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1. Introduction
Consider the following optimization problem:

minimize h4x51

subject to c14x1 �5¶ 01 0 0 0 1 cm4x1 �5¶ 01

x ∈X1

(1)

where � is a k-dimensional parameter vector, X is a subset
of <d, h2 <d → < and ci2 <

d+k → <, i = 11 0 0 0 1m, are real-
valued functions. Furthermore, we assume that h4x5 and
ci4x1 �5, i = 11 0 0 0 1m are convex in x and X is a compact
convex set. Then, Problem (1) is a standard constrained
convex optimization problem. It has broad applications in
communications and networks, product design, system con-
trol, statistics, and finance, and it can be solved efficiently
(e.g., see Boyd and Vandenberghe 2004 for a comprehen-
sive introduction to convex optimization).

In many practical problems, however, the parameter vec-
tor � of Problem (1) might be uncertain. If this uncer-
tainty is ignored (e.g., by using the expected values of �
in the optimization), the optimal solution obtained by solv-
ing Problem (1) might actually be infeasible with a very
high probability. To illustrate this, we consider a very sim-
ple example. We let � = 4�11 0 0 0 1 �m5 where �11 0 0 0 1 �m are
m independent observations of a standard normal distribu-
tion, let X = <, h4x5= x, and ci4x1 �5= �i − x for all i =
11 0 0 0 1m. If we ignore the parameter uncertainty by using
E4�5 to substitute � in Problem (1), the optimal solution is

x∗ = 0. However, the probability of x∗ = 0 being a feasible
solution equals

Pr8c14x
∗1 �5¶ 01 0 0 0 1 cm4x

∗1 �5¶ 09

= Pr8x∗ ¾ �19 0 0 0Pr8x∗ ¾ �m9= 005m1

which is very small when m is large (for instance, it is
already less than 00001 when m= 10).

To consider this parameter uncertainty, we may formu-
late the problem as

(P) minimize h4x51

subject to Pr8c14x1�5¶010001cm4x1�5¶09¾1−�1

x∈X0

In Problem (P), we require all m uncertain constraints be
satisfied simultaneously with a probability at least 1 − �,
where 0 < �< 1 is often set as 0001, 0005, or 001. There-
fore, the solution to Problem (P) is guaranteed to be a fea-
sible solution to the original Problem (1) with a probability
at least 1 − �. Problem (P) is called a joint chance con-
strained program (JCCP), and the probabilistic constraint is
called a joint chance constraint. When m= 1, the constraint
is called a single chance constraint because it requires only
a single constraint to be satisfied with probability 1 − �.
For simplicity of the notation, we let

p4x5= 1 − Pr8c14x1 �5¶ 01 0 0 0 1 cm4x1 �5¶ 091
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and p4x5 is the probability that at least a constraint is
violated. Then, the joint chance constraint of Problem (P)
becomes p4x5¶ �.

Many stochastic optimization problems can be formu-
lated as a JCCP. For instance, the reservoir system design
problem of Prékopa et al. (1978) minimizes the total build-
ing and penalty costs while satisfying demands for all sites
and all periods with a probability at least 80%, and the
cash matching problem of Dentcheva et al. (2004) maxi-
mizes the value of the portfolio at the end of the planning
horizon while covering all scheduled payments with a prob-
ability at least 95%. JCCPs were first introduced and stud-
ied by Charnes et al. (1958), Miller and Wagner (1965),
and Prékopa (1970). Since then, JCCPs have been studied
extensively in the stochastic optimization literature. For a
recent review of the topic, readers are referred to Prékopa
(2003).

There are generally two major difficulties in solving a
JCCP. First, p4x5 might not be a convex (or quasiconvex)
function even though c14x1 �51 0 0 0 1 cm4x1 �5 are all convex
in x. Therefore, Problem (P) might not be a convex opti-
mization problem even though Problem (1) is. Then, it is
difficult to find a global optimal solution. Second, p4x5
generally has no closed form and is typically difficult to
evaluate.

Different approaches have been proposed in the stochas-
tic optimization literature to address these difficulties. For
the convexity of Problem (P), Prékopa (2003) showed that
p4x5 is quasiconvex (which implies that Problem (P) is
convex) if c14x1 �51 0 0 0 1 cm4x1 �5 are quasiconvex functions
of 4x1 �5, and if � has a logconcave probability distri-
bution, which includes uniform distribution, multivariate
normal distribution, and many others. Lagoa et al. (2005)
showed that an individual chance constraint in the form of
Pr8aT x¶ b9¾ 1−� defines a convex set provided that the
vector 4aT 1 b5T has a symmetric logconcave density with
�< 1/2. Henrion (2007) showed that an individual chance
constraint in the form of Pr8�T q4x5¶ b9¾ 1 −� defines a
convex set provided that all components of q4x5 are non-
negative and convex, � < 1/2, and the vector � has an
elliptically symmetric distribution whose parameters satisfy
certain requirements. Henrion and Strugarek (2008) showed
that a joint chance constraint in the form of Pr8gi4x5 ¾
�i1 i = 11 0 0 0 1m9 ¾ 1 − � defines a convex set if gi4x5 is
4−ri5-concave and �i1 i = 11 0 0 0 1m are independent random
variables with 4ri + 15-decreasing densities for some ri > 0
for sufficiently small � values.

When p4x5 is not quasiconvex (or at least not verifi-
able), many convex conservative approximations of p4x5
have been proposed, e.g., the quadratic approximation of
Ben-Tal and Nemirovski (2000), the conditional value-at-
risk (CVaR) approximation of Rockafellar and Uryasev
(2000), and the Bernstein approximation of Nemirovski and
Shapiro (2006). These approximations typically find feasi-
ble but suboptimal solutions to Problem (P). Furthermore,
most of these approximations work only on single chance

constraints instead of a joint chance constraint. Therefore,
one has to approximate the joint chance constraint by a
set of individual chance constraints. A popular choice is
to use Boole’s inequality, which guarantees the satisfaction
of the joint chance constraint if Pr8ci4x1 �5¾ 09¾ 1 −�i,
i = 11 0 0 0 1m1 and �1 + · · · +�m = � (e.g., Nemirovski and
Shapiro 2006). However, it makes the solution even more
conservative.

To evaluate p4x5, Monte Carlo simulations are often used
when the closed form of p4x5 is not available. When the
chance constraint is approximated by functions that are
analytically tractable, e.g., the quadratic approximation or
the Bernstein approximation, evaluations of these functions
are easy. The resulting problems can be solved directly
using standard nonlinear optimization algorithms. When the
chance constraint is approximated by functions that are not
analytically tractable, e.g., the CVaR approximation, Monte
Carlo simulations are also used to evaluate these functions
(Rockafellar and Uryasev 2000).

Luedtke and Ahmed (2008) studied the sample-average
approximation of the JCCPs. Their goal is to determine the
sample size and appropriate probability requirement such
that one can find a feasible solution of the original JCCP
and also bound the optimality gap. Luedtke et al. (2007)
considered linear programs with joint chance constraints
and showed that the problems can be reformulated into
mixed integer programs. They further demonstrated that the
mixed integer programs can be solved efficiently when only
the right-hand-side vector is random.

Another approach to solving JCCPs is to use the scenario
approach, which solves the following problem:

minimize h4x51

subject to ci4x1�l5¶01 i=110001m1l=110001n1

x∈X1

(2)

where �11 �21 0 0 0 1 �n are independent observations of � that
are often generated from a Monte Carlo simulation. Prob-
lem (2) is a convex optimization problem and analytically
tractable. The critical issue is how to determine the sample
size n to ensure that the joint chance constraint is satis-
fied with a high probability. Calafiore and Campi (2005,
2006) and de Farias and Van Roy (2004) studied this issue
independently, and Erdgoǧan and Iyengar (2006) further
extended the earlier results to situations where the distri-
bution of � is ambiguous. The scenario approach is simple
to understand and easy to implement. However, it also has
several drawbacks. First, Problem (2) is also a conservative
approximation to the original JCCP; it finds feasible but
suboptimal solutions. Second, the solutions found by the
scenario approach are not stable. They can be drastically
different when different sets of samples are used. Third,
the performance of the approach cannot be improved by
acquiring more samples of �, which is in contrast to many
other Monte Carlo algorithms. Indeed, increasing sample
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size will make Problem (2) more conservative and might
lead to worse solutions. Therefore, the performance of the
approach cannot be improved when an ample amount of
computational time is available.

In this paper, we propose a new approach to solving
Problem (P). We first show that the function p4x5 can be
represented as a limit of a DC function (i.e., difference of
two convex functions). Then we use an �-approximation
to approximate Problem (P). We show that, as � goes
down to zero, the optimal solutions (either global opti-
mal or KKT points) of the approximation converge to
the optimal solutions of Problem (P), respectively. To
solve the �-approximation problem, we propose to solve a
sequence of convex optimization problems. We show that
the sequence of solutions converge to a KKT point of the
�-approximation problem under moderate conditions. We
also propose to use a Monte Carlo method to solve the
sequence of convex optimization problems. We show that
the solution of the Monte Carlo method converges with
probability 1 as the sample size goes to infinity, and the
sample problem can be solved efficiently using a gradient
approach.

Compared to other approaches in the literature, our
approach has several advantages. First, it converges to a
KKT point of Problem (P), while nearly all other meth-
ods are conservative approximations whose solutions do
not satisfy any optimality conditions of Problem (P). When
the JCCP is convex (even though it might not be verifi-
able), our approach converges to the global optimal solu-
tion while other methods cannot. Second, our approach
directly handles the joint chance constraint without break-
ing it into multiple single chance constraints. Therefore,
it avoids the extra conservativeness introduced by using
Boole’s inequality.

Our approach also has several drawbacks compared to
other approaches in the literature. First, it is computation-
ally slow. Generally, Monte Carlo methods are slower than
deterministic approximations because the sample problem
is either of a large size or the functions need to estimate
repeatedly. Our approach requires to solve a sequence of
sample problems. Therefore, it can solve only problems
with a small or moderate size, e.g., problems with less
than 100 dimensions. Second, our approach requires the
full joint distribution of the uncertain parameters in order
to generate Monte Carlo samples. However, specifying a
full joint distribution for a large number of parameters
is often difficult in practice. When the distribution of �
is ambiguous, our approach cannot be applied. To solve
JCCPs with ambiguous distributions, many robust opti-
mization approaches have been proposed in the literature,
e.g., Ben-Tal and Nemirovski (2000), Bertsimas and Sim
(2004), and Chen et al. (2010).

The rest of the paper is organized as follows. We pro-
vide a new formulation of the JCCP in §2, and we show
how the formulation can be solved by sequential convex
approximations in §3. In §4, we propose an efficient Monte

Carlo algorithm to solve the sequence of convex approxi-
mations. The numerical results are reported in §5, followed
by the conclusions and future research in §6. An electronic
companion to this paper is available as part of the online
version that can be found at http://or.journal.informs.org.
Some lengthy proofs are included in the electronic com-
panion to this paper.

2. A DC Formulation
Let c4x1 �5 = max8c14x1 �51 0 0 0 1 cm4x1 �59. Note that
c4x1 �5 is a convex function of x because ci4x1 �5, i =

11 0 0 0 1m, are all convex in x. Then,

p4x5= 1 − Pr8c14x1 �5¶ 01 0 0 0 1 cm4x1 �5¶ 09

= 1 − Pr8c4x1 �5¶ 09= Pr8c4x1 �5 > 090

By doing so, we convert a joint chance constraint to a single
chance constraint. We can do this in this paper because we
do not need to exploit certain special structures of ci4x1 �5.
For many papers that require ci4x1 �5 be a linear func-
tion of x or � and exploit this linearity, e.g., Ben-Tal and
Nemirovski (2000) and Nemirovski and Shapiro (2006),
c4x1 �5 is no longer linear when m> 1, and thus handling
a joint chance constraint is significantly more difficult than
handling a single chance constraint. For us, however, han-
dling a joint chance constraint is as difficult as handling a
single chance constraint.

A major difficulty of solving Problem (P) is that p4x5 is
generally not a convex function of x even though c4x1 �5 is
convex in x. In the literature, many algorithms have been
proposed to approximate p4x5 by a conservative function
p̃4x5, i.e., p̃4x5¾ p4x5 for all x ∈X. Then, the solution to

minimize h4x51

subject to p̃4x5¶ �1 x ∈X

is a feasible solution of Problem (P). If p̃4x5 is close to
p4x5, then the solution is a good approximation to the opti-
mal solution of Problem (P). If p̃4x5 is a convex function,
then the approximated problem is a convex program that
might be easier to solve.

In this section, we first introduce the CVaR approxi-
mation of Rockafellar and Uryasev (2000), which is the
“best” convex conservative approximation (Nemirovski and
Shapiro 2006). Based on the CVaR approximation, we pro-
pose another conservative approximation to p4x5, called the
DC approximation. We then study the properties of the DC
approximation.

2.1. CVaR Approximation

Note that p4x5 = Pr8c4x1 �5 > 09 = E61401+�54c4x1 �557,
where 1A4z5 denotes the indicator function of set A that
equals to 1 if z ∈ A and 0 if z 6∈ A. Because the indi-
cator function 1401+�54z5 is nonconvex (see the left panel
of Figure 1), one way to approximate p4x5 is to find a
convex approximation �4z5 of 1401+�54z5 such that �4z5¾
1401+�54z5 for any z ∈ <. Then, p̃4x5 = E6�4c4x1 �557 is a



Hong, Yang, and Zhang: Sequential Convex Approximations
620 Operations Research 59(3), pp. 617–630, © 2011 INFORMS

Figure 1. The CVaR approximation to the indicator function 1401+�54z5.

0

1 1(0, +∞)(z)

z

The indicator function 1(0, +∞)(z)

0 z

The CVaR approximation � (z , t)

1(0,+∞)(z)

� (z , t )= t–1[t+z]+
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convex conservative approximation of p4x5. For instance,
both the CVaR approximation of Rockafellar and Uryasev
(2000) and the Bernstein approximation of Nemirovski and
Shapiro (2006) use this approach.

Among all convex conservative approximations of this
kind, the CVaR approximation is known to be the “best”
(Nemirovski and Shapiro 2006). It uses

�4z1 t5=
1
t
6t + z7+

to approximate 1401+�54z5, where t > 0 and a+ = max8a109
(see the right-hand panel of Figure 1), and let

p′4x5= inf
t>0

E6�4c4x1 �51 t57= inf
t>0

1
t

E66t + c4x1 �57+70

It can be shown that the new constraint p′4x5¶ � is equiv-
alent to CVaR1−�4c4x1 �55 ¶ 0 (Nemirovski and Shapiro
2006), where

CVaR1−�4z5= inf
�∈<

{

� +
1
�

E66z− �7+7

}

0

This is why this approximation is called the CVaR approx-
imation. The CVaR approximation problem can be solved
using a Monte Carlo method. Rockafellar and Uryasev
(2000) provided an approach that solves the problem with
a single chance constraint, and Nemirovski and Shapiro
(2006) showed that the Boole’s inequality can be used
to extend it to JCCPs. Hong and Liu (2009) provided a
gradient-based Monte Carlo algorithm that directly solves
the CVaR approximations of JCCPs.

Figure 2. The DC approximation to the indicator function 1401+�54z5.

1

The construction of �(z , t )

1(0, +∞)(z)

� (z, t ) �(z, t )

0 z– t

� (z , t )=� (z , t )–�(z , t )

0 z– t

The difference function � (z , t)

1

2.2. DC Approximation

Although the CVaR approximation may be the “best” con-
vex conservative approximation of p4x5, it is clear that
�4z1 t5 is not a good approximation to the indicator func-
tion 1401+�54z5 from Figure 1. The difference between the
two functions grows unboundedly as z→ +�.

To find a better approximation to p4x5, we first define

�4z1 t5=
1
t
6z7+

for any t > 0. Note that �4z1 t5 can be obtained by shift-
ing �4z1 t5 to the right side by a distance of t (see the left
panel of Figure 2). Then, �4z1 t5 = �4z1 t5 − �4z1 t5 is a
better approximation of 1401+�54z5 than �4z1 t5 is (see the
right panel of Figure 2). Because both �4z1 t5 and �4z1 t5
are convex functions of z, �4z1 t5 is a DC function of
z. Furthermore, because �4z1 t5¾ 1401+�54z5 for all z ∈ <

when t > 0, �4z1 t5 is also a conservative approximation of
1401+�54z5 when t > 0.

Let g14x1 t5= E6t+c4x1 �57+ and g24x5= g14x105. Note
that both functions are convex in x. Let

p̃4x1 t5= E6�4c4x1 �51 t57=
1
t
6g14x1 t5− g24x570 (3)

Then, p̃4x1 t5 is a conservative DC approximation of p4x5
for any t > 0. Let

p̃4x5= inf
t>0

p̃4x1 t50 (4)
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Then, p̃4x5 is the best conservative approximation among
all p̃4x1 t5 when t > 0. In this paper, we suggest to solve

(DC) minimize h4x51
subject to p̃4x5¶ �1 x ∈X0

We call Problem (DC) as the DC approximation of Prob-
lem (P).

2.3. Equivalence of the JCCP and DC
Approximation

In this subsection, we prove that Problem (DC), which
is a conservative approximation of Problem (P), is indeed
equivalent to Problem (P). We make the following
assumptions.

Assumption 1. The set X is a compact and convex subset
of <d, and the support of �, denoted as æ, is a closed subset
of <k. For any � ∈æ, h4x5, and ci4x1 �5, i = 11 0 0 0 1m, are
continuously differentiable and convex in x for any x ∈ O
where O is a bounded open set, such that X ⊂ O.

Assumption 1 is used to clearly define Problem (P).

Assumption 2. There exists a random variable Ki with
E4Ki5 <+�, such that

∣

∣ci4x11 �5− ci4x21 �5
∣

∣¶Ki�x1 − x2�

for any x11 x2 ∈ O and any i = 1121 0 0 0 1m.

Let K =
∑m

i=1 Ki. Assumption 2 implies that �c4x11 �5−

c4x21 �5� ¶ K �x1 − x2� and E4K5 < +�. The Lipschitz
continuity of c4x1 �5 is critical in the analysis of differentia-
bility of E6c4x1 �57. It is a common assumption used to han-
dle the differentiability of an expectation (e.g., Broadie and
Glasserman 1996, Hong 2009, and Hong and Liu 2010).

Assumption 3. For any x ∈ O, c4x1 �5 is differentiable
with respect to x w.p.1.

To verify Assumption 3, we consider only the situation
where � is a continuous random vector, because the follow-
ing Assumption 4 is typically violated if � is discrete. By
Assumption 1, ci4x1 �5 is continuously differentiable for all
i = 11 0 0 0 1m. Therefore, if Pr8ci4x1 �5 = cj4x1 �59 = 0 for
any x ∈ O and any i1 j = 11 0 0 0 1m with i 6= j , c4x1 �5 is
differentiable with respect to x w.p.1. In the electronic com-
panion to this paper, we discuss how to verify and satisfy
Assumption 3 if Pr8ci4x1 �5= cj4x1 �59 6= 0.

Let F 4t1 x5= Pr8c4x1 �5¶ t9 be the cumulative distribu-
tion function of c4x1 �5. We make the following assumption
on the continuity of F 4t1 x5.

Assumption 4. There exists a certain � > 0 such that
F 4t1 x5 is continuously differentiable when 4t1 x5 ∈

4−�1+�5×O.

Because p4x5 = 1 − F 401 x5, Assumption 4 implies that
p4x5 is continuously differentiable. Furthermore, note that
¡tF 4t1 x5 is the density function of c4x1 �5. Therefore,
Assumption 4 implies that c4x1 �5 has a continuous density
in 4−�1+�5 for any x ∈ O.

Assumption 5. Let ì0 = 8x ∈ X2 p4x5 ¶ �9 and ìI
0 =

8x ∈X2 p4x5 < �9. Then ì0 = clìI
0.

Note that ì0 is the set of feasible solutions to Prob-
lem (P). Assumption 5 is an assumption on the constraint
qualification of Problem (P). When ì0 is a convex set,
it is implied by the widely used Slater’s condition (e.g.,
Boyd and Vandenberghe 2004). Assumption 5 is a com-
monly used condition in nonlinear programming, especially
for numerical methods that approximate the optimal solu-
tions by sequences of points in ìI , e.g., the barrier function
method (see, for instance, Zangwill 1969 and Bazaraa et al.
1993). We need this assumption because the method we
propose in §3 is also such a numerical method. More dis-
cussions on Assumption 5 along with a counterexample are
presented in the electronic companion to this paper.

Then, we have the following lemmas that are used
repeatedly in the rest of the paper.

Lemma 1. Suppose that Assumption 4 is satisfied. For any
x ∈X, p̃4x1 t5 is nondecreasing in t when t > 0.

Proof. For any t > 0 and any z ∈ <,

�4z1 t5= �4z1 t5−�4z1 t5

=

[

1 +
1
t
z

]

· 14−t1074z5+ 1401+�54z50 (5)

For any t1 > t2 > 0 and any z ∈ <,

�4z1 t15−�4z1 t25=

[

1 +
1
t1
z

]

· 14−t11−t27
4z5

+

[

1
t1

−
1
t2

]

z · 14−t21074z5¾ 00

Therefore, �4z1 t5 is nondecreasing in t when t > 0.
Because p̃4x1 t5 = E6�4c4x1 �51 t57, p̃4x1 t5 is also nonde-
creasing in t when t > 0. �
Lemma 2. Suppose that Assumptions 1 to 4 are satisfied.
Then, g14x1 t5 is differentiable in O× 4−�1�5, and

ïxg14x1 t5= E
[

ïxci∗4x1 �5 · 14−t1+�54c4x1 �55
]

1

¡

¡t
g14x1 t5= 1 − F 4−t1 x51

where i∗ = arg maxi=110001m8ci4x1 �59.

Proof. By Assumptions 1 to 3,

c4x1 �5= max
i=110001m

ci4x1 �5

is differentiable with respect to x w.p.1 and ïxc4x1 �5 =

ïxci∗4x1 �5 w.p.1 when x ∈ O. Note that g14x1 t5 = E86t +

c4x1 �57+9. Because f 4x5= 4t+x5+ is differentiable except
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at x = −t and f ′4x5 = 14−t1+�54x5 when x 6= −t, and
Pr8c4x1 �5 = t9 = 0 when t ∈ 4−�1+�5 by Assumption 4,
then by Proposition 1 of Broadie and Glasserman (1996),
g14x1 t5 is differentiable in O× 4−�1+�5, and

ïxg14x1 t5= E
[

ïxci∗4x1 �5 · 14−t1+�54c4x1 �55
]

1

¡

¡t
g14x1 t5= E

[

14−t1+�54c4x1 �55
]

= Pr8c4x1 �5 >−t9= 1 − F 4−t1 x50

This concludes the proof of the lemma. �
Remark 1. Because g24x5 = g14x105, Lemma 2 also
implies that g24x5 is differentiable and

ïg24x5= E
[

ïxci∗4x1 �5 · 1401+�54c4x1 �55
]

0

Then, we have the following theorem on the equivalence
of Problem (DC) and Problem (P).

Theorem 1. Suppose that Assumptions 1 to 4 are satisfied.
Then, Problem (DC) is equivalent to Problem (P).

Proof. By Lemma 1,

p̃4x5= inf
t>0

p̃4x1 t5= lim
t↘0

p̃4x1 t51

where t ↘ 0 denotes that t decreasingly goes to 0. By
Lemma 2,

lim
t↘0

p̃4x1 t5= lim
t↘0

1
t
6g14x1 t5− g14x1057

=
¡

¡t
g14x105= 1 − F 401 x5= p4x50

Then, p̃4x5 = p4x5. Therefore, Problem (DC) is equiv-
alent to Problem (P). This concludes the proof of the
theorem. �

Theorem 1 is an important result of this paper. It shows
that solving Problem (DC) is equivalent to solving Prob-
lem (P). In the rest of this paper, we study how to solve
Problem (DC).

2.4. �-Approximation

Note that p̃4x5 = limt↘0 p̃4x1 t5 by Lemma 1. However,
p̃4x1 t5 is not well defined at t = 0. Therefore, we approxi-
mate p̃4x5 by p̃4x1 �5= 41/�56g14x1�5−g24x57 for a small
� ∈ 401 �5 where � is defined in Assumption 4, and approx-
imate Problem (DC) by

(P�5 minimize h4x51

subject to g14x1�5− g24x5¶ ��1

x ∈X0

By Theorem 1, Problem (DC) is equivalent to Problem (P).
Therefore, Problem (P�) is also an approximation to Prob-
lem (P). In the rest of this subsection, we show that Prob-
lem (P�) is a good approximation to Problem (P).

Let ì4�5 = 8x ∈ X2 g14x1�5 − g24x5 ¶ ��9 denote the
feasible set of Problem (P�). Then, we have the following
lemma on the relationship between ì4�5 and ì0, which is
the feasible set of Problem (P).

Lemma 3. Suppose that Assumptions 1 to 5 are satisfied.
Then, lim�↘0 ì4�5=ì0.

Proof. By Lemma 1, p̃4x1 t5 is nondecreasing with respect
to t. Then, for any �2 ¾ �1 > 0,

1
�1

6g14x1�15− g24x57¶
1
�2

6g14x1�25− g24x571

which in turn implies that ì4�25 ⊂ ì4�15. Therefore, it
follows from Exercise 4.3 of Rockafellar and Wets (1998)
that lim�↘0 ì4�5 exists.

We first prove that lim�↘0 ì4�5 ⊂ ì0. For any x ∈

lim�↘0 ì4�5, there exists �k ↘ 0 and xk ∈ì4�k5 such that
xk → x. Because xk ∈ì4�k5, then xk ∈X, and

1
�k

6g14x
k1 �k5− g24x

k57¶ �0 (6)

By Taylor expansion and Lemma 2, we have

g14x
k1 �k5= g14x

k105+
¡

¡t
g14x

k1 �̃k5�k

= g14x
k105+ 61 − F 4−�̃k1 x57�k (7)

for some �̃k ∈ 401 �k5. Combining Equations (6) and (7)
and taking k → +�, we have x ∈ X and 1 − F 401 x5¶ �,
which is equivalent to p4x5¶ �. Therefore, x ∈ì0, which
implies that lim�↘0 ì4�5⊂ì0.

We then prove that lim�↘0 ì4�5 ⊃ ì0. For any
x ∈ìI

0, because p4x5= lim�↘041/�56g14x1�5− g24x57 and
p4x5 < �, then 41/�56g14x1�5 − g24x57 < � for some � >
0 small enough. Therefore, x ∈ ì4�5. So we obtain that
lim�↘0 ì4�5 ⊃ ìI

0. Because ì4�5 is a closed set for any
�> 0, then lim�↘0 ì4�5 is also a closed set. Then, by
Assumption 5, lim�↘0 ì4�5⊃ì0.

Therefore, lim�↘0 ì4�5 = ì0. This concludes the proof
of the lemma. �

For sets A1B ⊂ <d, let dist4x1A5 = infx′∈A �x − x′�

denote the distance from x ∈ <d to A, and

�4A1B5= sup
x∈A

dist4x1B5

denote the deviation of the set A from the set B (Shapiro
et al. 2009). Let S4�5 and �4�5 be the set of optimal solu-
tions and the optimal value of Problem (P�), S0 and �0 be
the set of optimal solutions and the optimal value of Prob-
lem (P). Then, we have the following theorem.

Theorem 2. Suppose that Assumptions 1 to 5 are satisfied.
Then, lim�↘0 �4S4�51 S05= 0 and lim�↘0 �4�5= �0.

Proof. Let h̄4x5 = h4x5 + Iì0
4x5 and h̄�4x5 = h4x5 +

Iì4�54x5, where IA4x5 = 0 if x ∈A and IA4x5 = +� if
x 6∈A. By Lemma 3, lim�↘0 ì4�5 = ì0. Then, by Propo-
sition 7.4(f) of Rockafellar and Wets (1998), we have that
Iì4�54 · 5 epi-converges to Iì0

4 · 5 as � ↘ 0. Because h4 · 5

is continuous, we have that h̄�4 · 5 epi-converges to h̄4 · 5 as
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� ↘ 0. As ì4�5 and ì0 are compact, we have that h̄�4 · 5
and h̄4 · 5 are lower semi-continuous and proper.1 Then, by
Theorem 7.33 of Rockafellar and Wets (1998), we have
�4�5→ �0 and

lim sup
�↘0

S4�5⊂ S00 (8)

Because S4�5 and S0 are subsets of the compact set X, they
are uniformly compact. By the discussions in Example 4.13
of Rockafellar and Wets (1998), we have that Equation (8)
implies lim�↘0 �4S4�51 S05 = 0. This concludes the proof
of the theorem. �

Theorem 2 shows that the optimal solutions of Prob-
lem (P�) provide good approximations to the optimal solu-
tions of Problem (P) when � is close enough to 0.

However, Problem (P�) is generally a non-convex prob-
lem. Therefore, finding an optimal solution to the problem
may be difficult. We often find only KKT points of Prob-
lem (P�) (as the method introduced in §3 does). In the rest
of this subsection, we analyze the convergence of the KKT
points of Problem (P�) to the KKT points of Problem (P)
as �↘ 0.

Let å0 and å4�5 denote the sets of KKT pairs of Prob-
lems (P) and (P�), respectively, namely

å0 =

{

4x1�5∈ì0 ×<+2 0∈ïh4x5+�ïp4x5+NX4x51

� 6p4x5−�7=01

}

1

and

å4�5

=































4x1�5 ∈ì4�5× <+2

0 ∈ ïh4x5+�

[

ïxg14x1�5−ïg24x5

�

]

+NX4x51

�

[

g14x1�5− g24x5

�
−�

]

= 01































1

where NX4x5 denotes the normal cone to X at x (Bonnans
and Shapiro 2000), and the differentiability of p4x5,
g14x1�5 and g24x5 is ensured by Assumption 4 and
Lemma 2. Then, we have the following theorem that shows
the relation between å0 and å4�5.

Theorem 3. Suppose that Assumptions 1 to 5 are satisfied.
Then, lim sup�↘0 å4�5⊂å0.

Proof. For any 4x1�5 ∈ lim sup�↘0 å4�5, there exists
4xk1�k5 ∈å4�k5 such that 4xk1�k5→ 4x1�5. The inclusion
4xk1�k5 ∈å4�k5 means

0 ∈ ïh4xk5+�k

[

ïxg14xk1 �k5−ïg24xk5

�k

]

+NX4xk51 (9)

�k

[

g14xk1 �k5− g24xk5

�k

−�

]

= 01 �k ¾ 00 (10)

By Lemma 2, 4¡/¡t5g14x1 t5 = 1 − F 4−t1 x5 when
x ∈X and t ∈ 4−�1�5. Because F 4t1 x5 is continuously
differentiable by Assumption 4, then ïx4¡/¡t5g14x1 t5 =

−ïxF 4−t1 x5 is continuous in t and x. Then, by Exercise
6.24 of Marsden and Hoffman (1993),

¡

¡t
ïxg14x1 t5= ïx

¡

¡t
g14x1 t5= −ïxF 4−t1 x50

Because g24x5 = g14x105, by the mean-value theorem, we
have

ïxg14xk1 �k5−ïg24xk5

�k

=
¡

¡t
ïxg14x1 �̃k5= −ïxF 4−�̃k1 x5

for some �̃k ∈ 401 �k5, k = 1121 0 0 0 0 Because F 4t1 x5 is con-
tinuously differentiable by Assumption 4, then we have that

lim
k→+�

ïxg14xk1�k5−ïg24xk5

�k

=− lim
k→+�

ïxF 4−�̃k1x5

=−ïxF 401x5=ïp4x50 (11)

Furthermore, by Lemma 2,

lim
k→+�

g14xk1 �k5− g24xk5

�k

= 1 − F 401 x5= p4x50 (12)

By Lemma 3, we know that ì4�5 increases as � ↘ 0
and lim�↘0 ì4�5 = ì0. Therefore, ì4�5 ⊂ ì0 for � > 0.
It follows from xk ∈ ì4�k5 and xk → x that x ∈ ì0. By
Proposition 6.6 of Rockafellar and Wets (1998),

lim sup
xk→x

NX4xk5=NX4x5 (13)

when x1xk ∈X. Then, by taking k → +� in Equations (9)
and (10), we obtain that 4x1�5 ∈ å0. This concludes the
proof of the theorem. �

To obtain a stronger convergence result of the KKT pairs,
we make the following assumption.

Assumption 6. Suppose that the following regularity con-
dition holds for every feasible point x ∈ì0:

0 ∈ � ïp4x5+NX4x5

�¾ 01 �6p4x5−�7= 0

}

=⇒ �= 00 (14)

Assumption 6 is a constraint qualification of the con-
straints x ∈ X and p4x5 − � ¶ 0, which ensures the exis-
tence of KKT pairs. It is a frequently used condition for a
set involving the abstract constraint x ∈X; see, for instance,
the basic constraint qualification defined in Theorem 6.14
of Rockafellar and Wets (1998). Let è be the set of all
stationary points of Problem (P). Then, è ⊂ X is a com-
pact set. For any x ∈ è, it follows from Exercise 6.39 and
Example 6.40 of Rockafellar and Wets (1998) that Con-
dition (14) is Robinson constraint qualification, and it is
Mangasarian-Fromovitz (MF) constraint qualification when
X is a compact polyhedron.

Then, we have the following theorem that is stronger
than Theorem 3. The proof of the theorem is provided in
the electronic companion to this paper.
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Theorem 4. Suppose that Assumptions 1 to 6 are sat-
isfied and X ⊂ <d is a compact polyhedron. Then,
lim�↘0 �4å4�51å05= 0.

Theorems 3 and 4 show that the cluster points of the
sequence of KKT pairs of Problem (P�) are KKT pairs of
Problem (P). Therefore, the KKT points of Problem (P�)
are good approximations to the KKT points of Problem (P)
when � is small. In the rest of this paper, we consider how
to find a KKT point of Problem (P�).

3. Sequential Convex Approximations
Problem (P�) is a DC program, because the left-hand side
of the constraint g14x1�5−g24x5−��¶ 0 is a DC function
of x. To solve the problem, we propose to use a sequence
of convex approximations. In §3.1, we first introduce an
algorithm to solve this type of DC programs. Then, in §3.2,
we show how to apply the algorithm to solve Problem (P�).
The algorithm starts with an initial feasible solution of
Problem (P�), we show how to find a good initial solution
in §3.3.

3.1. Algorithm SCA

Consider the nonlinear optimization problem of the form

(DCP) minimize h4x51

subject to g14x5− g24x5¶ 01

x ∈X1

where X⊂<d is a nonempty convex compact set, h: <d→<,
gi2 <d → <, i = 112, are real-valued continuously differen-
tiable and convex functions in a bounded open set O ⊃ X.
Note that Problem (P�) is an example of Problem (DCP).

Let ì= 8x ∈X2 g14x5− g24x5¶ 09 and

ìy =
{

x ∈X2 g14x5− 6g24y5+ïg24y5
T 4x− y57¶ 0

}

for any y ∈ X. Note that g24y5+ ïg24y5
T 4x − y5 defines a

tangent plane of g24x5 at x = y. Because g24x5 is convex,
we have for any y ∈X,

g24x5¾ g24y5+ïg24y5
T 4x− y51 ∀x ∈X1

which implies

g14x5− g24x5¶ g14x5−
[

g24y5+ïg24y5
T 4x− y5

]

0 (15)

Then, ìy ⊂ ì for any y ∈ X. Furthermore, since g14x5−

6g24y5 + ïg24y5
T 4x − y57 is a convex function of x, then

ìy is a convex subset of ì for any y ∈X. Define Problem
(CP(y)) as

(CP(y)) minimize 8h4x52 x ∈ìy90

Then, CP(y) is a convex conservative approximation of
Problem (DCP) for any y ∈ X. We suggest using the fol-
lowing algorithm to solve Problem (DCP).

Algorithm SCA
Step 0. Give x0 ∈ì and set k = 0.
Step 1. Stop if xk satisfies the KKT condition of Prob-

lem (DCP).
Step 2. Solve CP(xk) to obtain its optimal solution xk+1.
Step 3. Set k = k+ 1 and go to Step 1.

A similar algorithm was proposed by Smola et al. (2005)
as an approach to solving DC programs in the form of
Problem (DCP). However, they did not provide rigorous
analysis on the convergence of the algorithm, although they
claim that the algorithm can find a KKT point of Problem
(DCP). In the rest of this subsection, we analyze the prop-
erties of the algorithm and prove the claim of Smola et al.
(2005) in a rigorous way.

Property 1. If 8xk9 is generated by Algorithm SCA for
Problem (DCP) starting from x0 ∈ì, then 8xk9⊂ì.

Proof. Note that x1 ∈ ìx0
, and ìy ⊂ ì for any y ∈ X by

Equation (15). Then x1 ∈ì. Therefore, by the principle of
induction, we have 8xk9⊂ì. �
Property 2. If 8xk9 is generated by Algorithm SCA for
Problem (DCP) starting from x0 ∈ ì, then 8h4xk59 is a
convergent nonincreasing sequence.

Proof. Because ìxk
is a convex compact set and h is con-

vex, CP(xk) has an nonempty compact solution set and
xk+1 ∈ arg min8h4x52 x ∈ ìxk

9. Noting that xk ∈ìxk
for

every k¾ 1, we have that h4xk+15¶ h4xk5. As h4 · 5 is con-
tinuous and X is compact, we obtain that infk8h4xk59 is
finite, which is greater than or equal to infx∈X h4x5, and
limk→+� h4xk5= infk8h4xk59. �

The next property states that the cluster points of 8xk9
are all KKT points of Problem (DCP). To prove it, we need
a constraint qualification. We say that Slater’s condition
holds at y ∈ì if intìy 6= �. Note that Slater’s condition is
the most commonly used constraint qualification in convex
optimization (Boyd and Vandenberghe 2004). The proof
of the property is quite lengthy, so we include it in the
electronic companion to this paper.

Property 3. Let 8xk9 be the sequence of solutions gener-
ated by Algorithm SCA for Problem (DCP) starting from
x0 ∈ ì. Suppose that x̄ is a cluster point of 8xk9 satisfy-
ing Slater’s condition. Then, x̄ is a KKT point of Problem
(DCP). Moreover, if h is strictly convex in O, then 8xk9
converges to a KKT point of Problem (DCP).

By Properties 1 to 3, we see that Algorithm SCA has
many desired properties. In the next subsection, we show
how to apply it to solve Problem (P�).

3.2. Algorithm SCA for Problem (P�)

Note that Problem (P�) is exactly in the form of Problem
(DCP), where we need only to define g14x5= g14x1�5−��.
Then we can apply Algorithm SCA to solve Problem (P�)
directly.
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By Assumption 1 and the conclusions of Lemma 2,
we can verify that Problem (P�) satisfies the definition of
Problem (DCP) when � is small enough. Let 8xk9 be the
sequence of solutions generated by Algorithm SCA for
Problem (P�) starting from x0 ∈ ì4�5. By Properties 1
and 2, we have that 8xk9 ⊂ ì4�5 and 8h4xk59 is a conver-
gent nonincreasing sequence when � is small enough.

To apply Property 3 to Problem (P�), however, we need
to prove that all cluster points of 8xk9 satisfy Slater’s condi-
tion. Let °X denote a cluster point of 8xk9. Because g14x1�5
and g24x5 are both continuous in x, then ì4�5 is a closed
set. Because 8xk9 ⊂ ì4�5, we have x̄ ∈ ì4�5. Then, we
need only to prove that intì4�5x̄ 6= �, which is implied by
the conclusion of the following lemma.

Lemma 4. Suppose that Assumptions 1 to 6 are satisfied.
Then, intì4�5y 6= � for any y ∈ì4�5 when �> 0 is small
enough.

Proof. By contradiction. Suppose that there exist �i ↘ 0
and yi ∈ì4�i5 such that int ì4�i5yi = �. Note that

ì4�5yi =
{

x ∈X2 g14x1�i5− 6g24yi5+ïg24yi54x− yi57

− �i�¶ 0
}

0

Then, the equality int ì4�i5yi = � implies g14yi1 �i5 −

g24yi5− �i�= 0 and

yi ∈argmin
x∈X

{

g14x1�i5−6g24yi5+ïg24yi54x−yi57−�i�
}

0

(16)

As X is a convex compact set, the optimization problem
of Equation (16) is a convex problem. Then, we have from
the necessary optimality condition that

−6ïxg14yi1 �i5−ïg24yi57 ∈NX4yi51

g14yi1 �i5− g24yi5− �i�= 01

or equivalently

−
ïxg14yi1 �i5−ïxg14yi105

�i

∈NX4yi51

g14yi1 �i5− g14yi105
�i

−�= 00 (17)

Because 8yi9 ⊂ X and X is compact, 8yi9 has a cluster
point, say ȳ ∈ì0. Assume that there is a subsequence 8ykj 9
such that ykj → ȳ. Letting j → +� and by Equations (11)
to (13), we have

−ïp4ȳ5 ∈NX4ȳ51 p4ȳ5−�= 01 ȳ ∈ì01

which implies that �= 1 is a solution of

0 ∈ �ïp4x5+NX4x51 �¾ 01 �6p4x5−�7= 0

when x = ȳ ∈ì0. Then, it contradicts Assumption 6. This
concludes the proof of the lemma. �

Note that Lemma 4 shows that intì4�5y 6= � for any
y ∈ ì4�5. Then, it also holds for y = x̄. Therefore, the
conclusions of Property 3 also hold when Algorithm SCA
is applied to solve Problem (P�) when � is small enough.

For completeness, we summarize the three properties for
Problem (P�) in the following theorem.

Theorem 5. Let 8xk9 be the sequence of solutions gen-
erated by Algorithm SCA for Problem (P�) starting from
x0 ∈ ì4�5. Suppose that Assumptions 1 to 6 are satisfied.
Then, for any �> 0 small enough, 8xk9⊂ì4�5, 8h4xk59 is
a convergent nonincreasing sequence, all cluster points of
8xk9 are KKT points of Problem (P�). Furthermore, 8xk9
converges to a KKT point of Problem (P�) if h is strictly
convex.

3.3. Initial Solutions for Problem (P�)

To apply Algorithm SCA, we need an initial solution x0 ∈

ì4�5. In this subsection, we provide two natural choices.
In the first choice, we let ì04�5 = 8x ∈ X2 g14x1�5

¶ ��9. Note that g24x5 = E6c4x1 �57+ ¾ 0 for all x ∈ X.
Then, ì04�5 ⊂ ì4�5. Furthermore, ì04�5 is a convex set
since g14x1�5 is a convex function of x when x ∈ O. Then,

minimize h4x51
subject to x ∈ì04�5

is a convex optimization problem. Let x� ∈ arg min8h4x52
x ∈ì04�59, we have x� ∈ì4�5.

In the second choice, we let ìCVaR = 8x ∈ X2
CVaR1−�4c4x1 �55¶ 09. By the discussions in §2.1,

ìCVaR =

{

x ∈X2 inf
t>0

1
t
g14x1 t5¶ �1 x ∈X

}

0

Let xCVaR ∈ arg min8h4x52 x ∈ ìCVaR9, which is the opti-
mal solution of the CVaR approximation of Rockafellar and
Uryasev (2000). Let �∗ = q1−�4c4xCVaR1 �55, which is the
1 −� quantile of c4xCVaR1 �5. By Pflug (2000), �∗ > 0 and

inf
t>0

1
t
g14xCVaR1 t5=

1
�∗

g14xCVaR1 �
∗50

Then, xCVaR ∈ 8x ∈ X2 g14x1�
∗5 ¶ �∗�9. Since g24x5 ¾ 0,

then

xCVaR ∈ 8x ∈X2 g14x1�
∗5− g24x5¶ �∗�9=ì4�∗50

By Lemma 1, ì4�∗5 ⊂ ì4�5 for any 0 < � ¶ �∗. Then,
xCVaR ∈ ì4�5 for any 0 < �¶ �∗. Therefore, one may first
solve the CVaR approximation and find xCVaR and then
select � ∈ 401 �∗7. Then, xCVaR may be used as an initial
solution to Algorithm SCA.

When we let x0 = xCVaR, the sequence of solutions 8xk9
generated by Algorithm SCA are improving and at least
as good as the CVaR approximation, which is the “best”
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convex conservative approximation. Furthermore, 8xk9
converges to the set of KKT points of Problem (P�) by
Theorem 5, which converges to the set of KKT points
of Problem (P) as � ↘ 0 by Theorem 4. Compared to
other approximation algorithms, e.g., CVaR approximation,
quadratic approximation, Bernstein approximation and sce-
nario analysis, which only find a (good) feasible solution
to Problem (P), our algorithm has more desirable proper-
ties. If Problem (P) is convex (even though it may not be
verifiable), our algorithm converges to its global optimal
solution, while others do not.

4. A Gradient-Based Monte Carlo Method
To implement Algorithm SCA, we need to repeatedly solve

minimize h4x51

subject to g14x1�5−6g24y5+ïg24y5
T 4x−y57¶��1

x∈X

(18)

for different y values. Though Problem (18) is a con-
vex optimization problem, it is difficult to solve because
we generally do not have the closed-form expressions of
g14x1�5, g24x5, and ïg24y5. To overcome this difficulty, we
propose to use a Monte Carlo method.

For simplicity of the notation, we let

g4x5= g14x1�5− 6g24y5+ïg24y5
T 4x− y570

Then, by the definitions of g1, g2 and Lemma 2, we have

g4x5=E
{

6c4x1�5+�7+
}

−
[

E86c4y1�57+9

+E86ïxci∗4y1�5·1401+�54c4y1�5579
T 4x−y5

]

1 (19)

where

c4x1 �5= max8ci4x1 �59 and i∗ = arg max
i=110001m

8ci4y1 �590

Let �11 0 0 0 1 �n denote an independent and identically dis-
tributed (i.i.d.) sample of �. Let ḡ24y5= 41/n5

∑n
l=1 c4y1 �l5

and °ïg24y5 = 41/n5
∑n

l=1 ïxci∗4y1 �l5 · 14−t1+�54c4y1 �l55.
Then, a natural estimator of g4x5 is

ḡ4x5=
1
n

n
∑

l=1

6c4x1 �l5+ �7+

− 6ḡ24y5+ °ïg24y5
T 4x− y570 (20)

We suggest solving

(MC) minimize h4x51
subject to ḡ4x5¶ ��1 x ∈X1

and using its optimal solution to approximate the optimal
solution of Problem (18). Let S and �∗ denote the set of
optimal solutions and the optimal objective value of Prob-
lem (18), and Ŝn and �̂∗

n denote the set of optimal solutions
and the optimal objective value of Problem (MC). Then
there are two critical issues when we use this approxima-
tion. First, do Ŝn and �̂∗

n converge to S and �∗? Second,
how do we solve Problem (MC) efficiently?

To answer the first question, we have the following
theorem.

Theorem 6. Suppose that Assumptions 1 to 6 are satis-
fied. When �> 0 is small enough, �4Ŝn1 S5→ 0 w.p.1 and
�̂∗
n → �∗ w.p.1 as n→ �.

Proof. Note that we may write g4x5 and ḡ4x5 as

g4x5= E
{

6c4x1 �5+ �7+ − 6c4y1 �57+

− 6ïxci∗4y1 �5 · 1401+�54c4y1 �557
T 4x− y5

}

1 (21)

and

ḡ4x5=
1
n

n
∑

l=1

{

6c4x1 �l5+ �7+ − 6c4y1 �l57
+

− 6ïxci∗4y1 �l5 · 1401+�54c4y1 �l557
T 4x− y5

}

0

Then, ḡ4x5 is the sample average approximation of g4x5.
By the strong law of large numbers (Durrett 2005),
ḡ4x5→ g4x5 w.p.1 for any fixed x ∈ X. Furthermore,
because the integrand of Equation (21) is a convex func-
tion of x for any � ∈ æ when x ∈ O, by Theorem 7.50 of
Shapiro et al. (2009), ḡ4x5 converges to g4x5 uniformly on
X w.p.1 as n→ �, i.e.,

sup
x∈X

�ḡ4x5− g4x5� → 0 w.p.1 as n→ �0

Also, by Lemma 4, Slater’s condition holds for Prob-
lem (18) when Assumptions 1 to 6 are satisfied and � > 0
is small enough. Then, by Theorem 5.5 of Shapiro et al.
(2009) and the discussions followed the theorem, the con-
clusions of our theorem hold. �

To answer the second question, we propose two meth-
ods to solve Problem (MC). In the first method, based on
Equation (20) and the definition of c4x1 �5, we reformulate
Problem (MC) as

minimize h4x51

subject to ci4x1�l5¶zl1 i=110001m1l=110001n1

1
n

n
∑

l=1

zl−6ḡ24y5+ °ïg24y5
T 4x−y57¶��1

zl¾01 l=110001n1

x∈X0 (22)

Note that Problem (22) is similar to the formulation of the
sample CVaR problem of Rockafellar and Uryasev (2000).
It is a convex optimization problem. Furthermore, it is a
linear program if ci4x1 �5 are linear functions of x for all
i = 11 0 0 0 1m. However, Problem (22) is often slow to solve
because of the large numbers of decision variables and con-
straints, especially when the sample size n is large.

To efficiently solve Problem (MC) when n is large, we
propose a second method. By Equation (19) and Lemma 2,

ïg4x5= E
[

ïxcj∗4x1 �5 · 14−�1+�54c4x1 �55
]

− E
[

ïxci∗4y1 �5 · 1401+�54c4y1 �55
]

1
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where

j∗
= arg max

j=110001m
8cj4x1 �59 and i∗ = arg max

i=110001m
8ci4y1 �590

Then, ïg4x5 can be estimated by

°ïg4x5=
1
n

n
∑

l=1

[

ïxcj∗4x1 �l5 · 14−�1+�54c4x1 �l55

−ïxci∗4y1 �l5 · 1401+�54c4y1 �l55
]

0

Although g4x5 is differentiable in O, ḡ4x5 is not when
�11 0 0 0 1 �n are given. It is only piecewise differentiable. At
the points where ḡ4x5 is differentiable, ïḡ4x5 = °ïg4x5;
at the points where ḡ4x5 is not differentiable, °ïg4x5 is a
subgradient of ḡ4x5. Therefore, one may use a subgradient-
based algorithm (see, for instance, Freund 2004) to solve
Problem (MC). In this paper, however, we suggest using
an approximation method. Because ḡ4x5 converges to g4x5,
which is continuously differentiable as n → �, we may
approximate °ïg4x5 as a smooth function when n is large
and may use °ïg4x5 as its gradient. Then, we can use
gradient-based algorithms to solve Problem (MC) directly.
Note that this method can also be viewed as directly solv-
ing Problem (18) with estimated g4x5 and ïg4x5.

When we use the gradient-based method to solve Prob-
lem (MC), the samples are used only to compute ḡ4x5 and
°ïg4x5, which is an O4n5 operation. The method is gen-
erally much faster than the first method that solves Prob-
lem (22). Hong and Liu (2009) compared the two methods
for the CVaR approximation problem through numerical
examples. They reported that the two methods find solu-
tions with similar quality, but the gradient-based method is
at least an order-of-magnitude faster when n is of moder-
ate or large size, e.g., n¾ 21000. In our numerical experi-
ments, we observe good performances of the gradient-based
method as well.

5. Numerical Illustration
In this section, we consider two JCCP problems, a norm
optimization problem and a network optimization problem.
We use them to illustrate the performances of our method,
and we compare our method to the CVaR approximation
and the scenario approach.

5.1. A Norm Optimization Problem

Let x = 4x11 0 0 0 1 xd5
T denote a d-dimensional vector in <d,

and let � = 4�11 0 0 0 1 �m5, with �i = 4�i11 0 0 0 1 �id5
T for any

i = 11 0 0 0 1m, be a d ×m matrix of random variables. Let
�x�1 and �x� denote the 1-norm and 2-norm of x, respec-
tively, i.e., �x�1 =

∑d
j=1 �xj � and �x� = 4

∑d
j=1 x

2
j 5

−1/2, and
let �i � x = 4�i1x11 0 0 0 1 �idxd5

T denote the Hadamard prod-
uct (or entrywise product) of �i and x. We are interested in
solving the following problem:

maximize �x�11

subject to Pr8��i � x�¶ 101 i = 11 0 0 0 1m9¾ 1 −�1

xj ¾ 01 j = 11 0 0 0 1 d0 (23)

We may reformulate Problem (23) as

minimize −

d
∑

j=1

xj1

subject to Pr
{ d
∑

j=1

�2
ijx

2
j ¶1001 i=110001m

}

¾1−�1

xj ¾01 j=110001d0 (24)

Note that Problem (24) is a JCCP as defined in Problem (P).
Let ci4x1 �5=

∑d
j=1 �

2
ijx

2
j − 100 for all i = 11 0 0 0 1m. For

any x 6= 0, ci4x1 �5 is a continuous random variable and
ci4x1 �5 = cj4x1 �5 with probability 0. Therefore, Assump-
tion 3 can be satisfied easily. When x = 0, ci4x1 �5= −100
for all i = 11 0 0 0 1m. By the definition of differentiability,
for any j = 11 0 0 0 1 d,

¡

¡xj
c401 �5= lim

�→0

1
�
6c4ej�1�5− c401 �57

= lim
�→0

1
�

max
i=110001m

4�2
ij�

25= lim
�→0

max
i=110001m

�2
ij · �= 01

where ej denotes the ith column of a d×d identity matrix.
Therefore, c4x1 �5 is differentiable at x = 0 for any �, and
Assumption 3 is satisfied.

In the rest of this subsection, we apply Algorithm SCA
with the gradient-based Monte Carlo method to solve this
problem.

5.1.1. Independent Case. We consider the case where
�ij , i = 11 0 0 0 1m and j = 11 0 0 0 1 d, are independent and
identically distributed standard normal random variables.
We will call this case independent case in the rest of this
section. Note that convexity of Problem (23) in this situa-
tion is not clear. However, by symmetry, the optimal solu-
tion satisfies x1 = · · · = xd. Then,

Pr
{ d
∑

j=1

�2
ijx

2
j ¶1001 i=110001m

}

=

[

Pr
{

x2
1

d
∑

j=1

�2
1j ¶100

}]m

0

Note that
∑d

j=1 �
2
1j follows a chi-square distribution with

d degrees of freedom. Let F�2
d
4 · 5 denote its distribution

function. Then, the joint chance constraint of Problem (24)
is equivalent to

F�2
d

(

100
x2

1

)

¾ 41 −�51/m0

Let 1 − � = 41 − �51/m and let F −1
�2
d
4 · 5 denote the inverse

distribution function of a chi-square distribution with d
degrees of freedom. Then, it is clear that the optimal solu-
tion x∗ of Problem (24) is

x∗

1 = · · ·x∗

d =
10

√

F −1
�2
d
41 −�5

0

We apply our gradient-based Monte Carlo method directly
to solve Problem (24) without exploring its special structure
(e.g., the independence of �), and we use x∗ as a benchmark
to evaluate the performances of our method.
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We set d = 10, m = 10, and � = 001. Then, the optimal
solution of Problem (24) is x∗

1 = · · · = x∗
d = 2008 and the

optimal objective value is f ∗ = −20082. We set � = 00052

and use a sample size n = 101000. We use both xCVaR and
x� as initial solutions to compare their performances, and
we stop the algorithm if the difference between the objec-
tive values of two consecutive iterations is less than or
equal to 0001. We implement the algorithm in Matlab and
use Matlab’s own nonlinear optimization solver fmincon to
solve the optimization problem in each iteration with the
estimated constraint values and estimated gradients. The
programs were run on a desktop computer with Intel Duo
Core CPU (3.16 GHz, 3.16 GHz) and 4 GB of RAM.

Although our algorithm uses Monte Carlo samples, we
find the performances of the algorithm are very stable. We
run the algorithm 100 replications, it always converges to
similar solutions. We report the typical performances of the
algorithm in Figure 3. In the left panel of Figure 3, we plot
the objective values of all iterations. From the plot, we can
see that the algorithm converges to the optimal objective
value from both xCVaR and x�, even though the convexity of
the problem is not clear. Furthermore, we can see that xCVaR

Figure 3. Performance of algorithm SCA for indepen-
dent case.
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is a better initial solution, because the algorithm converges
faster from it than from x�. In the right panel of Figure 3,
we plot the values of left-hand side of the joint chance con-
straint, estimated using the sample, for all iterations. From
the plot, we see that the joint chance constraint becomes
tight when our algorithm stops, while it is not tight at x�
and xCVaR. The algorithm typically requires about 20 itera-
tions to converge when xCVaR is used as the initial solution
and about 35 iterations when x� is used. The CPU time of
each iteration is on average 6.8 seconds with a range of 4.4
to 12.2 seconds.

5.1.2. Dependent Case. We also considered the case
where �ij , i = 11 0 0 0 1m and j = 11 0 0 0 1 d, are depen-
dent. We let �ij be a normal random variable with mean
j/d and variance 1, Cov4�ij1 �i′j5 = 005 when i 6= i′ and
Cov4�ij1 �i′j ′5= 0 when j 6= j ′. We will call this case depen-
dent case in the rest of this subsection. The optimal solu-
tion of this case is no longer known. However, we can still
apply our method to solve the problem. With the same set-
ting of the parameters as in the independent case, we report
the performances of the algorithm in Figure 4. From the

Figure 4. Performance of Algorithm SCA for depen-
dent case
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plots, we can see that changing the dependence structure of
� does not alter the performances of our algorithm. Both
initial solutions lead the algorithm to converge to the same
objective value, and the joint chance constraint becomes
tight when the algorithm stops. The number of iterations
and the CPU time in this case are also similar to the ones
in the independent case.

5.1.3. Scenario Approach. We also implement the
scenario approach for this problem with d = m = 10 and
� = 001. By Calafiore and Campi (2006), we let the sam-
ple size equal 11038. Then, by the formulation of Prob-
lem (2), we need to solve an optimization problem with
101380 constraints. We also use Matlab’s nonlinear opti-
mization solver fmincon to solve the problem. We run the
algorithm 100 replications. To our surprise, the problem
can be solved very efficiently (0.74 seconds on average)
even though there are more than 101000 constraints. This
is because the number of active constraints is only about
10 for all the replications that we have tried. However, the
solutions are not stable, i.e., they are drastically different
from replication to replication due to the randomness in
the sample. For the independent case, the average objective
value is −17.6, with the best being −18.6, and the esti-
mated left-hand side value of the joint chance constraint
is in the range of 00982 to 00999. For the dependent case,
the average objective value is −15.7 with the best being
−16.7 and the estimated left-hand side value of the joint
chance constraint being in the range of 00984 to 00999. For
both cases, the solutions found by the scenario approach
are too conservative, and they are significantly worse than
the solutions found by the CVaR approximation and our
method, even though it is the fastest among all three.

5.2. A Network Optimization Problem

A generalized network flow problem (GNFP) is an exten-
sion of the classical network flow problem. In a GNFP, the
flow on an arc is subject to change. If we use xij to denote
the flow on arc eij when the flow leaves node i, then the
flow will become �ijxij when it arrives at node j , where
0 ¶ �ij ¶ 1 is a parameter indicating the changing rate.
The GNFP has many useful applications. For example, in
telecommunication, it models the packet loss on an unreli-
ability transmission link; in production planning, it models
the yield rate when one material is converted to another
material. In our computational experiments, we consider a
GNFP for electricity distribution where �ij is used to model
the power loss incurred on a transmission line (Jensen and
Bard 2003).

In the problem, there are three electricity generating sta-
tions that serve ten different areas. Each station has a dif-
ferent generating cost and a capacity, and each area has a
demand. The electricity transmission from a station to an
area or to another station is subject to a random percentage
loss, which is denoted by �ij . We model �ij by a beta dis-
tribution, whose mean and variance depend on the distance

between i and j , and 0 ¶ �ij ¶ 1. The problem is to use
the minimum cost to serve all areas where the probability
of under-supply for any area or generating station is below
a certain bound.

Let ci, li, and ui denote the marginal generation cost, the
minimum generation amount, and the capacity at station i,
respectively, let dk denote the demand at area k, and let xi,
yik, and zij denote the electricity generated at station i, the
electricity transmitted from station i to area k, and the elec-
tricity transmitted from station i to station j , respectively,
for all i1 j = 11213, i 6= j , and k = 11 0 0 0 110. Note that xi,
yik, and zij are decision variables. Then, the problem can
be formulated as a JCCP as follows:

minimize
3
∑

i=1

cixi1

subject to Pr
{

xi +
∑

j 6=i

�jizji ¾
10
∑

k=1

yik +
∑

j 6=i

zij1 i = 112131

∑

i

�ikyik ¾ dk1 k = 11 0 0 0 1101
}

¾ 1 −�

li ¶ xi ¶ ui1 yik ¾ 01 zij ¾ 01

i1 j = 112131 i 6= j1 k = 11 0 0 0 1100

For the test problem we considered, we set �= 001 and
use a sample size of 10,000. We compare the CVaR approx-
imation and our method and run both algorithms 100 times.
The (estimated) optimal cost from the CVaR approximation
is 2060 × 106, while the (estimated) optimal cost from our
method is 2007×106, which is roughly a 20% reduction of
from the CVaR solution.

6. Conclusion and Future Research
In this paper, we propose a sequential convex approxi-
mation algorithm that directly solves the stochastic opti-
mization problems with a joint chance constraint. In each
iteration of the algorithm, it solves a convex optimization
problem using a Monte Carlo method. We have shown that
the algorithm finds a KKT point in the limit if the sam-
ple size of the Monte Carlo method goes to infinity and
the parameter � goes down to zero. Among the algorithms
that have been proposed to solve this type of problem, to
the best of our knowledge, our algorithm is the first one
that has provable convergence to the set of KKT points.
It is conceptually more attractive than conservative convex
approximation algorithms and the scenario approach, which
find (good) feasible solutions that nevertheless satisfy no
optimality conditions.

To apply this algorithm for practical problems, especially
large-scale practical problems, there are several impedi-
ments. First, the algorithm is generally slower than other
convex approximation algorithms because it needs to solve
a sequence of convex optimization problems and because
it uses a Monte Carlo method in each iteration. How to
speed up the algorithm is a very important topic for future
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research. Second, our method requires the full joint dis-
tribution of the uncertain parameters in order to generate
Monte Carlo samples. However, specifying a full joint dis-
tribution for a large number of parameters is often very
challenging in practice. Different robust optimization algo-
rithms have been proposed to address this issue. A future
research topic is how to apply our algorithm under the
robust optimization framework to find better solutions.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Endnotes
1. A function f 2 <d → <∪8±�9 is lower semi-continuous
at x0 ∈ <d if f 4x05 ¶ lim infx→x0

f 4x5. It is lower semi-
continuous if it is lower semi-continuous at every x ∈ <d.
It is a proper function if f 4x5 >−� for every x ∈ <d and
there is at least one point x ∈ <d such that f 4x5 <+�.
2. Based on the convergence analysis, we might want to
set � small to reduce the bias. However, extremely small �
might cause numerical problems and might require longer
time to solve the subproblem in each iteration. Given the
error in Monte Carlo estimation, we do not suggest setting
� extremely small. Finding the optimal setting of � is an
important problem for future research.
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