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1. Introduction
In financial risk management, the Greeks are the deriva-
tives (also known as sensitivities) of the option prices with
respect to market parameters. For instance, the first-order
derivatives with respect to the price and volatility of the
underlying are called delta and vega, respectively, and
the second-order derivative with respect to the price of the
underlying is called gamma. The Greeks play an impor-
tant role in financial risk management. Each of the Greeks
measures a different dimension of the market risk in an
option position, and traders manage the Greeks so that
all risks are acceptable (Hull 2006). They are important
in hedging. For instance, delta indicates the number of
units of the underlying security to hold in the hedged port-
folio, and gamma is used to determine the optimal time
interval required for rebalancing a hedge under transaction
costs (Broadie and Glasserman 1996). As pointed out by
Glasserman (2004, p. 377), “whereas the [option] prices
themselves can often be observed in the market, their sen-
sitivities cannot, so accurate calculation of sensitivities is
arguably even more important than calculation of prices.”
In this paper we consider how to calculate the Greeks using
Monte Carlo simulation.
The price of an option can be written as an expecta-

tion of the discounted payoff of the option, where the price

dynamics of the underlying is modeled as a stochastic pro-
cess under the risk-neutral measure (Chen and Hong 2007).
Then the Greeks are the derivatives of the expectation with
respect to the parameters of the stochastic process. In the lit-
erature several derivative-estimation methods can be applied
to estimate the Greeks, including finite-difference approx-
imations, the classical pathwise method,1 the likelihood
ratio (LR) method, the weak derivative (WD) method, and
the Malliavin calculus method. For comprehensive reviews,
readers are referred to Glasserman (2004), Fu (2006), and
Asmussen and Glynn (2007).
Finite-difference approximations are easy to implement,

but they require simulating at multiple values, and they typ-
ically lead to estimators that have large mean-squared errors
(Glasserman 2004). The classical pathwise method (see,
e.g., Ho and Cao 1983, and Broadie and Glasserman 1996)
often has the best performance among all methods when
it is applicable, whereas its major limitation lies in that
it is not applicable to options with discontinuous payoffs
and the second-order Greeks. The LR method (see, e.g.,
Glynn 1987, and Broadie and Glasserman 1996) can handle
options with discontinuous payoffs, although its drawbacks
include that it often has a large variance and that it requires
knowing the densities of the underlying price dynamics.
The WD method (see Pflug 1988, and Pflug and Weisshaupt
2005) can also handle options with discontinuous payoffs,
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although a significant drawback is its requirement of many
resimulations, which limits its practical use. The Malliavin
calculus method (see, e.g., Bernis et al. 2003, and Chen
and Glasserman 2007) is essentially a combination of the
classical pathwise method and the LR method, although
its popularity is limited by its requirement of the heavy
machinery of Malliavin calculus.
In general, the classical pathwise method is easy to

implement and has a small variance, and hence is more
preferable than other methods. However, it is not applica-
ble to options with discontinuous payoffs, which signifi-
cantly limits its applicability. To overcome this difficulty,
Fu and Hu (1997) suggested conditioning on certain ran-
dom variables to smooth the discontinuous payoffs, which
is called smoothed perturbation analysis (SPA). Early work
related to SPA includes Gong and Ho (1987), and readers
are referred to Asmussen and Glynn (2007) for a recent
overview. However, SPA requires finding the appropriate
random variables on which to condition, and it may be dif-
ficult to implement in practice.
In this paper, we circumvent the difficulty of discontin-

uous payoffs from another aspect. By extending the results
in Hong (2009) and Hong and Liu (2010), we first con-
vert the Greek into the sum of an ordinary expectation
and a derivative with respect to an auxiliary parameter. We
then estimate the expectation and the derivative by a sam-
ple mean and a kernel estimator, respectively. The kernel
method has been studied extensively in the literature of
nonparametric regression, and readers are referred to Bosq
(1998) for a comprehensive overview. Recently, the kernel
method has also been used by Elie et al. (2007) to study
Greek estimation on a different focus. Whereas we employ
the kernel method to extend the classical pathwise method
to options with discontinuous payoffs and the second-order
Greeks, they employ the kernel method to extend the LR
method to cases where densities of the price dynamics are
not explicitly known. To do so, they first randomize the
parameter by introducing a priori distribution. They then
use the kernel method to estimate score functions of the
LR method and devise a simpler estimator by integration
by parts argument.
To summarize, our contributions are twofold. First, we

generalize the classical pathwise method to allow disconti-
nuity in the payoffs. Second, we devise kernel estimators for
both first- and second-order Greeks. Implementation of the
proposed estimators is very easy and requires only the path-
wise derivatives, which are usually readily computable from
simulation. We run numerical tests on two options, includ-
ing an Asian digital option and a barrier option. We further
apply our approach to estimate price sensitivities of portfo-
lio credit derivatives. The examples show that the proposed
estimators have good performances.
The rest of the paper is organized as follows: The kernel

estimation, discussions on technical details, and examples
are discussed in §§2 and 3 for the first- and second-order
Greeks, respectively. We report the numerical results in §4.

Extension of our approach to sensitivity analysis of port-
folio credit derivatives is provided in §5, followed by the
conclusions in §6. Some lengthy proofs and discussions are
in the appendix and the electronic companion. The elec-
tronic companion is part of the online version that can be
found at http://or.journal.informs.org/.

2. The First-Order Greeks
Let St denote the price dynamics of the underlyings at
time t � 0 under the risk-neutral measure. Let �0 = t0 <
t1 < · · · < tk = T � be the time points between time 0 and
time T . When we simulate St , we often discretize the pro-
cess and simulate it at ti, i = 1� � � � � k (Glasserman 2004).
For simplicity of the notation, we let Si denote Sti

for all
i = 1�2� � � � � k, and let S = �S1� � � � � Sk�

T .
Throughout the paper we are interested in an option

whose discounted payoff function can be written as f �S� =
g�S� · 1�h�S��0�, where g and h are differentiable functions.
Here g�S� is the discounted cash flow of the option if
it is exercised, and h�S� � 0 defines the exercising con-
dition. Sometimes, the exercising condition may be com-
plicated and involve several individual conditions, i.e.,
f �S� = g�S� · 1�h1�S��0� · · ·1�hm�S��0�. If we define h�S� =
min�h1�S�� � � � � hm�S��, then we can still write f �S� in the
form of f �S� = g�S� ·1�h�S��0�. For instance, the discounted
payoff function of an up-and-out barrier call option can be
written as f �S� = e−rT �Sk − K� · 1�Sk�K� · 1�max�S1� ���� Sk��U�,
where r is the risk-free borrowing rate, K is the strike price
and U is the barrier. Then, we may write g�S� = e−rT �Sk −
K� and h�S� =min�Sk −K�U −max�S1� � � � � Sk��. Let p =
E�f �S�	, where the expectation is taken with respect to the
risk-neutral measure. Then, p is the price of the option.
Note that S may depend on some market parameters,

e.g., the initial price S0, price volatility 
 , and risk-free bor-
rowing rate r . Without loss of generality, we let � denote
the parameter in which we are interested and assume that
� is one dimensional and � ∈ � where � is an open set.
If � is multidimensional, we may treat each dimension as
a one-dimensional parameter while fixing other dimensions
constants. Because S is a random vector that depends on �,
p = E�f �S�	 is also a function of �. We denote it as p���.
Then, p′��� = dp���/d� is the Greek with respect to �. For
instance, p′��� is known as delta if � = S0, vega if � = 
 ,
and rho if � = r . In this section, we show how to develop a
general scheme to estimate p′���. In the later exposition of
the paper, for notational simplicity we suppress the depen-
dence of S on � when there is no confusion.

2.1. Kernel Estimation

To derive kernel estimators for first-order Greeks, we need
to use a result that is summarized in the following theorem,
whose proof is provided in the appendix. We defer the dis-
cussions of the theorem and its assumptions until the next
subsection.
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Theorem 1. Suppose that E��g�S��2	 < +� and
E��h�S��2	 < +�. If the following assumptions are
satisfied,
Assumption 1. For any � ∈ �, g�S� and h�S� are differ-

entiable with respect to � with probability 1 (w.p.1), and
there exist random variables Kg and Kh with finite second
moments that may depend on �, such that �g�S�� +���−
g�S������Kg��� and �h�S��+���−h�S������Kh���
when ��� is small enough.2
Assumption 2. For any � ∈ �, ������ y� exists and is

continuous at ���0�, where ���� y� = E�g�S� · 1�h�S��y�	,

then

p′��� = E���g�S� · 1�h�S��0�	

− �yE�g�S���h�S� · 1�h�S��y�	�y=0� (1)

The critical value of Equation (1) is that it converts p′���,
which is a derivative with respect to �, to a sum of an ordi-
nary expectation and a derivative with respect to y. Note
that the derivative with respect to y is much easier to handle
than the derivative with respect to �, because y is not a part
of the simulation that generates g�S� and h�S�. Therefore,
we can use the finite-difference approximations to estimate
the derivative without running simulations at multiple input
values, which is one of the most significant drawbacks of
the typical finite-difference approximations.
Specifically, the second term on the right-hand side

of Equation (1) can be estimated by the finite-difference
method, which is based on the following relationship:

−�yE�g�S���h�S� · 1�h�S��y�	�y=0

= − lim
�→0

1
�

�E�g�S���h�S� · 1�h�S���/2�	

−E�g�S���h�S� · 1�h�S��−�/2�	�

= lim
�→0

1
�
E�g�S���h�S� · 1�−�/2�h�S���/2�	� (2)

This motivates the use of the kernel method, which is a
generalization of the finite-difference method. A kernel Z is
a symmetric density such that uZ�u� → 0 as �u� → � and∫ �

−� u2Z�u�du < � (Bosq 1998). For instance, the standard
normal density function is a widely used kernel. Then by
Bosq (1998), we have

−�yE�g�S���h�S� · 1�h�S��y�	�y=0

= lim
�→0

1
�
E
[
g�S���h�S� · Z

(
h�S�

�

)]
� (3)

When Z�u� = 1�−1/2�u�1/2�, which is the density of a uni-
form �−1/2�1/2� distribution and is known as a uniform
kernel, the right-hand sides of Equations (2) and (3) are the
same. Therefore, the finite-difference method we developed
is a special case of the kernel method with a uniform ker-
nel. In this paper, we suggest using a smooth kernel, e.g.,

the standard normal density, instead of a uniform kernel,
because the estimator is more robust with a smooth kernel
(Bosq 1998).
There is another approach3 to explainTheorem1andEqua-

tion (3). Let F �u� = ∫ u

−� Z�v�dv. Then, F �u� is the cumu-
lative distribution function of the random variable whose
density is the kernel function Z�u�. Note that 1�x�0� =
lim�→0 F �x/�� almost everywhere when � > 0. Then,

p��� = E�g�S� · 1�h�S��0�	 = lim
�→0

E
[
g�S� · F

(
h�S�

�

)]
�

Suppose that we can interchange the differentiation and
limit (which may be difficult to verify),

p′��� = d

d�
lim
�→0

E
[
g�S� · F

(
h�S�

�

)]

= lim
�→0

d

d�
E
[
g�S� · F

(
h�S�

�

)]

= lim
�→0

E
[
��g�S� · F

(
h�S�

�

)]

+ lim
�→0

1
�
E
[
g�S���h�S� · Z

(
h�S�

�

)]

= E���g�S� · 1�h�S��0�	

+ lim
�→0

1
�
E
[
g�S���h�S� · Z

(
h�S�

�

)]
� (4)

Note that the second term on the right-hand side of Equa-
tion (4) is the same as the right-hand side of Equation (3).
Then, by Equation (3), we arrive at the same conclusion as
in Theorem 1.
Let �gl� hl� g′

l� h′
l� denote the lth independent observation

of �g�S��h�S�� ��g�S�� ��h�S��, l = 1�2� � � � � n, obtained
from a simulation. Based on Equation (1), we propose the
following estimator of p′���,

�Gn = 1
n

n∑
l=1

g′
l · 1�hl�0� + 1

n�n

n∑
l=1

gl · h′
l · Z

(
hl

�n

)
� (5)

where �n > 0 is called a bandwidth parameter in the kernel
estimation.
Our kernel estimation method can be viewed as a gener-

alization of the classical pathwise method, because it uses
only the observations of �g�S��h�S�� ��g�S�� ��h�S�� that
can be obtained directly from the simulated sample paths.
It is unlike the likelihood ratio method or the weak deriva-
tive method, where the explicit form of the density needs
to be used to compute the estimators. Therefore, it is as
simple to implement in practice as the classical pathwise
method.
Essentially, the proposed kernel method is a combi-

nation of the classical pathwise method and the kernel-
smoothing technique. From this perspective, the proposed
method is closely related to SPA that uses conditional
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Monte Carlo as a smoothing technique rather than ker-
nel smoothing. Although kernel smoothing produces biased
estimators whereas conditional Monte Carlo produces unbi-
ased ones, kernel smoothing has an attractive advantage
that it is far easier to implement than conditional Monte
Carlo. Furthermore, as pointed out in the later discussions,
both Assumptions 1 and 2 are typically satisfied in prac-
tice. Therefore, �Gn is much more broadly applicable than
classical pathwise estimators and SPA estimators.
The asymptotic properties of �Gn are standard in the liter-

ature of the kernel method (e.g., Bosq 1998). For complete-
ness of the paper, we prove in the electronic companion that
�Gn is a consistent estimator and follows a central limit theo-
rem if �n → 0 and n�n → � as n → �, and the optimal rate
of convergence of the estimator is n−2/5 and it is achieved
when �n = cn−1/5 for some constant c > 0. Furthermore, in
the electronic companion, we also provide a procedure on
how to select �n based on a pilot simulation run.

2.2. Discussions

This subsection is devoted to the discussions of Assump-
tions 1 and 2, and the connections between Theorem 1 and
some other results in the literature.
Assumption 1 in Theorem 1 is a typical assump-

tion in the pathwise sensitivity estimation. Note that
when S follows commonly used models of price dynam-
ics, S��� is continuously differentiable and �S�� + �� −
S�����KS ��� for some random variable KS (Broadie and
Glasserman 1996), where � ·� denotes the Euclidean norm.
Therefore, to satisfy Assumption 1, we need that g and h
are Lipschitz continuous and differentiable almost every-
where (a.e.). For most financial options, if not all of them,
g and h are Lipschitz continuous and differentiable a.e.
Even when h� · � = min�h1� · �� � � � � hm� · ��, h is Lipschitz
continuous and differentiable a.e., if h1,…,hm are Lipschitz
continuous and differentiable a.e. Therefore, Assumption 1
is typically satisfied in practice.
Assumption 2 is critical to the development of our

method. Let fS����s� denote the density of S���. We pro-
pose the following lemma to verify the assumption. The
proof of the lemma is provided in the appendix.

Lemma 1. Suppose that, for any � ∈ �, fS����s� is contin-
uously differentiable in � for almost all s ∈ 	k, and there
exists a function ��s� such that �fS��+���s� − fS����s�� �
��s���� when ��� is small enough, and

∫
	k �g�s��

��s�ds < +�. Then, Assumption 2 is satisfied.

Note that the conditions of Lemma 1 are typical con-
ditions for the likelihood ratio method to be applicable to
estimating dE�g�S�	/d� or p′��� (see, e.g., Asmussen and
Glynn 2007 and L’Ecuyer 1991). As pointed out by Broadie
and Glasserman (1996), these conditions are typically sat-
isfied in the context of estimating the Greeks. Therefore,
Lemma 1 shows that Assumption 2 is typically satisfied in
practice.

Theorem 1 generalizes several results in the literature.
For instance, we may let h�S� = R where R is a uniform
�0�1� random number. Then, h�S�� 0 w.p.1 and ��h�S� =
0. By Equation (1),

p′��� = d

d�
E�g�S�	 = E���g�S�	�

which is the conclusion of the classical pathwise method
of Broadie and Glasserman (1996). If we let g�S� = 1, then
��g�S� = 0, and by Equation (1),

p′��� = d

d�
Pr�h�S�� 0� = −�yE���h�S� · 1�h�S��y�	�y=0�

which is a result of the probability sensitivity derived in
Hong and Liu (2010).
Furthermore, if we take one step further from Theo-

rem 1, we may express the first-order Greek p′��� in terms
of densities and conditional expectations. To be specific,
we let fh denote the density of h�S�. If ��y� ≡ fh�y� ·
E�g�S���h�S��h�S� = y	 is continuous at y = 0, then

p′��� = E���g�S� · 1�h�S��0�	

+ fh�0� ·E�g�S���h�S��h�S� = 0	� (6)

Here the requirement that ��y� is continuous at y = 0 will
not impose any practical obstacle on the result. Note that
both the density and conditional expectation are defined by
integrations (Durrett 2005). Then, mathematically ��y� can
take any arbitrary value at y = 0 because �h�S� = 0� is a
probability-zero event. Therefore, we need to assume that it
is continuous in order to prove Equation (6). By Assump-
tion 2, we can see that �yE�g�S���h�S� ·1�h�S��y�	 is continu-
ous at y = 0, because from the way of showing Equation (1)
we actually have

�yE�g�S���h�S� · 1�h�S��y�	

= ������ y� −E���g�S� · 1�h�S��y�	�

where both terms in the right-hand side of the above
equation are continuous at y = 0. We may define ���y� =
�yE�g�S���h�S� · 1�h�S��y�	 in a neighborhood of y = 0.
Then, ���y� is continuous and ���y� = ��y� a.e. in the neigh-
borhood of y = 0. For practically used definitions of the
density and conditional expectation, ��y� is typically the
same as ���y�. Then, ��y� is continuous at y = 0, and hence
Equation (6) holds.

2.3. Examples

We use two examples to illustrate how to apply Theo-
rem 1 and the kernel estimator �Gn to estimate the first-order
Greeks of options with discontinuous payoffs.
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2.3.1. Asian Digital Option. The payoff function of
an Asian digital option can be written as f �S� = e−rT ·
1��S�K�, where �S = 1

k

∑k
i=1 Si. Then, we let g�S� = e−rT and

h�S� = �S −K. It is easy to verify Assumptions 1 and 2 if S
follows a commonly used model of price dynamics, e.g., a
geometric Brownian motion. Suppose that we are interested
in estimating delta, i.e., dp/dS0. By Theorem 1,

dp

dS0

= −�yE
[
e−rT d �S

dS0

· 1��S−K�y�

]∣∣∣∣
y=0

�

We apply the estimator �Gn of Equation (5) to estimate
delta:

�Gn = 1
n�n

n∑
l=1

e−rT d �Sl

dS0

Z

( �Sl − K

�n

)
�

where � �Sl�d �Sl/dS0� denotes the lth observation of
� �S�d �S/dS0�.

2.3.2. Up-and-Out Barrier Call Option. We consider
an up-and-out barrier call option whose discounted payoff
function can be written as

f �S� = e−rT �Sk − K� · 1�Sk�K� · 1�Š�U�

= e−rT �Sk − K� · 1�min�Sk−K�U−Š��0��

where Š = max�S1� � � � � Sk�. Then, we define g�S� =
e−rT �Sk − K� and h�S� = min�Sk − K�U − Š�. If S is
Lipschitz continuous in �, then Š is also Lipschitz continu-
ous in �. Therefore, Assumptions 1 and 2 can be easily veri-
fied if S follows a commonly used model of price dynamics,
e.g., a geometric Brownian motion.
Suppose that we are interested in estimating delta, i.e.,

dp/dS0. Then by Theorem 1, we can derive that

dp

dS0

=E
[
e−rT dSk

dS0

1�Sk�K�1�Š�U�

]

+�yE
[
e−rT �Sk −K�

dŠ

dS0

1�Sk−K�0�1�U−Š�y�

]∣∣∣∣
y=0

� (7)

For details of the derivation, interested readers are referred
to §A.4 of the appendix.
We apply the estimator �Gn of Equation (5) to estimate

delta:

�Gn = 1
n

n∑
l=1

e−rT S ′
k� l · 1�Sk� l�K�1�Šl�U�

− 1
n�n

n∑
l=1

e−rT �Sk� l − K�Š ′
l1�Sk� l�K�Z

(
U − Šl

�n

)
�

where �Sk� l� S ′
k� l� Šl� Š ′

l� denotes the lth observation of
�Sk�dSk/dS0� Š� dŠ/dS0�.

3. The Second-Order Greeks
In this section, we consider the second-order Greeks
of options with discontinuous payoffs. Because second-
order Greeks are essentially second-order derivatives of the
option price, they may involve two market parameters �1

and �2 on which S may depend. We abuse the notation �

defined in §2 to denote an open set in the 	2 space, and
assume that ��1� �2� ∈ �. In this case, we write p��1� �2� =
E�f �S�	 to denote the option price, and we are interested
in estimating ��2

��1
p��1� �2�.

3.1. Kernel Estimation

To derive kernel estimators for the second-order Greeks,
we need to use a result that is summarized in the following
theorem, whose proof is provided in the appendix. We defer
the discussions of the theorem and its assumptions until the
next subsection.

Theorem 2. Suppose that E��g�S��4	 < +� and
E��h�S��4	 < +�. If the following assumptions are satisfied,

Assumption 3. For any ��1� �2� ∈ �, g�S� and h�S� are
differentiable with respect to �1 w.p.1, ��1

g�S� and ��1
h�S�

are differentiable with respect to �2 w.p.1, and there exist
random variables Kg , Kh, Lg , and Lc with finite fourth
moments, which may depend on ��1� �2�, such that

�g�S��1 + �1� �2�� − g�S��1� �2����Kg��1��
�g�S��1� �2 + �2�� − g�S��1� �2����Kg��2��
�h�S��1 + �1� �2�� − h�S��1� �2����Kh��1��
�h�S��1� �2 + �2�� − h�S��1� �2����Kh��2��
���1

g�S��1� �2 + �2�� − ��1
g�S��1� �2���� Lg��2��

and

�g�S��1� �2 + �2����1
h�S��1� �2 + �2��

− g�S��1� �2����1
h�S��1� �2���� Lc��2�

when ��1� and ��2� are small enough.

Assumption 4. For any � ∈ �, ��2
��1

���1� �2� y� exists
and is continuous at ��1� �2�0�, where ���1� �2� y� =
E�g�S� · 1�h�S��y�	,

then

��2
��1

p��1� �2�

= E���2
��1

g�S� · 1�h�S��0�	 − �yE��g�S���2
��1

h�S�

+ ��1
g�S���2

h�S� + ��2
g�S���1

h�S�� · 1�h�S��y�	�y=0

+ �2
yE�g�S���1

h�S���2
h�S� · 1�h�S��y�	�y=0� (8)
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Remark 1. For commonly used second-order Greek gamma,
i.e., �1 = �2 = S0, we may simplify the notation and have

�2
S0

p�S0�

=E��2
S0

g�S�·1�h�S��0�	

−�yE��g�S��2
S0

h�S�+2�S0
g�S��S0

h�S�� ·1�h�S��y�	�y=0

+�2
yE�g�S���S0

h�S��2 ·1�h�S��y�	�y=0�

As shown in the previous section, the second term on
the right-hand side of Equation (8) can be estimated by the
kernel method. Hence, to estimate ��2

��1
p��1� �2�, a major

difficulty is how to estimate the third terms on the right-
hand side of Equation (8). Note that similar to the previous
analysis,

− �yE�g�S���1
h�S���2

h�S� · 1�h�S��y�	

= lim
�→0

1
�
E
[
g�S���1

h�S���2
h�S� · Z

(
h�S� − y

�

)]
�

where Z is a smooth kernel.
Intuitively, by differentiating in y on both sides of the

above equation and then letting y = 0, we have

− �2
yE�g�S���1

h�S���2
h�S� · 1�h�S��y�	�y=0

= − lim
�→0

1
�2

E
[
g�S���1

h�S���2
h�S� · Z′

(
h�S�

�

)]
�

where Z′� · � denotes the derivative of Z� · �.
Therefore, we may propose a kernel estimator for the

third term on the right-hand side of Equation (8). Partic-
ularly, if we let �gl� hl� ��1

gl� ��2
gl� ��2

��1
gl� ��1

hl� ��2
hl� ��2

��1
hl� denote the lth observation of �g�S��h�S�� ��1

g�S��
��2

g�S�� ��2
��1

g�S�� ��1
h�S�� ��2

h�S�� ��2
��1

h�S��, then we
propose the following estimator of ��2

��1
p��1� �2�:

�Hn = 1
n

n∑
l=1

��2
��1

gl1�hl�0�

+ 1
n�n

n∑
l=1

�gl��2
��1

hl +��1
gl��2

hl +��2
gl��1

hl�Z

(
hl

�n

)

+ 1
n�2

n

n∑
l=1

gl��1
hl��2

hlZ
′
(

hl

�n

)
� (9)

where �n > 0 and �n > 0 are the bandwidth parameters of
the kernel estimation.
The asymptotic properties of �Hn are standard in the

literature of kernel estimation (see, e.g., Bosq 1998). For
completeness of the paper, we prove in the electronic com-
panion that �Hn is a consistent estimator and follows a
central limit theorem if �n → 0, �n → 0, n�n → �, and
n�3

n → � as n → �; and the optimal rate of convergence
of the estimator is n−2/7, and it is achieved when �n =
c1n

−1/5 and �n = c2n
−1/7 for some constants c1� c2 > 0. Fur-

thermore, in the electronic companion we also provide a
procedure on how to select �n and �n based on a pilot
simulation run.

3.2. Discussions

This subsection is devoted to the discussions of the techni-
cal details related to Theorem 2.
Assumption 3 in Theorem 2 is a typical assumption in

estimating Greeks. It can often be checked. However, gen-
erally Assumption 3 may not hold in practice. For instance,
when g�S� = Š = max�S1� � � � � Sk�, there may not exist a
random variable Lg with finite fourth moment such that
���1

g�S��1� �2 + �2�� − ��1
g�S��1� �2���� Lg��2�.

Remark 2. When g�S� and h�S� involve only ST or �S,
Assumption 3 generally holds. However, when g�S�
and h�S� involve maxima or minima such as Š =
max�S1� � � � � Sk� and Ŝ = min�S1� � � � � Sk�, Assumption 3
does not hold, except in some special cases, e.g., when �1 =
�2 = S0 and St follows a linear model of S0, i.e., St = S0 ·
At + Dt , where At and Dt are two stochastic processes that
are independent of S0.

Assumption 4 is critical to the analysis of second-
order Greeks. Let fS��1� �2�

�s� denote the density function of
S��1� �2�. We propose the following lemma to verify the
assumption. The proof of the lemma is similar to that of
Lemma 1 and is hence omitted.

Lemma 2. Suppose that for any ��1� �2� ∈ �, fS��1� �2�
�s�

and ��1
fS��1��2�

�s� are continuously differentiable in �1

and �2, respectively, for almost all s ∈ 	k, and there exist
functions �1�s� and �2�s� such that �fS��1+�1� �2�

�s� −
fS��1� �2�

�s�� � �1�s���1� and ���1
fS��1� �2+�2�

�s� −
��1

fS��1� �2�
�s��� �2�s���2� when ��1� and ��2� are small

enough, and
∫

	k �g�s���i�s�ds < +� for i = 1�2. Then,
Assumption 4 is satisfied.

Note that the conditions of Lemma 2 are typical con-
ditions for the likelihood ratio method to be applicable
to estimating ��2

��1
E�g�S�	 or ��2

��1
p��1� �2� (see, e.g.,

Asmussen and Glynn 2007 and L’Ecuyer 1991). As pointed
out by Broadie and Glasserman (1996) and Glasserman
(2004), these conditions are typically satisfied in the con-
text of estimating the Greeks. Therefore, Lemma 2 shows
that Assumption 4 is typically satisfied in practice.

Furthermore, if we take one step further from
Theorem 2, we may express the second-order Greek
��2

��1
p��1� �2� in terms of densities and conditional

expectations. To be specific, if fh�y� · E�g�S���2
��1

h�S� +
��1

g�S���2
h�S� + ��2

g�S���1
h�S��h�S� = y	 and fh�y� ·

E�g�S���1
h�S���2

h�S��h�S� = y	 are continuous at
y = 0, then

��2
��1

p��1��2�

=E���2
��1

g�S� ·1�h�S��0�	+fh�0�·E�g�S���2
��1

h�S�

+��1
g�S���2

h�S�+��2
g�S���1

h�S��h�S�=0	

−�y�fh�y�·E�g�S���1
h�S���2

h�S��h�S�=y	��y=0� (10)
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3.3. Examples

We consider again the examples in §2.3 to illustrate how
to apply Theorem 2 and the kernel estimator �Hn to esti-
mate the second-order Greeks of options with discontinu-
ous payoffs.

3.3.1. Asian Digital Option. For the Asian digital
option considered in §2.3.1, g�S� = e−rT and h�S� = �S−K.
It is easy to verify Assumptions 3 and 4 if St follows a
commonly used model of price dynamics. Suppose that
we are interested in estimating gamma, i.e., d2p/dS2

0 . By
Theorem 2,

d2p

dS2
0

= −�yE
[
e−rT d2 �S

dS2
0

· 1��S−K�y�

]∣∣∣∣
y=0

+ �2
yE

[
e−rT

(
d �S
dS0

)2

· 1��S−K�y�

]∣∣∣∣
y=0

�

We apply the estimator �Hn of Equation (9) to estimate
gamma:

�Hn = 1
n�n

n∑
l=1

e−rT d2 �Sl

dS2
0

Z

( �Sl − K

�n

)

+ 1
n�2

n

n∑
l=1

e−rT

(
d �Sl

dS0

)2

Z′
( �Sl − K

�n

)
�

where � �Sl�d �Sl/dS0�d2 �Sl/dS2
0� is the lth observation of

� �S�d �S/dS0�d2 �S/dS2
0�.

3.3.2. Up-and-Out Barrier Call Option. For the bar-
rier option considered in §2.3.2, we have g�S� = e−rT ·
�Sk −K� and h�S� =min�Sk −K�U − Š�. Suppose that we
are interested in estimating gamma, i.e., �1 = �2 = S0. Note
that generally �S0

h�S� is not Lipschitz continuous in S0,
and hence Assumption 3 does not hold in general. There-
fore, in general Theorem 2 is not directly applicable to the
second-order Greeks of barrier options.
However, this problem can be resolved when St follows

a linear model of S0, e.g., a geometric Brownian motion.
By using Theorem 2 we can show that

d2p

dS2
0

= E
[
e−rT d2Sk

dS2
0

1�Sk�K�1�Š�U�

]

− �yE
[
e−rT

(
dSk

dS0

)2

1�U−Š�0�1�Sk−K�y�

]∣∣∣∣
y=0

+ �yE
[
e−rT

(
2

dSk

dS0

dŠ

dS0

+ �Sk − K�
d2Š

dS2
0

)

·1�Sk�K�1�U−Š�y�

]∣∣∣∣
y=0

− �2
yE

[
e−rT �Sk − K�

(
dŠ

dS0

)2

·1�Sk�K�1�U−Š�y�

]∣∣∣∣
y=0

� (11)

For details of the derivation, interested readers are referred
to §A.5 of the appendix.
Then we may use the following kernel estimator to esti-

mate d2p/dS2
0 :

�Hn = 1
n

n∑
l=1

e−rT S ′′
k�l1�Sk�l�K�1�Šl�U�

+ 1
n�n

n∑
l=1

e−rT �S ′
k�l�

21�Šl�U�Z

(
Sk�l −K

�n

)

− 1
n�n

n∑
l=1

e−rT �2Sk�lŠl +�Sk�l −K�Š ′′
l 	

·1�Sk�l�K�Z

(
U − Šl

�n

)

− 1
n�2

n

n∑
l=1

e−rT �Sk�l −K��Š ′
l�

21�Sk�l�K�Z
′
(

U − Šl

�n

)
�

where �Sk�l�S
′
k�l�S

′′
k�l�Šl�Š

′
l�Š

′′
k�l� denotes the lth observation

of �Sk�dSk/dS0�d
2Sk/dS2

0 �Š�dŠ/dS0�d
2Š/dS2

0�.

4. Numerical Experiments
To illustrate the performance of the proposed approach
( �Gn in Equation (5) and �Hn in Equation (9) for first- and
second-order Greeks, respectively), we consider the exam-
ples in §2.3, including the Asian digital option and the bar-
rier option. For the Asian digital option, existing method
including SPA, the LR method and the WD method can
also be applied, and numerical results suggest that our
approach is significantly better than the existing methods.
For the barrier option, it is not clear how to apply SPA.

We show that our approach may outperform the LR and
WD methods in many scenarios. In all the examples, the
standard normal density is used as the kernel function Z,
and �n and �n are selected by running a pilot simulation4

according to the procedure as provided in the electronic
companion. Results reported are based on 1,000 indepen-
dent replications.

4.1. Asian Digital Option

Consider an Asian digital option introduced in §2.3.1.
Without loss of generality we assume that the dis-
cretization points are evenly spaced, and let � =T /k
denote the time interval. We suppose that St follows an
Ornstein-Uhlenbeck process, i.e., the price dynamics can
be simulated exactly using Si+1=Sie

−b� +��1−e−b��+


√

�1−e−2b��/�2b�·Zi+1, for i=0�1�����k−1, where b, �,
and 
 are mean reversion rate, mean, and volatility, respec-
tively, and Z1�����Zk are independent standard normal ran-
dom variables.
For this example, analytical price formulas of the Asian

digital option and its Greeks can be derived, and hence the
exact values of the Greeks can be calculated. In Table 1
we list the exact values of the Greeks for different number
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Table 1. Exact values of the Greeks of the Asian digital
option.

delta vega theta gamma

k=10 0�9714 0�7411 0�1185 6�0271
k=20 1�0609 0�7465 0�1195 6�8791
k=50 1�0731 0�7472 0�1196 6�9971

of time steps (k) when r =5%, 
 =30%, b=0�2, �=98,
S0 =100, K =100, and T =1. Then the performance of the
proposed method can be evaluated by comparing the pro-
posed estimators to their exact values.
SPA and the LR method can also be applied to this

example. An SPA estimator of the first-order Greek can be
derived by conditioning on �S1�����Sk−1�, i.e.,

�

��
E�1��S�K�	=

�

��
E�E�1��S�K��S1�����Sk−1	�

= �

��
E�1−��Y ��=−E

[
��Y � · �Y

��

]
�

where Y = �kK−�S1+···+Sk−2�−�1+e−b��Sk−1−��1−
e−b��	/�


√
�1−e−2b��/�2b��, and � and � denote the

distribution function and density of the standard normal
distribution, respectively. Furthermore, note that �Y /�S0 is
independent of S0. Then an SPA estimator of gamma can
also be derived based on

�2

�S2
0

E�1��S�K�	=−E
[
�′�Y �·

(
�Y

�S0

)2]
�

The LR method can also be applied because the transition
density from Si to Si+1 can be derived. We omit the deriva-
tion of the LR estimators here, because it is standard.

Table 2. Estimating the Greeks of the Asian digital option.

n=103 n=104 n=105

k 10 50 100 10 50 100 10 50 100

RRMSE delta (%)
PW 5�4 4�8 4�8 2�5 2�5 2�5 1�2 1�1 1�1
SPA 16�0 51�6 84�9 5�0 16�3 27�0 1�6 5�1 8�3
LR 13�2 24�7 32�3 4�2 7�8 10�5 1�3 2�3 3�3
WD (1) 6�4 12�0 17�6 1�9 3�8 5�3 0�6 1�2 1�8

RRMSE vega (%)
PW 8�3 8�4 7�9 3�3 3�3 3�3 1�4 1�4 1�4
SPA 16�1 51�9 84�6 5�1 16�3 27�0 1�6 5�1 8�3
LR 23�0 48�3 67�0 7�1 15�6 21�2 2�2 4�8 6�6
WD (k) 44�7 221�2 437�6 14�2 67�0 135�7 4�4 22�4 46�6

RRMSE theta (%)
PW 17�6 16�3 16�0 6�9 6�8 6�7 2�8 2�7 2�6
SPA 15�5 49�5 81�0 4�9 15�5 25�8 1�5 4�8 7�9
LR 22�0 45�1 62�4 7�0 14�4 19�6 2�1 4�5 6�2
WD (3k) 43�9 213�1 412�9 14�1 63�3 133�1 4�4 21�6 41�7

RRMSE gamma (%)
PW 14�3 14�2 14�4 7�6 7�8 7�4 3�9 4�0 3�9
SPA 173 5,976 27,000 58�0 1,900 8,900 17�9 596 2,900
LR 36�4 134 245 11�6 39�9 80�4 3�6 13�0 24�5
WD (3) 16�7 77�0 158�9 5�5 25�2 48�9 1�7 8�1 15�2

The WD method can also be applied. Interested read-
ers are referred to the electronic companion for detailed
derivation. However, it may require many additional simu-
lations (e.g., up to 3k additional simulations5 in this exam-
ple). When the number of discretization steps k is relatively
large, it may not be practical to apply the WD method.
To compare the performance of our approach to those

of other methods, we use the estimated relative root mean-
squared error (RRMSE) as a benchmark, which measures
the percentage of the root mean-squared error to the abso-
lute value of the quantity being estimated.
We vary k to examine the effect of the number of dis-

cretization steps on the estimation, and we vary the sam-
ple size n to examine the convergence of the estimators.
RRMSEs of our pathwise approach (PW), SPA, the LR
and WD methods are reported in Table 2. For delta and
gamma, the WD method sometimes has smaller error than
our approach. However, the WD method requires one and
three additional simulations for delta and gamma, respec-
tively, where the number in the bracket right after WD indi-
cates how many additional simulations are required. Then
in terms of efficiency, our approach outperforms the WD
method. For vega and theta, the WD approach has larger
errors and requires k and 3k additional simulations, respec-
tively, and our approach is significantly better.
From the table we can also see that our approach is sig-

nificantly better than SPA and the LR method, especially
when k is large. The performance of our approach is stable
with respect to the change of k, whereas the performances
of SPA and the LR method become worse as k increases.
By comparing the results for different n, we can also see
that SPA and the LR method have faster convergence rates
than our approach, which coincides with our analytical
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Table 3. Approximately exact values of the Greeks of
the barrier option.

delta vega theta gamma

k=20 −1�43×10−2 −14�79 1�40 −7�49×10−3

k=50 −1�88×10−2 −14�37 1�37 −6�85×10−3

result that convergence rate of our approach is
√

n�n for the
first-order Greeks and

√
n�3

n for the second-order Greeks,
whereas that of SPA and the LR method is

√
n. However,

even when n is as large as 105, our approach is still better
than or comparable to SPA and the LR method. From the
table we can also see that SPA and the LR method may not
be appropriate for estimating gamma, whereas our approach
works well.

4.2. Up-and-Out Barrier Call

Consider the up-and-out barrier call option introduced in
§2.3.2. We suppose that St follows a geometric Brownian
motion, i.e., St =S0e

�r−
2/2�t+
Bt where r and 
 are risk-
free interest rate and volatility, respectively, and Bt is a
standard Brownian motion. In the numerical experiments
we let S0 =K =100, U =120, r =5%, 
 =20%, and T =1.
There are no closed-form formulas for the Greeks in this
example. However, by using finite difference with a large
sample size (109), we find the approximately exact values
of the Greeks, as summarized in Table 3 for different ks.
We compare the performance of our approach to those

of the LR and WD methods, and the comparison results are
summarized in Table 4. From the table we can see that our
approach outperforms the LR method when the number of
discretization steps k is large. Moreover, our approach has
a smaller variance than the WD method for most Greeks

Table 4. Estimating the Greeks of the barrier call
option.

n=104 n=105 n=106

k 20 50 20 50 20 50

RRMSE delta (%)
PW 52�1 37�5 21�4 15�5 7�7 5�9
LR 64�4 74�7 19�5 22�8 6�2 7�3
WD (1) 33�7 38�5 10�9 12�3 3�4 4�0

RRMSE vega (%)
PW 3�3 3�5 1�3 1�4 0�5 0�5
LR 8�6 13�7 2�8 4�5 0�9 1�4
WD (3k) 7�6 12�8 2�6 4�0 0�8 1�3

RRMSE theta (%)
PW 4�8 5�9 2�2 2�4 0�8 1�0
LR 9�1 14�3 3�0 4�7 0�9 1�5
WD (3k) 8�1 13�5 2�8 4�2 0�9 1�4

RRMSE gamma (%)
PW 21�6 24�4 10�2 11�3 4�8 5�7
LR 37�7 99�6 11�8 32�6 3�8 9�6
WD (4) 26�8 66�6 8�2 20�3 2�5 6�7

except delta. However, the WD method requires 1 resimu-
lation for delta, and 3k, 2k, and 4 resimulations for vega,
theta, and gamma, respectively. Then in terms of efficiency,
our approach may outperform the WD method significantly.

5. Extension to the Sensitivity Analysis
of Collateralized Debt Obligations

The proposed approach not only works for Greek estima-
tion for equity options, but can also be applied to sen-
sitivity analysis of many portfolio credit derivatives. In
this example we consider an important class of portfolio
credit derivatives, the so-called collateralized debt obliga-
tions (CDOs). We are interested in the sensitivities of the
CDO value with respect to hazard rates of the underly-
ing credit names, which provide important information for
CDO hedging. For a comprehensive background on CDO
and its sensitivities, readers are referred to Hull and White
(2004) and Chen and Glasserman (2008) and the references
therein.
The CDO contract being considered is associated with a

portfolio of N underlying credit names that could be bonds,
loans, or other defaultable assets. In this contract, credit
loss of the portfolio is tranched to fractions, and different
fractions of the loss are absorbed by investors with different
risk preferences.
Following the notation in Chen and Glasserman (2008),

we let T denote the life of the contract, �i the default time
of the ith credit name, and li the loss given default of the
ith credit name. Then the cumulative loss of the portfolio
at time t (here t�T ) is L�t�=∑N

i=1 li1��i�t�, where �i fol-
lows an exponential distribution with mean 1/�i, and the
constant �i is called the hazard rate of the ith credit name.
For risk management purposes, one may be interested

in the sensitivities of the CDO value with respect to the
hazard rates of the underlying credit names. Without loss
of generality, we consider its sensitivity with respect to �1.
As shown in Chen and Glasserman (2008), the problem is
then reduced to estimating

p′��1�= �

��1

E��L�t�−y�+	

for a given time t�T and a given threshold value y.
Recall that �2������N do not depend on �1. Then, apply-

ing Theorem 1, we have

p′��1�= �

��1

E
[( N∑

i=2

li1��i�t� +l1−y

)+
·1��1�t�

+
( N∑

i=2

li1��i�t� −y

)+
·1��1>t�

]

=�uE
[{( N∑

i=2

li1��i�t� −y

)+

−
( N∑

i=2

li1��i�t� +l1−y

)+}
d�1
d�1

·1��1�t+u�

]∣∣∣∣
u=0

�
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Table 5. Comparison of the estimators for CDO
sensitivities.

� p′��1� RRMSE (SPA) % RRMSE (PW) %

0.3 0�290 1�71 3�25
0.2 0�284 2�23 3�26
0.1 0�278 3�20 3�21
0.05 0�278 4�70 3�32
0.01 0�278 10�81 3�33
0.005 0�278 15�42 3�27
0.001 0�278 34�70 3�28

Note that d�1/d�1=�1/�1. Then we may apply the pro-
posed kernel estimator to estimate p′��1�.
As an illustrative example, we consider the case where

the dependence among �1������N is specified by a three-
factor normal copula model. Interested readers are referred
to §A.6 of the appendix for details and parameter specifica-
tion of the model. Suppose that the CDO contract underlies
N =200 credit names that are divided into four groups,
with hazard rates 0�5, 0�1, 0�12, 0�2, and losses given
default 0�9, 0�6, 0�5, 0�1, respectively. We let t=0�75 and
y=15�75, where y corresponds to 15% of the total losses
of the portfolio.
Based on elaborate analysis, Chen and Glasserman

(2008) propose an estimator of p′��1�, which is essentially
an SPA estimator. We compare our estimator (PW) to this
SPA estimator for different scenarios. Specifically, we use
an idiosyncratic risk control parameter � to indicate the
level of the obligors’ exposures to idiosyncratic risk, and
we compare the estimators for different �s. When � is
close to zero, the credit risk faced by an individual obligor
is mainly caused by the systematic risk; when � is close
to one, it is mainly caused by the idiosyncratic risk. We
are particularly interested in cases where � is close to zero,
because it is when many obligors default at the same time
and the credit risk has the highest damage, as we have seen
in the recent financial tsunami. For details of the idiosyn-
cratic risk control parameter, readers are referred to A.6 of
the appendix.
The comparison results are summarized in Table 5,

where the sample size n=104 and the bandwidth �n =
c×n−1/5 where c=0�8 is obtained by the selection proce-
dure provided in the electronic companion. From the table
we can see that when � is large, the SPA estimator may
have a smaller error and is better than our approach. How-
ever, when � becomes smaller and smaller, the error of
our approach is rather stable while that of the SPA estima-
tor blows up. Therefore, our approach may outperform the
SPA estimator significantly when � is close to zero.

6. Conclusions
In this paper, we derive closed-form expressions for both
the first- and second-order Greeks of options with discon-
tinuous payoffs. Based on these expressions, we propose
kernel estimators to estimate these Greeks. Our method

requires only the pathwise information that is observable
from simulation and hence is easy to implement by practi-
tioners. We also show that the approach proposed is valu-
able not only in risk management of equity options, but
also in sensitivity analysis of portfolio credit derivatives.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

A. Appendix

A. 1. Proof of Lemma 1

Proof. Note that

������y�=��E�g�S�·1�h�S��y�	

=��

∫
	k

g�s�·1�h�s��y�fS����s�ds� (12)

Because for small-enough �,

�g�s�·1�h�s��y�fS��+���s�−g�s�·1�h�s��y�fS����s��
� �g�s�·1�h�s��y����s�� �g�s����s��

and
∫

	k �g�s����s�ds��, by the dominated convergence
theorem (Durrett 2005), we may take the partial differen-
tiation inside the integral in the right-hand side of Equa-
tion (12), and hence

������y�=
∫
	k

g�s�·1�h�s��y���fS����s�ds�

Because fS����s� is continuous differentiable in � for
almost all s∈	k, and g�S�, h�S�, and S��� are continu-
ous at � almost surely for any �∈�, it is easy to see that
g�s�·1�h�s��y���fS����s� is continuous at ���0� for almost
all s∈	k. Recalling further that �fS��+���s�−fS����s���
��s���� for small-enough �, then ���fS����s�����s�, and
hence

∫
	k g�s�·1�h�s��y���fS����s�ds�

∫
	k �g�s����s�ds <�.

Then by the dominated convergence theorem (Durrett
2005), we have

lim
��′�y�→���0�

�����′�y�= lim
��′�y�→���0�

∫
	k

g�s�·1�h�s��y���fS��′��s�ds

=
∫
	k

lim
��′�y�→���0�

g�s�·1�h�s��y���fS��′��s�ds

=
∫
	k

g�s�·1�h�s��0���fS����s�ds

=������y��

which means ������y� is continuous at ���0�, and hence
Assumption 2 is satisfied. �
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A.2. Proof of Theorem 1

Proof. Let

����y�=g�S��y−h�S�	 ·1�h�S��y� and ����y�=E�����y�	�

Note that �y����y�=g�S�·1�h�S��y� w.p.1, and �����y+
y�−����y��� �g�S��·�y� with E��g�S��	<�. Then, by
the dominated convergence theorem (Durrett 2005),

�y����y�=E��y����y�	=E�g�S�·1�h�S��y�	=����y��

Therefore,

p′���=dE�g�S� ·1�h�S��0�	/d�=���y����y��y=0

=�y������y��y=0� (13)

where the interchange of partial derivatives in the third
equality follows from Assumption 2, that ���y����y�=
������y� is continuous at ���0� (see, e.g., Marsden and
Hoffman 1993).
Therefore, evaluating p′��� is equivalent to evaluating

�y������y��y=0. We first evaluate ������y�. Note that

������y�=��g�S��y−h�S�	·1�h�S��y�

−g�S���h�S�·1�h�S��y� w�p�1�

Moreover, when � is small enough,

����+��y�−����y��
� �g�S��+����y−h�S��+���	·1�g�S���+����y�

−g�S�����y−h�S��+���	·1�h�S��+����y��
+�g�S�����y−h�S��+���	·1�h�S��+����y�

−g�S�����y−h�S����	 ·1�h�S�����y��
� �g�S��+���−g�S�����y−h�S��+����

+�g�S������y−h�S��+���	·1�h�S��+����y�

−�y−h�S����	 ·1�h�S�����y��
��Kg�y−h�S��+����+Kh�g�S����������

Note that

�h�S��+����� �h�S�����+Kh���� �h�S�����+Kh

when ��� is small enough. Then

Kg�y−h�S��+����+Kh�g�S�����
�K2

g +y2+��h�S�����+Kh�
2+K2

h +�g�S�����2�
where the right-hand side of the equation has a finite mean
by Assumption 1. Therefore, by the dominated convergence
theorem (Durrett 2005),

������y�=��E�����y�	=E�������y�	

=E���g�S��y−h�S�� ·1�h�S��y�	

−E�g�S���h�S�·1�h�S��y�	� (14)

We analyze the first term on the right-hand side of Equa-
tion (14). Because ��g�S��y−h�S�� ·1�h�S��y� is differen-
tiable with respect to y w.p.1, and it is Lipschitz continuous
in y with a Lipschitz constant ��g�S� which is bounded
by Kg , then by the dominated convergence theorem (Dur-
rett 2005),

�yE���g�S��y−h�S�� ·1�h�S��y�	

=E��y���g�S��y−h�S�� ·1�h�S��y��	

=E���g�S� ·1�h�S��y�	� (15)

Therefore, by Equations (13) to (15) we conclude the result
of Theorem 1. �

A.3. Proof of Theorem 2

Proof. Let

���1��2�y�=g�S��y−h�S�	 ·1�h�S��y� and

���1��2�y�=E�����y�	�

Note that �y���1��2�y�=���1��2�y�. Then, similar to the
proof of Theorem 1, it is clear that

��2
��1

p��1��2�=��2
��1

E�g�S�·1�h�S��0�	

=��2
��1

�y���1��2�y��y=0

=�y��2
��1

����y��y=0� (16)

where the interchange of partial derivatives in the
third equality follows from Assumption 4 that ��2

��1
�y

���1��2�y�=��2
��1

���1��2�y� is continuous at ���0� (see,
e.g., Marsden and Hoffman 1993).
By Equation (14), we have

��1
���1��2�y�=E���1

g�S��y−h�S�� ·1�h�S��y�	

−E�g�S���1
h�S� ·1�h�S��y�	� (17)

With the same technique that is used to prove Equa-
tion (14), we can derive the partial derivative of the first
term on the right-hand side of Equation (17),

��2
E���1

g�S��y−h�S�� ·1�h�S��y�	

=E���2
��1

g�S��y−h�S�� ·1�h�S��y�	

−E���1
g�S���2

h�S� ·1�h�S��y�	� (18)

Applying Theorem 1 on the second term on the right-hand
side of Equation (17), we have

��2
E�g�S���1

h�S� ·1�h�S��y�	

=E����2
g�S���1

h�S�+g�S���2
��1

h�S�	 ·1�h�S��y��

−�yE�g�S���1
h�S���2

h�S� ·1�h�S��y�	� (19)
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Therefore, combining Equations (17) to (19), we have

��2
��1

���1��2�y�=E���2
��1

h�S��y−h�S�	·1�h�S��y�	

−E����1
g�S���2

h�S�+��2
g�S���1

h�S�

+g�S���2
��1

h�S�� ·1������y�	

+�yE�g�S���1
h�S���2

h�S�·1�h�S��y�	�

Then, with the same techniques used in proving Equa-
tion (15), we have

�y��2
��1

���1��2�y�

=E���2
��1

h�S� ·1�h�S��y�	

−�yE����1
g�S���2

h�S�+��2
g�S���1

h�S�

+g�S���2
��1

h�S�� ·1������y�	

+�2
yE�g�S���1

h�S���2
h�S�·1�h�S��y�	�

According to Equation (16), we obtain the conclusion of
the theorem by setting y=0. �

A.4. Derivation of Equation (7)

Note that

dh�S�

dS0

= dSk

dS0

1�U−Š>Sk−K� −
dŠ

dS0

1�Sk−K>U−Š� w�p�1� (20)

where dŠ/dS0 =dSi∗/dS0 and i∗ is the index of the largest
Si among S1�����Sk.
Then, by Theorem 1,

dp

dS0

=E
[
e−rT dSk

dS0

1�Sk�K�1�Š�U�

]

−�yE
[
e−rT �Sk −K�

dSk

dS0

1�U−Š>Sk−K�1�Sk−K�y�

]∣∣∣∣
y=0

+�yE
[
e−rT �Sk −K�

dŠ

dS0

1�Sk−K�U−Š�1�U−Š�y�

]∣∣∣∣
y=0

�

By the definition of the differentiation, we can easily
show that

�yE
[
e−rT �Sk −K�

dSk

dS0

1�U−Š>Sk−K�1�Sk−K�y�

]∣∣∣∣
y=0

=0�

and

�yE
[
e−rT �Sk −K�

dŠ

dS0

1�Sk−K�U−Š�1�U−Š�y�

]∣∣∣∣
y=0

=�yE
[
e−rT �Sk −K�

dŠ

dS0

1�Sk−K�0�1�U−Š�y�

]∣∣∣∣
y=0

�

Then, assembling the terms, we obtain Equation (7).

A.5. Derivation of Equation (11)

We define

�1=E
[
e−rT dSk

dS0

1�Sk�K�1�Š�U�

]
�

�2=−�yE
[
e−rT �Sk −K�

dŠ

dS0

1�Sk−K�0�1�U−Š�y�

]∣∣∣∣
y=0

�

Then, by Equation (7), dp/dS0 =�1−�2 and d2p/dS2
0 =

d�1/dS0−d�2/dS0.
First, we analyze d�1/dS0. Similar to the derivation of

Equation (7),

d�1

dS0

=E
[
e−rT d2Sk

dS2
0

1�Sk�K�1�Š�U�

]

−�yE
[
e−rT

(
dSk

dS0

)2

1�U−Š�0�1�Sk−K�y�

]∣∣∣∣
y=0

+�yE
[
e−rT dSk

dS0

dŠ

dS0

1�Sk−K�0�1�U−Š�y�

]∣∣∣∣
y=0

�

Second, we analyze d�2/dS0. Note that

d�2

dS0

=−�y�S0
E
[
e−rT �Sk −K�

dŠ

dS0

1�Sk−K�0�1�U−Š�y�

]∣∣∣∣
y=0

�

By Theorem 1,

�S0
E
[
e−rT �Sk −K�

dŠ

dS0

1�Sk−K�0�1�U−Š�y�

]

=E
[
e−rT

(
dSk

dS0

dŠ

dS0

+�Sk −K�
d2Š

dS2
0

)
1�Sk�K�1�U−Š�y�

]

−�uE
[
e−rT �Sk −K�

(
dŠ

dS0

)2

1�Sk�K�1�U−Š�y+u�

]∣∣∣∣
u=0

�

Then,

d�2

dS0

=−�yE
[
e−rT

(
dSk

dS0

dŠ

dS0

+�Sk −K�
d2Š

dS2
0

)

·1�Sk�K�1�U−Š�y�

]∣∣∣∣
y=0

+�2
yE

[
e−rT �Sk −K�

(
dŠ

dS0

)2

1�Sk�K�1�U−Š�y�

]∣∣∣∣
y=0

�

Because d2p/dS2
0 =d�1/dS0−d�2/dS0, then assembling

the terms we obtain Equation (11).

A.6. Implementation Details of Normal Copula
Model in §5

The dependence among �1������N is specified in the fol-
lowing three-factor normal copula model. Specifically, �i =
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F −1
i ���Wi�� where Fi is the exponential cumulative distri-

bution function (C.D.F.) with mean 1/�i, and � denotes
the standard normal C.D.F. Here the latent variables
�W1�����WN � are generated by

Wk =ak1Z1+ak2Z2+ak3Z3+bk�k� ∀ k=1�����N �

where �Z1�Z2�Z3� are systematic risk factors, each fol-
lowing a standard normal distribution, and �k is the
kth obligor’s idiosyncratic risk factor and follows a
standard normal distribution. Here A=�aij �1�i�N�1�j�3 is
the loading matrix with a2

k1+a2
k2+a2

k3�1, and bk =√
1−�a2

k1+a2
k2+a2

k3�. The number bk indicates the level of
exposure of the kth obligor to its idiosyncratic risk.
To implement the model with N =200 obligors, we need

to specify the loading matrix A. To do this, we first ran-
domly generate a base matrix A0 whose entries �ãij �’s are
independently and uniformly distributed over the interval
�−1/

√
3�1/

√
3	. Then for the first 10 rows of A0, we mul-

tiply each row k by a factor
√

�1−�2�/�ã2
k1+ ã2

k2+ ã2
k3��,

where � is an idiosyncratic risk control parameter. We then
let this newly obtained matrix be the loading matrix A. By
simple calculation we can see that with this loading matrix
A the corresponding bks for the first 10 obligors are all �.
Note that � being close to 0 implies that the first 10 oblig-
ors have small exposures to idiosyncratic risk, and hence
their defaults are mainly caused by systematic risk.

Endnotes
1. The method is generally known as the pathwise method
in the literature. In this paper, we generalize it and call
the new one the pathwise method and the original one the
classical pathwise method.
2. Here � is independent of the realization of S���.
3. It was pointed out by an anonymous referee.
4. During implementation we use a pilot simulation with
500 sample paths. The computational time of the pilot sim-
ulation is very small and could be neglected. According to
the numerical experiments, a relatively small sample size in
the pilot simulation may lead to a reasonably good choice
of �n.
5. The computation time of the WD method is roughly
proportional to the number of total simulations required.
For example, when the WD method requires 3k additional
simulations, its computational time is roughly 3k+1 times
that of the pathwise method.

Acknowledgments
The authors thank the associate editor, two anonymous
referees, and Gregoire Lenglet of Bank Vontobel AG in
Zurich, for their valuable comments. The first author was
partially supported by Start-Up Grant 7200172 of City Uni-

versity of Hong Kong. The second author was partially sup-
ported by the Hong Kong Research Grants Council under
grant CERG 613907 and by the National Natural Science
Foundation of China under grant 70932003.

References
Asmussen, S., P. W. Glynn. 2007. Stochastic Simulation: Algorithms and

Analysis. Springer, New York.
Bernis, G., E. Gobet, A. Kohatsu-Higa. 2003. Monte Carlo evaluation

of Greeks for multidimensional barrier and lookback options. Math.
Finance 13(1) 99–113.

Bosq, D. 1998. Nonparametric Statistics for Stochastic Processes, 2nd ed.
Springer, New York.

Broadie, M., P. Glasserman. 1996. Estimating security price derivatives
using simulation. Management Sci. 42(2) 269–285.

Chen, N., P. Glasserman. 2007. Malliavin Greeks without Malliavin cal-
culus. Stochastic Processes Their Appl. 117(11) 1689–1723.

Chen, N., L. J. Hong. 2007. Monte Carlo simulation in financial engineer-
ing. Proc. 2007 Winter Simulation Conf., 919–931.

Chen, Z., P. Glasserman. 2008. Sensitivity estimates for portfolio credit
derivatives using Monte Carlo. Finance Stochastics 12(4) 507–540.

Durrett, R. 2005. Probability: Theory and Examples, 3rd ed. Duxbury
Press, Belmont, CA.

Elie, R., J.-D. Fermanian, N. Touzi. 2007. Kernel estimation of Greek
weights by parameter randomization. Anal. Appl. Probab. 14(4)
1399–1423.

Fu, M. C. 2006. Gradient estimation. S. G. Henderson, B. L. Nelson,
eds. Simulation: Handbooks in Operations Research and Manage-
ment Science. Elsevier, Amsterdam, The Netherlands.

Fu, M., J.-Q. Hu. 1997. Conditional Monte Carlo, Gradient Estima-
tion and Optimization Applications. Kluwer Academic Publishers,
Boston.

Glasserman, P. 2004. Monte Carlo Methods in Financial Engineering.
Springer, New York.

Glynn, P. W. 1987. Likelihood ratio gradient estimation: An overview.
Proc. 1987 Winter Simulation Conf., 366–374.

Gong, W.-B., Y. C. Ho. 1987. Smoothed (conditional) perturbation anal-
ysis of discrete dynamical systems. IEEE Trans. Automatic Control
32(10) 858–866.

Ho, Y. C., X. R. Cao. 1983. Perturbation analysis and optimization of
queueing networks. J. Optim. Theory Appl. 40(4) 559–582.

Hong, L. J. 2009. Estimating quantile sensitivities. Oper. Res. 57 118–130.
Hong, L. J., G. Liu. 2010. Pathwise estimation of probability sensitivi-

ties through terminating or steady-state simulations. Oper. Res. 58(2)
357–370.

Hull, J. C. 2006. Options, Futures and Other Derivatives, 6th ed. Pear-
son/Prentice Hall, Englewood Cliffs, NJ.

Hull, J. C., A. White. 2004. Valuation of a CDO and an nth default CDS
without Monte Carlo simulation. J. Derivatives 12(2) 8–23.

L’Ecuyer, P. 1991. An overview of derivative estimation. Proc. 1991 Win-
ter Simulation Conf., 207–217.

Marsden, J. E., M. J. Hoffman. 1993. Elementary Classical Analysis, 2nd
ed. Freeman, New York.

Pflug, G. C. 1988. Derivatives of Probability Measures—Concepts and
Applications to the Optimization of Stochastic Systems. Springer,
Berlin.

Pflug, G. C., H. Weisshaupt. 2005. Probability gradient estimation by set-
valued calculus and applications in network design. SIAM J. Optim.
15(3) 898–914.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


