that of the
batching estimator is n−1/3. Second, we show that the kernel
estimator is consistent and follows a central limit theorem for
both terminating and steady-state simulations.

The rest of the article is organized as follows: Section 2
describes the background and proposes a kernel estimator
of the quantile sensitivity. The consistency and asymptotic
normality of the estimator for terminating and steady-state
simulations are considered in Sections 3 and 4, respectively.
Section 5 discusses how to choose the bandwidth for the esti-
mator. We compare the kernel estimator and the batching
estimator through several numerical examples in Section 6,
followed by conclusions in Section 7. Some lengthy proofs
are provided in the Appendix.

2. BACKGROUND

Let L(θ) denote the random output of a simulation model,
where θ is the parameter that we are interested in. Through-
out the article, we suppose that θ is a scalar. When it is not,
we may consider each dimension as a scalar while holding
all other dimensions fixed. We further assume that θ ∈ �,
and � is an open set in R. In queueing systems, for instance,
θ may be the arrival rate or service rate and L(θ) may be
the sojourn time, that is, the time that a customer spends in
the system. In financial models, for instance, θ may be the
interest rate or exchange rate, and L(θ) may be the random
loss of a portfolio of many financial securities.

For any θ ∈ �, let qα(θ) denote the α-quantile of L(θ).
When L(θ) is a continuous random variable, qα(θ) satisfies
Pr{L(θ) ≤ qα(θ)} = α. Hong [9] proves that the quantile
sensitivity, q ′

α(θ), can be written as a conditional expectation.
He makes the following assumptions.

ASSUMPTION 1: The pathwise derivative, D(θ) =
L′(θ), exists with probability 1 (w.p.1) for any θ ∈ �, and
there exists a random variable Y , with E[Y ] < ∞, such that
|L(θ2) − L(θ1)| ≤ Y |θ2 − θ1| for any θ1, θ2 ∈ �.

ASSUMPTION 2: For any θ ∈ �, L(θ) has a continuous
density function in the neighborhood of qα(θ), and qα(θ) is
differentiable with respect to θ .

ASSUMPTION 3: For any θ ∈ �, E[D(θ)|L(θ) = t] is
continuous at t = qα(θ).

Then, Hong [9] proves the following lemma, which serves
as the basis of our estimator.

LEMMA 1: Suppose that Assumptions 1–3 are satisfied.
Then, q ′

α(θ) = E[D(θ)|L(θ) = qα(θ)].
Let {(Li(θ), Di(θ)), i = 1, 2, . . . , n} be the observations

of (L(θ), D(θ)) from the simulation. They may be obtained
from either terminating or steady-state simulations. For many
simulation models, the pathwise derivative, D(θ), can be
obtained with only a little additional computation effort from
the simulation. If the price of an asset follows a diffusion
process, its pathwise derivative with respect to the interest
rate can be calculated easily based on the sample path itself
(Broadie and Glasserman [12]). If we are interested in the
sojourn time of a queueing system, the pathwise derivative
with respect to an arrival rate or a service rate can be calcu-
lated using infinitesimal perturbation analysis (Glasserman
[13]).

To simplify the notation, we let (L, D) and (Li , Di) denote
(L(θ), D(θ)) and (Li(θ), Di(θ)), respectively, and we let qα

denote qα(θ), when there is no confusion. Throughout the
article, we assume that (L, D) is a continuous bivariate ran-
dom vector with a joint density f (x, t). For a nonnegative
integer m, we define

gm(x) =
∫ ∞

−∞
tmf (x, t)dt and

hm(x) =
∫ ∞

−∞
|t |mf (x, t)dt .

By Lemma 1,

q ′
α(θ) = E[D(θ)|L(θ) = qα] = g1(qα)

g0(qα)
. (1)

In this article, we propose a kernel estimator to esti-
mate q ′

α(θ) using the observations {(Li , Di), i =1, 2, . . . , n}.
Suppose that K is a bounded symmetric density such that
yK(y)→0 as |y|→∞ and

∫∞
−∞ y2K(y)dy < ∞. Then, K

is a kernel on R (Bosq [14]). For instance, the standard nor-
mal density function is a kernel. The kernel method has been
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studied extensively in the area of nonparametric statistics,
especially in density estimation and nonparametric regres-
sion analysis (see, for instance, Bosq [14], Li and Racine [15],
and Pagan and Ullah [16] for recent overviews). Researchers
have found that the kernel method has several advantages: it
is generally easy to compute and robust; and it reaches the
optimal convergence rate in terms of the quadratic error. The
kernel method typically involves a bandwidth parameter δn,
which satisfies δn →0 and nδn →∞ as n→∞. In this article,
we make the following assumption on the kernel K .

ASSUMPTION 4: For m = 0, 1, . . . , 4, [K(m)]2 is
bounded and integrable, and yK(m)(y) → 0 as |y| → ∞,
where the superscript “(m)” denotes the m-th order deriva-
tive.

REMARK 1: This is a typical assumption on the kernel. It
is satisfied when K is the standard normal density function.

Let q̂n
α = L�nα�:n be the estimator of qα , where Li:n denotes

the i-th order statistic from the n observations of L. Ser-
fling [17] shows that q̂n

α → qα w.p.1 and
√

n(q̂n
α − qα)

converges to a normal distribution as n → ∞ if L has a
positive density in a neighborhood of qα . Let

V̄n =
∑n

i=1 K
(

q̂n
α − Li

δn

)
· Di∑n

i=1 K
(

q̂n
α − Li

δn

) (2)

be our kernel estimator of q ′
α(θ). In the rest of the article,

we show that V̄n is a consistent and asymptotically nor-
mally distributed estimator of q ′

α(θ) for both terminating and
steady-state simulations.

We further define

R̄n(y) = 1

nδn

n∑
i=1

K

(
y − Li

δn

)
· Di ,

Q̄n(y) = 1

nδn

n∑
i=1

K

(
y − Li

δn

)
,

and let V̄n(y) = R̄n(y)/Q̄n(y) for any y ∈ R. Note that
V̄n = V̄n(q̂

n
α). It has been shown in the literature that R̄n(y),

Q̄n(y), and V̄n(y) are consistent and asymptotically normally
distributed estimators of g1(y), g0(y), and g1(y)/g0(y),
respectively, for any fixed y ∈ R under appropriate con-
ditions, when (L1, D1), . . . , (Ln, Dn) are i.i.d. observations
(see, for instance, Schuster [18] and Watson [19]), or when
(L1, D1), . . . , (Ln, Dn) are dependent observations (see, for
instance, Roussas [20], Roussas and Tran [21], and Truong
[22]). Therefore, when y = qα , V̄n(qα) is a consistent
and asymptotically normal distributed estimator of q ′

α(θ) by
Eq. (1).

In our problem, however, V̄n equals V̄n(q̂
n
α) rather than

V̄n(qα). The quantity qα is unknown, and it is estimated by q̂n
α .

Because q̂n
α links all observations, (L1, D1), . . . , (Ln, Dn),

together, the standard analysis of the kernel method is no
longer applicable to V̄n = V̄n(q̂

n
α). In the rest of the paper,

we solve this problem and show that V̄n is still a consistent
and asymptotically normally distributed estimator of q ′

α(θ)

for both terminating and steady-state simulations.

3. TERMINATING SIMULATION

Suppose that {(Li , Di), i =1, 2, . . . , n} are generated from
terminating simulations. Then, they are independent and
identically distributed (see, for instance, Law and Kelton
[23]). In this section, we consider the consistency and asymp-
totic normality of V̄n for these i.i.d. observations. To conduct
the analysis, we need some regularity conditions, stated in
the following assumption.

ASSUMPTION 5: The functions g
(4)
0 (t), g

(4)
1 (t) and

g2(t) are continuous at t = qα and g0(qα) > 0. For m =
0, 1, . . . , 4,

∫∞
−∞ |g(m)

1 (t)|dt < ∞.

REMARK 2: Note that g0(t) is the density function of L,
g1(t) = g0(t)E[D|L = t] and g2(t) = g0(t)E[D2|L = t].
Assumption 5 basically requires that L has a positive den-
sity at the point t = qα and (L, D) has good mathematical
properties in a neighborhood of L = qα .

3.1. Consistency

Recall that V̄n = R̄n(q̂
n
α)/Q̄n(q̂

n
α) and q ′

α(θ) = g1(qα)/

g0(qα). Then

V̄n − q ′
α(θ) = 1

Q̄n

(
q̂n

α

)
g0(qα)

× [g0(qα)
(
R̄n

(
q̂n

α

)− g1(qα)
)− g1(qα)

(
Q̄n

(
q̂n

α

)− g0(qα)
)]

.
(3)

To prove the consistency of V̄n, i.e., V̄n
P−→ q ′

α(θ) where

“
P−→” denotes “convergence in probability,” we need to

show that R̄n(q̂
n
α)

P−→ g1(qα) and Q̄n(q̂
n
α)

P−→ g0(qα).
Because the consistency of R̄n(qα) and Q̄n(qα) has already
been established in the literature, it suffices to prove that both
R̄n(q̂

n
α) − R̄n(qα) and Q̄n(q̂

n
α) − Q̄n(qα) converge to 0 in

probability.
We summarize the consistency of R̄n(qα) and Q̄n(qα) in

the following lemma. It has been proved under various sets
of conditions (see, e.g., Bosq [14], Li and Racine [15] and
Pagan and Ullah [16]). Because the set of conditions in our
lemma is slightly different from the ones in the literature, we
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provide a proof of the lemma in Liu and Hong [24] in the
supplementary materials for this paper.

LEMMA 2: Suppose that Assumptions 4–5 are satisfied
and E(D2) < ∞. If δn → 0 and nδn → ∞ as n → ∞, then

R̄n(qα)
P−→ g1(qα) and Q̄n(qα)

P−→ g0(qα).

Lemma 2 shows that V̄n(qα) = R̄n(qα)/Q̄n(qα) is a consis-
tent estimator of q ′

α(θ). However, it is not directly applicable
to V̄n = V̄n(q̂

n
α), where q̂n

α is a strongly consistent estimator
of qα . To show the consistency of V̄n, we need the following
lemma that is proved in the Appendix.

LEMMA 3: Suppose that Assumptions 4–5 are satisfied.
If δn →0 as n→∞, then for m = 0, 1, . . . , 4,

lim
n→∞ E

[
1

nδm+1
n

n∑
i=1

K(m)

(
qα − Li

δn

)
Di

]
= g

(m)
1 (qα),

lim
n→∞ nδ2m+1

n Var

[
1

nδm+1
n

n∑
i=1

K(m)

(
qα − Li

δn

)
Di

]
= σ 2

m,

where

σ 2
m = g2(qα)

∫ ∞

−∞
[K(m)(t)]2dt .

Now, we are ready to prove the consistency of V̄n.

THEOREM 1: Suppose that Assumptions 1–5 are satisfied
andE(D2) < ∞, δn →0 asn→∞, and supn(nδ

5/2
n )−1 < ∞.

Then, V̄n is a consistent estimator of q ′
α(θ).

PROOF: By Eq. (3) and Lemma 2, it suffices to show that

R̄n

(
q̂n

α

)− R̄n(qα)
P−→ 0 and Q̄n

(
q̂n

α

)− Q̄n(qα)
P−→ 0.

For simplicity of the notation, we letK(m)
n,i denoteK(m)(

qα−Li

δn
)

for m = 1, 2, 3, 4.
By Assumption 4, K(4)(·) is bounded. Then, by Taylor’s

expansion,

R̄n

(
q̂n

α

)− R̄n(qα)

= 1

nδn

n∑
i=1

K

(
q̂n

α − Li

δn

)
·Di − 1

nδn

n∑
i=1

K

(
qα − Li

δn

)
·Di

=
4∑

m=1

1

m!
[√

n
(
q̂n

α − qα

)]m 1

nm/2

1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

+ op

((
q̂n

α − qα

δn

)4 1

nδn

n∑
i=1

|Di |
)

, (4)

where op(·) is a random sequence that satisfies An/Bn
P−→ 0

if An = op(Bn).
By Lemma 3, for m = 1, 2, 3, 4,

lim
n→∞ E

[
1

nm/2

1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

]

= lim
n→∞

1

nm/2
E

[
1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

]
= 0,

lim
n→∞ Var

[
1

nm/2

1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

]

= lim
n→∞

1

nδn(nδ2
n)

m
·nδ2m+1

n ·Var

[
1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

]
= 0,

where the last equation holds since nδn →∞ and nδ2
n →∞

as n→∞ when supn(nδ
5/2
n )−1 < ∞. Hence, by Chebyshev’s

inequality (Durrett [25]), for m = 1, 2, 3, 4,

1

nm/2

1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

P−→ 0.

Note that
√

n(q̂n
α − qα) converges to a normal distribution

(Serfling [17]). Then, by the continuous mapping theorem
(Durrett [25]), [√n(q̂n

α − qα)]m converges to some distrib-
ution. Therefore, the first term of Eq. (4) converges to 0 in
probability by Slutsky’s theorem (Serfling [17]).

Furthermore, by the strong law of large numbers,
1
n

∑n
i=1 |Di | P−→ E(|D|). Recall that n2(q̂n

α −qα)4 converges

to some distribution and supn(nδ
5/2
n )−1 < ∞. Then, by Slut-

sky’s theorem, the second term of Eq. (4) also converges to

0 in probability. Therefore, R̄n(q̂
n
α) − R̄n(qα)

P−→ 0.

Similarly, we can show that Q̄n(q̂
n
α)−Q̄n(qα)

P−→ 0. This
concludes the proof. �

3.2. Asymptotic Normality

In this subsection, we consider the asymptotic normality of
V̄n, which can help to compare the asymptotic efficiencies of
our kernel estimator and Hong’s [9] batching estimator. It can
also help to construct confidence intervals for q ′

α(θ). For dis-
cussions on confidence intervals and their use in simulation
estimation, readers are referred to Law and Kelton [23].

The idea behind the proof of the asymptotic normality
of V̄n is quite similar to that of the consistency. Because
existing results in nonparametric statistics have shown that√

nδn[V̄n(qα) − q ′
α(θ)] converges to a normal distribution,

by Slutsky’s theorem (Serfling [17]), it suffices to show that√
nδn[V̄n − V̄n(qα)] P→ 0.
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We summarize the asymptotic normality of V̄n(qα) in the
following lemma. Similar to Lemma 2, Lemma 4 is also a
known result (see, e.g., Bosq [14], Li and Racine [15] and
Pagan and Ullah [16]). We include our proof of the lemma in
Liu and Hong [24] for completeness.

LEMMA 4: Suppose that Assumptions 1–5 are satisfied
and E(|D|2+γ ) < ∞ for some γ > 0 and h2+γ (t) is contin-
uous at t = qα . If δn →0, nδn →∞ and nδ5

n →c as n → ∞
with c ≥ 0, then√

nδn

[
V̄n(qα) − q ′

α(θ)
]⇒ µ∞ + σ∞ · N(0, 1),

where “⇒” denotes “convergence in distribution,” N(0, 1)

denotes the standard normal distribution, and

µ∞ = c

g2
0(qα)

[
g0(qα)g′′

1 (qα)−g1(qα)g′′
0 (qα)

]∫ ∞

−∞
t2K(t)dt ,

σ 2
∞ = g0(qα)g2(qα) − g2

1(qα)

g3
0(qα)

∫ ∞

−∞
K2(t)dt .

To analyze the asymptotic normality of V̄n = V̄n(q̂
n
α), we

also need the following lemma that is proved in the Appendix.

LEMMA 5: Suppose that Assumptions 4–5 are satisfied.
If δn →0 as n→∞ and supn(nδ3

n)
−1 < ∞, then

√
nδn[V̄n −

V̄n(qα)] P−→ 0.

Combining Lemmas 4 and 5 together, we immediately
obtain the following theorem on the asymptotic normality
of V̄n.

THEOREM 2: Suppose that Assumptions 1–5 are satisfied
and E(|D|2+γ ) < ∞ for some γ > 0 and h2+γ (t) is contin-
uous at t = qα . If δn →0 and nδ5

n →c with c ≥ 0 as n → ∞
and supn(nδ3

n)
−1 < ∞, then

√
nδn

[
V̄n − q ′

α(θ)
]⇒ µ∞ + σ∞ · N(0, 1),

where µ∞ and σ∞ are defined in Lemma 4.

Theorem 2 shows that the rate of convergence of V̄n is
(nδn)

−1/2. It is slower than the typical n−1/2 rate of conver-
gence of a Monte Carlo estimator. This is because q ′

α(θ) =
E[D|L = qα] is a conditional expectation that is conditioned
on a probability zero region, {L = qα}, and we cannot directly
simulate observations from this region.

To circumvent this difficulty, our kernel estimator assigns
a weight to each of the observations depending on how close
they are to the region, and it lets the weights go to zero
asymptotically (i.e., as n → ∞) if the observations are
not in the region. To understand the rate of convergence

of the kernel estimator, we consider the simplest kernel,
K(y) = 1{−1/2<y<1/2}, which is the density of a uniform
distribution over the interval [−1/2, 1/2]. Then,

V̄n =
∑n

i=1 Di · 1{−δn/2<Li−q̂n
α<δn/2}∑n

i=1 1{−δn/2≤Li−q̂n
α≤δn/2}

,

and it is the average of those Di’s such that q̂n
α − δn/2 <

Li < q̂n
α + δn/2. Intuitively, the kernel estimator approx-

imates the region by {L ∈ (qα − δn/2, qα + δn/2)} and
approximates qα by q̂n

α when it is unknown. Because Pr{L ∈
(qα − δn/2, qα + δn/2)} ≈ fL(qα)δn, the expected num-
ber of observations in the approximated region is O(nδn).
This explains intuitively why the rate of convergence of V̄n is
(nδn)

−1/2. When nδ5
n → c with c > 0, the rate of convergence

of V̄n is n−2/5 and this is the best that V̄n may achieve.
Hong’s [9] batching estimator uses another approach to

approximate the region {L = qα}. It divides the n observa-
tions into k batches with each batch containing m observa-
tions. Then it approximates the region by {L = q̂

m,j
α } for

j = 1, . . . , k, where q̂
m,j
α is the �mα�-th order statistic from

the m observations in the j -th batch. Because there are k

batches, the conditional expectation can be estimated and the
rate of convergence is k−1/2. Hong [9] further shows that the
best rate of convergence of the batching estimator is n−1/3

where k/m2 → a with a > 0 as n → ∞. Therefore, the
kernel estimator has a faster rate of convergence than the
batching estimator when both are set optimally.

Based on Theorem 2, we are able to construct confidence
intervals for q ′

α(θ). When we set nδ5
n → 0, the asymptotic

normal distribution has a zero mean. Then, we only need to
estimate σ 2∞ consistently. Let

Ḡn(y) = 1

nδn

n∑
i=1

K

(
y − Li

δn

)
· D2

i .

Similar to the analysis of V̄n(q̂
n
α), we can show that Ḡn(q̂

n
α)

is a consistent estimator of g2(qα). Then, by its definition in
Lemma 4, σ 2∞ can be consistently estimated by

S2
n = Ḡn

(
q̂n

α

)
Q̄n

(
q̂n

α

)− R̄2
n

(
q̂n

α

)
Q̄3

n

(
q̂n

α

) ∫ ∞

−∞
K2(t)dt .

Therefore, an asymptotically valid 100(1 − β)% confidence
interval of q ′

α(θ) is

(
V̄n − z1−β/2Sn/

√
nδn, V̄n + z1−β/2Sn/

√
nδn

)
,

where z1−β/2 is the 1 − β/2 quantile of the standard normal
distribution.
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4. STEADY-STATE SIMULATION

In many examples, we are interested in the steady-state
behaviors of a system. Then, we may use a steady-state sim-
ulation (Law and Kelton [23]). Suppose that {(Li , Di), i =
1, 2, . . . , n} are observations from a steady-state simulation.
They are typically stationary and dependent. In this section,
we show that the consistency and asymptotic normality still
hold for V̄n in the case of a steady-state simulation.

Suppose that {(Li , Di), i = 1, 2, . . .} is a stationary
sequence. LetFk be theσ -algebra generated by {(Li , Di), i =
1, 2, . . . , k} and Gk be the σ -algebra generated by
{(Li , Di), i = k, k + 1, . . .}. Following Billingsley [26], let

φ(k) = sup{| Pr(B|A) − Pr(B)| : A ∈ Fs , Pr(A)

> 0, B ∈ Gs+k}.
Then, the sequence is φ-mixing if φ(k) → 0 as k → ∞.
The condition means that the dependence between time s

and time s + k goes to zero as k goes to infinity. Therefore,
there does not exist a long-range dependence. Many sto-
chastic processes are φ-mixing, including stationary Markov
processes with a finite state space (Billingsley [27]) and
positive recurrent regenerative processes (Glynn and Igle-
hart [28]). In this section, we make the following assumption
on {(Li , Di), i = 1, 2, . . .}:

ASSUMPTION 6: The sequence {(Li , Di), i = 1, 2, . . .}
satisfies

∑∞
k=1

√
φ(k) < ∞.

The same assumption is used or implied by many others.
For instance, Heidelberger and Lewis [29] use it to analyze
steady-state quantile estimators; Hong and Liu [11] use it
to study steady-state probability sensitivity estimators; and
Chien et al. [30] and Schruben [31] use assumptions that
imply Assumption 6 to study the estimators of steady-state
means. Note that the assumption implies that φ(k) → 0 as
k → ∞. Therefore, {(Li , Di), i = 1, 2, . . .} is a φ-mixing
sequence when the assumption is satisfied.

4.1. Consistency

We consider the consistency of V̄n for φ-mixing observa-
tions. The analysis is similar to that for the i.i.d. observations.
Because the consistency of R̄n(qα) and Q̄n(qα) is known in
the literature, we only need to prove that both R̄n(q̂

n
α)−R̄n(qα)

and Q̄n(q̂
n
α) − Q̄n(qα) converge to 0 in probability. Then by

Eq. (3) we conclude that V̄n is consistent.
We summarize the consistency of R̄n(qα) and Q̄n(qα) in

the following lemma. The result of the lemma is standard
(see, for instance, Bosq [14] and Roussas [20]), but under
different sets of conditions. We provide the proof in Liu and
Hong [24] for completeness.

LEMMA 6: Suppose that Assumptions 4–6 are satisfied.

If δn →0 and nδn → ∞ as n → ∞, then R̄n(qα)
P−→ g1(qα)

and Q̄n(qα)
P−→ g0(qα).

Similar to Lemma 3 of the i.i.d. case, we have the follow-
ing lemma for the dependent case. The proof of the lemma is
provided in the Appendix.

LEMMA 7: Suppose that Assumptions 4–6 are satisfied.
If δn →0 as n→∞, then

lim
n→∞ E

[
1

nδm+1
n

n∑
i=1

K(m)

(
qα − Li

δn

)
· Di

]
= g

(m)
1 (qα),

lim sup
n→∞

nδ2m+1
n Var

[
1

nδm+1
n

n∑
i=1

K(m)

(
qα − Li

δn

)
· Di

]
≤ B,

for m = 1, 2, 3, 4, and some constant B > 0.

Similar to the discussion in the i.i.d. case, we can show that
V̄n is a consistent estimator of q ′

α(θ) using Lemmas 6 and 7.
The proof is similar to that of Theorem 1 and thus is omitted
here. To summarize, we have the following theorem on the
consistency of V̄n for φ-mixing observations.

THEOREM 3: Suppose that Assumptions 1–6 are satis-
fied, E(D2) < ∞, δn →0 as n → ∞, and supn(nδ

5/2
n )−1 <

∞. Then V̄n is a consistent estimator of q ′
α(θ).

For steady-state simulations, Hong [9] conjectures that the
batching estimator is also consistent and numerically verifies
its consistency in a queueing example. With Theorem 3, we
prove that our kernel estimator is indeed consistent.

4.2. Asymptotic Normality

Similar to the discussion in the i.i.d. case, to prove the
asymptotic normality of V̄n for dependent observations, the

key is to show that
√

nδn[V̄n − V̄n(qα)] P−→ 0 as n → ∞.
Define

Rn,i = g0(qα)√
nδn

(Di · Kn,i − E[Di · Kn,i])

− g1(qα)√
nδn

(Kn,i − E[Kn,i]),

where Kn,i denotes K(
qα−Li

δn
). Let ρn,i = Cov(Rn,1, Rn,i+1)/

Var(Rn,1) and βn = 1 + 2
∑n−1

i=1 (1 − i/n)ρn,i . Then,
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Var[∑n
i=1 Rn,i] = nVar[Rn,1]βn. By the covariance inequal-

ity for the φ-mixing sequence (Billingsley [27]), we have

Var

[
n∑

i=1

Rn,i

]
≤ n

[
Var[Rn,1] + 2

n−1∑
i=1

|Cov(Rn,1, Rn,i+1)|
]

≤ nVar[Rn,1]
[

1 + 4
n∑

i=1

√
φ(i)

]
.

Then, we have

βn = 1 + 2
n−1∑
i=1

(1 − i/n)ρn,i ≤ 1 + 4
n∑

i=1

√
φ(i).

Because 1+4
∑n

i=1

√
φ(i) converges as n→∞ by Assump-

tion 6, then, by the ratio comparison test (Marsden and Hoff-
man [32]), βn converges as n → ∞. We denote by β∞ the
limit of βn, i.e., limn→∞ βn = β∞.

Then, we have the following lemma on the asymptotic
normality of V̄n(qα). Similar results have been shown in
Bosq [14] and Roussas and Tran [21] under different sets
of conditions. For completeness, we provide our proof of the
lemma in Liu and Hong [24].

LEMMA 8: Suppose that Assumptions 1–6 are satisfied,
E(|D|2+γ ) < ∞ for some γ > 0 and h2+γ (t) is continuous
at t = qα . If δn →0 and nδ5

n →c with c ≥ 0 as n→∞, then

√
nδn

[
V̄n(qα) − q ′

α(θ)
]⇒ µ∞ + σ̃∞ · N(0, 1),

where σ̃ 2∞ = β∞·σ 2∞ and µ∞ and σ 2∞ are defined in Lemma 4.

To show the asymptotic normality of V̄n, we need the
following lemma that is proved in the Appendix.

LEMMA 9: Suppose that Assumptions 4–6 are satisfied,
δn →0 as n → ∞, and supn(nδ3

n)
−1 < ∞. Then,

√
nδn[V̄n −

V̄n(qα)] P−→ 0.

Combining Lemmas 8 and 9, we have the following
theorem on the asymptotic normality of V̄n in the case of
steady-state simulations.

THEOREM 4: Suppose that Assumptions 1–6 are satis-
fied, E(|D|2+γ ) < ∞ for some γ > 0 and h2+γ (t) is con-
tinuous at t = qα . If δn → 0 and nδ5

n → c with c ≥ 0 as
n→∞, and supn(nδ3

n)
−1 < ∞, then,

√
nδn

[
V̄n − q ′

α(θ)
]⇒ µ∞ + σ̃∞ · N(0, 1),

where µ∞ and σ̃∞ are defined in Lemma 8.

Theorem 4 shows that the rate of convergence of V̄n for
steady-state simulations is the same as that for terminating
simulations, which is (nδn)

−1/2. When nδ5
n → c with c > 0,

the rate of convergence of V̄n is n−2/5 and this is the best that
V̄n may achieve.

Theorem 4 may also be used to construct confidence inter-
vals for q ′

α(θ). To do so, we need to estimate the asymp-
totic variance σ̃ 2∞. Because the observations {(Li , Di), i =
1, 2, . . .} are dependent, we suggest using the batch means
method to estimate σ̃ 2∞. We divide the n observations of
(Li , Di) into k adjacent batches with each batch contain-
ing m observations. We require that both m → ∞ and k →
∞ as n → ∞. For instance, a reasonable choice may be
m = k = √

n if
√

n is an integer. Let

V̄ (j)
m =

∑m
i=1 K

(
q̂

m,j
α −L(j−1)m+i

δm

)
· D(j−1)m+i∑m

i=1 K
(

q̂
m,j
α −L(j−1)m+i

δm

) ,

where q̂
m,j
α denotes the α sample quantile obtained from the

j -th batch of m observations. Then, the estimator of σ̃ 2∞,
denoted by S̃2

n , can be expressed as

S̃2
n = mδm

k − 1

k∑
j=1


V̄ (j)

m − 1

k

k∑
j=1

V̄ (j)
m




2

. (5)

Note that S̃2
n/mδm is the sample variance of V̄ (1)

m , . . . , V̄ (k)
m ,

which are approximately independent when k and m are large.
Then, S̃2

n/mδm is an estimator of Var(V̄ (1)
m ). Because, by the

central limit theorem, we know that mδmVar(V̄ (1)
m )→ σ̃ 2∞, S̃2

n

is an estimator of σ̃ 2∞. In the Appendix, we provide a rigorous
proof to show that S̃2

n is indeed a consistent estimator of σ̃ 2∞
under appropriate conditions. Then, an asymptotically valid
100(1 − β)% confidence interval of q ′

α(θ) is

(
V̄n − z1−β/2S̃n/

√
nδn, V̄n + z1−β/2S̃n/

√
nδn

)
.

5. SELECTION OF δn

In the previous sections, we have shown that the kernel
estimator we propose is consistent and asymptotically nor-
mally distributed for both i.i.d. andφ-mixing observations. To
implement the estimator, however, we need to know how to
select an appropriate δn. In this section, we propose a heuristic
approach to solving this problem.

Typically, we are interested in selecting δn to minimize
the asymptotic mean square error (MSE) of V̄n. Then, the
key of this problem is finding the asymptotic variance and
bias of V̄n. By Theorems 2 and 4, the asymptotic variance of
V̄n is σ 2/(nδn), where σ 2 = σ 2∞ for i.i.d. observations and
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σ 2 = σ̃ 2∞ for φ-mixing observations. Then, we only need to
find the asymptotic bias of V̄n.

Firstly, we note that

V̄n − V̄n(qα) = 1

Q̄n

(
q̂n

α

)
Q̄n(qα)

(
Q̄n(qα)

[
R̄n

(
q̂n

α

)− R̄n(qα)
]

− R̄n(qα)
[
Q̄n

(
q̂n

α

)− Q̄n(qα)
])

.

By Taylor’s expansion,

R̄n

(
q̂n

α

)−R̄n(qα) ≈ (q̂n
α − qα

) · 1

nδ2
n

n∑
i=1

Di · K ′
(

qα−Li

δn

)
.

By Lemma 3, we know that 1
nδ2

n

∑n
i=1 Di · K ′( qα−Li

δn
) con-

verges to g′
1(qα) in probability. Then, it is reasonable to

expect that E[R̄n(q̂
n
α) − R̄n(qα)] is of the same order as

E(q̂n
α) − qα . It is known that, under some mild conditions,

E(q̂n
α) − qα is of order 1/n (see, for instance, David [33]).

Hence, E[R̄n(q̂
n
α) − R̄n(qα)] is of order 1/n. A similar argu-

ment holds for E[Q̄n(q̂
n
α) − Q̄n(qα)] and hence we expect

that E[V̄n − V̄n(qα)] is of order 1/n.
Furthermore, we note that

V̄n(qα) − q ′
α(θ) = 1

g0(qα)Q̄n(qα)
(g0(qα)[R̄n(qα) − g1(qα)]

− g1(qα)[Q̄n(qα) − g0(qα)]).

Because Q̄n(qα) converges to g0(qα) in probability,
it is reasonable to approximate E[V̄n(qα)] − q ′

α(θ)

by 1
g2

0 (qα)
E(g0(qα)[R̄n(qα) − g1(qα)] − g1(qα)[Q̄n(qα) −

g0(qα)]), which equals µbδ
2
n + o(δ2

n) (see Eqs. (26) and (27)
in Liu and Hong [24]) with

µb = g′′
1 (qα) − q ′

α(θ)g′′
0 (qα)

g0(qα)

∫ ∞

−∞
t2K(t)dt .

In other words, E[V̄n(qα)]−q ′
α(θ) ≈ µbδ

2
n +o(δ2

n). Because
nδ2

n →∞ as n → ∞, E[V̄n − V̄n(qα)] is of a smaller order
compared to E[V̄n(qα)]−q ′

α(θ), and hence can be neglected.
Therefore, the bias of V̄n is approximately µbδ

2
n + o(δ2

n).
The mean square error (MSE) is the summation of the

variance and the squared bias. Then, ignoring small-order
terms, we can approximate the asymptotic MSE of V̄n by
σ 2/nδn + µ2

bδ
4
n. To minimize the above asymptotic MSE, it

is easy to see that the asymptotically optimal δn can be set as
δ∗
n = d∗ · n−1/5, where d∗ = (σ 2/(4µ2

b))
1/5.

With the above heuristic analysis, a pilot simulation can be
run to estimate d∗ during the implementation of our method.
To do so, we need to estimate σ 2 and µb in the pilot sim-
ulation. The asymptotic variance, σ 2, can be consistently
estimated by S2

n for i.i.d. observations and by S̃2
n for φ-mixing

observations. We only need to consider how to estimate µb.
We suggest estimating g′′

0 (qα) and g′′
1 (qα) by a finite differ-

ence method. Let s be the step size of the finite difference
method. We may estimate g′′

1 (qα) and g′′
0 (qα) by

ĝ′′
1 = R̄n

(
q̂n

α + s
)+ R̄n

(
q̂n

α − s
)− 2R̄n

(
q̂n

α

)
s2

,

ĝ′′
0 = Q̄n

(
q̂n

α + s
)+ Q̄n

(
q̂n

α − s
)− 2Q̄n

(
q̂n

α

)
s2

respectively. Then, µb can be estimated by

µ̂b = ĝ′′
1 − V̄nĝ

′′
0

Q̄n

(
q̂n

α

) ∫ ∞

−∞
t2K(t)dt .

In the pilot simulation, we suggest setting δn = n−1/5

initially and estimating d∗ by d̂ = (S2
n/(4µ̂2

b))
1/5 for i.i.d.

observations and d̂ = (S̃2
n/(4µ̂2

b))
1/5 for φ-mixing observa-

tions. Then, we may set the new δn to d̂ · n−1/5 and estimate
d∗ again. After several iterations, we stop and obtain an esti-
mate of d∗, denoted as d̂∗. We may use δn = d̂∗ ·n−1/5 in the
main simulation.

To construct confidence intervals for q ′
α(θ), we require that

the limiting distributions in Theorems 2 and 4 be normally
distributed with zero means; in other words, nδ5

n → 0 as
n → ∞. However, d∗ · n−1/5 violates this requirement. To
fix this, we suggest letting δn = d∗ ·n−1/3 when constructing
confidence intervals. Intuitively, this choice of δn guarantees
that V̄n has a smaller bias and a larger variance so that the
confidence interval is asymptotically valid.

6. NUMERICAL EXAMPLES

In this section, we show the performance of the kernel
estimator using three examples, including a portfolio man-
agement example, a production-inventory example, and a
queueing example. These examples are borrowed from Hong
[9] for fair comparison of our kernel estimator and Hong’s [9]
batching estimator. During the implementation, the kernel K

is chosen to be the standard normal density function, and δn is
selected by the selection procedure in Section 5. Numerical
results reported are based on 1000 independent replications.

6.1. A Portfolio Management Example

A portfolio is composed of three assets. The annual rates
of return of the assets are denoted as X1, X2, and X3,
respectively, and the percentages of the total fund allocated
to the assets are denoted as θ1, θ2, and θ3, respectively.
Suppose that X = (X1, X2, X3)

′ follows a multivariate
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Figure 1. The performance of V̄n and its 90% confidence interval in the portfolio management example.

normal distribution with a mean µ = (0.06, 0.15, 0.25)′ and
a variance-covariance matrix


 =

0.02

0.10
0.22




 1 −0.3 −0.2

−0.3 1 0.2
−0.2 0.2 1




×

0.02

0.10
0.22


 .

Then, the annual rate of return of the portfolio is

L(θ) = θ1X1 + θ2X2 + θ3X3,

which follows a normal distribution with mean θ ′µ and vari-
ance θ ′
θ . Then, the quantile and quantile sensitivity of
L(θ) can be calculated analytically. Suppose that we are
interested in the quantile sensitivity with respect to θ3, with
θ = (0.2, 0.3, 0.5)′. Then, ∂qα(θ)/∂θ3 = 0.25 + 0.2135zα .
We use the kernel estimator to estimate the quantile sensitiv-
ity and compare it to the theoretical value. We also compare
its performance to Hong’s [9] batching estimator.

Note that the pathwise derivative is D(θ) = ∂L(θ)/∂θ3 =
X3. Then, the proposed kernel estimator can be easily applied.
To test its performance, we let α = 0.9 and plot the esti-
mated relative RMSE (square root of MSE), defined as√

MSE(V̄n)/|q ′
α(θ)|, in the left panel of Fig. 1. We see that

the estimation error decreases as the sample size increases.
When the sample size is 10, 000, the relative error is smaller
than 1%. We also plot the observed coverage probabilities of
the 90% confidence interval in the right panel of Fig. 1. The
plot shows that the coverage probabilities are close to 90%,
which is the nominal coverage probability. To summarize,

the plots in Fig. 1 coincide with the theoretical asymptotic
properties that are analyzed in Section 3.

To compare the kernel estimator with Hong’s [9] batching
estimator, we plot the MSE ratio of the batching estima-
tor to the kernel estimator, as well as the half-length ratio
of their confidence intervals, in the left and right panels of
Fig. 2, respectively. The results show that the kernel esti-
mator has a smaller MSE, and its confidence intervals have
smaller half lengths, which means the estimation is more
accurate, than the batching estimator. Furthermore, when the
sample size becomes larger, the kernel estimator becomes
more preferable than the batching estimator.

6.2. A Production-Inventory Example

A capacitated production system operates under a base-
stock inventory policy. It has a base stock level s > 0, and it
has a capacity for producing at maximum c units per period.
Within each period, the products from the last period first
arrive. Then, the demands of the period occur, and they are
filled or backlogged based on the available inventory. At the
end of the period, the production amount is determined. Let Ii

be the inventory minus the backlog in period i, Ai , and Ri be
the demand and production amount in period i. Then, the sys-
tem evolves as follows (Glasserman and Tayur [34]): Ii+1 =
Ii − Ai + Ri−1 and Ri = min{c, [s + Ai − (Ii + Ri−1)]+},
where a+ = max{a, 0}.

We further assume that there are linear holding and back-
order costs. The holding cost is h per unit per period and
the backorder cost is b per unit per period. Let ci be the
cost of period i. Then, ci = h(Ri−1 + I+

i ) + bI−
i , where

a− = − min{a, 0}. Let L(s, A) = ∑n
i=1 ci be the total

cost over the first n periods where A = (A1, A2, . . . , An).
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Figure 2. A comparison of the performance of V̄n with the performance of the batching estimator in the portfolio management example.

Glasserman and Tayur [34] have studied this problem under
a more general setting where they are interested in the sensi-
tivity of the expected total cost. However, when the decision
maker is risk averse, he/she may be interested in the α quan-
tile of the total cost for some α ≥ 0.5, rather than the expected
total cost. In this case, it is important to know the quantile
sensitivity of L(s, A) with respect to the base stock level s,
which is our goal.

We assume s to be a continuous decision variable and set
s = 1.5, c = 0.5, h = 0.1, b = 0.2, n = 20, I1 = s, and
R0 = 0, and let all Ai follow independent exponential distri-
butions with rate 1 for all n periods. To compute ∂L(s, A)/∂s,
we need to know how to calculate ∂ci/∂s. Hong [9] shows

that ∂ci/∂s = 1{Ii>0}h − 1{Ii<0}b. Then, ∂L(s, A)/∂s can be
obtained and the kernel estimator can be easily applied.

An accurate estimate of the quantile sensitivity can be
obtained by using Hong’s [9] batching estimator with a very
large sample size. Then, this estimate is used as a bench-
mark to test the performance of the estimators. We plot
the relative RMSE of the kernel estimator and the observed
coverage probabilities of its 90% confidence interval in the
left and right panels of Fig. 3, respectively. We see that
the relative error is less than 0.6% when the sample size is
larger than 1000 and the confidence interval has the desired
coverage probability, which conforms the theoretical asymp-
totic properties that are analyzed in Section 3.

Figure 3. The performance of V̄n and its 90% confidence interval in the production-inventory example.
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Figure 4. A comparison of the performance of V̄n with the performance of the batching estimator in the production-inventory example.

To compare the performance of the kernel estimator and
the batching estimator, we plot the MSE ratios of the batching
estimator to the kernel one, as well as the half-length ratios
of their confidence intervals, in the left and right panels of
Fig. 4, respectively. The plots show that the kernel estima-
tor always outperforms the batching estimator and becomes
more preferable than the batching estimator when the sample
size is large.

6.3. A Queueing Example

We use a queueing example to illustrate how the kernel esti-
mator can be applied to steady-state simulations. Specifically,

an M/M/1 queue is considered, where the observations are
dependent. Let θ = (θ1, θ2)

′, where θ1 and θ2 denote the mean
interarrival time and the mean service time, respectively. Let
L(θ) be the customer’s steady-state sojourn time. We are
interested in estimating ∂qα(θ)/∂θ2, where qα(θ) is the α-
quantile of L(θ). Then ∂L(θ)/∂θ2 can be obtained using the
IPA method (Glasserman [13]).

When the queue is stable, that is, θ1 > θ2, L(θ) is expo-
nentially distributed with a rate 1/θ2 − 1/θ1 (Ross [35]).
Therefore, for any 0 < α < 1,

∂qα(θ)

∂θ2
= −

[
θ1

θ1 − θ2

]2

log(1 − α).

Figure 5. The performances of V̄n and its 90% confidence interval in the queueing example.
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Figure 6. A comparison of the performance of V̄n with the performance of the batching estimator in the queueing example.

Then, the actual value of ∂qα(θ)/∂θ2 can be computed.
This enables us to test the performance of the kernel
estimator.

We let θ1 = 10, θ2 = 8, and α = 0.9, and plot the estimated
relative RMSEs and the observed coverage probabilities of
its 90% confidence interval in the left and right panels of
Fig. 5, respectively. We see that relative error is smaller than
3% when the sample size is 90, 000 and the observed cover-
age probabilities are close to 90% when the sample size is
large. These results coincide with the asymptotic properties
that are analyzed in Section 4.

Note that Hong [9] proves the asymptotic properties of
the batching estimator only for i.i.d. observations. However,
he numerically shows that the batching estimator also works
for the M/M/1 example. To compare these estimators, we
plot the MSE ratio of the batching estimator to the kernel
estimator, as well as the half-length ratio of their confidence
intervals, in the left and right panels of Fig. 6, respectively.
We see that the kernel estimator outperforms the batching
estimator in terms of both MSE and half length and becomes
more preferable than the batching estimator when the sample
size is large.

7. CONCLUSIONS

In this article, we propose a kernel estimator for estimating
quantile sensitivities using stochastic simulation. We show
the consistency and asymptotic normality of the estimator
for both terminating and steady-state simulations. Numeri-
cal examples show that the estimator works well in practical
problems, and it is more efficient than Hong’s [9] batching
estimator.

APPENDIX

Bochner’s Lemma and A Direct Implication

In the later proofs, we need the following lemma that is known as
Bochner’s Lemma (see, e.g., Parzen [36]).

LEMMA 10 (Bochner’s Lemma): Suppose that H(y) is a function such
that sup−∞<y<∞ |H(y)|<∞,

∫ +∞
−∞ |H(y)|dy <∞ and limy→∞ |yH(y)| =

0. Let f (y) satisfy
∫ +∞
−∞ |f (y)|dy < ∞ and let {bn} be a sequence of positive

constants satisfying limn→∞ bn = 0. Let

fn(x) = 1

bn

∫ +∞

−∞
H

(
y

bn

)
f (x − y)dy.

Then, at every point x of continuity of f (·),

lim
n→∞ fn(x) = f (x)

∫ +∞

−∞
H(y)dy.

A direct implication of the Bochner’s Lemma is stated as follows, which
will be used repeatedly.

Suppose that E[|D|m] < ∞ for some nonnegative number m. Then for
any positive l,

lim
n→∞ E

[
1

δn

Kl

(
t − L

δn

)
· Dm

]
= gm(t)

∫ ∞

−∞
Kl(u)du (6)

if gm(x) is continuous at x = t , and

lim
n→∞ E

[
1

δn

Kl

(
t − L

δn

)
· |D|m

]
= hm(t)

∫ ∞

−∞
Kl(u)du (7)

if hm(x) is continuous at x = t .
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PROOF OF LEMMA 3: Let K
(m)
n,i denote K(m)(

qα−Li
δn

), for m =
1, 2, 3, 4. We note that E[ 1

nδm+1
n

∑n
i=1 K

(m)
n,i · Di ] = 1

δm+1
n

∫∞
−∞ K(m)

(
qα−t
δn

)g1(t)dt . Then, integrating by parts yields

1

δm+1
n

∫ ∞

−∞
K(m)

(
qα − t

δn

)
g1(t)dt

= − 1

δm
n

K(m)

(
qα − t

δn

)
g1(t)

∣∣∣∣
∞

−∞
+ 1

δm
n

∫ ∞

−∞
K(m−1)

(
qα − t

δn

)
g

(1)
1 (t)dt

= 1

δm
n

∫ ∞

−∞
K(m−1)

(
qα − t

δn

)
g

(1)
1 (t)dt .

Similarly, we can show that 1
δm
n

∫∞
−∞ K(m−1)(

qα−t
δn

)g
(1)
1 (t)dt = 1

δm−1
n

∫∞
−∞

K(m−2)(
qα−t
δn

)g
(2)
1 (t)dt . Then, iteratively we have E[ 1

nδm+1
n

∑n
i=1 K

(m)
n,i ·

Di ] = 1
δn

∫∞
−∞ K(

qα−t
δn

)g
(m)
1 (t)dt .

Because g
(m)
1 (t) is continuous at t = qα , δn → ∞ as n → ∞, and∫∞

−∞ |g(m)
1 (t)|dt < ∞, then by Bochner’s Lemma,

lim
n→∞ E

[
1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

]
= lim

n→∞ E

[
1

δm+1
n

K
(m)
n,1 · D1

]
= g

(m)
1 (qα).

Furthermore, note that

Var

[
1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

]

= 1

nδ2m+1
n

E

[
1

δn

(
K

(m)
n,1

)2 · D2
1

]
− 1

n

(
E

[
1

δm+1
n

K
(m)
n,1 · D1

])2

.

Because g2(t) is continuous at t = qα by Assumption 5, Assumption 4
holds, and E(D2) < ∞. Then, similar to Eq. (6),

lim
n→∞ E

[
1

δn

(
K

(m)
n,1

)2 · D2
1

]
= σ 2

m.

Therefore, limn→∞ nδ2m+1
n Var

[
1

nδm+1
n

∑n
i=1 K

(m)
n,i · Di

]
= σ 2

m. This con-

cludes the proof. �

PROOF OF LEMMA 5: Note that

√
nδn(V̄n − V̄n(qα)) =

√
nδn

Q̄n

(
q̂n

α

)
Q̄n(qα)

× [Q̄n(qα)
(
R̄n

(
q̂n

α

)− R̄n(qα)
)− R̄n(qα)

(
Q̄n

(
q̂n

α

)− Q̄n(qα)
)]

.

In Lemma 2 and Theorem 1, we have shown that Q̄n(qα)
P−→ g0(qα),

R̄n(qα)
P−→ g1(qα) and Q̄n(q̂

n
α)

P−→ g0(qα). Then, it suffices to show that√
nδn(R̄n(q̂

n
α) − R̄n(qα)) and

√
nδn(Q̄n(q̂

n
α) − Q̄n(qα)) converge to 0 in

probability.

Let K
(m)
n,i denote K(m)

(
qα−Li

δn

)
for m = 1, 2, 3, 4. Similar to Eq. (4),

√
nδn

[
R̄n

(
q̂n

α

)− R̄n(qα)
]

= √nδn

1

nδn

n∑
i=1

[
K

(
q̂n

α − Li

δn

)
− K

(
qα − Li

δn

)]
Di

=
4∑

m=1

1

m!
[√

n
(
q̂n

α − qα

)]m √
nδn

nm/2

1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

+ op

([√
n
(
q̂n

α − qα

)]4(
nδ2

n

)−3/2 1

n

n∑
i=1

|Di |
)

. (8)

For m = 1, 2, 3, 4, by Lemma 3,

lim
n→∞ E

[√
nδn

nm/2

1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

]

= lim
n→∞

√
nδn

nm/2
E

[
1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

]
= 0,

lim
n→∞ Var

[√
nδn

nm/2

1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

]

= lim
n→∞

1(
nδ2

n

)m · nδ2m+1
n Var

[
1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

]
= 0,

where the last equation holds since nδ2
n →∞ as n → ∞ when supn(nδ3

n)
−1

< ∞.
Then, by Chebyshev’s equality (Durrett [25]), for m = 1, 2, 3, 4,

√
nδn

nm/2

1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

P−→ 0.

Recalling that [√n(q̂n
α − qα)]m converges in distribution to some ran-

dom variable, we know that the first term on the right-hand side (RHS)

of Eq. (8) converges to 0 in probability. Moreover, 1
n

∑n
i=1 |Di | P−→

E(|D|) by the strong law of large numbers. Then, the second term on the
RHS of Eq. (8) converges to 0 in probability, since supn(nδ3

n)
−1 < ∞.

Therefore,
√

nδn[R̄n(q̂
n
α) − R̄n(qα)] P−→ 0. Similarly, we can show that√

nδn[Q̄n(q̂
n
α) − Q̄n(qα)] P−→ 0. This concludes the proof. �

PROOF OF LEMMA 7: The first half of the lemma is the same as that
in Lemma 3. Hence, we only focus on the second half. Let K

(m)
n,i denote

K(m)
(

qα−Li
δn

)
. Then, it suffices to show that

lim sup
n→∞

nδ2m+1
n Var

[
1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

]
≤ B.

Note that

Var

[
1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

]
= 1

nδ2m+2
n

×
[

2
n−1∑
i=1

(
1 − i

n

)
Cov

(
K

(m)
n,1 · D1, K(m)

n,i+1 · Di+1

)
+ Var

(
K

(m)
n,1 · D1

)]

≤ 1

nδ2m+2
n

[
2

n−1∑
i=1

∣∣∣Cov
(
K

(m)
n,1 · D1, K(m)

n,i+1 · Di+1

)∣∣∣+ Var
(
K

(m)
n,1 · D1

)]

≤ 1

nδ2m+2
n

E

[(
K

(m)
n,1 · D1

)2
][

1 + 4
∞∑
i=1

√
φ(i)

]
,

where the last inequality follows from the covariance inequality (Billingsley
[27]).

By Bochner’s Lemma, we know that

lim
n→∞

1

δn

E

[(
K

(m)
n,1 · D1

)2
]

= σ 2
m,
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where σ 2
m is the same as the one defined in Lemma 3. Let B = [1 +

4
∑∞

i=1
√

φ(i)] · σ 2
m. Then,

lim sup
n→∞

nδ2m+1
n Var

[
1

nδm+1
n

n∑
i=1

K
(m)
n,i · Di

]
≤ B.

�

PROOF OF LEMMA 9: Sen [37] shows that
√

n(q̂n
α − qα) converges to

a normal distribution when Assumption 6 is satisfied. Then, similar to the
proof of Lemma 5, we can prove this lemma by using Lemma 7. �

Consistency of S̃
2

n

We show that under certain conditions, the variance estimator S̃2
n defined

in Eq. (5) is consistent when {(L1, D1), . . . , (Ln, Dn)} satisfies Assump-
tion 6. Let Ān = 1

k

∑k
j=1 V̄

(j)
m . Then, we have the following result on the

consistency of S̃2
n .

LEMMA 11: Suppose that Assumptions 4–6 are satisfied, the sequences
{k2(Ān − E[Ān])4, n ≥ 1 . . .} and {m2δ2

n(V̄
(1)
m − E[V̄ (1)

m ])4, n ≥ 1 . . .}
are uniformly integrable, δn → 0 as n → ∞, lim supn(nδ3

n)
−1 < ∞ and

lim supn mδm/k < ∞. Then, S̃2
n converges to σ̃ 2∞ in probability as n→∞.

PROOF: Because E[Ān] = E[V̄ (1)
m ], by Eq. (5), we have

S̃2
n = mδm

k − 1

k∑
j=1

(
V̄ (j)

m − Ān

)2 = mδm

k − 1


 k∑

j=1

(
V̄ (j)

m

)2 − kĀ2
n




= mδm

k − 1




k∑
j=1

(
V̄ (j)

m − E
[
V̄ (1)

m

])2 − k(Ān − E[Ān])2


 .

Because m → ∞ as n → ∞, by Theorem 4,
√

mδm(V̄
(1)
m − E[V̄ (1)

m ]) ⇒
σ̃∞ · N(0, 1). Then, we have

mδmE
[(

V̄ (1)
m − E

[
V̄ (1)

m

])2]→ σ̃ 2∞ and

m2δ2
mE

[(
V̄ (1)

m − E
[
V̄ (1)

m

])4]→3σ̃ 4∞, (9)

because {m2δ2
n(V̄

(1)
m − E[V̄ (1)

m ])4, n ≥ 1} is uniformly integrable.

Note that Var(Ān) = 1
k2 Var(

∑k
j=1 V̄

(j)
m ). Then,

Var(Ān) = 1

k2


kVar

(
V̄ (1)

m

)+ 2
k−1∑
j=1

(k − j)

× Cov
(
V̄ (1)

m − E
[
V̄ (1)

m

]
, V̄ (j+1)

m − E
[
V̄ (1)

m

])

≤ 1

k2


kVar

(
V̄ (1)

m

)+ 2k

k−1∑
j=1

∣∣Cov
(
V̄ (1)

m − E
[
V̄ (1)

m

]
, V̄ (j+1)

m − E
[
V̄ (1)

m

])∣∣



≤ 1

k2


kVar

(
V̄ (1)

m

)+ 4k

k−1∑
j=1

E
[(

V̄ (1)
m − E

[
V̄ (1)

m

])2]√
φ̃(j)


 (10)

≤ 1

k
E
[(

V̄ (1)
m − E

[
V̄ (1)

m

])2]1 + 4
k−1∑
j=1

√
φ̃(j)


 , (11)

where Eq. (10) follows from the covariance inequality (Billingsley [27],
lemma 1, page 170), and {φ̃(j), j ≥ 1} are mixing coefficients of
{V̄ (1)

m , . . . , V̄ (k)
m }.

Note that φ̃(j) ≤ φ(j) and mδm → ∞ as n → ∞. Then, by
Assumption 6 and Eqs. (9) and (11), we know that kVar(Ān) → 0. Then,√

k(Ān − E[Ān]) P−→ 0, and thus by the continuous mapping theorem

(Durrett [25]), k2(Ān − E[Ān])4 P−→ 0. Hence,

k2Var[(Ān − E[Ān])2]→0, (12)

because {k2(Ān − E[Ān])4, n ≥ 1} is uniformly integrable.
Therefore,

E
(
S̃2

n

) = k

k − 1
mδmE

[(
V̄ (1)

m − E
[
V̄ (1)

m

])2]− k

k − 1
mδmVar(Ān)→ σ̃ 2∞,

(13)

because mδmE[(V̄ (1)
m −E[V̄ (1)

m ])2]→ σ̃ 2∞ by Eq. (9), lim supn mδm/k < ∞
and kVar(Ān)→0 as n → ∞.

Note that Var(X − Y ) ≤ 2[Var(X) + Var(Y )]. Then,

Var
(
S̃2

n

) = m2δ2
m

(k − 1)2
Var




k∑
j=1

(
V̄ (j)

m − E
[
V̄ (1)

m

])2 − k(Ān − E[Ān])2




≤ 2m2δ2
m

(k − 1)2


Var


 k∑

j=1

(
V̄ (j)

m − E
[
V̄ (1)

m

])2+ k2Var
[(

Ān − E
[
Ān

])2] .

(14)

Similar to the proof of Eq. (11), we can show that

Var


 k∑

j=1

(
V̄ (j)

m − E
[
V̄ (1)

m

])2

≤ kE
[(

V̄ (1)
m − E

[
V̄ (1)

m

])4]1 + 4
k−1∑
j=1

√
φ̃(j)


 . (15)

Because lim supn mδm/k < ∞, then, by combining Eqs. (9), (12), (14), and
(15), we have

lim
n→∞ Var

(
S̃2

n

) = 0. (16)

Then, by combining Eqs. (13) and (16), and by Chebyshev’s inequality
(Durrett [25]), we conclude that S̃2

n converges to σ̃ 2∞ in probability as
n → ∞. �
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