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A probability is the expectation of an indicator function. However, the standard pathwise sensitivity estimation approach,
which interchanges the differentiation and expectation, cannot be directly applied because the indicator function is dis-
continuous. In this paper, we design a pathwise sensitivity estimator for probability functions based on a result of Hong
[Hong, L. J. 2009. Estimating quantile sensitivities. Oper. Res. 57(1) 118–130]. We show that the estimator is consistent
and follows a central limit theorem for simulation outputs from both terminating and steady-state simulations, and the
optimal rate of convergence of the estimator is n−2/5 where n is the sample size. We further demonstrate how to use impor-
tance sampling to accelerate the rate of convergence of the estimator to n−1/2, which is the typical rate of convergence for
statistical estimation. We illustrate the performances of our estimators and compare them to other well-known estimators
through several examples.
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1. Introduction
Probabilities are important measures of random perfor-
mances. They are widely used in practice. In the financial
industry, for example, default probabilities are important
measures of credit risk. The Black-Scholes-Merton frame-
work models the default probability of a firm with a bond
maturing at time T as the probability that the firm’s mar-
ket value is below the face value of the bond at time T
(Duffie and Singleton 2003). In the service industries, for
example, service quality is often measured by probability
that the waiting times of customers are more than a certain
service standard.
Suppose that the random performance is a function of

some parameters. Then, the probability of the random per-
formance exceeding a certain value is also a function of
these parameters. The partial derivatives of the function
are called probability sensitivities, which provide informa-
tion on how changes of these parameters affect the output
probability. They are useful in practice. If the parameters
are decision variables, their sensitivities may be used to
control and optimize the probability. For example, the ser-
vice rates of a queueing system can be adjusted to control
the exceedance probability of waiting time. If the param-
eters are uncontrollable, their sensitivities may be used to
assess and hedge the risk. For example, the sensitivities of
a default probability with respect to market parameters may

help a financial institute to limit the risk exposure of a loan
portfolio to the changes of the market conditions.
Simulations are often used to evaluate probabilities when

the models of the random performance are complicated. In
the example of the default probability, a firm’s market value
may be modeled as a complicated diffusion process. Then,
simulation is often the only way to estimate the default
probability. In this example, the trajectories of the diffusion
process are simulated and the firm values at the bond matu-
rity are observed. They are then used to estimate the default
probability. The simulation observations in this example are
independent and identically distributed (i.i.d.). We call this
type of simulation a terminating simulation. In some other
examples, however, simulation observations may be depen-
dent. For instance, to simulate customers’ waiting times in
a steady-state queueing system, we often observe the wait-
ing times of a sequence of customers entering the system
through a single simulation run to avoid a lengthy warm-up
period (see, for instance, Law and Kelton 2000). Then, the
observations are dependent but (approximately) stationary.
We call this type of simulation a steady-state simulation. In
this paper, we are interested in estimating probability sensi-
tivities using the same simulation observations that are used
to estimate probabilities for both terminating and steady-
state simulations. Then, we may obtain both the estimate
of probability and the estimates of probability sensitivities
in a single simulation experiment.
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Estimating probability sensitivities has been studied in
the literature. Because a probability function is the expecta-
tion of an indicator function, estimating its sensitivities may
be viewed as a special case of estimating sensitivities of an
expectation function, which has been studied extensively
in the simulation literature. Readers can refer to L’Ecuyer
(1991) and Fu (2006) for comprehensive reviews. The typ-
ical methods include the likelihood ratio (LR) method,
the weak derivative (WD) method, and perturbation anal-
ysis (PA, also known as the pathwise method). The LR
method differentiates the input distribution. It is widely
applicable if the density function is available. However, the
variance of the LR estimator is often large, which signif-
icantly degrades its performance. The WD method often
seeks to represent the derivative of the density function
into the difference of two densities. It is often difficult
to choose which WD representation to use, and it often
requires many simulations to estimate a derivative (espe-
cially when the derivative is taken with respect to a mul-
tidimensional vector). Both the LR and WD methods may
encounter difficulties if the parameter is not in the input dis-
tribution. In the PA family, because the indicator function
is discontinuous, infinitesimal perturbation analysis (IPA)
cannot be applied directly and smoothed perturbation anal-
ysis (SPA) is required. SPA writes the probability function
as the expectation of a conditional probability function. If
the conditional probability function is smooth and its path-
wise derivative can be evaluated easily, the probability sen-
sitivity can be written as the expectation of the pathwise
derivative, which can be estimated through simulation. To
apply SPA, one needs to decide what to condition on such
that the conditional probability function can be evaluated.
This is often problem dependent, and may not be easy to
determine.
In this paper, we develop an estimator of probability sen-

sitivity based on a result of Hong (2009), who shows that
a probability sensitivity (with respect to a parameter of the
simulation) can be written as another sensitivity with respect
to a value that is not in the simulation. We briefly summarize
the assumptions and the result, and discuss the verification of
the assumptions in §2. We then develop an estimator based
on the result. The estimator does not require the knowledge
of the densities. Therefore, it can be applied even when
densities are unknown. We prove that the estimator is con-
sistent and follows an asymptotic normal distribution for
both terminating and steady-state simulations in §§3 and 4,
respectively. However, the estimator has a slower rate of
convergence compared to the typical n−1/2 of many simula-
tion estimators. When density information is available, we
may use importance sampling (IS) to accelerate the rate of
convergence of the estimator to n−1/2 in some situations.
We introduce the IS estimator and discuss its rate of con-
vergence in §5. In §6, we compare our estimators to the
SPA and LR estimators through three numerical examples.
The paper is concluded in §7, and some lengthy proofs
and discussions are in the electronic companion, which is

available as part of the online version that can be found at
http://or.journal.informs.org/.

2. Background

2.1. Analytical Results of Probability Sensitivity

Let L��� denote the random performance that we are inter-
ested in, where � is the parameter with respect to which
we differentiate. In this paper, we assume that � is one
dimensional and � ∈ �, where � ⊂ � is an open set. If
� is multidimensional, we may treat each dimension as a
one-dimensional parameter while fixing other dimensions
constants. Let py���= Pr�L���� y�. We are interested in
estimating p′y���= dpy���/d�.
Let L′��� = dL���/d� be the pathwise derivative of

L���. If L���= l���X� with some function l and random
variable (or vector) X, then L′��� = ��l���X� (where �
denotes the partial derivative with respect to the subscripted
argument). For example, L��� may be the random return
of a financial portfolio that has � share of a stock with an
annual return X, i.e., L��� = �X. Then L′���=X. When
L��� cannot be represented by a closed-form function,
L′��� may still be evaluated numerically through perturba-
tion analysis (PA) in many situations (Glasserman 1991).
For example, L��� may be the sojourn time of a customer
in a G/G/1 queue and � may be the mean service time.
Although the closed-form expression of L��� is not avail-
able, L′��� can be evaluated through PA. In this paper, we
assume that L′��� can be evaluated for all � ∈�.
Assumption 1. For any � ∈�, L′��� exists with probabil-
ity 1 (w.p.1) and there exists a random variable �, which
may depend on �, such that E��� <� and �L��+���−
L���������� for any �� that is close enough to 0.
Assumption 1 is a typical assumption used in path-

wise derivative estimation. It guarantees the validity of
interchanging differentiation and expectation when evaluat-
ing dE�r�L�����/d� for any Lipschitz-continuous function
r�·�. Glasserman (1991) develops the commuting condi-
tions for generalized semi-Markov processes under which
this assumption holds. Broadie and Glasserman (1996)
demonstrate the use of this assumption in estimating price
sensitivities of financial derivatives.
Let F �t� ��= Pr�L���� t� denote the cumulative distri-

bution function of L���. We make the following assumption
on the smoothness of F �t� ��.

Assumption 2. For any � ∈ �, F �t� �� is �1 continuous
at �y� ��.

Assumption 2 basically requires that F �t� �� is continu-
ously differentiable at �y� ��. Note that py���= F �y� ��. It is
natural to assume that F �y� �� is differentiable in � because
we estimate p′y���. Furthermore, note that �tF �t� �� is the
density function of L���. If L��� has a density at t = y, then
F �t� �� is differentiable in t at t = y. When a function is dif-
ferentiable, it is generally continuously differentiable except
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for some obscure examples (e.g., Example 6.3.4 of Marsden
and Hoffman 1993). We believe that Assumption 2 is typ-
ically satisfied for practical problems where L��� is a con-
tinuous random variable in the neighborhood of y, although
its verification can be difficult. In §2.2, we provide more
discussions on the verification of Assumption 2.
Given the assumptions, we can prove the following the-

orem of Hong (2009). Because the assumptions we make
are simpler than the ones in Hong (2009), we include our
proof of the theorem in the electronic companion.

Theorem 1 (Hong 2009). Suppose that Assumptions 1
and 2 are satisfied. Then

p′y���=−�yE�L′��� · 1�L����y��� (1)

Hong (2009) further assumes that the conditional expec-
tation E�L′��� � L���= t� is continuous at t = y. Then, by
the fundamental theorem of calculus,

p′y���=−�yE�L′��� · 1�L����y��
=−�y

∫ y

−�
E�L′��� � L���= t�f �t� ��dt

=−f �y� �� ·E�L′��� � L���= y�� (2)

where f �t� �� is the density function of L���.
In this paper, we directly apply Equation (1) instead of

Equation (2) to derive an estimator of p′y��� for both ter-
minating and steady-state simulations. Therefore, we do
not have to assume the continuity of E�L′��� � L���= t�
at t = y, which is often difficult to verify for practical
problems.

2.2. Verification of Assumption 2

Note that F �t� �� = Pr�L��� � t� = E�1�L����t��. To ver-
ify Assumption 2, we need to analyze the differentiabil-
ity of E�1�L����t��. However, the indicator function 1�·� is
not Lipschitz continuous. Therefore, we cannot interchange
the differentiation and expectation if we want to study
�tE�1�L����t�� and ��E�1�L����t�� (Broadie and Glasserman
1996). To overcome this difficulty, we have to either
smooth or remove the indicator function to make the term
inside of the expectation Lipschitz continuous. In this sub-
section, we propose two methods to achieve that.

2.2.1. Conditional Monte Carlo Method. Suppose
that there exists a random vector X� such that Pr�L��� �
t � X�� = g��t�X��. To simplify the notation, we let
G�t� ��= g��t�X��. Note that G�t� �� is a random variable
given �t� ��. Then,

F �t� ��= E�Pr�L���� t �X���= E�G�t� ���� (3)

Therefore, verifying Assumption 2 is equivalent to verify-
ing that E�G�t� ��� is �1 continuous at �y� ��. In the fol-
lowing lemma, we provide a set of conditions under which
it is satisfied. The proof of the lemma is just a straightfor-
ward application of Broadie and Glasserman (1996), and it
is included in the electronic companion.

Lemma 1. Suppose that G�t� �� is �1 continuous at �y� ��
w.p.1 and there exists a random variable B, which may
depend on �y� ��, such that E�B� <� and

�G�y+�y��+���−G�y����� B���y� + �����
for any ��y���� that is close enough to �0�0�. Then,
E�G�t� ��� is �1 continuous at �y� ��.

Lemma 1 is closely related to SPA, which uses the
relation p′y���= ��F �y� ��= E���G�y� ��� and directly esti-
mates E���G�y� ���. To apply SPA, only the differentiabil-
ity and Lipschitz continuity of G�y��� with respect to �
is required. To verify Assumption 2, however, we require
the differentiability and Lipschitz continuity of G�t� �� with
respect to �t� ��. Therefore, the conditions in Lemma 1 are
stronger than the conditions for applying SPA. Nevertheless,
for most practical problems, the conditions of Lemma 1 are
satisfied if SPA is applicable.
There are also examples where the conditions of

Lemma 1 are satisfied, but SPA may not be applied prac-
tically. In Lemma 1, we only require that G�t� �� satisfy
certain properties, we do not need to know how to com-
pute ��G�y� ��. To implement SPA, however, it is critical
to know how to compute ��G�y� ��. In §6.3, we provide
a portfolio risk example where the conditions of Lemma 1
are satisfied, but ��G�y� �� cannot be computed practically;
thus, SPA cannot be applied practically.

2.2.2. Importance-Sampling Method. Suppose that
we may use an importance-sampling distribution to gener-
ate L��� such that L���� t w.p.1. Let H�t� �� denote the
likelihood ratio, then

F �t� ��= E�1�L����t��= �E�1�L����t�H�t� ���
= �E�H�t� ���� (4)

where �E denotes the expectation taken with respect to the
importance-sampling measure. Then, verifying Assump-
tion 2 is equivalent to verifying that �E�H�t� ��� is �1 con-
tinuous at �y� ��. We have the following lemma, which is
completely parallel to Lemma 1.

Lemma 2. Suppose that H�t� �� is �1 continuous at �y� ��
w.p.1, and there exists a random variable B that may
depend on �y� �� such that �E�B� <� and

�H�y+�y��+���−H�y����� B���y� + �����
for any ��y���� that is close enough to �0�0�. Then,
�E�H�t� ��� is �1 continuous at �y� ��.

By Lemma 2, we also have p′y��� = ��F �y� �� =
�E���H�y� ���. If ��H�y� �� can be computed practically
under the importance-sampling measure, we may estimate
p′y��� by directly estimating �E���H�y� ���. There are also
examples where the conditions of Lemma 2 are satisfied,
but computing ��H�y� �� requires substantial efforts and is
thus not practical to implement. We provide such an exam-
ple in §6.1.5.
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3. Estimating Probability Sensitivity via
Terminating Simulations

Because � is fixed when estimating p′y���, to simplify the
notation, we let L and D denote L��� and L′���, respec-
tively, and let f �t� denote f �t� ��. Let h�t�= E�D · 1�L�t��.
By Theorem 1, h�t� is differentiable at t = y and h′�y�=
−p′y���. Then,

p′y���=−h′�y�=− lim
"→0+

1
2"
�h�y+ "�−h�y− "��

=− lim
"→0+

1
2"

E�D · 1�y−"�L�y+"��� (5)

Let �L1�D1�� �L2�D2�� � � � � �Ln�Dn� be the simulation
observations of �L�D�, and let "n, n = 1�2� � � � � be a
sequence of positive constants such that "n→ 0 and n"n→
� as n→�. Then we can estimate p′y��� by


Mn =− 1
2n"n

n∑
i=1
Di · 1�y−"n�Li�y+"n�� (6)

By Equation (5), we can see that 
Mn is essentially a finite
difference (FD) estimator. However, it is different from
typical FD estimators of p′y��� that estimate �1�L��+����y�−
1�L����y��/�� or �1�L��+����y�−1�L��−����y��/2��. First, typ-
ical FD estimators do not use pathwise derivatives L′���, but

Mn does. Intuitively, to evaluate p′y��� = ��E�1�L���−y�0��,
one needs to differentiate the indicator function 1�L����y�
with respect to L���, and L��� with respect to � by the chain
rule. Typical FD estimators combine these two differentia-
tions together, whereas 
Mn separates them. It uses an FD
method to estimate the first differentiation and uses L′���
directly for the second. Therefore, 
Mn can be viewed as a
combination of the FD method and the pathwise method
(or IPA). Second, typical FD estimators require simulating
at different parameters, e.g., � + �� and �. When � is d-
dimensional, for instance, at least d + 1 simulation runs
may be needed to obtain an observation of the estimator. To
compute 
Mn, however, only one simulation run is needed
because y is not a parameter of the simulation model.
The biggest advantage of 
Mn is its simplicity. To com-

pute 
Mn, we only need a sample of �L�D� that is often
observable from simulation. However, to compute some
other estimators, e.g., the SPA or the LR estimators, one
has to analyze the structure of the problem and uses distri-
bution information that is not observable from simulation.
If the distributions are not available or are difficult to eval-
uate, these estimators may become difficult to implement.
In the rest of this section, we assume that �L1�D1��

�L2�D2�� � � � � �Ln�Dn� are observations from terminating
simulations. Then they are i.i.d. We show that for these
observations, 
Mn is a consistent estimator of p

′
y��� and fol-

lows a central limit theorem under certain conditions.

3.1. Consistency of 
Mn

Let h%�t�= E��D�% · 1�L�t�� for any % > 0. If h%�t� is dif-
ferentiable at t = y,1 then similar to Equation (5),

h′%�y�= lim
"→0+

1
2"

E��D�% · 1�y−"�L�y+"��� (7)

Because E� 
Mn�=−�1/2"n�E�D · 1�y−"n�L�y+"n��, by Equa-
tion (5), E� 
Mn�→ p′y��� as n→� if "n → 0 as n→�.
Note that

Var� 
Mn�=
1

4n"2n
Var�D · 1�y−"n�L�y+"n��

�
1

4n"2n
E�D2 · 1�y−"n�L�y+"n��� (8)

Suppose that h2�t� is differentiable at t = y, then by Equa-
tions (7) and (8), Var� 
Mn�→ 0 as n→� if "n → 0 and
n"n→� as n→�.
By Chebyshev’s inequality, for any ' > 0, Pr�� 
Mn −

E� 
Mn�� � '� � Var� 
Mn�/'
2. Then Pr�� 
Mn − E� 
Mn�� � '�

→ 0, which implies that 
Mn−E� 
Mn�→ 0 in probability as
n→ �. Because limn→� E� 
Mn� = p′y���, we have 
Mn →
p′y��� in probability as n→�. Therefore, 
Mn is a consis-
tent estimator of p′y��� as n→�. We summarize this result
in the following theorem.

Theorem 2. Suppose that Assumptions 1 and 2 are sat-
isfied, and h2�t� is differentiable at t = y. If "n → 0 and
n"n → � as n→ �, then 
Mn → p′y��� in probability as
n→�.

3.2. Asymptotic Normality of 
Mn

Let o�a� denote a term such that lima→0 �o�a�/a� = 0, and
let O�a� denote a term such that lim supa→0 �O�a�/a�<�.
To study the asymptotic normality of 
Mn, we need a deeper
analysis of the asymptotic behaviors of the bias and vari-
ance of 
Mn. We assume that h′′′�t� exists at t = y. Note
that h′�y�=−p′y���. Then,

E� 
Mn�=− 1
2"n

�h�y+ "n�−h�y− "n��

= p′y���−
1
6
h′′′�y�"2n+ o�"2n�� (9)

Var� 
Mn�=
1

4n"2n
�E�D2 · 1�y−"n�L�y+"n��

−E2�D · 1�y−"n�L�y+"n���

= 1
4n"2n

��h2�y+ "n�−h2�y− "n��

− �h�y+ "n�−h�y− "n��2�
= 1
2n"n

�h′2�y�+ o�1��� (10)

Therefore, "−2n �E� 
Mn� − p′y���� → −h′′′�y�/6 and
2n"nVar� 
Mn�→ h′2�y� as n→�.
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Let

Rn� i =− 1√
2n"n

�Di · 1�y−"n�Li�y+"n�
−E�D · 1�y−"n�L�y+"n���� (11)

Then,
∑n
i=1Rn� i = √

2n"n� 
Mn − E� 
Mn�� and ,2
n =

Var�
∑n
i=1Rn� i�= 2n"nVar� 
Mn�= h′2�y�+o�1�� In the next

lemma, we show that Rn� i satisfies the Lindeberg condition
(Billingsley 1995). The proof of the lemma is provided in
the electronic companion.

Lemma 3. Suppose that Assumptions 1 and 2 are satis-
fied, h2�t� and h2+%�t� are differentiable at t = y for some
% > 0, and h′2�y� > 0. If "n → 0 and n"n →� as n→�,
then for any - > 0,

lim
n→�

1
,2
n

n∑
i=1

E�R2
n� i · 1��Rn� i ��-,n��= 0�

Because Rn� i satisfies the Lindeberg condition, by the
Lindeberg central limit theorem (Billingsley 1995) we have
,−1
n ·∑n

i=1Rn� i ⇒ N�0�1�, where ⇒ denotes “converge in
distribution” and N�0�1� denotes the standard normal ran-
dom variable. Becasue

∑n
i=1Rn� i =

√
2n"n� 
Mn − E� 
Mn��

and limn→� ,2
n = h′2�y�, then

√
2n"n� 
Mn − E� 
Mn�� ⇒√

h′2�y� ·N�0�1�� Because√
2n"n� 
Mn−p′y����=

√
2n"n� 
Mn−E� 
Mn��

+√
2n"n�E� 
Mn�−p′y�����

by Equation (9) we can easily prove the following theorem
on the asymptotic normality of 
Mn.

Theorem 3. Suppose that Assumptions 1 and 2 are satis-
fied, h2�t� and h2+%�t� are differentiable at t = y for some
% > 0, h′′′�t� exists at t = y, and h′2�y� > 0. If n"5n → a as
n→�, then
√
2n"n� 
Mn−p′y���� ⇒ −

√
2a
6
h′′′�y�

+√
h′2�y� ·N�0�1� as n→�.

Remark 1. Theorem 3 assumes that h′2�y� > 0, which
is equivalent to limn→� 2n"nVar� 
Mn� > 0. If h′2�y� = 0,
then limn→� 2n"nVar� 
Mn� = 0. By Chebyshev’s inequal-
ity, one can easily prove that

√
2n"n� 
Mn − p′y���� →

−�√2a/6�h′′′�y� in probability. Hence, the conclusion of
Theorem 3 also holds.

Theorem 3 shows that the rate of convergence of 
Mn is
�n"n�

−1/2. It is n−2/5 when a> 0, and it is slower than n−2/5

when a= 0. When a > 0, however, the asymptotic normal
distribution has a nonzero mean. Because the mean is typi-
cally difficult to estimate, confidence intervals of p′y��� may
be difficult to construct. When a = 0, the asymptotic nor-
mal distribution has a zero mean, and asymptotically valid
confidence intervals can be constructed.

Let ,2
� = h′2�y�. Because p′y���=−h′�y�, then we may

use the same approach that estimates p′y��� to estimate ,
2
�.

Let �V 2
n = �1/2n"n�

∑n
i=1D

2
i · 1�y−"n�Li�y+"n�. If we assume

that h4�t� is differentiable at t = y, we can easily show
that �V 2

n is a consistent estimator of ,2
� by the same tech-

niques used in the proof of Theorem 2. Suppose that a= 0,
i.e., n"5n→ 0 as n → �. Then an asymptotically valid
100�1−0�% confidence interval of p′y��� is( 
Mn− z1−0/2 �Vn/

√
2n"n� 
Mn+ z1−0/2 �Vn/

√
2n"n

)
� (12)

where z1−0/2 is the 1−0/2 quantile of the standard normal
distribution.

4. Estimating Probability Sensitivity via
Steady-State Simulations

In this section we assume that �L1�D1�� �L2�D2�� � � � �
�Ln�Dn� are observations from a steady-state simulation.2

Therefore, they are typically stationary and dependent. We
show that under certain conditions on �Li�Di�, the esti-
mator 
Mn of Equation (6) is still consistent and follows a
central limit theorem.
Suppose that ��Li�Di�� i = 1�2� � � �� is a station-

ary sequence. Let �k be the ,-algebra generated by
��Li�Di�� i = 1�2� � � � � k� and �k be the ,-algebra gener-
ated by ��Li�Di�� i = k�k + 1� � � ��. Following Billingsley
(1968), let 3�k� = sup��Pr�B � A� − Pr�B��5 A ∈ �s�
Pr�A� > 0�B ∈ �s+k�. Then the sequence is 3-mixing if
3�k�→ 0 as k→�. Intuitively, the condition means that
the dependence between the future and the present of a
3-mixing process goes to zero as the time between them
goes to infinity. Many stochastic processes are 3-mixing.
For instance, m-dependent processes and stationary Markov
processes with finite state space (Billingsley 1968) are 3-
mixing, and positive recurrent regenerative processes are
also 3-mixing (Glynn and Iglehart 1985). In this section, we
make the following assumption on ��Li�Di�� i= 1�2� � � ��.

Assumption 3. The sequence ��Li�Di�� i = 1�2� � � �� sat-
isfies that

∑�
k=1

√
3�k� <��

Note that Assumption 3 implies that the sequence is
3-mixing. Schruben (1983) argues that stationary finite-
state3 discrete-event simulations can be described as a
finite-state, aperiodic, and irreducible Markov process with
3�k� = a8k for some 8 < 1. Then the assumption holds.
Assumption 3 has been widely used to study steady-
state behaviors of discrete-event simulations. For exam-
ple, Schruben (1983) makes this assumption to study the
estimators of steady-state means, Heidelberger and Lewis
(1984) use this assumption to analyze the estimators of
steady-state quantiles, and Chien et al. (1997) make a
stronger assumption to study asymptotic properties of the
batch means method.
Define Zn� i = Di · 1�y−"n�Li�y+"n�� Let � Z

n�k be the
,-algebra generated by �Zn� i� i= 1�2� � � � � k� and �Zn�k be

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
02

 S
ep

te
m

be
r 

20
14

, a
t 2

2:
42

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Hong and Liu: Pathwise Estimation of Probability Sensitivities
362 Operations Research 58(2), pp. 357–370, © 2010 INFORMS

the ,-algebra generated by �Zn� i� i = k�k + 1� � � � � n� for
any 1� k� n, and let

3Zn �k�= sup��Pr�B �A�−Pr�B��5 A ∈� Z
n� s�

Pr�A� > 0�B ∈�Zn� s+k��

Because Zn� i is a Borel-measurable function of �Li�Di�,
then � Z

n�k and �Zn�k are subsets of �k and �k, respectively.
Then, by the definitions of 3Zn �k� and 3�k�, we have

3Zn �k��3�k� (13)

for all k= 1�2� � � � � n and all n= 1�2� � � � �
Note that

Var� 
Mn�

=Var
(

1
2n"n

n∑
i=1
Zn�i

)

= 1
4n"2n

[
Var�Zn�1�+2

n−1∑
i=1

(
1− i

n

)
Cov�Zn�1�Zn�i+1�

]
� (14)

By the covariance inequality (Billingsley 1968, p. 170) and
Equation (13),

�Cov�Zn�1�Zn� i+1��� 2
√
3Zn �i�E�Z

2
n�1�� 2

√
3�i�E�Z2

n�1��

Because E�Z2
n�1�= E�D2 · 1�y−"n�L�y+"n��, by Equation (7),

limn→��1/2"n�E�Z2
n�1�= h′2�y�. Then

lim
n→�

1
2"n

n∑
i=1

∣∣∣∣
(
1− i

n

)
Cov�Zn�1�Zn�i+1�

∣∣∣∣
� lim
n→�

1
2"n

n∑
i=1

∣∣∣∣Cov�Zn�1�Zn�i+1�
∣∣∣∣=2h′2�y�

�∑
i=1

√
3�i�<�

by Assumption 3. Therefore, 1/2"n
∑n
i=1�1 − i/n� ·

Cov�Zn�1�Zn� i+1� converges as n→ � by the ratio com-
parison test (Marsden and Hoffman 1993). Furthermore, by
Equation (10),

lim
n→�

1
2"n

Var�Zn�1�

= lim
n→�

1
2"n

Var�D · 1�y−"n�L�y+"n��= h′2�y�� (15)

Therefore, by Equation (14), there exists a limit that we
denote as ,2

�, such that

lim
n→�2n"nVar�


Mn�= ,2
�� (16)

To further understand ,2
�, by Equation (14), we write

2n"nVar� 
Mn�

= 1
2"n

Var�D · 1�y−"n�L�y+"n��
[
1+ 2

n−1∑
i=1

(
1− i

n

)
8n� i

]
�

where 8n� i = Cov�Zn�1�Zn� i+1�/Var�Zn�1�. Let :n = 1 +
2
∑n−1
i=1 �1 − i/n�8n� i� By Equations (15) and (16), there

exists a nonnegative limit, which we denote as :�, such
that limn→�:n = :� and limn→� 2nVar� 
Mn� = :�h′2�y�
if h′2�y� > 0. Therefore, the dependence in the 3-mixing
sequence inflates the asymptotic variance of 
Mn by a factor
of :� compared to the one of the i.i.d. sequence.

4.1. Consistency of 
Mn

Note that E� 
Mn�=−�1/2"n�E�D ·1�y−"n�L�y+"n��. Then, by
Equation (5), E� 
Mn�→ p′y��� as n→�. By Equation (16),
Var� 
Mn�→ 0 as n→ �. By Chebyshev’s inequality, we
can easily prove that 
Mn is a consistent estimator of p

′
y���.

We summarize the result in the following theorem.

Theorem 4. Suppose that Assumptions 1 to 3 are satisfied,
and h2�t� is differentiable at t = y. If "n→ 0 and n"n→�
as n→�, then 
Mn→ p′y��� in probability as n→�.

4.2. Asymptotic Normality of 
Mn

To establish the asymptotic normality of 
Mn, we need the
following lemma of Utev (1990).

Lemma 4 (Utev 1990). Let 'n�1� � � � � 'n�kn , n = 1�2� � � � �
be a triangular array of random variables with zero mean
and finite variances, and let � '

n�k be the ,-algebra gener-
ated by �'n� i� i = 1�2� � � � � k� and �'n�k be the ,-algebra
generated by �'n� i� i= k�k+ 1� � � � � kn� for any 1� k� kn.
Moreover, let 3'n�k� = sup��Pr�B � A� − Pr�B��5 A ∈
� '
n� s�Pr�A� > 0�B ∈ �'n� s+k� for k = 1�2� � � � � and
,2
n = Var�

∑kn
i=1 'n� i�. Suppose that there exists a sequence

of natural numbers j1� j2� � � � such that supn 3
'
n�kjn�→ 0 as

k→� and jn,
−2
n ·∑kn

i=1 E�'
2
n� i · 1��'n� i ��-,n/jn��→ 0 as n→

� for any - > 0. Then ,−1
n ·∑kn

i=1 'n� i ⇒N�0�1� as n→�.
We define Rn� i as in Equation (11). Then,

∑n
i=1Rn� i =√

2n"n� 
Mn−E� 
Mn��. Let �
R
n�k be the ,-algebra generated

by �Rn� i� i = 1�2� � � � � k� and �Rn�k be the ,-algebra gen-
erated by �Rn� i� i = k�k + 1� � � � � n� for any 1 � k � n.
Moreover, let ,2

n =Var�
∑n
i=1Rn� i� and

3Rn �k�= sup��Pr�B �A�−Pr�B��5 A ∈� R
n� s�

Pr�A� > 0�B ∈�Rn� s+k�� k= 1�2� � � � �

Because Rn� i is a Borel-measurable function of �Li�Di�,
then similar to Equation (13), we can show that 3Rn �k� �
3�k� for any n and k. By Assumption 3, 3�k�→ 0 as
k→�. Then,

sup
n

3Rn �k�→ 0 as k→�� (17)

Because ,2
n = 2n"nVar� 
Mn�, by Equation (16),

limn→� ,2
n = ,2

�. Then, with the same proof of Lemma 3,
we can show that when ,2

� > 0,

lim
n→�

1
,2
n

n∑
i=1

E�R2
n� i · 1��Rn� i ��-,n��= 0 (18)

for any - > 0, because only ,2
n in Equation (18) is affected

by the dependence in the 3-mixing sequence, and it con-
verges to a positive constant as in the i.i.d. case.
Combining Equations (17) and (18), by Lemma 4, we

have ,−1
n ·∑n

i=1Rn� i ⇒ N�0�1� when we let kn = n and
jn = 1 for all n in Lemma 4. Then, with the same analysis
in §3.2, we have the following theorem on the asymptotic
normality of 
Mn for dependent sequences.
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Theorem 5. Suppose that Assumptions 1 to 3 are satis-
fied, h2�t� and h2+%�t� are differentiable at t = y for some
% > 0, h′′′�t� exists at t = y, and ,2

� > 0. If n"5n → a as
n→�,√
2n"n� 
Mn−p′y����

⇒ −
√
2a
6
h′′′�y�+,� ·N�0�1� as n→�.

Remark 2. Similar to the remark of Theorem 3, the con-
clusion of Theorem 5 also holds if ,2

� = 0.

Theorem 5 shows that the rate of convergence of 
Mn for
dependent sequences is the same as that for i.i.d. sequences.
The only difference is that the asymptotic variance for
dependent sequences is inflated by a factor of :�.
To construct an asymptotically valid confidence interval

of p′y��� using a dependent sequence ��Li�Di�� i =
1�2� � � ��, we need to set a = 0 in Theorem 5 to avoid
the estimation of �

√
2a/6�h′′′�y�. Furthermore, we need

an approach to consistently estimating ,2
� = :�h′2�y�.

Because :� is unknown and difficult to estimate, ,2
� for

dependent sequences is more difficult to estimate than that
for i.i.d. sequences.
We suggest using the batch means method to estimate

,2
�. We divide the n observations of �Li�Di� into kn adja-

cent batches, and each batch has mn observations. We
require that both mn → � and kn → � as n→ �. For
example, a reasonable choice may be mn = kn =

√
n. Let


M�j�
mn

=− 1
2mn"mn

mn∑
i=1
D�j−1�mn+i · 1�y−"mn�L�j−1�mn+i�y+"mn ��

for j = 1� � � � � kn. Then the variance estimator �V 2
n can be

expressed as

�V 2
n =

2mn"mn
kn− 1

kn∑
j=1

[

M�j�
mn

− 1
kn

kn∑
j=1


M�j�
mn

]2

= 2mn"mn
kn− 1

kn∑
j=1
� 
M�j�

mn
− Ān�2� (19)

where Ān = k−1n ·∑kn
j=1 
M�j�

mn
. Note that �V 2

n /2mn"mn is the
sample variance of 
M�1�

mn
� 
M�2�

mn
� � � � � 
M�kn�

mn
, and 
M�i�

mn
and


M�j�
mn

are approximately independent when mn is large. Then�V 2
n /2mn"mn is a reasonable estimator of Var� 
M�1�

mn
�. From

Equation (16), we know that 2mn"mn Var�

M�1�
mn
�→ ,2

� as
n→�. Therefore, �V 2

n is a reasonable estimator of ,2
�. In

the electronic companion, we prove that �V 2
n is a consistent

estimator of ,2
� under some additional technical conditions.

Suppose that a = 0, i.e., n"5n → 0 as n → �. Then,
by Theorem 5, an asymptotically valid 100�1−0�%
confidence interval of p′y���, when the observations
�L1�D1�� �L2�D2�� � � � � �Ln�Dn� are dependent, is( 
Mn− z1−0/2 �Vn/

√
2n"n� 
Mn+ z1−0/2 �Vn/

√
2n"n

)
� (20)

5. Accelerating the Rate of Convergence
From §§3 and 4, we see that the rate of convergence of

Mn is �n"n�

−1/2, which is slower than the typical n−1/2.
Recall that 
Mn = −�1/2n"n� ·

∑n
i=1Di · 1�y−"n�Li�y+"n��

Intuitively, the reason that the rate of convergence is
�n"n�

−1/2 is because only the samples in the important
region �y− "n � L� y+ "n� play roles in the estimator,
and the total number of such samples is of order n"n.
Therefore, a natural idea to accelerate the rate of conver-
gence of the estimator is to use importance sampling (IS)
to have all the samples falling into the important region. In
this section, we show how to use IS to accelerate the rate
of convergence of the estimator. For simplicity, the analy-
sis in this section is based on i.i.d. sequences, although the
method can also be applied to dependent sequences.

5.1. A Simple Situation

We first consider the situation where pn = Pr�y− "n � L�

y + "n� is known. We show that a simple IS scheme can
always reduce the variance of the estimator and accelerate
the rate of convergence to n−1/2. Because pn is rarely known
in practice, this only provides a preliminary analysis. How-
ever, this helps to understand the basics of the IS scheme.
The situation where pn is not known is considered in §5.2.
Let f �t� denote the density of L. Let f̃ �t�= f �t�/pn for

t ∈ �y−"n� y+"n�, and f̃ �t�= 0 otherwise. We let f̃ be the
IS distribution of L. Samples generated from the IS dis-
tribution are always in �y − "n� y + "n�. Because f and f̃
are mutually absolutely continuous in the region �y − "n�
y + "n�, the likelihood ratio f �t�/f̃ �t�= pn in the region.
Then, the IS estimator of the probability sensitivity is


MIS
n =− 1

2n"n

n∑
i=1
pn ·Di ·1�y−"n�Li�y+"n�=− 1

2n"n

n∑
i=1
pn ·Di�

where the observations �Li�Di� are generated under the IS
distribution.
Let �E and Ṽar denote the expectation and variance under

the IS distribution. Then,

�E� 
MIS
n � =− 1

2"n
�E�pn ·D�

=− 1
2"n

�E�pn ·D · 1�y−"n�L�y+"n��= E� 
Mn��

Ṽar� 
MIS
n � =

1
4n"2n

�pn �E�pn ·D2 · 1�y−"n�L�y+"n��

− �E2�pn ·D · 1�y−"n�L�y+"n���

= 1
4n"2n

�pnE�D
2 · 1�y−"n�L�y+"n��

−E2�D · 1�y−"n�L�y+"n����

(21)

Because pn � 1,

Ṽar� 
MIS
n ��

1
4n"2n

�E�D2 · 1�y−"n�L�y+"n��

−E2�D · 1�y−"n�L�y+"n���=Var� 
Mn��
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Therefore, the IS estimator 
MIS
n has a smaller variance than

the original estimator 
Mn when "n is the same for the both
estimators.
Furthermore, pn = Pr�y−"n � L� y+"n�= 2f �y�"n+

o�"n�. Then, by Equation (21),

Ṽar� 
MIS
n �=

1
4n"2n

��2f �y�"n+ o�"n�� · �2h′2�y�"n+ o�"n��

− �2h′�y�"n+ o�"n��2�
= 1
n
�f �y�h′2�y�− �h′�y��2 + o�1���

Hence, nṼar� 
MIS
n � → f �y�h′2�y� − �h′�y��2 as n → �.

Therefore, the variance of 
MIS
n is of O�n−1�. Note that the

bias of 
MIS
n is of O�"2n�. Then the rate of convergence of


MIS
n is n−1/2 if n"4n→ a with a� 0 as n→�.
From this simple situation, we see that IS can indeed

accelerate the rate of convergence of the sensitivity esti-
mator. In the next subsection, we show how to extend this
approach to a more practical situation.

5.2. A More Practical Situation

Because the density of L is typically unknown, then pn
is also unknown. In this subsection, we consider a more
practical situation. Suppose that L= L�X1�X2� � � � �Xk� and
D=D�X1�X2� � � � �Xk�, where X1�X2� � � � �Xk are indepen-
dent random variables with known densities f1� f2� � � � � fk,
respectively. Then the joint density of �X1�X2� � � � �Xk� is
f �x1� x2� � � � � xk� = f1�x1�f2�x2� · · · fk�xk�. In many exam-
ples, the simulation output is generated by a sequence of
independent random variables. Then our situation applies.
Suppose that X1�X2� � � � �Xk are generated sequentially

in the simulation to obtain observations of �L�D�. Let

A=��x1�x2�����xk�∈�k5 L�x1�x2�����xk�∈ �y−"n�y+"n�
and f1�x1�···fk�xk�>0��

Then A corresponds to the set �y − "n � L � y + "n� in
the simple situation of §5.1. It is the important region. We
assume that Pr�A� > 0. Let A1 be the projection of the set
A to the first dimension, A2�X1� be the projection of the set
A to the second dimension given X1, A3�X1�X2� be the pro-
jection of the set A to the third dimension given X1�X2� � � � ,
and Ak�X1�X2� � � � �Xk−1� be the projection of the set A to
the kth dimension given X1�X2� � � � �Xk−1. Then, we may
define the IS distribution as

f̃ �x1�x2�����xk�

= f1�x1�

Pr�X1∈A1�
· f2�x2�

Pr�X2∈A2�x1��
··· fk�xk�

Pr�Xk∈Ak�x1�����xk−1��
if �x1� x2� � � � � xk� ∈ A; and f̃ �x1� x2� � � � � xk� = 0 other-
wise. Note that Pr�X1 ∈ A1� · Pr�X2 ∈ A2�x1�� · · ·Pr�Xk ∈
Ak�x1� � � � � xk−1�� > 0 almost surely in the set A, if
Pr�A� > 0.
Under the IS distribution, we first simulate X1 given that

X1 ∈ A1, then simulate X2 given that X2 ∈ A2�X1�, and so
on. Then we can compute L and D, and L ∈ �y−"n� y+"n�

w.p.1. Because the IS distribution f̃ is absolutely continu-
ous with respect to f in the set A, the likelihood ratio

Pn =
f �X1�X2� � � � �Xk�

f̃ �X1�X2� � � � �Xk�

= Pr�X1 ∈A1�

·Pr�X2 ∈A2�X1�� · · ·Pr�Xk ∈Ak�X1� � � � �Xk−1���

Because �X1�X2� � � � �Xk� is a random vector, Pn is also a
random variable and Pn � 1. Then the IS estimator is


MIS
n =− 1

2n"n

n∑
i=1
Pn� i ·Di · 1�y−"n�Li�y+"n�

=− 1
2n"n

n∑
i=1
Pn� i ·Di� (22)

where the observations �Li�Di� Pn� i� are generated under
the IS distribution.
Similar to the analysis in §5.1, we can show that

�E� 
MIS
n �= E� 
Mn� and

Ṽar� 
MIS
n �=

1
4n"2n

�E�D2 ·Pn · 1�y−"n�L�y+"n��

−E2�D · 1�y−"n�L�y+"n���

�
1

4n"2n
�E�D2 · 1�y−"n�L�y+"n��

−E2�D · 1�y−"n�L�y+"n���=Var� 
Mn��

Therefore, 
MIS
n has a smaller variance than 
Mn when both

estimators use the same "n.
Note that �E�Pn�= E�1�y−"n�L�y+"n��= 2f �y�"n + o�"n�.

In many situations, we can prove that Pn = Kn"n, where
E�Kn ·D2 · 1�y−"n�L�y+"n�� is often of O�"n�. Then

Ṽar� 
MIS
n �=

1
4"2n

��E�P 2
n ·D2�− �E2�Pn ·D��

= 1
4n"2n

�"n �E�PnKn ·D2 · 1�y−"n�L�y+"n��

− �E2�Pn ·D · 1�y−"n�L�y+"n���

= 1
4n"2n

�"nE�Kn ·D2 · 1�y−"n�L�y+"n��

−E2�D · 1�y−"n�L�y+"n����

which is of O�n−1�. Then the rate of convergence of 
MIS
n

is n−1/2, if n"4n→ a with a� 0 as n→�.

5.3. Impact to the Mean Square Error

By Theorem 3, to maximize the rate of convergence of 
Mn,
we face the trade-off between the bias and variance. The
optimal choice is to set "n = O�n−1/5�. Then the bias and
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variance of 
Mn are of O�n
−2/5� and O�n−4/5�, and the mean

square error (MSE) is of O�n−4/5�.
The IS scheme does not change the mean of the estimator,

i.e., E� 
Mn�= �E� 
MIS
n �, then the bias of 
MIS

n is still of O�"2n�
by Equation (9). However, it allows us to choose a smaller
"n to reduce the bias of 
MIS

n . Because the variance of 
MIS
n

is of O�n−1�, which is independent of "n, we no longer face
the trade-off between the bias and variance when selecting
"n. Therefore, the theoretically optimal "n for 
MIS

n is "n = 0,
and the bias becomes 0. Then, the MSE of 
MIS

n is the same
as the variance of 
MIS

n , which is of O�n
−1�.

To use the IS scheme, however, we require "n > 0. Oth-
erwise, the likelihood ratio becomes 0. Therefore, we may
choose "n arbitrarily close to 0 (depending on the precision
of the computer) to minimize the bias of 
MIS

n . In the numer-
ical examples reported in §6, we set "n = 10−10 for all the
IS examples. Then, 
MIS

n is practically unbiased.

6. Examples
In this section, we present three examples to illustrate the
performances of 
Mn and 
MIS

n . We also compare them to the
SPA and LR estimators whenever the estimators are avail-
able. In the electronic companion, we show that Assump-
tions 1 and 2 are satisfied by all the examples. In all the
examples, we need to select a "n for 
Mn. We follow a selec-
tion procedure that selects c such that "n = c ·n−1/5, and the
procedure is fully described in the electronic companion.
For the IS estimator, we set "n = 10−10 for all examples.
We also construct confidence intervals for the examples. We
set "n = c · n−1/3 to ensure the validity of the confidence
intervals, where c is determined by the same selection pro-
cedure as in the electronic companion. All the numerical
results reported in this section are based on 1,000 indepen-
dent replications.

6.1. A Financial Example

Suppose that the value of an asset follows the following
diffusion process:

dS�t�=B�t� S�t��dt+,�t� S�t��dBt� (23)

where Bt is a standard Brownian motion and S�0� = S0.
We are interested in estimating the sensitivity of Pr�S�T ��
y� with respect to S0 for some y > 0. Note that py�S0�=
Pr�S�T � � y� can be viewed as the default probability
(Duffie and Singleton 2003) or the payoff of a digital option
at maturity (Glasserman 2004).
To simulate S�T �, we use Euler scheme to discretize S�t�

(Glasserman 2004). Under the scheme

Si+1 = Si+Bi�t+,i
√
�t Zi+1� i= 0�1� � � � � k− 1� (24)

where k is the number of time steps in the discretiza-
tion, �t = T /k, ti = �i/k�T , Si = S�ti�, Bi = B�ti� Si� and
,i = ,�ti� Si�, and �Z1�Z2� � � � �Zk� are independent stan-
dard normal random variables. Then, we can use simulation

to generate Z1�Z2� � � � �Zk to obtain S�T � = Sk. Further-
more, under the approximation scheme,
�S�T �

�S0
= �Sk
�Sk−1

�Sk−1
�Sk−2

· · · �S2
�S1

�S1
�S0

and
�Si+1
�Si

= 1+ �Bi
�Si
�t+ �,i

�Si

√
�tZi+1� i= 1�2� � � � � k− 1�

Then the pathwise derivative �S�T �/�S0 can also be com-
puted in the simulation. Therefore, 
Mn can be computed
easily by Equation (6).

6.1.1. IS Estimator. By Equation (24), S�T � = Sk =
Sk−1 + Bk−1�t + ,k−1

√
�tZk, where Zk is independent of

Sk−1. Then, by the IS scheme of §5.2, we let A1 = A2 =
· · · =Ak−1 =� and

Ak�Sk−1�= �zk ∈�5 y− "n � S�T �� y+ "n � Sk−1�
=
{
y− "n− Sk−1 −Bk−1�t

,k−1
√
�t

�Zk �
y+ "n− Sk−1 −Bk−1�t

,k−1
√
�t

}
�

Under the IS scheme, we first generate Sk−1 using the Euler
scheme, then generate Zk from a standard normal distri-
bution truncated in the set Ak�Sk−1�. Hence, the likelihood
ratio is

Pn =C
(
y+ "n− Sk−1 −Bk−1�t

,k−1
√
�t

)

−C
(
y− "n− Sk−1 −Bk−1�t

,k−1
√
�t

)
� (25)

Then, the IS estimator 
MIS
n can be computed by

Equation (22).
Now we analyze 
MIS

n to obtain a better understanding of
the estimator. By the stochastic version of Taylor’s expan-
sion (Lehmann 1999), when "n is close to 0,

Pn ≈3
(
y− Sk−1 −Bk−1�t

,k−1
√
�t

)
2"n

,k−1
√
�t
�

Then, by Equation (22),


MIS
n ≈− 1

n
√
�t

n∑
j=1
3

(
y−Sjk−1−Bjk−1�t

,
j
k−1

√
�t

)
· �S

j
k

�S0
· 1

,
j
k−1
� (26)

where the superscript j represents the jth observation of
the simulation. By Equation (24),

�S
j
k

�S0
= �S

j
k−1
S0

+ �B
j
k−1
�S0

�t+ �,
j
k−1
�S0

√
�tZ

j
k

≈ �S
j
k−1
S0

+ �B
j
k−1
�S0

�t+ �,
j
k−1
�S0

· y−S
j
k−1−Bjk−1�t
,
j
k−1

� (27)

where the last equation holds because
√
�tZk ≈ �y−Sk−1−

Bk−1�t�/,k−1 when "n is close to 0.
By Equation (26), 
MIS

n has a rate of convergence of n−1/2

when �t is fixed. When �t goes to zero, however, the rate
of convergence of the estimator may become slower. Note
that the rate of convergence of 
Mn is not affected by the
size of �t. Therefore, 
Mn may be even more efficient than
MIS
n when �t is small.4
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6.1.2. SPA Estimator. Based on Equation (24) and by
conditioning on Sk−1, we have

py�S0�= E�E�1�Sk−1+Bk−1�t+,k−1
√
�tZk�y�

� Sk−1��

= E
[
C

(
y− Sk−1 −Bk−1�t

,k−1
√
�t

)]
�

Then,

p′y�S0�= E
[
�

�S0

{
C

(
y− Sk−1 −Bk−1�t

,k−1
√
�t

)}]

=−E
[

1

,k−1
√
�t
3

(
y− Sk−1 −Bk−1�t

,k−1
√
�t

)
· Y

]
�

where

Y = �Sk−1
�S0

+ �Bk−1
�S0

�t+ y− Sk−1 −Bk−1�t
,k−1

�,k−1
�S0

�

Therefore, the SPA estimator can be expressed as


MSPA
n =− 1

n
√
�t

n∑
j=1
3

(
y− Sjk−1 −Bjk−1�t

,
j
k−1

√
�t

)
· Y j · 1

,
j
k−1
�

where

Y j = �S
j
k−1
S0

+ �B
j
k−1
�S0

�t+ �,
j
k−1
�S0

· y− S
j
k−1 −Bjk−1�t
,
j
k−1

�

Compared to Equations (26) and (27), we find that 
MSPA
n

and 
MIS
n are essentially the same estimator for this example.

6.1.3. LR Estimator. Let fi�si� ·� denote the condi-
tional density of Si+1 given that Si = si for all i =
0�1� � � � � k− 1. Then, we have

p′y�S0�=
�

�S0

∫ y

−�

∫ +�

−�
· · ·

∫ +�

−�
f0�S0� s1�

· f1�s1� s2� · · · fk−1�sk−1� sk�ds1 · · ·dsk−1dsk
=
∫ y

−�

∫ +�

−�
· · ·

∫ +�

−�
� log f0�S0� s1�

�S0
f0�S0� s1�

· f1�s1� s2� · · · fk−1�sk−1� sk�ds1 · · ·dsk−1dsk
= E

[
1�S�T ��y� ·

� log f0�S0� S1�
�S0

]
�

By Equation (24), f0�S0� s1� = �1/,0
√
�t�3��s1 − S0 −

B0�t�/,0
√
�t�, then

� log f0�S0� S1�
�S0

= s1 − S0 −B0�t

,0
√
�t

·
[

1

,0
√
�t

(
1+ �B0

�S0
�t

)

+ s1 − S0 −B0�t

,2
0�t

· �,0
�S0

]
− 1
,0

�,0
�S0

�

Therefore, an LR estimator can be expressed as:


MLR
n = 1

n

n∑
j=1

1�Sjk�y� ·
� log f0�S0� S

j
1�

�S0
�

The LR estimator has a rate of convergence of n−1/2

when �t is fixed. Similarly to the IS and SPA estimators,
the rate of convergence of the estimator may become slower
when �t goes to 0.

6.1.4. Numerical Experiments. Suppose that
B�t� S�t�� = b�B − S�t�� and ,�t� S�t�� = , . Then
the diffusion process of Equation (23) is known as an
Ornstein-Uhlenbeck (OU) process. For the OU process,

S�T �= S0e−bT +B�1− e−bT �+,
√
1− e−2bT

2b
Z�

where Z is a standard normal random variable. Therefore,
the close-form expressions of py�S0� and p

′
y�S0� can be

derived, and the true value of p′y�S0� can be calculated.
We let b = 10%, B= 100, , = 20, T = 0�25, y = 80, and
S0 = 100. Then the true value of p′y�S0� is −0�0051. We use
this example to test the performances of all the estimators.
We report the estimated relative root mean square errors

(RRMSE, defined as the percentage of root mean square
error relative to the absolute value of the true probability
sensitivity) of all the estimators for different sample sizes
(n) and different numbers of time steps (k) in Table 1.
From Table 1, we see that 
Mn always has a better per-
formance than the LR estimator 
MLR

n for all sample sizes
and all numbers of time steps. The IS estimator 
MIS

n and
the SPA estimator 
MSPA

n have almost same performances as
demonstrated theoretically. The performance of 
Mn is not
affected by the number of time steps.5 However, the per-
formances of all other estimators deteriorate as the number
of time steps increases. When the number of time steps is
small, 
MIS

n and 
MSPA
n outperform 
Mn; when the number of

time steps becomes large, it reverses. It can also be seen
that 
MIS

n and 
MSPA
n have faster convergence rates than 
Mn,

which coincides with the analytical results in §5.
We also construct 90% confidence intervals based on

Equation (12). We find that the observed coverage prob-
abilities are approximately 90%, which is consistent with
valid confidence intervals.

6.1.5. Extension of the Financial Example. Suppose
that we are interested in Pr�min1�i�k Si � y�. It is the prob-
ability that a firm’s asset is ever below a threshold value y

Table 1. Performance comparison of the four estima-
tors for the financial example.

RRMSE(%)

k 
Mn

MIS
n


MSPA
n


MLR
n

n= 20�000 10 5�5 2�7 2�7 8�1
20 5�3 3�2 3�2 10�5
50 5�4 4�3 4�3 16�0
200 5�2 6�0 6�0 29�2

n= 40�000 10 4�1 1�9 1�9 6�2
20 4�2 2�4 2�4 7�4
50 4�0 3�0 3�1 10�9
200 4�0 4�3 4�3 21�0

n= 80�000 10 3�3 1�4 1�4 4�8
20 3�2 1�6 1�6 5�6
50 3�0 2�2 2�2 8�1
200 3�1 3�2 3�2 15�2
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in the period of �0� T � if S�t� models the firm’s asset. It
can be used to measure the firm’s default risk between 0
and T . In the rest of this section, we estimate p′y��� =
d Pr�min1�i�k Si���� y�/d� with �= S0 under the OU pro-
cess specified in §6.1.4.
Because d�min1�i�k Si����/d� = S ′i∗��� w.p.1, where

Si∗��� = min1�i�k Si���, the pathwise derivative of
min1�i�k Si��� is typically easy to obtain. Then, our esti-
mator 
Mn can be straightforwardly applied, although it is
difficult to use the importance-sampling estimator. The LR
method can also be applied in this example. However, it is
not clear how SPA can be applied.
We use Lemma 2 to verify Assumption 2 for this exam-

ple. Because Pr�min1�i�k Si � y� = 1 − Pr�min1�i�k Si >
y�, estimating the sensitivity of Pr�min1�i�k Si � y� is
equivalent to that of Pr�min1�i�k Si > y� in terms of
methodology. Note that �min1�i�k Si > y� is equivalent to
�S1 > y� � � � � Sk > y�. Then, we may generate Si given Si−1
conditioning on Si > y. This scheme defines an IS distribu-
tion. Under this IS distribution, min1�i�k Si > y w.p.1 and

Pr
{
min
1�i�k

Si > y

}
= �E

[k−1∏
i=0
pi� �Si�

]
(28)

where pi�x� = Pr�Si+1 > y � Si = x� and �Si is generated
under the IS distribution. Then Assumption 2 may be ver-
ified for this example. The details of the verification are in
the electronic companion.
Conceptually, we may directly estimate

d Pr�min1�i�k Si > y�/dS0 by using the pathwise method
on the right-hand side of Equation (28). However, under the
IS distribution, d �Si/dS0 becomes very complicated. Then,
�S0

∏k−1
i=0 pi� �Si� becomes impractical to calculate, especially

when k is large. Therefore, this approach cannot be applied
in practice. A similar example was given in Glasserman
(2004) when he discussed the sensitivity estimation for
barrier options.
To numerically compare the performance of 
Mn with

the LR estimator 
MLR
n , we follow the same settings of

§6.1.4. The true probability sensitivities for k = 5�10�20
are −0�0065, −0�0073, and −0�0080, respectively. The esti-
mated RRMSEs of 
Mn and 
MLR

n are summarized in Table 2.
From the table we can see that 
Mn outperforms 
MLR

n when
k is relatively large. Estimation error of 
MLR

n increases as k,
whereas that of 
Mn is stable in k.

6.2. A Queueing Example

Let L��� be the customer’s sojourn time in the steady state
of a G/G/1 queue, where �= ��1� �2�′ and �1 and �2 denote
the mean interarrival and mean service times, respectively.
Let py��� = Pr�L��� � y�. We are interested in estimat-
ing ��2py���. We use a steady-state simulation to generate
(dependent) observations of L��� and ��2L��� by perturba-
tion analysis (Ho and Cao 1983, Cao 1985). Therefore, 
Mn

can be computed easily by Equation (6).

Table 2. Performance comparison of the estima-
tors for the extension of the financial
example.

RRMSE(%)

k 
Mn

MLR
n

n= 20�000 5 7�1 7�7
10 6�7 9�1
20 6�4 11�0

n= 20�000 5 5�3 5�7
10 4�8 6�3
20 4�8 7�8

n= 40�000 5 4�0 4�1
10 3�7 4�6
20 3�6 5�6

6.2.1. IS Estimator. In a G/G/1 queue, the sojourn
time of customer k only depends on the sojourn time of
customer k− 1, and the interarrival time and service time
of customer k. Let Lk, Ik, and Sk denote the sojourn time,
interarrival time, and service time of customer k, respec-
tively. Then, Lk = �Lk−1− Ik�+ +Sk� where �Lk−1− Ik�+ is
the waiting time of customer k and a+ = max�a�0�. Fur-
thermore, Lk−1, Ik, and Sk are independent, and the distri-
bution functions of Ik and Sk are known.
To apply the IS scheme, we first generate Lk−1 through

simulation without IS. If Lk−1 � y + "n, then for any Ik,
there exists Sk > 0 such that Lk ∈ �y−"n� y+"n�. If Lk−1 >
y + "n, however, Ik must be larger than Lk−1 − �y + "n�;
otherwise, Lk �∈ �y− "n� y+ "n� for any Sk > 0. Therefore,
given Lk−1, Ik has to satisfy Ik � �Lk−1 − �y + "n��+. Fur-
thermore, given Lk−1 and Ik, Sk has to satisfy �y − "n −
�Lk−1− Ik�+�+ � Sk � y+"n− �Lk−1− Ik�+. Therefore, the
likelihood ratio

Pn = Pr�Ik � �Lk−1 − �y+ "n��+ � Lk−1�
·Pr��y− "n− �Lk−1 − Ik�+�+

� Sk � y+ "n− �Lk−1 − Ik�+ � Lk−1� Ik�� (29)

Note that Lk is computed based on Lk−1. If Lk−1 is gen-
erated through the IS scheme, then the likelihood of Lk
is more complicated than Pn. To resolve this problem in
the steady-state simulation, we suggest using the following
approach. We first run the simulation without the IS in the
warm-up period. Starting from the first customer after the
warm-up period, we generate Lk and �Lk with and without
IS, respectively, based on Lk−1, which is generated with-
out IS. Then the likelihood ratio of each observation can
be calculated using Equation (29), and we can use 
MIS

n to
estimate the sensitivity.
Now we analyze 
MIS

n to obtain a better understanding
of the estimator. If we let Wk = �Lk−1 − Ik�+ represent the
waiting time of the kth customer, then Lk = Wk + Sk. To
ensure that Lk ∈ �y − "n� y + "n�, the IS scheme requires
that Wk � y+ "n and y−Wk − "n � Sk � y−Wk + "n. Let
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FW and fS denote the distribution function of Wk and the
density of Sk, respectively. Then, when "n is close to 0,

Pn=Pr�Wk�y+"n�·Pr�y−Wk−"n�Sk�y−Wk+"n�
≈FW �y�·fS�y−Wk�·2"n�

Hence, 
MIS
n ≈ −�1/n�∑n

k=1 FW �y� · fS�y − Wk� · ��2Lk,
where both Wk and Lk are generated by the IS scheme.
Note that, under the IS scheme, Lk =Wk + Sk and Lk ≈ y
when "n is close to 0. Then Sk ≈ y−Wk. We have


MIS
n ≈−1

n

n∑
k=1
FW �y� · fS�y−Wk�

· ���2Wk+ ��2Sk �Sk=y−Wk�� (30)

where both Wk and Lk are generated under the IS measure.

6.2.2. SPA and LR Estimators. Fu and Hu (1997)
have derived an SPA estimator for this example. It can be
expressed as


MSPA
n =−1

n

n∑
k=1
fS�y−Wk�·���2Wk+��2Sk �Sk=y−Wk�·1�Wk�y��

Now we compare the SPA estimator and the IS estimator of
Equation (30). We find that the IS estimator can be viewed
as an IS-enhanced SPA estimator with Wk being generated
from the IS distribution f̃W �x�= fW �x�/FW �y� when x� y
and f̃W �x� = 0 when x > y, where fW �x� is the original
density of Wk. Therefore, we expect that the IS estimator
is more efficient than the SPA estimator, especially when
�Wk � y� is a rare event. This example also shows that
the SPA estimator and the IS estimator are very similar,
although they are not identical, because they use essentially
the same distribution information.
Fu and Hu (1997) have also derived an LR estimator for

this example. It can be expressed as


MLR
n = 1

n

n∑
k=1
LRk · 1�Lk�y��

where LRk =
∑k
i=1 ��2 log fi�Li− 1�Li�, fi�xi−1� ·� is the

conditional density of Li given Li−1 = xi−1, and L0 is the
sojourn time of the last customer of the warm-up period.
Fu and Hu (1997) point out that the variance of the LR
estimator may increase without bound as the sample size n
increases in the estimation. Therefore, the LR estimator
may not be useful for this example.

6.2.3. Numerical Experiments. Suppose that both the
interarrival and service times follow exponential distribu-
tions. Then, the queueing system is an M/M/1 queue. When
the queue is stable, i.e., �1 > �2, L��� is exponentially
distributed with rate 1/�2 − 1/�1 (Ross 1996). Therefore,
py���= Pr�L���� y�= 1− exp�−�1/�2 − 1/�1�y�. Hence,
��2py��� = −y exp�−�1/�2 − 1/�1�y�/�

2
2 . In this example,

we let �1 = 10, �2 = 8, and y = 2. Then py��� = 4�88%,
and ��2py��� = −2�9726 × 10−2. We use this example to
test the performances of all the estimators.
We report the MSEs of all the estimators for differ-

ent sample sizes (n) in Table 3. All MSEs are estimated
through 1,000 independent replications. From Table 3, we
find that the LR estimator is the worst among all estimators,

Table 3. Performance comparison of the four estima-
tors for the queueing example.

RRMSE (%)

n 
Mn

MIS
n


MSPA
n


MLR
n

5,000 23�2 11�8 19�1 >700
10,000 17�4 8�3 13�8 >1�000
50,000 9�2 3�6 5�9 >2�300
100,000 6�8 2�6 4�3 >3�300

and its variance blows up when the sample size increases.
This confirms the observation of Fu and Hu (1997). Besides
the LR estimator, all other estimators converge as the sam-
ple size increases. We also find that 
Mn performs less well
than 
MIS

n and 
MSPA
n , and 
MIS

n outperforms 
MSPA
n , as we

expect. Even considering the extra effort of computing the
IS estimator, we find that it is still more efficient than the
SPA estimator for this example.
We also construct 90% confidence intervals based on

Equation (20). We find that the observed coverage prob-
abilities are approximately 90%, which is consistent with
valid confidence intervals.

6.3. A Portfolio Risk Example

In the financial industry, investors may hold large portfo-
lios that may consist of many stocks, options, and other
securities. To quantify the risk exposure of the portfolio
and manage the risk, the investors may be interested in
the probability that the loss of the portfolio at a future
date is greater than some given threshold value, as well as
the sensitivities of the probability with respect to various
market parameters such as interest rate, stock prices, and
volatilities.
To illustrate the basic ideas, we consider a simple portfo-

lio that has two call options underlying two stocks, respec-
tively. Let St�1 and St�2 denote the prices dynamics of the
two stocks, and let Vt�1 and Vt�2 denote the prices of the two
call options at time t. Suppose that St� i follows a geometric
Brownian motion process with drift Bi (under the real-world
probability measure) and volatility ,i for both i= 1�2. Then
we may use the Black-Sholes formula to obtain the closed
form of Vt� i for any t that is earlier than the maturity date
of the option. Note that Vt� i is a random variable, because it
depends on St� i, which is a random variable. To make this
dependence explicit, we let Vt� i = gi�St� i�, i= 1�2. Suppose
that we form the portfolio at time 0 and both of the options
mature at time T . Then, at any time 0< H < T , the loss of
the portfolio is L = V0 − VH�1 − VH�2, where V0 is the ini-
tial investment to obtain the two options. Furthermore, let
p= Pr�L� y� for some y > 0. Suppose that we are inter-
ested in finding �p/�,i for i= 1�2.
Assume that St�1 and St�2 are independent. Then, SH� i =

S0� ie
�Bi−,2i /2�H+,i

√
HZi , i = 1�2, where Z1 and Z2 are inde-

pendent standard normal random variables. Therefore, L is
an explicit function of �Z1�Z2� and we can compute �,iL
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easily. To implement 
Mn, we only need to verify Assump-
tion 2. Let FS�2�·� and F2�·� denote the cumulative distribu-
tion functions of SH�2 and VH�2, respectively. Note that the
explicit form of FS�2�·� can be derived easily. Then,
F2�t�= Pr�g2�SH�2�� t�= Pr�SH�2 � g

−1
2 �t��

= FS�2�g−12 �t��� (31)

where g−12 �·� denotes the inverse function of g2�·� and g2�·�
is invertible in this example. Then,

Pr�L� y�= E�Pr�V0 − g1�SH�1�− g2�SH�2�� y � SH�1��
= E�F2�V0 − y− g1�SH�1���� (32)

Therefore, Assumption 2 can be verified using Lemma 1
when H < T /2. The details of the verification are provided
in the electronic companion.
Conceptually, SPA can also be applied to this example.

By Equations (31) and (32), we have

� Pr�L� y�

�,i
= E

[
�

�,i
F2�V0 − y− g1�SH�1��

]

= E
[
�

�,i
FS�2�g

−1
2 ��V0 − y− g1�SH�1���

]
�

To implement SPA, however, g2�·� needs to be inverted for
every observation of SH�1. Because g2�·� cannot be inverted
explicitly, one has to use root-finding algorithms. This may
become computationally intensive when the sample size is
large. Therefore, it may not be practical to implement the
SPA estimator for this example.
By the Black-Sholes formula, VH� i = SH� iC�d1� i� −

e−r�T−H�KC�d2� i�, where r is the risk-free interest rate, K is
the strike price, d1� i = �log�SH� i/K�+ �r +,2

i /2��T − H��/
�,i

√
T − H�, and d2� i = d1� i − ,i

√
T − t. Then, ,i does

not appear only in SH� i. Therefore, the LR method cannot
be applied to this example. Furthermore, our IS estima-
tor cannot be applied to this example either, because it is
hard to find an IS distribution that ensures �y − "n � L�

y+ "n� w.p.1.
To numerically test the performances of the estimators,

we let S0�1 = S0�2 = 100, r = 5%, ,1 = 20%, ,2 = 30%,
B1 = 15%, B2 = 20%, H = 2/52, T = 1, K = 105, and
y = 4. By using the finite-difference approach with an
extremely large sample size (109), we find that the true
values of � Pr�L � y�/�,i are approximately −1�95 and
−1�70 for i = 1�2, respectively. We use these values as
benchmarks to test the performances of the estimators.
We compare 
Mn to the central finite-difference (FD)

estimator that uses common random number and a step
size that minimizes the MSE based on a pilot simulation.
Denote the FD estimator by 
MFD

n . The RRMSEs of 
Mn and
MFD
n for the probability sensitivities with respect to (w.r.t.)

,1 and ,2 are summarized in Table 4. From the table, we
can see that 
Mn significantly outperforms the FD estimator.
Furthermore, to obtain n observations of the FD estimator,

Table 4. Performance comparison of the esti-
mators for the portfolio risk example.

RRMSE RRMSE
(%, w.r.t. ,1) (%, w.r.t. ,2)

n 
Mn

MFD
n


Mn

MFD
n

2,000 4�0 9�5 6�0 10�4
5,000 3�0 6�6 4�5 7�4
100,000 1�2 2�2 1�4 2�1

we need to run 2n simulations. For the results reported in
Table 4, because we need to find sensitivities with respect
to two parameters, i.e., ,1 and ,2, we run a total of 4n
simulations. Therefore, 
Mn performs much better than 
MFD

n

in terms of computational efficiency.

7. Conclusions
In this paper, we study how to estimate probability sensi-
tivities through simulations. We propose an estimator based
on a result of Hong (2009). We show that the estimator is
consistent and asymptotically normally distributed for both
terminating and steady-state simulations. We also demon-
strate how to use importance sampling to accelerate the rate
of convergence of the estimator. Numerical experiments
show that our estimators have desired properties and may
perform better than the SPA and LR estimators.

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnotes
1. The differentiability of h%�t� may be verified in similar
ways as in Lemmas 1 and 2.
2. Typically, we do not know how to simulate directly from
the steady-state distribution. Therefore, we often start the
simulation with certain initial conditions, and delete the
observations obtained from the warm-up period to remove
the initial-condition bias. The observations obtained after
the warm-up periods are used to represent the steady-state
behaviors of the simulation (see, for example, Law and
Kelton 2000).
3. Because all discrete-event computer simulations run on
computers with finite memory, they can only have a finite
number of states in practice.
4. In §5, we show that 
MIS

n has a smaller variance than 
Mn

when "ns are the same for both estimators. In this section,
however, "ns are not the same. The "n for 
Mn is selected
by the procedure in the electronic companion, and the "n
for 
MIS

n is chosen to be 10−10.
5. The number of time steps k is related to the dis-
cretization error. Usually, the diffusion process cannot be
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exactly generated, but approximated by some discretization
schemes such as Euler scheme (Glasserman 2004), and the
discretization error depends on �t = T /k. This discretiza-
tion error can be reduced by using large k, but not by using
large sample size. If higher precision, and hence smaller
discretization error, are required, we may use a larger num-
ber of time steps k. However, an OU process can be gener-
ated exactly without discretization errors. Thus, all reported
estimators except 
Mn are unbiased for whatever k. We use
OU process only because of its analytical tractability, which
helps us to test the performances of the estimators.
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