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a b s t r a c t

Value-at-risk (VaR) and conditional value-at-risk (CVaR) are important risk measures. They are often
estimated by using importance-sampling (IS) techniques. In this paper, we derive the asymptotic
representations for IS estimators of VaR and CVaR. Based on these representations, we are able to prove
the consistency and asymptotic normality of the estimators and to provide simple conditions underwhich
the IS estimators have smaller asymptotic variances than the ordinary Monte Carlo estimators.
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1. Introduction

Value-at-risk (VaR) and conditional value-at-risk (CVaR) are
two widely used risk measures. They play important roles in
investment, risk management, and regulatory control of financial
institutions. The Basel Accord II has incorporated the concept of α-
VaR, which is defined as the α-quantile of a portfolio value L, and
encourages banks to use VaR for daily risk management. The α-
CVaR, defined as the average of β-VaR of L for 0 < β < α, has a
long history of being used in the insurance industry. It provides
information on the potential large losses that an investor may
suffer.
Risk managers may consider both of VaR and CVaR at the

same time to obtain more information about portfolio risk. There
are typically three approaches to estimating them: the vari-
ance–covariance approach, the historical simulation approach and
theMonte Carlo simulation approach. Among the three, theMonte
Carlo simulation approach is frequently used, because it is more
general and can be applied to a wider range of risk models.
However, the Monte Carlo simulation approach is often time-
consuming. In risk management, α is typically close to 0. A large
number of replications are needed to obtain accurate estimation
of the tail behavior of a loss distribution. Therefore, variance re-
duction techniques are often used to increase the efficiency of the
estimation. Among these techniques, importance sampling (IS) is a
natural choice, because it can allocate more samples to the tail of
the distribution that is most relevant to the estimation of VaR and
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CVaR. In this paper, we study the asymptotic properties of the IS
estimators of VaR and CVaR and discuss general conditions for IS
to be effective.
Because the IS estimators of both VaR and CVaR are rather

complicated compared to the typical sample means, we use the
method of asymptotic representations to analyze their asymptotic
properties. Bahadur [1] used thismethod to analyze the asymptotic
properties of the ordinary estimator of VaR (quantile) by showing
that the estimator can be approximated by a sample mean except
for a high-order term. Then, the consistency and asymptotic
normality of the estimator can be derived easily. In this paper,
we derive the asymptotic representations for the IS estimators
of both VaR and CVaR, and use them to prove the consistency
and asymptotic normality of both estimators. To the best of our
knowledge, we are the first to provide such clear representations.
From the asymptotic normality, we give simple conditions on

the IS distributions under which the IS scheme is guaranteed to
work asymptotically. A good feature of the conditions is that they
are same for both VaR and CVaR. Therefore, one can estimate
VaR and CVaR simultaneously using the same IS distribution. This
feature will greatly help risk managers who consider both risk
measures and use them to complement each other.
The literature on applying IS to estimate VaR is growing rapidly.

For example, Glynn [7] considered the use of IS for quantile (VaR)
estimators; Glasserman et al. [3,4] used IS to estimate the VaR
of a portfolio loss for both light-tail and heavy-tail situations;
Glasserman and Li [6] applied IS to estimate the VaR of portfolio
credit risk; Glasserman and Juneja [5] used IS to estimate the
VaR of a sum of independent and identically distributed (i.i.d.)
random variables. To the best of our knowledge, however, there
is no published work on using IS to estimate CVaR.
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The rest of the paper is organized as follows. Section 2 re-
views the IS estimators of VaR and CVaR. In Section 3, we develop
asymptotic representations for the IS estimators. From these rep-
resentations, we can easily prove the consistency and asymptotic
normality of the IS estimators. Some lengthy proofs are included in
the Appendix.

2. Importance sampling for VaR and CVaR

Let L be a real-valued random variable with a cumulative
distribution function (c.d.f.) F(·), and let v and c denote the α-VaR
and α-CVaR of L, respectively, for 0 < α < 1. Then,

v = F−1(α) = inf{x : F(x) ≥ α} and c = v −
1
α
E[v − L]+,

where x+ = max{x, 0}. Note that v is also the α-quantile of L,
and c = E[L|L ≤ v] if L has a positive density at v [8]. Under the
definitions, we are interested in the left tail of the distribution of L.
Therefore, α is often close to 0. Sometimes, v and c are defined for
the right tail of L (e.g., [3,4]). We may convert the right tail to the
left tail by adding a negative sign to the random variable.
OrdinaryMonte Carlo estimation of v and c involves generating

n i.i.d. random observations of L, denoted as L1, . . . , Ln, and
estimating them by

ṽn = F̃−1n (α) = inf{x : F̃n(x) ≥ α}, (1)

c̃n = ṽn −
1
nα

n∑
i=1

(ṽn − Li)+, (2)

respectively, where

F̃n(x) =
1
n

n∑
i=1

I{Li ≤ x} (3)

is the empirical distribution of L constructed from L1, . . . , Ln and
I{·} is the indicator function. Note that F̃n(x) is an unbiased and
consistent estimator of F(x). Serfling [10] and Trindade et al. [11]
showed that ṽn and c̃n are consistent estimators of v and c ,
respectively, as n→∞.
Now we introduce the IS estimators of v and c. Suppose we

choose an IS distribution function G for which the probability
measure associated with G is absolutely continuous with respect
to that associatedwith F , i.e., F(dx) = 0 if G(dx) = 0 for any x ∈ <.
LetL(x) = F(dx)

G(dx) , thenL is called the likelihood ratio (LR) function.
Then for any x ∈ <, we may estimate F(x) by

Fn(x) =
1
n

n∑
i=1

I{Li ≤ x}L(Li). (4)

It is easy to see that Fn(x) is also an unbiased and consistent
estimator of F(x) as F̃n(x) of Eq. (3). Let vn and cn denote the IS
estimators of v and c. Similar to Eqs. (1) and (2), we define
vn = F−1n (α) = inf{x : Fn(x) ≥ α},

cn = vn −
1
nα

n∑
i=1

(vn − Li)+L(Li).

To analyze the asymptotic properties of vn and cn, we make the
following assumptions.

Assumption 1. There exists an ε > 0 such that L has a positive and
continuously differentiable density f (x) for any x ∈ (v− ε, v+ ε).
Assumption 1 requires that L has a positive and differentiable

density in a neighborhood of v. It implies that F(v) = α and
c = E[L|L ≤ v].

Assumption 2. There exist ε > 0 and C > 0 such that L(x) < C
for any x ∈ (v − ε, v + ε) and there exists p > 2 such that
EG[I{L ≤ v + ε}Lp(L)] < ∞, where EG denotes the expectation
under the IS measure.
Assumption 2 requires the LR function is bounded above in a
neighborhood of v and it has a finite p > 2 moment on the left
tail of L. Effective IS distributions often satisfy g(x) > f (x) for
x < v + ε (see [3–6]), so that they can allocate more samples in
the set {L < v + ε} which are most useful in estimating v and
c. For these IS distributions, L(x) < 1 for x < v + ε and, thus,
Assumption 2 is satisfied. From Assumption 2 and the positivity of
L(x), we know that for any ε′ ≤ ε, EG[I{L ≤ v + ε′}L2(L)] < ∞.
Therefore, Var[I{L ≤ v + ε′}L(L)] <∞ for any ε′ ≤ ε.

3. Asymptotic representations of the IS estimators

A complicated estimator can often be represented as the sum of
several termswhose asymptotic behaviors are clear. This represen-
tation is called an asymptotic representation of the estimator. Based
on the asymptotic representation of an estimator, many asymp-
totic properties of the estimator, e.g., consistency and asymp-
totic normality, can be analyzed easily. A famous example is the
asymptotic representation of the VaR estimator ṽn (also known as
Bahadur representation of the quantile estimator). By Bahadur
[1], under Assumption 1,

ṽn = v +
1
f (v)

(
α −

1
n

n∑
i=1

I{Li ≤ v}

)
+ Rn, (5)

where Rn = Oa.s.(n−3/4(log n)3/4). The statement Yn = Oa.s.(g(n))
means that Yn/g(n) is bounded by a constant almost surely. Given
the representation, many asymptotic properties of ṽn can be ana-
lyzed easily. For instance, we may use it to prove the strong con-
sistency and asymptotic normality of ṽn. By the strong law of large
numbers [2], 1n

∑n
i=1 I{Li ≤ v} → F(v) w.p.1 as n→∞. Further-

more, because F(v) = α by Assumption 1, it is clear that ṽn → v
w.p.1 as n → ∞. Thus, ṽn is a strongly consistent estimator of v.
Similarly, by the central limit theorem [2],

√
n

(
α −

1
n

n∑
i=1

I{Li ≤ v}

)
⇒

√
α(1− α)N(0, 1) as n→∞,

where ‘‘⇒’’ denotes ‘‘converge in distribution’’ andN(0, 1)denotes
a standard normal random variable. Then,

√
n(ṽn − v)⇒

√
α(1− α)
f (v)

N(0, 1) as n→∞. (6)

Therefore, ṽn is asymptotically normally distributed.
In the rest of this section, we develop asymptotic representa-

tions of the IS estimators vn and cn, and use them to analyze the
consistency and asymptotic normality of vn and cn.

3.1. Asymptotic representation of vn

We first consider the asymptotic representation of vn. Note that
by Taylor expansion [12, p. 110], F(vn)−F(v) = f (v)(vn−v)−A1,n,
where A1,n is the remainder term. Then, we have

vn = v +
F(vn)− F(v)

f (v)
+
1
f (v)

A1,n. (7)

Let A2,n = F(vn)+ Fn(v)− Fn(vn)− F(v) and A3,n = Fn(vn)− F(v).
It is easy to see that
F(vn)− F(v) = F(v)− Fn(v)+ A2,n + A3,n.
Therefore, by Eq. (7), we have

vn = v +
F(v)− Fn(v)
f (v)

+
A1,n + A2,n + A3,n

f (v)
. (8)

In the following lemma, we provide the orders of A1,n, A2,n
and A3,n. The proof of the lemma is included in the Appendix. In
the lemma, we use the statement Un = op(g(n)) which means
Un/g(n)→ 0 in probability as n→∞.
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Lemma 1. For a fixed α ∈ (0, 1), suppose that Assumptions 1
and 2 are satisfied. Then, A1,n = Oa.s.(n−1+2/p+δ), A2,n = Oa.s.
(n−3/4+1/(2p)+δ), A3,n = Oa.s.(n−1) for any δ > 0, and A1,n =
op(n−1/2), A2,n = op(n−1/2), A3,n = op(n−1/2). Furthermore, if
L(x) < C for any x ∈ (−∞, v + ε), then A1,n = Oa.s.(n−1 log n),
A2,n = Oa.s.(n−3/4(log n)3/4) and A3,n = Oa.s.(n−1).

Let Li denote L(Li) for all i = 1, . . . , n. By Lemma 1, we
can prove the following theorem on the asymptotic representation
of vn.

Theorem 1. For a fixed α ∈ (0, 1), suppose that Assumptions 1 and
2 are satisfied. Then,

vn = v +
1
f (v)

(
α −

1
n

n∑
i=1

I{Li ≤ v}Li

)
+ An,

where An = op(n−1/2) and An = Oa.s.(t(n, δ)) with t(n, δ) =
max{n−1+2/p+δ, n−3/4+1/(2p)+δ} for any δ > 0. Furthermore, if
L(x) < C for any x ∈ (−∞, v+ε), then An = Oa.s.(n−3/4(log n)3/4).

Proof. By Assumption 1, F(v) = α. Then, by Eq. (4), F(v)−Fn(v) =
α − 1

n

∑n
i=1 I{Li ≤ v}Li. Let An = 1

f (v) (A1,n + A2,n + A3,n). Since
f (v) > 0 by Assumption 1, the conclusions of the theorem follow
directly from Eq. (8) and Lemma 1. �

Because ṽn is a special case of vn whereL(x) = 1 for all x ∈ <,
Bahadur representation of Eq. (5) may be viewed as a special case
of Theorem 1.
Let VarG denote the variance under the IS measure. From

Theorem 1, it is also straight-forward to prove the following
corollary on the strong consistency and asymptotic normality of vn.

Corollary 1. For a fixed α ∈ (0, 1), suppose that Assumptions 1 and
2 are satisfied. Then, as n→∞, vn → v w.p.1 and

√
n(vn − v)⇒

√
VarG [I{L ≤ v}L(L)]

f (v)
N(0, 1).

Remark 1. The conclusions of Corollary 1 have also been proved
by Glynn [7] under Assumption 1 and the assumption that
EG[L3(L)] <∞.

Note that
VarG [I{L ≤ v}L(L)] = EG

[
I{L ≤ v}L2(L)

]
− E2G [I{L ≤ v}L(L)]

= E [I{L ≤ v}L(L)]− α2. (9)
If L(x) < 1 for all x ≤ v as in [3–6], by Eq. (9), VarG[I{L ≤
v}L(L)] < α(1 − α). Compared to Eq. (6), the IS estimator vn
has a smaller asymptotic variance than the ordinary estimator ṽn.
Therefore, if the IS distribution is selected appropriately, it may
improve the efficiency of VaR estimation.

3.2. Asymptotic representation of cn

Wenow consider the asymptotic representation of cn. Note that

cn = vn −
1
nα

n∑
i=1

(vn − Li)+Li = v −
1
nα

n∑
i=1

(v − Li)+Li

+ (vn − v)−
1
nα

n∑
i=1

[
(vn − Li)+ − (v − Li)+

]
Li.

Furthermore, note that

1
nα

n∑
i=1

[
(vn − Li)+ − (v − Li)+

]
Li

=
1
nα

n∑
i=1

[(vn − Li)I{Li ≤ vn} − (v − Li)I{Li ≤ v}]Li
=
1
nα

n∑
i=1

[(vn − v)I{Li ≤ vn}]Li

+
1
nα

n∑
i=1

(v − Li) [I{Li ≤ vn} − I{Li ≤ v}]Li.

Then,

cn = v −
1
nα

n∑
i=1

(v − Li)+Li +
1
α
(vn − v) (α − Fn(vn))

−
1
nα

n∑
i=1

(v − Li) [I{Li ≤ vn} − I{Li ≤ v}]Li. (10)

Since∣∣∣∣∣ 1nα
n∑
i=1

(v − Li) [I{Li ≤ vn} − I{Li ≤ v}]Li

∣∣∣∣∣
≤
1
α
|vn − v| · |Fn(vn)− Fn(v)| , (11)

by Eqs. (10) and (11), we have

cn = v −
1
nα

n∑
i=1

(v − Li)+Li + Bn, (12)

where

|Bn| ≤
1
α
|vn − v| (2|Fn(vn)− F(v)| + |Fn(v)− F(v)|) .

In the following lemma, we prove the order of Bn. The proof of
the lemma is included in the Appendix.

Lemma 2. For a fixed α ∈ (0, 1), suppose that Assumptions 1 and
2 are satisfied. Then, Bn = Oa.s.(n−1+2/p+δ) and Bn = op(n−1/2).
Furthermore, if L(x) < C for any x ∈ (−∞, v + ε), then Bn =
Oa.s.(n−1 log n).
Then, we have the following theorem on the asymptotic

representation of cn. Note that the conclusion of the theorem
follows directly from Eq. (12) and Lemma 2. Therefore, we omit
the proof.

Theorem 2. For a fixed α ∈ (0, 1), suppose that Assumptions 1 and
2 are satisfied. Then,

cn = c +

(
1
n

n∑
i=1

[
v −

1
α
(v − Li)+Li

]
− c

)
+ Bn,

where Bn = Oa.s.(n−1+2/p+δ) for any δ > 0 and Bn = op(n−1/2).
Furthermore, if L(x) < C for any x ∈ (−∞, v + ε), then Bn =
Oa.s.(n−1 log n).
Note that EG

[
v − 1

α
(v − L)+L(L)

]
= c. Then, by the strong

law of large numbers and the central limit theorem, it is straight-
forward to prove the following corollary on the strong consistency
and asymptotic normality of cn.

Corollary 2. For a fixed α ∈ (0, 1), suppose that Assumptions 1 and
2 are satisfied andEG[(v−L)2L(L)2I{L < v}] <∞. Then, as n→∞,
cn → c w.p.1 and

√
n(cn − c)⇒

√
VarG [(v − L)+L(L)]

α
N(0, 1).

Furthermore, we may set L(x) = 1 for all x ∈ <. Then, the
conclusions of Theorem 2 and Corollary 2 apply to c̃n, the ordinary
Monte Carlo estimator of c. We then have the following corollary.

Corollary 3. For a fixed α ∈ (0, 1), suppose that Assumption 1 is
satisfied. Then,

c̃n = c +

(
1
n

n∑
i=1

[
v −

1
α
(v − Li)+

]
− c

)
+ Cn,
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where Cn = Oa.s.(n−1 log n), and c̃n → c w.p.1 as n → ∞.
Furthermore, if E[(v − L)2I{L < v}] <∞, then

√
n(c̃n − c)⇒

√
Var [(v − L)+]

α
N(0, 1) as n→∞.

Remark 2. The strong consistency and asymptotic normality of c̃n
have also been studied by a number of papers in the literature,
including [11,8], using different methods.

If the IS distribution satisfies L(x) < 1 for all x ≤ v, as in [3–
6], it is easy to show that VarG[(v − L)+L(L)] < Var[(v − L)+].
Therefore, by Corollaries 2 and 3, the IS estimator cn has a smaller
asymptotic variance than the ordinary estimator c̃n. Note that the
same condition can also reduce the asymptotic variance of the
IS estimator of VaR as shown in Section 3.1. Therefore, if the IS
distribution is selected appropriately, itmay improve the efficiency
of VaR and CVaR estimations at the same time.
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Appendix

A.1. Proof of Lemma 1

A similar result has been proved by Serfling [10] for ṽn. In this
section, we mainly follow his steps. However, we need to handle
the likelihood-ratio term that does not appear in ṽn.

A.1.1. Three propositions

Proposition 1. For a fixed α ∈ (0, 1), suppose that Assumption 2 is
satisfied. Then for any γ < ε,

Pr {|vn − v| > γ } ≤ Cpn−p/2δ−pγ

for sufficiently large n, where δγ = min{F(v+γ )−α, α−F(v−γ )},
and Cp is a constant related to p. Furthermore, if L(x) < C for any
x ∈ (−∞, v + ε), then

Pr {|vn − v| > γ } ≤ 2e−2nδ
2
γ /(C+1)

2
.

Proof. Note that

Pr {|vn − v| > γ } = Pr {vn > v + γ } + Pr {vn < v − γ } .

Because vn = F−1n (α) = inf{x : Fn(x) ≥ α}, vn > v + γ and
vn ≤ v − γ are equivalent to Fn(v + γ ) < α and Fn(v − γ ) ≥ α,
respectively. We have

Pr {|vn − v| > γ } ≤ Pr {Fn(v + γ ) < α} + Pr {Fn(v − γ ) ≥ α}
≤ Pr {F(v + γ )− Fn(v + γ ) > F(v + γ )− α}

+ Pr {Fn(v − γ )− F(v − γ ) ≥ α − F(v − γ )} . (13)

Moreover,

Pr {F(v + γ )− Fn(v + γ ) > F(v + γ )− α}

= Pr

{
n∑
i=1

[F(v + γ )− I{Li ≤ v + γ }Li] > n(F(v + γ )− α)

}
,

and

Pr {Fn(v − γ )− F(v − γ ) ≥ α − F(v − γ )}

= Pr

{
n∑
i=1

[I{Li ≤ v − γ }Li − F(v − γ )] ≥ n(α − F(v − γ ))

}
.

Note that, when Assumption 2 is satisfied, combining with
Markov’s inequality [2, p. 14], we have

Pr

{
n∑
i=1

F(v + γ )− I{Li ≤ v + γ }Li > n(F(v + γ )− α)

}

≤

E
[∣∣∣∣ n∑
i=1
F(v + γ )− I{Li ≤ v + γ }Li

∣∣∣∣p]
np(F(v + γ )− α)p

.

By Rosenthal’s inequality [9], we know

E

[∣∣∣∣∣ n∑
i=1

F(v + γ )− I{Li ≤ v + γ }Li

∣∣∣∣∣
p]

≤ C̃pmax

{
n∑
i=1

E|F(v + γ )− I{Li ≤ v + γ }Li|p,(
n∑
i=1

E
[
F(v + γ )− I{Li ≤ v + γ }Li

]2)p/2}
,

where C̃p = 2max
{
pp, pp/2+1ep

∫
∞

0 x
p/2−1(1− x)−pdx

}
. When n

is sufficiently large,
n∑
i=1

E|F(v + γ )− I{Li ≤ v + γ }Li|p

≤

(
n∑
i=1

E[F(v + γ )− I{Li ≤ v + γ }Li]2
)p/2

.

Therefore,

Pr

{
n∑
i=1

[F(v + γ )− I{Li ≤ v + γ }Li] > n(F(v + γ )− α)

}

≤ C̃p

(
E [F(v + γ )− I{L1 ≤ v + γ }L1]2

)p/2
np/2(F(v + γ )− α)p

.

Similarly, we can prove

Pr

{
n∑
i=1

[I{Li ≤ v − γ }Li − F(v − γ )] ≥ n(α − F(v − γ ))

}

≤ C̃p

(
E [I{L1 ≤ v − γ }L1 − F(v − γ )]2

)p/2
np/2(α − F(v − γ ))p

.

Let

Cp = 2C̃pmax
{(
E [F(v + γ )− I{L1 ≤ v + γ }L1]2

)p/2
,(

E [I{L1 ≤ v − γ }L1 − F(v − γ )]2
)p/2}

.

Combing with Eq. (13), we have, for sufficiently large n,

Pr {|vn − v| > γ } ≤ Cpn−p/2δ−pγ .

If we further have L(x) < C for any x ∈ (−∞, v + ε), both
F(v + γ )− I{Li ≤ v + γ }Li and I{Li ≤ v − γ }Li − F(v − γ ) are
bounded. Thus, we can apply Hoeffding’s inequality [10, p. 75], to
have

Pr

{
n∑
i=1

[F(v + γ )− I{Li ≤ v + γ }Li] > n(F(v + γ )− α)

}

≤ exp
{
−
2n(F(v + γ )− α)2

(C + 1)2

}
,
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Pr

{
n∑
i=1

[I{Li ≤ v − γ }Li − F(v − γ )] ≥ n(α − F(v − γ ))

}

≤ exp
{
−
2n(α − F(v − γ ))2

(C + 1)2

}
.

Then, Pr(|vn − v| > γ ) ≤ 2e−2nδ
2
γ /(C+1)

2
. This completes the proof

of the proposition. �

Proposition 2. Let εn,δ = 2
f (v)n

−1/2+1/p+δ with δ > 0. For a
fixed α ∈ (0, 1), suppose Assumptions 1 and 2 are satisfied. Then,
|vn − v| = Oa.s.(εn,δ) for any δ > 0 and |vn − v| = op(n−1/2g(n))
for any function g(n) → ∞ as n → ∞. Furthermore, if L(x) < C
for any x ∈ (−∞, v + ε), then |vn − v| = Oa.s.(εn) with εn =
2C
f (v) n

−1/2(log n)1/2.

Proof. By Assumption 1, v is a unique solution to F(x) = α. Note
that

F(v + εn,δ)− α = F(v + εn,δ)− F(v) = f (v)εn,δ + o(εn,δ).

When n is sufficiently large and δ is sufficiently small, εn,δ < ε,
where ε is defined in Assumption 2. Then, F(v + εn,δ) − α ≥
f (v)εn,δ/2. Similarly, we can also prove that α − F(v − εn,δ) ≥
f (v)εn,δ/2. Therefore,

δεn,δ = min{F(v + εn,δ)− α, α − F(v − εn,δ)}

≥
f (v)
2
εn,δ ≥ n

−
1
2+

1
p+δ.

Hence, by Proposition 1, for n sufficiently large, Pr{|vn − v| >
εn,δ} ≤ Cpn−1−pδ , where Cp is defined in Proposition 1. Because∑
∞

n=1 Cpn
−1−pδ < ∞ for any δ > 0, by Borel–Cantelli Lemma [2,

p. 46], we have |vn − v| = Oa.s.(εn,δ). Similarly, for any α > 0, we
have

Pr
{
|vn − v|

n−1/2g(n)
> α

}
= Pr

{
|vn − v| > αn−1/2g(n)

}
≤ C(g(n))−p,

where C is a constant. Then, |vn − v| = op(n−1/2g(n)).
Furthermore, if L(x) < C for any x ∈ (−∞, v + ε), by the

same approach, we can prove |vn − v| = Oa.s.(εn) with εn =
2C
f (v) n

−1/2(log n)1/2. This completes the proof of the proposi-
tion. �

Proposition 3. Let Tn = sup|x|≤εn,δ |Fn(v+ x)− Fn(v)− F(v+ x)+
F(v)|, where εn,δ is defined in Proposition 2. Suppose Assumptions 1
and 2 are satisfied. Then, Tn = Oa.s.(n−3/4+1/(2p)+δ) for any δ > 0.
Furthermore, let Kn = sup|x|≤εn |Fn(v + x) − Fn(v) − F(v + x)

+ F(v)|, where εn is defined in Proposition 2. If L(x) < C for any
x ∈ (−∞, v + ε), then Kn = Oa.s.(n−3/4(log n)3/4).

Proof. We have εn,δ < min{ε, ε} for n sufficiently large and δ
sufficiently small, where ε and ε are defined in Assumptions 1
and 2, respectively, and εn,δ is defined in Proposition 2. Let bn =⌈
2
f (v)n

1/4+1/p+δ
⌉
. For any integer l ∈ [−bn, bn], we let ξl,n =

v + lεn,δ/bn. For any |x| < εn,δ , we can find l such that v + x ∈
[ξl,n, ξl+1,n). Then,

Fn(ξl,n)− F(ξl+1,n) ≤ Fn(v + x)− F(v + x) ≤ Fn(ξl+1,n)− F(ξl,n),

which is equivalent to

Fn(ξl,n)− Fn(v)− F(ξl,n)+ F(v)+ F(ξl,n)− F(ξl+1,n)
≤ Fn(v + x)− Fn(v)− F(v + x)+ F(v)
≤ Fn(ξl+1,n)− Fn(v)− F(ξl+1,n)+ F(v)+ F(ξl+1,n)− F(ξl,n).
Then, we have

Tn ≤ sup
l∈[−bn,bn]

∣∣Fn(ξl,n)− Fn(v)− F(ξl,n)+ F(v)∣∣
+ sup
l∈[−bn,bn−1]

∣∣F(ξl+1,n)− F(ξl,n)∣∣ . (14)

Note that |F(ξl+1,n) − F(ξl,n)| = f (z)εn,δ/bn for some z ∈
(ξl,n, ξl+1,n). Let f̃ = sup|x|≤ε f (v + x). Then,

sup
l∈[−bn,bn−1]

∣∣F(ξl+1,n)− F(ξl,n)∣∣ ≤ f̃ n−3/4.
From Assumption 2, we knowL(x) < C for any x ∈ (v − εn,δ, v +
εn,δ). Let ξn,δ = n−3/4+1/(2p)+δ/2(log n)1/2.
By Bernstein’s inequality [10, p. 95], for any c1 > 0

Pr
{∣∣Fn(ξl,n)− Fn(v)− F(ξl,n)+ F(v)∣∣ > c1ξn,δ}
≤ 2 exp

{
−

3c21nξ
2
n,δ

6σ 2 + 2Cc1ξn,δ

}
, (15)

where σ 2 = Var[I{Li ∈ (v, ξl,n]}Li] ≤ E[I{Li ∈ (v, ξl,n]}L2i ] ≤
E[I{Li ∈ (v, ξl,n]}]C2 ≤ C2 f̃ εn,δ .
Inputting the upper bound of σ 2 into Eq. (15), we have

Pr
{∣∣Fn(ξl,n)− Fn(v)− F(ξl,n)+ F(v)∣∣ > c1ξn,δ}
≤ 2 exp

− 3c21n
−
1
2+

1
p+δ log n

6C2 f̃ 2
f (v)n

−
1
2+

1
p+δ + 2Cc1n

−
3
4+

1
2p+

δ
2 (log n)1/2


≤ 2 exp

− 3c21 log n

6C2 f̃ 2
f (v) + 2Cc1n

−
1
4−

1
2p−

δ
2 (log n)1/2

 .
When n is sufficiently large, we can choose c1 big enough such that

3c21

6C2 · f̃ 2
f (v) + 2Cc1n

−
1
4−

1
2p−

δ
2 (log n)1/2

> 2.

Then, Pr{|Fn(ξl,n) − Fn(v) − F(ξl,n) + F(v)| > c1ξn,δ} ≤ 2n−2.
Therefore, when δ < 1/4,

Pr
{
sup

l∈[−bn,bn]

∣∣Fn(ξl,n)− Fn(v)− F(ξl,n)+ F(v)∣∣ > c1ξn,δ}
≤

bn∑
l=−bn

Pr
{∣∣Fn(ξl,n)− Fn(v)− F(ξl,n)+ F(v)∣∣ > c1ξn,δ}

≤ 2
⌈
2
f (v)

n1/4+1/p+δ
⌉
n−2

and
∞∑
n=1

Pr
{
sup

l∈[−bn,bn]

∣∣Fn(ξl,n)− Fn(v)− F(ξl,n)+ F(v)∣∣ > c1ξn,c}

≤

∞∑
n=1

2
⌈
2
f (v)

n1/4+1/p+δ
⌉
n−2 <∞. (16)

Note that
∞∑
n=1

Pr
{
Tn > c1 ξn,δ

}
≤

∞∑
n=1

Pr
{
sup

l∈[−bn,bn]

∣∣Fn(ξl,n)− Fn(v)− F(ξl,n)+ F(v)∣∣ > c1ξn,δ}
+

∞∑
n=1

Pr
{
sup

l∈[−bn,bn]

∣∣F(ξl+1,n)− F(ξl,n)∣∣ > c1ξn,δ} .
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The event supl∈[−bn,bn−1] |F(ξl+1,n) − F(ξl,n)| > c1ξn,δ is actually a
deterministic event. From Eq. (14), we know for n big enough this
event will never happen and thus the probability is 0. Combining
with Eq. (16) andBorel–Cantelli Lemma,wehave Tn = Oa.s.(ξn,δ) =

Oa.s.
(
n−

3
4+

1
2p+δ(log n)1/2

)
. Note that log n = O(nδ), then we have

Tn = Oa.s.
(
n−

3
4+

1
2p+δ

)
.

Furthermore, if L(x) < C for any x ∈ (−∞, v + ε), we can
similarly prove Kn = Oa.s.(n−3/4(log n)3/4). This completes the
proof of the proposition. �

A.1.2. Proof of Lemma 1

Proof. First, we prove, A1,n = Oa.s.(n−1+2/p+δ) and A1,n =
op(n−1/2). Note that

Pr{A1,n > A} ≤ Pr{A1,n > A, |vn − v| ≤ εn,δ}
+ Pr{A1,n > A, |vn − v| > εn,δ}

≤ Pr{A1,n > A, |vn − v| ≤ εn,δ}
+ Pr{|vn − v| > εn,δ}.

FromAssumption 1 and a second-order Taylor expansion,we know
that, when |vn − v| < ε, A1,n < M(vn − v)2 with M =

sups∈(v−ε,v+ε) f ′(s). When n is sufficiently large and δ is sufficiently
small, εn,δ < ε. Let A = Mε2n,δ . Then, combiningwith Proposition 2,
we have A1,n = Oa.s.(ε2n,δ) = Oa.s.(n

−1+2/p+δ) for any δ > 0. Let
A = n−1g(n), combining with Proposition 2, we have Pr(A1,n >
cn−1)→ 0 as n→∞ for any c > 0. Thus, A1,n = op(n−1/2).

Second, we prove A2,n = Oa.s.
(
n−

3
4+

1
2p+δ

)
. With εn,δ defined in

Proposition 2 and c1 and ξn,δ defined in the proof of Proposition 3,
we have

Pr
{∣∣A2,n∣∣ > c1ξn,δ}
= Pr

{
|Fn(vn)− F(vn)+ F(v)− Fn(v)| > c1ξn,δ

}
= Pr {|Fn(vn)− F(vn)+ F(v)− Fn(v)|
> c1ξn,δ, |vn − v| > εn,δ

}
+ Pr {|Fn(vn)− F(vn)+ F(v)− Fn(v)|
> c1ξn,δ, |vn − v| ≤ εn,δ

}
≤ Pr

{
|vn − v| > εn,δ

}
+ Pr

{
Tn > c1ξn,δ, |vn − v| ≤ εn,δ

}
.

Combining with Propositions 2 and 3, we can easily see A2,n =

Oa.s.(ξn,δ) = Oa.s.
(
n−

3
4+

1
2p+δ(log n)1/2

)
for δ > 0. Moreover,

we have n1/2A2,n = Oa.s.
(
n−

1
4+

1
2p+δ(log n)1/2

)
. For δ sufficiently

small, we know n1/2A2,n → 0w.p.1 and thus as n→ 0, n1/2A2,n →
0 in probability.
Then, we prove A3,n = Oa.s.(n−1) and A3,n = op(n−1/2). Let vn =

max{Li, i = 1, . . . , n : Fn(Li) < α}. Then, we have Fn( vn) < α and
Fn(vn) = Fn( vn)+L(vn)/n.

Pr
{
A3,n > C/n

}
= Pr

{
Fn(vn) > α + C/n, |vn − v| ≤ εn,δ

}
+ Pr

{
Fn(vn) > α + C/n, |vn − v| > εn,δ

}
≤ Pr

{
Fn(vn) > α + C/n, |vn − v| ≤ εn,δ

}
+ Pr

{
|vn − v| > εn,δ

}
.

For n big enough and δ sufficient small, we have εn,δ < εwith ε and
C defined in Assumption 2. When |vn− v| < ε, Fn(vn) = Fn( vn)+
L(vn)/n < α+C/n. Thus the first part of the equation is 0 for n big
enough. Combining with Proposition 2, we have A3,n = Oa.s.(n−1)
and therefore A3,n = op(n−1/2).
Furthermore, if L(x) < C for any x ∈ (−∞, v + ε), we can

similarly prove that A1,n = Oa.s.(n−1 log n), A2,n = Oa.s.(n−3/4
(log n)3/4) and A3,n = Oa.s.(n−1). This completes the proof of the
lemma. �

A.2. Proof of Lemma 2

Proof. By Lemma 1, we know Fn(vn) − F(v) = A3,n = Oa.s.
(n−1) and A3,n = op(n−1/2). From Lemma 1, vn − v = Oa.s.
(n−1/2+1/p+δ) and from Proposition 2, vn − v = op(n−1/2g(n))
with g(n) defined in Proposition 2. It suffices to prove that Fn(v)−
α = Oa.s.(n−1/2+1/p+δ) and Fn(v) − α = op(n−1/2g(n)). Similar
arguments as in Proposition 1 yield that, for n sufficiently large

Pr {|Fn(v)− α| > γ } = Pr

{∣∣∣∣∣ n∑
i=1

(I{Li ≤ v}Li − α)

∣∣∣∣∣ > nγ
}

≤

E
[∣∣∣∣ n∑
i=1
(I{Li ≤ v}Li − α)

∣∣∣∣p]
(nγ )p

< Cp
1

np/2(γ )p
,

where Cp is a constant. For any c > 0, let γ = cn−1/2g(n). We have

Pr
{
|Fn(v)− α|
n−1/2g(n)

> c
}
= Pr {|Fn(v)− α| > γ } < Cp/[cg(n)]p.

Thus, |Fn(v) − α| = op(n−1/2g(n)). Similarly, combining with
Borel–Cantelli Lemma, we can prove |Fn(v) − α| = Oa.s.(
n−

1
2+

1
p+δ
)
. When L(x) < C for any x ∈ (−∞, v + ε), we can

similarly prove Bn = Oa.s.(n−1 log n). This completes the proof of
the lemma. �
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