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a b s t r a c t

Froman importance sampling viewpoint, Broadie andGlasserman [M. Broadie, P. Glasserman, A stochastic
mesh method for pricing high-dimensional American options, Journal of Computational Finance 7 (4)
(2004) 35–72] proposed a stochastic meshmethod to price American options. In this paper, we revisit the
method from a conditioning viewpoint, and derive some new weights.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we treat American options as derivative securities
which can be exercised at a finite number of dates prior to the
maturity. They are sometimes calledBermudanoptions. To price an
American option usingMonte Carlo simulation, onemay formulate
it as a dynamic programming problem, and then estimate the
holding value of the option backwards at each exercise date
recursively. To approximate the holding value, Longstaff and
Schwartz [1] and Tsitsiklis and Van Roy [2] use a regression
approach by employing a sequence of basis functions, and Broadie
andGlasserman [3] design a stochasticmeshmethod. In this paper,
we focus on the stochastic mesh method. Basically the method
estimates the holding value at each exercise date by a weighted
average of the option values at the next exercise date on all
sample paths. Along this line of research, Avramidis and Hyden [4]
consider the efficiency improvement of themethod, and Avramidis
and Matzinger [5] show the convergence of the stochastic mesh
estimators.
A key feature of the stochasticmeshmethod is how toderive the

weight functions. Broadie and Glasserman [3] take an importance
sampling viewpoint and derive weights of each exercise date
based on the information of the next exercise date. Therefore,
we call them forward-looking weights. In this paper we revisit
this problem, and consider it from a conditioning viewpoint.
From this viewpoint, we may derive the same forward-looking
weights of [3]. Furthermore, we may also derive new weights
that use not only the information of the next exercise date but
also the information of the last exercise date. Therefore, we call
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them binocular weights. To illustrate how the idea works, we
compare these two weights for the Black–Scholes model. The
numerical results show that the forward-looking weights have
smaller variances, but the binocular weights have smaller biases.
We also demonstrate how to apply the forward-looking and
binocular weights to the variance-gamma model. We show that
both weights cannot be implemented efficiently. However, the
conditioning viewpoint allows us to exploit more information in
the simulation anddevelop otherweights that can be implemented
efficiently. A simple numerical study shows that the new weights
work well for the variance-gamma model.
The rest of the paper is organized as follows. In Section 2 we

review some preliminary knowledge on pricing American options
and the stochastic mesh method. Then in Section 3 we analyze the
problem from a conditioning viewpoint, and derive the forward-
looking and binocular weights. In Section 4 we consider two
examples to explain how to apply the new weights, and illustrate
their performances through simple numerical examples.

2. Preliminaries

Let St denote the price at time t of the underlying asset whose
price dynamics follows a Markov process on Rd. Suppose that
0 = t0 < t1 < · · · < tm = T are the exercise dates.Without loss of
generality,we assume that ti+1−ti = 1t for all i = 0, 1, . . . ,m−1.
We write Si for Sti for simplicity of notation. Moreover, suppose
that n independent sample paths of {S0, S1, . . . , Sm} are generated
through Monte Carlo simulation. We denoted the jth sample path
by {S0, S

j
1, . . . , S

j
m}.

Let Li(x) denote the discounted payoff of the option at ti if
it is exercised, and Hi(x) denote the holding value of the option
at ti, when Si = x. Let Vi(x) denote the value of the option
at ti when Si = x. Then a backwards recursion algorithm for
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pricing the American option can be expressed as Vm = Lm(x)
and Vi(x) = max {Li(x),Hi(x)}, i = 0, 1, . . . ,m − 1. The holding
value Hi(x) satisfies Hi(x) = e−r1tE [Vi+1(Si+1)| Si = x], where the
expectation is takenwith respect to the risk-neutral measure and r
is the risk-free interest rate. Then the price of the American option
at time 0 is V0(S0).
The major difficulty of pricing the American option is how

to estimate the holding value Hi(x) for any state x. Broadie and
Glasserman [3] propose a stochastic mesh method to do it. The
key feature of the method is that for any x, it evaluates Hi(x) by
exploiting all the nodes at time ti+1, i.e., S1i+1, . . . , S

n
i+1. Essentially

they choose an appropriate weight function w(i, x, Si, Si+1) such
that Hi(x) can be estimated by

H̄i(x) = e−r1t
1
n

n∑
j=1

V̄i+1(S
j
i+1) · w(i, x, S

j
i , S

j
i+1),

where V̄i+1(x) = max{Li+1(x), H̄i+1(x)}. The key issue of the
stochastic mesh method is how to choose an appropriate weight
function w(i, x, Si, Si+1). Broadie and Glasserman [3] analyze
this problem from an importance sampling viewpoint. A weight
function they suggest is

w(i, x, Si+1) =
fi(x, Si+1)

1
n

n∑
j=1
fi(S

j
i , Si+1)

, (1)

where fi(x, y) is the transition density from Si = x to Si+1 = y.

3. Estimating the holding value Hi(x)

For convenience of exposition, throughout the paper we work
with one-dimensional case, i.e., d = 1, though the analysis can
be easily extended to high-dimensional case. We also assume for
convenience that densities involved in the analysis are continuous.
In this section, we analyze the conditional expectation form of
Hi(x), and apply the conditioning techniques to obtain a different
insight of the stochastic mesh method. Note that

Hi(x) =
e−r1t

∫
∞

0 Vi+1(y)f (x, y) dy∫
∞

0 f (x, y) dy

= lim
ε→0+

E
[
e−r1tVi+1(Si+1) · 1{x−ε≤Si≤x+ε}

]
E
[
1{x−ε≤Si≤x+ε}

] , (2)

where f (·, ·) denotes the joint density of (Si, Si+1), the first
equality serves as a definition of the conditional expectation
(see, e.g., Example 1.4 in Page 221 of [6]), and the second
equality results from simply applying the mean value theorem if∫
∞

0 Vi+1(y)f (x, y) dy is continuous at x.
Essentially Eq. (2) expresses the conditional expectation Hi(x)

as a limit of expectations. However, it is of little practical value
because of the limit operator. Intuitively, with more information,
e.g., the transition densities, one may remove the limit operator
and express Hi(x) in terms of expectations. In the following two
subsections, we apply the conditioning techniques to incorporate
more information so that we can express Hi(x) in terms of
expectations.

3.1. Forward-looking weights

Based on Eq. (2) and by conditioning on Si+1, we have

Hi(x) = lim
ε→0

E
[
e−r1tVi+1(Si+1) · 1{x−ε≤Si≤x+ε}

]
E
[
1{x−ε≤Si≤x+ε}

]
= lim

ε→0

E
(
e−r1tVi+1(Si+1)E

[
1{x−ε≤Si≤x+ε}

∣∣ Si+1])
E
[
1{x−ε≤Si≤x+ε}

] .

With some regularity conditions, we can take the limit into the ex-
pectations. Then we have Hi(x) = E

[
e−r1tVi+1(Si+1)w(i, x, Si+1)

]
,

where

w(i, x, Si+1) = lim
ε→0

E
[
1{x−ε≤Si≤x+ε}

∣∣ Si+1]
E
[
1{x−ε≤Si≤x+ε}

]
=

lim
ε→0

1
2ε E

[
1{x−ε≤Si≤x+ε}

∣∣ Si+1]
lim
ε→0

1
2ε E

[
1{x−ε≤Si≤x+ε}

] .

Denote by fi(·) the marginal density of Si. Note that, by the mean
value theorem, limε→0 12ε E

[
1{x−ε≤Si≤x+ε}

]
= fi(x). Furthermore, by

Bayes’ rule and the mean value theorem,

lim
ε→0

1
2ε
E
[
1{x−ε≤Si≤x+ε}

∣∣ Si+1] = lim
ε→0

1
2ε

∫ x+ε

x−ε

fi(u)fi(u, Si+1)
fi+1(Si+1)

du

=
fi(x)fi(x, Si+1)
fi+1(Si+1)

.

Then

w(i, x, Si+1) =
fi(x, Si+1)
fi+1(Si+1)

.

The above weight w(i, x, Si+1) involves two densities, fi(x, ·) and
fi+1(·). In practice fi(x, ·) is often known, since it is the actual
transition density that is used to generate the sample paths of the
underlying asset price. However, the explicit expression of fi+1(·)
is typically unknown. By conditioning on Si, we have fi+1(·) =
E [fi(Si, ·)]. Then fi+1(Si+1) can be estimated by 1n

∑n
j=1 fi(S

j
i , Si+1).

Therefore, we obtain exactly the weight function defined in
Eq. (1). We refer to this weight function as a forward-looking
weight function, since it conditions on Si+1, the price of the
underlying at the next exercise date.

3.2. Binocular weights

Motivated by the bridge sampling techniques used in Monte
Carlo simulation (see, for instance, [7]), we condition on Si−1 and
Si+1 to derive new weight functions for estimating the holding
value Hi(x).
Let fi|i−1,i+1(·, v1, v2) denote the conditional density of Si given

Si−1 = v1 and Si+1 = v2. Based on Eq. (2) and by conditioning on
Si−1 and Si+1, we have

Hi(x) = lim
ε→0

E
(
e−r1tVi+1(Si+1)E

[
1{x−ε≤Si≤x+ε}

∣∣ Si−1, Si+1])
E
[
1{x−ε≤Si≤x+ε}

]
= E

[
e−r1tVi+1(Si+1) · w(i, x, Si−1, Si+1)

]
, (3)

where, under some regularity conditions, interchanging the limit
and expectation yields

w(i, x, Si−1, Si+1) =
lim
ε→0

1
2ε E

[
1{x−ε≤Si≤x+ε}

∣∣ Si−1, Si+1]
lim
ε→0

1
2ε E

[
1{x−ε≤Si≤x+ε}

]
=
fi|i−1,i+1(x, Si−1, Si+1)

fi(x)
.

Specifically, suppose that for any u1, u2 > 0, fi|i−1,i+1(·, u1, u2) is
continuous and bounded in a neighborhood of xwith g(u1, u2) be-
ing an upper bound, and there exists a random variable K with
finite mean such that Vi+1(Si+1) · g(Si−1, Si+1) ≤ K with prob-
ability 1 (w.p.1). Then Vi+1(Si+1) 12ε E

[
1{x−ε≤Si≤x+ε}

∣∣ Si−1, Si+1] ≤
Vi+1(Si+1) · g(Si−1, Si+1) ≤ K w.p.1 for small ε, and hence by the
dominated convergence theorem,

lim
ε→0

1
2ε
E
(
e−r1tVi+1(Si+1)E

[
1{x−ε≤Si≤x+ε}

∣∣ Si−1, Si+1])
= E

[
e−r1tVi+1(Si+1) · fi|i−1,i+1(x, Si−1, Si+1)

]
,
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Table 1
Numerical results of forward-looking and binocular weights for the Black–Scholes model.

n Call on one asset Max-option on five assets
500 1000 1500 2000 500 1000 1500 2000 2500 3000

Forward Bias 0.301 0.151 0.095 0.048 2.675 1.921 1.540 1.298 1.146 1.045
Stdev 0.431 0.300 0.226 0.192 0.880 0.582 0.479 0.430 0.399 0.366
Rmse(%) 6.6 4.2 3.1 2.5 11.1 7.9 6.4 5.4 4.8 4.4

Binocular Bias 0.148 0.071 0.046 0.027 1.245 0.815 0.655 0.536 0.458 0.378
Stdev 0.525 0.358 0.292 0.251 1.031 0.684 0.578 0.507 0.454 0.427
Rmse(%) 6.8 4.6 3.7 3.2 6.4 4.2 3.5 2.9 2.6 2.3

since limε→0 12ε E
[
1{x−ε≤Si≤x+ε}

∣∣ Si−1, Si+1] = fi|i−1,i+1(x, Si−1, Si+1)
w.p.1. Then Eq. (3) holds. These regularity conditions hold quite
generally, e.g., for the Black–Scholes model.
For many models, the expression of fi|i−1,i+1(·, v1, v2) is known

or can be approximated based on the bridge sampling techniques.
For instance, if St follows a geometric Brownian motion, then
fi|i−1,i+1(·, v1, v2) can be computed explicitly. Since the marginal
density fi(x) is typically unknown, we may use fi|i−1,i+1(·, v1, v2)
to estimate it. Note that fi(x) = E

[
fi|i−1,i+1(x, Si−1, Si+1)

]
, then

fi(x) can be unbiasedly estimated by 1n
∑n
k=1 fi|i−1,i+1(x, S

k
i−1, S

k
i+1).

Then we obtain a new weight function

w̃(i, x, Si−1, Si+1) =
fi|i−1,i+1(x, Si−1, Si+1)

1
n

n∑
k=1
fi|i−1,i+1(x, Ski−1, S

k
i+1)

. (4)

Since the new weight function use the information on both sides
of the current exercise date, we refer to it as a binocular weight.

4. Examples

4.1. Black–Scholes model

Suppose that the price of the underlying asset follows a Geo-
metric Brownian motion (GBM) under the risk-neutral measure,
i.e., dSt = (r − δ)Stdt + σ StdBt , where r is the risk-free interest
rate, δ the dividend rate, σ the volatility, and Bt a standard Brow-
nian motion.
We first derive the forward-looking weight. Note that Si+1 =

Si exp
[
(r − δ − σ 2/2)1t + σ(Bi+1 − Bi)

]
under theBlack–Scholes

model, where Bi denotes Bti . Then by simple algebra,

fi(u, v) =
1

vσ
√
1t
· φ

(
1

σ
√
1t

[
log

(v
u

)
− (µ− σ 2/2)1t

])
,

where φ(·) is the standard normal density. Then the forward-
looking weight of Eq. (1) may be computed.
Now we show how to derive the binocular weights pro-

posed in this paper. By a result on a Brownian bridge, Bi ∼
1/2 [Bi−1 + Bi+1] +

√
1t/2 · Z (see, e.g., Glasserman [8]),

where Z follows a standard normal distribution, and the op-
erator ‘‘∼’’ denotes equivalence in distribution. Since Si =
S0 exp

[(
r − δ − σ 2/2

)
ti + σBi

]
, it is easy to show that Si ∼

√
Si−1 · Si+1 · exp

(
σ
√
1t/2 · Z

)
. Then by simple algebra, we have

fi|i−1,i+1(x, v1, v2) =
1

xσ
√
1t/2

· φ

(
1

σ
√
1t/2

log
[

x
√
v1 · v2

])
.

Therefore, the binocular weight of Eq. (4) may be applied.
To illustrate the performance of the binocular weight and com-

pare it to the forward-looking weight of [3], we consider two op-
tions under the Black–Scholes model, a call underlying one asset
and a max-option underlying five assets. These two examples are
cited from Glasserman [8] (Page 409) and Broadie and Glasser-
man [3] (Table 4 with initial vector 100) respectively. The param-
eter settings are the same as those in the references, and are thus
omitted for reasons of space.

The numerical results are summarized in Table 1, where we
show the bias, standard deviation (stdev), and relative root mean
square error (rmse, defined as the percentage of root mean square
error relative to true price) of the estimators. From the tablewe can
see that the binocular weight has smaller bias while the forward-
looking weight has smaller variance. Intuitively, large variance of
the binocular weight results from that weights are more dispersed
when conditioning on both Si−1 and Si+1, and hence have large
variances. Numerical results also suggest that binocular weight
leads to smaller bias, which may be helpful in finding tighter
bounds of the price. The bias issue deserves further investigation
in the future.

4.2. Variance-Gamma model

Weconsider the variance-gamma (VG)model. PricingAmerican
options under VG model has been studied by Hirsa and Madan [9].
Our aim is not to propose a competing method, but to explore
more insights of the stochastic mesh method. We show that
both the forward-looking and binocular weights are practically
infeasible. However, the proposed conditioning techniques can
still be applied to derive other weights that can be implemented
efficiently.
Following the notation of Avramidis and L’Ecuyer [7], we let

B(t) = B(t; θ, σ ) be a Brownian motion with drift parameter θ
and variance parameter σ , and G(t) = G(t;µ, ν) be a gamma
process independent of B, with drift µ > 0 and volatility ν > 0.
A VG process with parameters (θ, σ , ν) is defined by X(t) =
B(G(t; 1, ν), θ, σ ) for t ≥ 0. Then under the VG model, the risk-
neutralized asset price St is defined by

St = S0 exp{(ω + r − δ)t + X(t)}, (5)

where r is the risk-free interest rate, δ is the dividend rate, and
ω = log(1 − θν − σ 2ν/2)/ν. To ensure that E(St) < ∞ for all
t > 0, we require that (θ + σ 2/2)ν < 1.
To analyze this model, we first review two schemes of

simulating the VG process. The first one is simulating it as a gamma
time-changed Brownian motion, while the second one simulating
it via a Brownian bridge. For details of these schemes, one is
referred to Fu [10] and Avramidis and L’Ecuyer [7]. We will use
the two schemes to develop the forward-looking and binocular
weights respectively.
We first look at the scheme of simulating VG process as a

gamma time-changed Brownian motion. We let Xi and Gi denote
X(ti) and G(ti) respectively, and independently generate 1Gi :=
Gi+1 − Gi from a gamma distribution Γ (1t/ν, ν) and Zi from a
standard normal distribution. Then we have Xi+1 = Xi + θ 1Gi +
σ
√
1Gi Zi. Note that Si+1 = Si exp {(ω + r − δ)1t + (Xi+1 − Xi)}.

By simple algebra,

fi(x, u) =
∫
∞

0

1
uσ
√
y
φ

(
log(u/x)− (ω + r − δ)1t − θy

σ
√
y

)
γ (y) dy, (6)

where γ (·) is the Γ (1t/ν, ν) density. Plugging fi(x, u) in Eq. (1)
we obtain the forward-looking weights.
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The VG process can also be simulated via a Brownian bridge
(see, e.g., Avramidis and L’Ecuyer [7]). In particular, given Xi−1,
Xi+1, Gi−1 and Gi+1, Xi can be simulated by a two-step algorithm.
Particularly, Xi can be simulated by

Xi = YXi+1 + (1− Y )Xi−1 + σ
√
Y (1− Y ) (Gi+1 − Gi−1) · Z, (7)

where Y is generated from a beta distribution β(1t/ν,1t/ν), and
Z is a standard normal random variable.
Note that, by Eq. (5), conditioning on Si−1 and Si+1 is equivalent

to conditioning on Xi−1 and Xi+1. However, the density of Xi (thus
the density of Si) is difficult to derive given Xi−1 and Xi+1. Therefore,
we suggest to condition on (Xi−1,Gi−1) and (Xi+1,Gi+1), which
include all the information in the steps i − 1 and i + 1. Then by
simple algebra, the conditional density of Si given (Xi−1,Gi−1) =
(v1, u1) and (Xi+1,Gi+1) = (v2, u2) can be written as

fi|i−1,i+1 (x, v1, v2, u1, u2) =
∫ 1

0

φ
(
log(x/S0)−(ω+r−δ)ti−yv2−(1−y)v1

σ
√
y(1−y)(u2−u1)

)
xσ
√
y(1− y)(u2 − u1)

g(y) dy, (8)

where g(·) is the β(1t/ν,1t/ν) density. Plugging fi|i−1,i+1 in
Eq. (4) we obtain the binocular weights.
Although both the forward-looking and binocular weights are

applicable to this example, they are practically infeasible. As shown
in Eqs. (6) and (8), both fi(x, u) and fi|i−1,i+1(x, v1, v2, u1, u2) need
numerically integrating, which requires a prohibitive amount of
effort, and makes it practically infeasible.
Fortunately, we may use the conditioning technique to obtain

otherweights that are easier to implement. This approach provides
us some flexibility in choosing the conditioning quantities. By
conditioning on some appropriate quantities we may obtain
weights that are practically applicable. We illustrate how to do
so.
Rather than conditioning on Xi−1, Xi+1,Gi−1 and Gi+1, we

additionally condition on Gi. Then similar to the previous analysis,
a new weight function can be expressed as:

ŵ (i, x, Xi−1, Xi+1,Gi−1,Gi+1,Gi) =
f ci (x, Xi−1, Xi+1,Gi−1,Gi+1,Gi)

1
n

n∑
k=1
f ci
(
x, Xki−1, X

k
i+1,G

k
i−1,G

k
i+1,G

k
i

) , (9)

where f ci (x, v1, v2, u1, u2, u) is the conditional density of Si given
Xi−1 = v1, Xi+1 = v2, Gi−1 = u1, Gi+1 = u2 and Gi = u. By simple
algebra, we can easily find that

f ci (x, v1, v2, u1, u2, u) =
1
qσ x
· φ

(
1
qσ

[
log

(
x
S0

)
− (w + r − δ)ti − p

])
,

where p = [(u − u1)v2 + (u2 − u)v1]/(u2 − u1) and q =√
(u− u1)(u2 − u)/(u2 − u1).

Table 2
Numerical results for the variance-gamma model.

n 500 1000 1500 2000 2500 3000

Bias 4.84 3.97 3.72 3.42 3.12 3.10
Stdev 4.43 3.28 2.63 2.21 2.06 1.87
Rmse(%) 18.5 14.5 12.8 11.4 10.5 10.2

Then by Eq. (9), we may compute the weight and use it to price
American options. To illustrate the performance of the newweight
function, we consider a call option under the VG model. Similar
to the settings in [9], we let T = 0.5616, r = 5.41%, δ = 1.2%,
σ = 20.72%, ν = 0.5022, θ = −0.2290, S0 = 1369.4, K = 1200
and m = 10. The numerical results are summarized in Table 2.
From the tablewe see that the estimatorworkswell. However, bias
of the estimator is relatively high,which results from the backward
induction procedure, as well as the introduction of a sample mean
as the denominator of the weights. The analysis of the bias is an
issue that is worthy of further investigation in the future.
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