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Integrated assessment models that combine geophysics and economics features are often used to evaluate
and compare global warming policies. Because there are typically profound uncertainties in these models, a

simulation approach is often used. This approach requires the distribution of the uncertain parameters clearly
specified. However, this is typically impossible because there is often a significant amount of ambiguity (e.g.,
estimation error) in specifying the distribution. In this paper, we adopt the widely used multivariate normal
distribution to model the uncertain parameters. However, we assume that the mean vector and covariance
matrix of the distribution are within some ambiguity sets. We then show how to find the worst-case performance
of a given policy for all distributions constrained by the ambiguity sets. This worst-case performance provides a
robust evaluation of the policy. We test our algorithm on a famous integrated model of climate change, known
as the Dynamic Integrated Model of Climate and the Economy (DICE model). We find that the DICE model is
sensitive to the means and covariance of the parameters. Furthermore, we find that, based on the DICE model,
moderately tight environmental policies robustly outperform the no controls policy and the famous aggressive
policies proposed by Stern and Gore.
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1. Introduction
Since the beginning of the Industrial Revolution,
human activities, particularly burning of fossil fuels
and clearing of forested land, have made a much
“thicker” blanket of greenhouse gas around the earth,
resulting in an unprecedented increase in the cur-
rent level of CO2, at around 390 ppm,1 compared
with only 280 ppm before the Industrial Revolution.
Although the debate on whether or not the globe is
indeed warming still ensues, overwhelming scientific
evidence has already suggested that climate change
presents very serious global risks to human wel-
fare, and numerous long-term changes have already
been observed, including extreme weather such as
droughts, heavy precipitation, heat waves, and inten-
sive tropical cyclones. The Intergovernmental Panel
on Climate Change (IPCC 2007) projects that the

1 The concentration of atmospheric CO2 for April 2011 is
393.18 ppm. Readers may refer to http://www.co2now.org/ for
the trajectory of atmospheric CO2 concentration in the past half
century.

global temperature will increase 1.1 to 6.4�C over the
coming century, at a magnitude that is much more
rapid than any changes that have occurred in the past
10,000 years.

Facing such dramatic climate risks, the recent
194-nation United Nations–led Copenhagen Climate
Summit pledged to limit global warming to 2�C
along with billions of dollars in climate financing in
the famous “Copenhagen Accord” (United Nations
Framework Convention on Climate Change 2009). Up
to now, 138 countries (representing 86.76% of global
emissions) have made commitments to the accord.
Even though the Copenhagen Accord does not have
any legal standing itself, many major countries have
announced their own national carbon reduction tar-
gets for the year 2020. For example, the United States
and Canada have set a carbon emission target of 17%
below the 2005 level, the European Union plans to
commit a 20% reduction from the 1990 levels, China
committed a 2020 carbon intensity target of 40%–45%
below the 2005 level, India pledged to reduce its car-
bon intensity 20%–25% below the 2005 levels, and
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Japan plans to cut its emissions by 25% compared
to the 1990 level.2 However, many climate experts
argue that these voluntary national targets are far
from enough to avert the climate risks.

From an economic point of view, it is very diffi-
cult to evaluate (1) how much warming and climate
change will occur, (2) how bad will it get, (3) when
will it occur, and (4) what carbon targets or abate-
ment efforts should be adopted to avert the likely
irreversible climate catastrophic events in the future.
Climate change is complicated; for many years sci-
entists and economists typically work together and
resort to numerical computer simulations, so-called
“integrated assessment models” (IAM), for evaluating
the economic impacts of global warming. Sir Nicholas
Stern prepared a famous 700-page Stern Review on the
Economics of Climate Change for the British government
in 2005. Based on the numerical simulation using an
IAM model, called the PAGE model in his document,
he called for “urgent action” against global warm-
ing to prevent economic damages that could rival
that of the World Wars and the Great Depression. His
cost-benefit analysis also shows that spending only
1%–2% of the global gross domestic product (GDP)
now could save the future potential climate loss at a
magnitude of around 20% of the global GDP (Stern
2007). No matter how much praise and criticism has
been attracted by this modeling exercise, this widely
known Stern Review has nudged people to talk and
think more seriously about climate change.

Another famous economist, William Nordhaus,
provided another IAM model, called the Dynamic
Integrated Model of Climate and the Economy (DICE
model). The DICE model was first developed in 1974,
and its current version, DICE-2007, is the outcome
of the fifth major revision.3 Its basic modeling phi-
losophy is “to incorporate the latest economic and
scientific knowledge and capture the major elements
of the economics of climate change in as simple and
transparent a fashion as possible” (Nordhaus 2008,
p. xii). The DICE model has two interrelated mod-
ules, the economic module and the geophysical mod-
ule. In the economic module, it models the econ-
omy from the perspective of neoclassical economic
growth theory, where the economy makes investment
in capital, education, and technology, as well as emis-
sion reduction today to increase consumptions in the
future. In the geophysical module, it models carbon

2 See http://www.usclimatenetwork.org/policy/copenhagen-accord
-commitments (last accessed August 1, 2012) for the responses of
different countries to the Copenhagen Accord.
3 The DICE-2007 model as well as the related papers, documenta-
tion, and discussions are available for public use at http://nordhaus
.econ.yale.edu/DICE2007.htm. In this paper, we focus on the DICE
model because of its availability.

cycles among three reservoirs, the atmosphere, the
biosphere and the deep oceans, and climate damages
due to the emissions. The model is calibrated using
the latest economic data as well as scientific knowl-
edge. It conducts a cost-benefit analysis and outputs
a net present value of abatement costs plus climate
damages. Nordhaus (2008) used the DICE model to
evaluate a number of different environmental poli-
cies, including limiting the temperature increase or
the CO2 concentration increase from the preindus-
trial level, the Kyoto Protocol, the Stern Review, Al
Gore’s suggestion, as well as the hypothetical opti-
mal policy, and the policy of no controls. Nordhaus
then concluded that a moderately tight climate limit,
e.g., a 2�C or 3�C increase in temperature or a 2×

or 205× the preindustrial level of CO2 concentration,
is much more cost effective than aggressive climate
polices, such as a 105�C increase in temperature, a
105 × CO2 concentration, as well as the policies of
Stern and Gore.

Like climate change itself, climate models also con-
cern profound uncertainties, partly because of its
intrinsic randomness and partly because of our imper-
fect understanding of the evolvement of complex cli-
mate systems. In IAM models, these uncertainties
appear to rely on a wide range of key uncertain
parameters at various stages of global warming mod-
eling. A typical approach to handling these uncer-
tainties is to apply Monte Carlo methods (see, for
instance, Mattoo et al. 2009, Webster et al. 2009). For
the DICE model, Nordhaus (2008) pointed out that
there are eight critical uncertain parameters in the
model, including the rate of growth of total factor
productivity, the rate of decarbonization, the equi-
librium temperature-sensitivity coefficient, the dam-
age parameter, the price of backstop technology,
asymptotic global population, the transfer coefficient
in carbon cycle, and total resources of fossil fuels.
He modeled all eight parameters as normal random
variables and estimated their means and variances,
and he then evaluated the expected performances of
different policies by generating the parameters from
their distributions and running simulation experi-
ments with these parameters.

Although such a Monte Carlo approach is easy to
implement, specifying the distributions (or a joint dis-
tribution) for those uncertain parameters turns out to
be a tricky issue for the modelers and policy makers.
In the climate change modeling,

• there is often lack of enough data to estimate the
variances of the uncertain parameters accurately;

• typically, very little information is available
to estimate the correlations among the uncertain
parameters;

• compared to the covariances, the means of the
uncertain parameters are relatively easier to estimate
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or specify. However, it is observed that in many well-
studied random systems, the outputs are generally
more sensitive to the means of random inputs than to
the covariances of random inputs.4

It is widely known that ignoring estimation errors
may lead to inaccurate simulation results and there-
fore may lead to false conclusions. To resolve this
difficulty, the DICE model currently only considers
one parameter at a time while fixing other parame-
ters at their means, or it (implicitly) assumes that the
parameters are independent (Nordhaus 2008). How-
ever, such treatments are often problematic because
the parameters generally work together to affect the
outcomes of the models, and moreover, the indepen-
dence has not been validated and the parameters are
often believed to admit certain dependence. In the
DICE model, for instance, the price of backstop tech-
nology may be correlated to a number of other param-
eters such as the damage parameter and the total
resources of fossil fuels. It is well known in many lit-
eratures that ignoring correlations can introduce sig-
nificant modeling errors; see, for instance, Clemen
and Reilly (1999) and Das et al. (2001) for some recent
references. In our study, we use the term “ambigu-
ity” to describe the fact that the mean vector and the
covariance matrix cannot be specified accurately, and
we study how to estimate the performances robustly
under the ambiguity.

We assume that the uncertain parameters of the
environmental simulation model follow a multivari-
ate normal (MVN) distribution with an ambiguous
mean vector and covariance matrix. The MVN dis-
tribution is used in the DICE model because of its
simplicity and generality (Nordhaus 2008). To model
the ambiguity in the mean vector and the covari-
ance matrix, we assume that they are constrained in
two sets, respectively, which we call “ambiguity sets.”
We consider different forms of ambiguity sets so that
they are general enough to model practical situations,
e.g., the mean vector and covariance matrix are esti-
mated with or without data, while still maintaining
the desired mathematical tractability.

When there is ambiguity in specifying the MVN
distribution, the results of the simulation are also
ambiguous, making policy comparisons difficult.
To solve this problem, we take a robust approach,
which finds the worst-case performances among all
MVN distributions constrained by the ambiguity sets
to evaluate a policy. The use of worst-case analysis to
account for ambiguity has a deep root in economics.

4 For instance, in portfolio optimization literature, Chopra and
Ziemba (1993) empirically showed that the impact of estimation
errors in asset mean returns is approximately an order of magni-
tude greater than the corresponding impact of estimation errors in
asset variances or covariances.

Ellsberg (1961) called the incomplete information in
specifying probability distributions “ambiguity” and
argued that it may be appealing to a conservative
person to consider the worst of all reasonable distri-
butions. Epstein (1999) formally defined “ambiguity
aversion” and showed that it is supported by empir-
ical evidence. Furthermore, it is worthwhile to note
that we do not argue or suggest that policy makers
should only consider worst-case performances when
making policies. Indeed, we believe that they should
take into consideration a wide range of objectives
when making global warming policies. The worst-
case analysis suggested in this paper provides policy
makers another source of valuable information and
makes them fully aware of the potential risks of dif-
ferent policies.

To apply the robust approach, we need to find the
worst-case performance of the environmental simula-
tion model in the ambiguity sets. However, this is not
a simple task. To accurately evaluate the performance
of the model at a given MVN distribution, we often
need to run multiple (often a large number of) replica-
tions of the time-consuming simulation experiments.
To find the worst-case performance, we often have to
evaluate the performances of the model for a large
number of MVN distributions with different mean
vectors and covariance matrices. This requires a pro-
hibitively large amount of computational time and is
often not feasible in practice. Furthermore, even if it
is feasible to conduct the performance evaluations,
to find the worst-case performance requires solving a
semidefinite simulation optimization problem, which
is not yet studied in the current literature of simula-
tion optimization; see, for instance, the recent reviews
of Fu (2002) and Hong and Nelson (2009). To resolve
this difficulty, we use a change-of-measure technique
that uses the simulation results conducted at a given
MVN distribution to infer simulation results for all
MVN distributions constrained by the ambiguity sets.
This technique has two advantages. First, it signifi-
cantly reduces the computational effort required to
find the worst-case performance, because simulation
experiments only need to be conducted at an MVN
distribution. Second, it separates the optimization part
and the simulation part, and it allows us to apply
mature optimization techniques to solve the newly for-
mulated stochastic optimization problem.

To solve the stochastic optimization problem, we
use a sample-average approximation that takes a
sample of simulation observations and reformulates
the optimization problem into a deterministic semi-
definite optimization problem. However, this prob-
lem is nonconvex, because the density function of an
MVN distribution is not a concave function of the
mean vector and covariance matrix and therefore is
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difficult to solve by available semidefinite program-
ming (SDP) solvers. To solve this problem, we use
an iterative approach. In each iteration, we solve a
convex quadratic program to update the mean vector
and solve a log-determinant maximization problem
to update the covariance matrix. Note that both the
convex quadratic programs and log-determinant max-
imization problems are well-known convex optimiza-
tion problems that can be solved efficiently by using
existing solvers (Grant and Boyd 2009). We prove that
the sequence of solutions generated by our algorithm
is improving and converges to a stationary point of
the sample-average approximation.

We apply our approach on the DICE model.
We consider three types of performance measures, the
net present values of the abatement costs plus the cli-
mate damages, the global temperature increases by
2105, and the probabilities that the global temperature
increase by 2105 is 2�C, 3�C, or 4�C or higher than
the preindustrial level. We consider five representa-
tive global warming policies, including

• no climate controls for the next 250 years,
denoted as “no controls policy”;

• limiting the atmosphere CO2 concentration to
two times of the preindustrial level, denoted as “2 ×

CO2 policy”;
• limiting the global temperature increase to 2�C

from the preindustrial level proposed by the Copen-
hagen Accord, denoted as “2�C increase policy”;

• the policy recommended by the Stern Review,
which is an optimal cost-benefit climate change policy
with a very low discount rate (i.e., it uses the Ramsey
discount formula and has an average discount rate of
about 104%), denoted as “Stern review”; and

• Al Gore’s proposal that aims to reduce the global
CO2 by 90% by 2,050, denoted as “Gore proposal.”

We find that the various performances of the DICE
model are generally robust with respect to the vari-
ances of the uncertain parameters and the worst-
case performances are close to the respective average
performances, given the condition that the param-
eters are independent. However, the ambiguities in
the means and covariances appear to have signifi-
cant impacts on the performances, and the worst-
case performances often change significantly from the
average performances. Nevertheless, these changes in
general do not alter our preferences on different poli-
cies, i.e., the rankings of the policies are robust with
respect to the ambiguities in both the mean vector and
the covariance matrix. Coming to different policies,
we find that, when the ambiguities are taken into con-
sideration, the cost ineffectiveness of the aggressive
policies, e.g., the ones of Stern and Gore, is enlarged
significantly, and the risks of the no controls policy are
beyond the acceptable levels. Therefore, we prefer the
moderately tight policies, e.g., the 2 × CO2 policy and

the 2�C increase policy. These policies incur moder-
ate costs but keep the risks of global warming under
control. Between the two moderately tight policies,
we find that the 2 × CO2 policy is more cost-effective,
but has a large probability of resulting in a 2�C global
temperature increase, and a moderate probability of
resulting in a 3�C temperature increase under the
worst cases.

Even though robust environmental modeling is
itself a very important area, the contributions of
this paper are beyond it. MVN distribution is the
most widely used multivariate distribution in prac-
tice because its simple covariance structure makes it
easy to model dependence among uncertain param-
eters. For instance, it is used in financial simulations
to model correlated returns (Glasserman 2004) and
in supply chain studies to model correlated demands
(Netessine and Rudi 2003). Even when marginal dis-
tributions of individual parameters are not modeled
as normal distributions, the dependence among the
parameters may still be modeled and simulated by
an MVN distribution (e.g., the normal-to-anything
approach of Cario and Nelson 1997). Because the
parameters of an MVN distribution are often specified
with ambiguity (e.g., estimation error), our approach
may be applied to these situations to improve the
robustness of simulation studies.

Besides environmental modeling, our research is
related to two other literatures: the simulation input
modeling literature and the robust optimization lit-
erature. In the simulation input modeling literature,
input-parameter ambiguity (known as a type of input-
model uncertainty in the literature) has been stud-
ied; see, for instance, Henderson (2003) for a review.
Among different methods proposed in this literature,
Barton and Schruben (2001) discussed the resampling
method, Cheng and Holland (1997) applied a first-
order approximation based on sensitivity analysis,
and Chick (2001) studied Bayesian model averaging.
Although these approaches are conceptually applica-
ble to the problem that we study in this paper, their
implementations may not be easy. For instance, the
resampling method requires input data that may not
be available in our problem, the first-order approxi-
mation method requires a sensitivity analysis on the
covariance matrix that is yet to be studied (Fu 2008),
and the Bayesian model averaging approach requires
a prior distribution on the mean vector and covari-
ance matrix that may not be easy to specify.

The robust optimization literature considers prob-
lems where the parameters of an optimization prob-
lem are constrained in an uncertainty set and it
often tries to find a solution that optimizes the
objective function for the worst-case combination
of parameters in the uncertainty set. For instance,
Ben-Tal and Nemirovski (2000) and Bertsimas and
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Sim (2004) considered linear programming problems
where the uncertain parameters are bounded and
symmetric, Ben-Tal and Nemirovski (1998) consid-
ered convex optimization problems where the uncer-
tainty set is ellipsoidal, and Delage and Ye (2010)
considered convex optimization problems where the
uncertainty set is described by the moments of the
uncertain parameters. In the robust optimization lit-
erature, robustness is often referred to as “distribu-
tional robustness,” which considers the worst-case
distribution in the uncertainty set. Its basic approach
is to approximate the problem as a computationally
tractable deterministic optimization problem, often
by using probabilistic inequalities. In our approach,
however, robustness is referred to as “parameter
robustness,” which considers only the ambiguity in
specifying the mean vector and covariance matrix in
an MVN distribution. We adopt this approach because
of two reasons. First, MVN distribution is a reason-
able distribution to describe the dependent uncer-
tain parameters. Second, the distributionally robust
approach requires an explicit function form of the
objective function. In our problem, however, the
objective function is imbedded in a complex inte-
grated climate-economic simulation model, and it can
only be estimated by running simulation experiments.
Therefore, the distributionally robust approach may
not be applicable to our problem. However, how to
evaluate distributional robustness of environmental
simulation models is certainly an interesting problem
for future research.

The rest of this paper is organized as follows.
In §2, we introduce the problem formulation and the
change-of-measure reformulation. In §3, we develop
a sequential algorithm to solve the optimization
problem formulated in §2 and analyze its proper-
ties. We study the robustness of the DICE model
and provide some support for global warming pol-
icy making in §4. In the electronic companion
to this paper (available at http://www.ielm.ust.hk/
dfaculty/hongl/), we test the algorithm on a number
of test problems and include all the proofs and extra
numerical results on the DICE model.

2. Problem Formulation
2.1. Basic Formulation
Let � denote the d-dimensional vector of the key
uncertain parameters in the environmental simula-
tion model. Following the convention of environmen-
tal economics literature, we assume that � follows
an MVN distribution with a mean vector � and a
covariance matrix è. Let c4�5 denote the output of
the simulation model when � is given. In our con-
text, c4�5 may be the cost, the temperature increase,
or the atmosphere carbon concentration. Because of

the complexity of environmental simulation models,
we assume that the closed-form expression of c4 · 5 is
not available and c4�5 can only be observed through
running simulation experiments at �. In the simula-
tion study, we are interested in estimating E4�1è56c4�57,
the expected value of the simulation output when the
mean vector and covariance matrix of the MVN dis-
tribution are � and è.

Note that E4�1è56c4�57 is a function of 4�1è5. When
there is ambiguity in the specification of 4�1è5, there
is also ambiguity in E4�1è56c4�57. Let M and S denote
the sets of possible values that � and è may take,
respectively, and M × S denote the corresponding
Cartesian product. We call M, S, and M×S the ambi-
guity sets and discuss them in detail in §2.2. To handle
the ambiguity in 4�1è5, we adopt a robust approach
and find the worst-case performance of E4�1è56c4�57
among all 4�1è5 in M×S. Because c4�5 often denotes
cost, temperature increase, or atmosphere carbon con-
centration, higher values are worse. Therefore, we for-
mulate the problem as the following maximization
problem:

max
4�1è5∈M×S

E4�1è56c4�570 (1)

Without loss of generality, we further assume that c4�5
is nonnegative for all � ∈ <d, as in the DICE model
and many practical situations. If c4�5 is not always
nonnegative, we can make it nonnegative by adding
a positive number as long as c4�5 is bounded below,
and this does not change the solution of problem (1).

2.2. The Ambiguity Sets
There has been extensive research on specifying the
ambiguity sets of mean vector and covariance matrix
for random parameters in robust optimization litera-
ture; see, e.g., Bertsimas et al. (2011) and Fabozzi et al.
(2010) for a thorough review. To model the ambiguity
of 4�1è5, we consider different scenarios that may be
faced by environmental modelers. Although it is nat-
ural to consider the ambiguities of the mean vector
and covariance matrix simultaneously, in this section
we shall analyze them separately because of their dif-
ferent characteristics.

2.2.1. The Ambiguity Set of the Mean Vector.
We first consider the ambiguity set M of the mean
vector �. As shall be seen, the approach we pro-
pose in §3 can handle any convex and compact
ambiguity set M ⊂ <d. Here we introduce the two
most common scenarios. In the first scenario, sup-
pose there exists an independent and identically dis-
tributed (i.i.d.) sample of �, denoted as 8�11 0 0 0 1 �m9.
Because � follows an MVN distribution, based on the
Hotelling’s T 2-statistic, the 1 −� confidence region of
� has the following ellipsoid shape (Anderson 1984):

M1 = 8�2 4�− �̄5T è̄−14�− �̄5≤ �91

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
02

 S
ep

te
m

be
r 

20
14

, a
t 2

2:
39

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Hu, Cao, and Hong: Robust Simulation of Global Warming Policies Using the DICE Model
Management Science 58(12), pp. 2190–2206, © 2012 INFORMS 2195

where �̄=
1
m

∑m
i=1 �i and è̄=

1
m−1

∑m
i=14�i − �̄54�i − �̄5T

are the estimates of � and è, respectively, and � > 0 is
a given constant that depends on 1 −�. Note that M1
is a convex and compact set of �. It is also considered
in Delage and Ye (2010).

In the second scenario, there is no sufficient data
available to estimate � directly. We let

M2 = 8�2 �l ≤�≤�u91

where �l, �u ∈ <d are the lower and upper bounds
of �. Note that M2 takes the form of a hyper-box
and it is also a convex compact set of �. The hyper-
box region for mean vector is also considered in
Halldórsson and Tütüncü (2003) and Goldfarb and
Iyengar (2003), among others. Clearly, the box region
is more suitable than the ellipsoid region when the
mean vector is determined subjectively or judgemen-
tally, as in the DICE model (Nordhaus 2008).

2.2.2. The Ambiguity Set of the Covariance
Matrix. Let �d, �d

+
, and �d

++
denote the d × d sym-

metric matrix space, d×d positive semidefinite matrix
space, and the d × d positive definite matrix space,
respectively. Because the covariance matrix è needs
to be positive definite (we do not consider degen-
erate cases), we assume that the ambiguity set S is
a compact subset of �d

++
. Following the convention

of optimization literature, we use A� 0 (respectively,
A � 0) to denote that A ∈ �d

+
(respectively, A ∈ �d

++
),

and for any A1B ∈�d, use A� B (respectively, A� B)
to denote that B−A� 0 (respectively, A−B � 0).

Let X =è−1 and X= 8X2 è ∈S9. Note that X is also
known as the precision matrix. Because we directly
handle X instead of è in the algorithm that we pro-
pose in §3, we need to carefully define S, the ambi-
guity set of è, so that X is semidefinite representable
(Ben-Tal and Nemirovski 2001) and can be solved by
common matrix optimization solvers.

In this subsection, we introduce three different
forms of S to model the ambiguous covariance matrix
under different scenarios. In the first form, we let

S1 = 8è2 �2
i ≤èii ≤ �̄2

i 1 èij = 01 i 6= j1 i1 j = 11 0 0 0 1 d91

where èii is the variance of the ith element of �. This
form can be applied in scenarios where the random
parameters are believed to be independent and the
variances are estimated within some intervals. Under
the inverse transformation, S1 becomes

X1 = 8X2 diag81/�̄2
1 1 0 0 0 11/�̄2

d 9�X

� diag81/�2
1 1 0 0 0 11/�2

d 91

Xij = 01 i 6= j1 i1 j = 11 0 0 0 1 d91

where diag8�2
1 1 0 0 0 1�

2
d 9 denotes a d × d matrix with

diagonal elements being �2
1 1 0 0 0 1�

2
d and off-diagonal

elements being zero. Note that X1 is convex, compact
and semidefinite representable, and thus can be han-
dled effectively.

In the second form, we let

S2 = 8è2 �1è̄�è� �2è̄91

where �1 < �2 are positive constants and è̄ is a posi-
tive definite matrix that can be an estimate of è. It is
easy to see that S2 can be transformed to

X2 = 8X2 �−1
2 è̄−1

�X � �−1
1 è̄−191

and X2 is a convex compact subset of �d
++

. The matrix
interval form S2 can model a number of scenarios.
First, when there exists an i.i.d. sample of �, denoted
as 8�11 �21 0 0 0 1 �m9, we may let è̄ be the sample covari-
ance matrix. Because � follows an MVN distribution
with mean � and covariance matrix è, è̄ follows a
Wishart distribution (Anderson 1984). Then, a 1 −�
confidence region of è is defined as S2 with �1 and
�2 being some positive constants depending on �.
Second, consider a scenario where the covariance
ambiguity is modeled using a matrix norm. In this
scenario, è̄� 0 is some nominal estimate of the covari-
ance matrix. Goldfarb and Iyengar (2003) suggest to
model the ambiguity using the set

8è2 �è̄−1/24è− è̄5è̄−1/2
�2 ≤ �1è� 091

where �A�2 denotes the spectral norm of a matrix A,
and � is a parameter controlling the size of the neigh-
borhood. This set restricts the perturbation of the
covariance matrix to be within a neighborhood of è̄
defined by the spectral norm, and it may be used to
model the situation where there is little data avail-
able to estimate the covariance matrix, as frequently
encountered in the global warming context. It follows
from Ben-Tal and Nemirovski (2001) that the above
set can be rewritten as 8è2 41 − �5è̄ � è � 41 + �5è̄9,
which is also in the form of S2, provided �< 1.

In the third form, we let

S3 = 8è2 èii ≤ �2
i 1 i = 11 0 0 0 1 d1 è� �è̄91

where �2
i 1 i = 11 0 0 0 1 d1 and � > 0 are constants and

è̄ is an estimate of the covariance matrix. Compared
to S2, S3 removes the upper bound on the entire
covariance matrix while replacing it by adding upper
bounds on the individual variances. It can be used
in scenarios where variances may be estimated but
there is little information (or data) available to esti-
mate the correlations among the random parameters,
as in the DICE model. Furthermore, it is worthwhile
to note that � is a meaningful parameter in S3. First,
it measures the deviation of the lower bound from
the nominal estimate in spectral norm. Second, it also

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
02

 S
ep

te
m

be
r 

20
14

, a
t 2

2:
39

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Hu, Cao, and Hong: Robust Simulation of Global Warming Policies Using the DICE Model
2196 Management Science 58(12), pp. 2190–2206, © 2012 INFORMS

affects the correlations among the random parameters
(e.g., a smaller � gives the correlations more freedom
to change). Therefore, one may set � small if there is
no explicit information on the dependence, and vice
versa. Because èii ≤ �2

i is equivalent to eTi X
−1ei ≤ �2

i

and, hence, is equivalent to
[

X ei
eTi �2

i

]

� 01

where ei denotes the ith column of a d × d identity
matrix, S3 can be transformed to

X3 =

{

X2

[

X ei
eTi �2

i

]

� 01 i = 11 0 0 0 1 d1 X � �−1è̄−1

}

1

which is semidefinite representable.
In some scenarios, it may be more natural to con-

strain all the elements of the covariance matrix, i.e.,
one may set the ambiguity set as S= 8è2 èl ≤è≤èu1
è � 091 where the inequality constraints ≤ are
element-wise. Unfortunately, however, this ambigu-
ity set cannot be transformed to a convex set of X.
Therefore, problem (1) with this ambiguity set on è
may not be solved by the algorithm proposed in §3.
It is worthwhile noting that this is a problem that is
encountered not only by us but also by many oth-
ers in analyzing MVN distributions. A recent trend is
to directly parameterise MVN distributions in terms
of the precision matrix X rather than the covariance
matrix è (see, for instance, Bernardo and Smith 2000).
Ravikumar et al. (2008) show that it is also often con-
venient to directly estimate precision matrices and
build confidence regions.

2.3. A Change-of-Measure Reformulation
Problem (1) is difficult to solve because the closed
form of E4�1è56c4�57 is not known. Because the
objective function of problem (1) may be eval-
uated by running simulation experiments at any
4�1è5 ∈M×S, one approach is to treat it as a sim-
ulation optimization problem (e.g., Fu 2002, Hong
and Nelson 2009). However, this approach has two
drawbacks. First, è is a positive definite matrix and,
to the best of our knowledge, there are no avail-
able convergent simulation optimization algorithms
to solve such problems. Second, even there exist
such algorithms, this approach requires running time-
consuming simulation experiments at often a large
number of different 4�1è5 values and, hence, often
requires a prohibitively large amount of computa-
tional effort.

In this paper, we introduce a different approach
that reformulates problem (1) based on a change-
of-measure technique. Let f 4 · 5 denote a probability
density function defined on <d such that f 4x5 > 0
for any x ∈ <d, and let Ef 4 · 5 denote the expecta-
tion taken with respect to the distribution f 4 · 5. Let

�4�1è54 · 5 denote the density of the MVN distribution
with mean � and covariance matrix è. Then,

E4�1è56c4�57 =

∫

<d
c4x5�4�1è54x5dx

=

∫

<d
c4x5

�4�1è54x5

f 4x5
f 4x5dx

= Ef

[

c4�5
�4�1è54�5

f 4�5

]

1 (2)

where � has the distribution f 4 · 5 in the last equation.
The technique used in deriving Equation (2) is known
as change of measure, i.e., the probability measure that
the expectation is taken with respect to is changed
from �4�1è54 · 5 to f 4 · 5, and the term �4�1è54 · 5/f 4 · 5 is
called a likelihood ratio or a Radon-Nikodym deriva-
tive. Plugging the function form of �4�1è54 · 5 in Equa-
tion (2), we may reformulate problem (1) as

max
4�1è5∈M×S

Ef

[

42�5−d/2 c4�5

f 4�5
4detè5−1/2

· exp
{

−
1
2
4� −�5Tè−14� −�5

}]

1 (3)

where detA denotes the determinant of a matrix A.
Note that, without the change of measure, the

decision variables � and è are in the distribution
of �. Therefore, to evaluate E4�1è56c4�57 for differ-
ent 4�1è5 values, we need to generate � with dif-
ferent means and covariance matrices and evaluate
c4�5 through time-consuming simulation experiments.
Then, problem (1) is difficult to solve. With the change
of measure, however, the decision variables 4�1è5
is no longer in the distribution of �. This allows
us to separate the decision variables 4�1è5 and the
randomness �. We can now use a sample of � and the
corresponding c4�5 values to evaluate E4�1è56c4�57 for
all 4�1è5 ∈ M × S. This greatly reduces the required
computational effort and makes it possible to solve
problem (1) efficiently.

3. Solution Method
Following the notation used in §2.2, we let X = è−1

and X = 8X ∈ �d
++

2 X−1 ∈ S9, where S is the ambi-
guity set for the covariance matrix è. In this paper,
we only consider the cases where X is convex com-
pact in �d

++
, as the cases discussed in §2.2. Then, prob-

lem (3) can be reformulated as follows:

max
4�1X5∈M×X

g4�1X5 2= Ef

[

42�5−d/2 c4�5

f 4�5

· exp
{

−
1
2
4� −�5TX4� −�5+

1
2

log detX
}]

0 (4)

In the rest of this section, we develop an efficient algo-
rithm to solve problem (4).
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3.1. Sample-Average Approximation
Because c4�5 is the output from a complex environ-
mental simulation model, a closed-form expression of
g4�1X5 is typically unavailable. Instead, we can only
use simulation observations to estimate g4�1X5. Sup-
pose that we have an i.i.d. sample of �, denoted as
�11 0 0 0 1 �n, generated from the distribution f 4 · 5, and
the i.i.d. simulation outputs c4�151 0 0 0 1 c4�n5. We can
then estimate g4�1X5 by

ḡn4�1X5 =
1
n

n
∑

j=1

42�5−d/2
c4�j5

f 4�j5

· exp
{

−
1
2
4�j −�5TX4�j −�5+

1
2

log detX
}

for any 4�1X5 ∈ M × X. Let aj = 42�5−d/2c4�j5/f 4�j5.
Note that aj ≥ 0 for any j = 11 0 0 0 1n, because in §2
we assumed that both f 4�5 > 0 and c4�5 ≥ 0 for all
� ∈ <d. We suggest solving the following optimization
problem:

max
4�1X5∈M×X

ḡn4�1X5

2=
1
n

n
∑

j=1

aj exp
{

−
1
2
4�j −�5TX4�j −�5+

1
2

logdetX
}

0 (5)

This approach is known as the sample-average
approximation (SAA). It has been studied widely
in the stochastic programming literature (see, for
instance, Shapiro and Homem-de-Mello 2000, Shapiro
et al. 2009).

Intuitively, if the sample size n is large enough, the
solution to problem (5) should be close to the solution
to problem (4). Therefore, it provides a good approxi-
mation to the solution of problem (4). In the appendix,
we show that the intuition indeed holds under some
mild conditions. In the rest of this section, we discuss
how to solve problem (5) efficiently.

3.2. Sequential Quadratic and
Maxdet Programs (SQMP)

As can be seen, problem (5) may not be a convex
optimization problem. This leads to a significant diffi-
culty in solving it. However, the problem has two spe-
cial properties that are worthwhile noting. First, for
the environmental problem we are interested in, there
typically exists an initial feasible solution 4�01X05 that
may be the current estimate of (�1è−15. Second, the
function −

1
2 4�j −�5TX4�j −�5+ 1

2 log detX is a bicon-
cave function of � and X, i.e., it is concave with
respect to � for every X ∈X and concave with respect
to X for every � ∈ M. Therefore, the objective func-
tion ḡn4�1X5 in problem (5) is a summation of quasi-
biconcave functions. This motivates us to consider an
iterative approach to solving the problem.

In §3.2.1, we first discuss how to improve 4�01X05
by changing only one of the two arguments at a
time. We show that, after some transformations, the
resulted two optimization problems are both standard
convex optimization problems that can be solved eas-
ily by commonly used optimization solvers. In §3.2.2,
we show how to iteratively solve the two prob-
lems developed in §3.2.1 to keep improving solution
qualities, and we show that the resulted algorithm
(called Algorithm SQMP) leads to a stationary point
of problem (5).

3.2.1. Improving 4�01X05. To make use of the
quasi-biconcave structure, we introduce an intermedi-
ate decision vector y = 4y11 0 0 0 1 yn5

T and reformulate
problem (5) as the following problem:

max
1
n

n
∑

j=1

ajyj (6)

s.t. log yj ≤ −
1
2
4�j −�5TX4�j −�5

+
1
2

log detX1 j = 11 0 0 0 1n1 (7)

4�1X1y5 ∈M×X× <
n1

where we define log x = −� if x ≤ 0 to make it an
extended real-valued function. Note that the newly
defined log x is still a concave function of x as the
epigraph of − log x defines a convex set (Rockafellar
1970). The above reformulation separates the terms
in the objective function in problem (5) and embeds
the quasi-biconcave structure into constraints. From
the formulation, it is clear that the objective function
value 41/n5

∑n
j=1 ajyj of problem (6) at any feasible

point 4�1X1y5 is no greater than ḡn4�1X5, and more-
over, the constraints defined by (7) are tight at the
optimal solution of problem (6).

Suppose 4�01X05 is a feasible solution of prob-
lem (5), i.e., 4�01X05 ∈ M × X. It follows from con-
straint (7) that if we fix 4�1X5 at 4�01X05, to obtain
the optimal objective value of problem (6), we should
set yj as the values

sj = exp8− 1
2 4�j −�05

TX04�j −�05+
1
2 log detX09

for all j = 11 0 0 0 1n. It is immediately seen that sj > 0
for all j = 11 0 0 0 1n and

ḡn4�01X05=
1
n

n
∑

j=1

ajsj 0

Suppose now we fix � = �0 and only change X
and y to improve the objective function of prob-
lem (6). We linearize log yj by a first-order Taylor
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expansion at yj = sj and then solve the following opti-
mization problem:

max
1
n

n
∑

j=1

ajyj (8)

s.t. log sj +
1
sj
4yj − sj5≤ −

1
2
4�j −�05

TX4�j −�05

+
1
2

log detX1 j = 11 0 0 0 1n1

4X1y5 ∈X× <
n0

Because log yj is a concave function, we have

log yj ≤ log sj +
1
sj
4yj − sj5 for any yj ∈ <0

Therefore, for any feasible solution 4X1y5 of prob-
lem (8), 4�01X1y5 is also a feasible solution of prob-
lem (6). Furthermore, note that 4X01 s11 0 0 0 1 sn5 is a
feasible solution of problem (8). Therefore, the opti-
mal solution of problem (8) is at least as good as
4X01 s11 0 0 0 1 sn5. Therefore, we may solve problem (8)
to find an improved solution of problem (5).

Now we show how to solve problem (8) efficiently.
Let 4X11y

1
11 0 0 0 1 y

1
n5 denote an optimal solution of the

problem. Then, we must have

y1
j =

1
2 sj4−4�j −�05

TX14�j −�05+ log detX15

+ sj41 − log sj51 j = 11 0 0 0 1n0

Substituting y1
j 1 j = 11 0 0 0 1n into the formulation of

problem (8) and noting that

4�j −�05
TX4�j −�05= tr44�j −�054�j −�05

TX51

where tr4A5 denotes the trace of a matrix A, we have
that X1 is an optimal solution of the following problem:

max
X∈X

8−tr4çX5+ log detX91 (9)

where

ç=

∑n
j=1 ajsj4�j −�054�j −�05

T

∑n
j=1 ajsj

0

Note that when X is semidefinite representable,
problem (9) is known as a log-determinant maxi-
mization (abbreviated as maxdet) problem, which is
a well-known convex SDP and has been studied thor-
oughly in the literature (Vandenberghe et al. 1998).
It can be solved efficiently using MAXDET software
(Wu et al. 1996) or the convex optimization package
CVX (Grant and Boyd 2011). Recently, Wang et al.
(2009) developed a new method capable of solving
efficiently large-scale maxdet problems where the size
of the matrix can be as high as 21000 × 21000. For the
DICE model we consider in this paper, the size of

the covariance matrix is only 8 × 8. According to our
experience, a maxdet problem of this size can typi-
cally be solved within five seconds by using CVX on
a personal computer. By solving problem (9), we can
easily obtain X1.

Following the same procedure, we may fix X = X0
and solve

max
�∈M

8− 1
2�

TX0�+V TX0�9 (10)

with

V =

∑n
j=1 ajsj�j
∑n

j=1 ajsj

to find �1, and we can show that 4�11X05 is at least
as good as 4�01X05. Note that problem (10) is a stan-
dard convex quadratic program. It can be solved very
efficiently by commonly used convex optimization
solvers (Boyd and Vandenberghe 2004).

3.2.2. Algorithm SQMP and Its Properties. We
have shown that we can improve any solution 4�01X05
by changing one argument at a time. This motivates
us to use an iterative algorithm that changes � and
X subsequently in each iteration to find better solu-
tions of problem (5). We call this algorithm Sequential
Quadratic and Maxdet Programs (SQMP).

Algorithm SQMP
Step 0. Give an initial point 4�01X05 ∈ M × X, and

set k = 0.
Step 1. Let

tkj = exp8− 1
2 4�j −�k5

TXk4�j −�k5+
1
2 log detXk9

for all j = 11 0 0 0 1n. Set k = k+ 1, compute

Vk =

∑n
j=1 aj t

k−1
j �j

∑n
j=1 aj t

k−1
j

1

and let �k ∈ arg max8� ∈M2 −
1
2�

TXk−1�+V T
k Xk−1�9.

Step 2. Let

skj = exp8− 1
2 4�j −�k5

TXk−14�j −�k5+
1
2 log detXk−19

for all j = 11 0 0 0 1n. Compute

çk =

∑n
j=1 ajs

k
j 4�j −�k54�j −�k5

T

∑n
j=1 ajs

k
j

1

and let Xk ∈ arg max8X ∈ X2 − tr4çkX5 + log detX9.
Go to Step 1.

Note that Algorithm SQMP may start from any
4�01X05 ∈ M × X. Furthermore, note that we do not
specify a stopping criterion. In practice, one may stop
the algorithm if the difference between ḡn4�k1Xk5 and
ḡn4�k−11Xk−15 is within a certain tolerance level or
4�k1Xk5 is a stationary point within a certain tolerance
level.

Because Algorithm SQMP solves a sequence of
standard convex quadratic programs and maxdet
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problems, it is computationally very efficient and it
can be implemented easily. Besides the ease of imple-
mentation, the algorithm also has many good theoret-
ical properties. We summarize them in the following
theorem. The proof of the theorem is based on the
proof of a similar result for DC (i.e., difference of con-
vex functions) programs in Hong et al. (2011) and it
is included in the electronic companion to this paper.

Theorem 1. Suppose that 84�k1Xk51 k = 1121 0 0 09 is
a sequence of solutions generated by Algorithm SQMP
when it is applied to solve problem (5) starting from a
feasible solution 4�01X05. Then, it satisfies the following
properties:

1. 4�k1Xk5 is a feasible solution of problem (5), i.e.,
4�k1Xk5 ∈M×X, for all k = 1121 0 0 0 0

2. 8ḡn4�k1Xk51 k = 0111 0 0 09 is a nondecreasing conver-
gent sequence.

3. If 4�k+11Xk+15 6= 4�k1Xk5, then ḡn4�k+11Xk+15 >
ḡn4�k1Xk5; otherwise, 4�k1Xk5 is a stationary point of
problem (5).

4. All cluster points of 84�k1Xk51 k = 0111 0 0 09 are
stationary points of problem (5). Furthermore, if prob-
lem (5) has only a finite number of stationary points, then
84�k1Xk51 k = 0111 0 0 09 converges to a stationary point.

The first property of Theorem 1 shows that the
solutions generated by Algorithm SQMP are all feasi-
ble solutions of problem (5); therefore, ḡn4�k1Xk5 pro-
vides a lower bound on the optimal objective value
for all k = 0111 0 0 0 0 The second and third proper-
ties show that Algorithm SQMP keeps improving the
quality of the solutions unless the current solution is
already a stationary point of problem (5). Therefore,
the solutions found in later iterations are guaranteed
better than the initial solution 4�01X05, unless 4�01X05
is already a stationary point.

The fourth property of Theorem 1 is the most
important property of the four. It shows that Algo-
rithm SQMP indeed has the desired convergence
property. Furthermore, it shows that the sequence of
solutions generated by Algorithm SQMP converges
to a stationary point as long as problem (5) has only
a finite number of stationary points. Although prob-
lem (5) is not provably convex, it may have only one
stationary point or one stationary point that is bet-
ter than the initial solution 4�01X05. Then, Algorithm
SQMP guarantees to converge to the point.

The fourth property also reveals that Algorithm
SQMP may not be able to find a global optimal
solution of problem (5), especially when there are
multiple stationary solutions having higher objective
values than the starting solution. This is a drawback
of the algorithm. However, given that problem (5) is
a nonconvex SDP, this hurdle appears very difficult to
overcome. Note that, in environmental modeling, the
starting solution is often the best estimate of 4�1è5.

The stationary solution found by the algorithm at
least provides some information on the robustness
of the model locally at the starting solution. Further-
more, if the model is not robust based on the sta-
tionary solution, it is clearly not robust based on the
global optimal solution. Therefore, Algorithm SQMP
may be used to screen out some no-robust models.
As we point out in the introduction, environmental
policy making is very complicated and often con-
cerns a wide range of objectives. We believe that
our algorithm provides information on the robustness
of the model that is currently missed and ought to
be included in environmental modeling. To further
improve the performance of the algorithm, we may
apply the algorithm on multiple well-spread starting
solutions and use the one with the highest objective
value to assess the robustness of the model.

Because problem (5) is a nonconvex SDP, it can-
not be solved by commonly used SDP solvers such as
CVX and SeDuMi. This is the reason why we develop
Algorithm SQMP. Our goal is to develop an algo-
rithm that can solve the problem efficiently using these
solvers so that it may be implemented by environmen-
tal modelers and policy makers who typically have
very limited knowledge on optimization. There may
exist other algorithms that are capable of solving prob-
lem (5), although we have not found any in the liter-
ature. These algorithms nevertheless may require spe-
cial techniques or tools that are beyond the knowledge
of typical environmental modelers and policy makers.

We implement Algorithm SQMP using Matlab and
call the CVX package to solve the convex quadratic
program and the maxdet problem in each iteration
of the algorithm. We apply our algorithm on three
test problems on a laptop computer with Intel(R)
Core(TM)2 Duo CPU (2.26 GHz, 2.27 GHz) and 4 GB
of RAM, and report all the results in the electronic
companion to this paper. For all three test problems,
our algorithm works well in finding the worst-case
performances when there is ambiguity in specify-
ing the MVN distribution. The test results also show
that input ambiguity is very important to simula-
tion studies, and ignoring it may lead to unreliable
conclusions.

4. Robustness of the DICE Model
In this section, we apply the approach developed in
§§2 and 3 to study the robustness of the DICE model
on five representative global warming policies: no
controls policy, 2 × CO2 policy, 2�C increase policy,
Stern review, and Gore proposal, as introduced in §1.
Among these five polices, the first belongs to the class
of no control polices, the second and third belong
to the class of moderately tight polices, and the last
two belong to the class of aggressive polices. Readers
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may also refer to Nordhaus (2008) for a more detailed
description of these policies.

There are eight uncertain parameters in the DICE
model. They are the rate of growth of total fac-
tor productivity g(TFP), the rate of decarbonization
g(CO2/GDP), the equilibrium temperature-sensitivity
coefficient T2 × CO2, the damage parameter Dam-
Coeff, the price of backstop technology P(back),
asymptotic global population Pop, the transfer coef-
ficient in carbon cycle CarCyc, and total resources
of fossil fuels Fosslim. The means and variances of
these parameters are estimated in Table 7-1 of Nord-
haus (2008). As pointed out by Nordhaus (2008),
these uncertain parameters have their own signs and
hence need to be truncated at zero. Furthermore,
our numerical experiments indicate that the model
cannot handle very small values (< 0075) of T2 ×

CO2. Therefore, we truncate the MVN distribution at
40101007810101010105T , where 0078 is (left) two stan-
dard deviations away from the mean of T2 × CO2.
This treatment will not cause any significant prob-
lems because the probability of the related truncation
is only 2028%.

Let �̂ and è̂ denote the estimated mean vector
and covariance matrix of the eight uncertain param-
eters provided by Nordhaus (2008). Note that the
off-diagonal elements of è̂ are set as zero because
Nordhaus (2008) did not estimate the correlations.
We generate 25,000 independent scenarios of the
eight uncertain parameters from the MVN distribu-
tion N4�̂1 è̂5. We then call the GAMS program5 of the
DICE model (DICE-2007.delta.v8) from Matlab, and
simulate the five policies simultaneously for all the
25,000 scenarios of the uncertain parameters. These
simulation results are used throughout all the experi-
ments conducted in this section.

To investigate the robustness of the DICE model,
it is important to note that the estimates of the mean
vector and covariance in Nordhaus (2008) are subjec-
tive or judgemental. We quote from Nordhaus (2008,
Chap. VII, p. 124) to emphasize this point.

We should pause to describe the nature of the proba-
bilities that are used here. These are not “objective” or
“frequentist” probabilities, 0 0 0 0 Rather, they are “sub-
jective” or “judgmental” probabilities, 0 0 0 0 Judgmental
probabilities are ones that are held by individuals and
are based on formal or informal reasoning about phe-
nomena, rather than solely on observed events.

Therefore, we believe that it is important to under-
stand how robust the results of the DICE model are.
We first analyze separately the robustness of the model
with respect to the means, variances, and covariances,
and see which contribute the most to the robustness

5 The GAMS code of the DICE model can be downloaded from
http://nordhaus.econ.yale.edu/DICE2007.htm.

of the model. We then analyze the overall robustness
by considering the mean vector and covariance matrix
simultaneously, and compare the alternative policies
based on their worst-case performances. It is worth-
while noting that the ambiguity sets that we use in all
the studies are also subjective and judgmental. How-
ever, we believe that they are suitable for understand-
ing the robustness of the DICE model.

In all the experiments reported in this section,
we always use the simulation results of the 25,000
scenarios of the random parameters generated from
N4�̂1 è̂5. We apply Algorithm SQMP to find the
worst-case distributions under various ambiguity sets
and resimulate the worst-case performances using
11,000 independent runs at the respective worst-case
distributions. Because Nordhaus (2008) has the high-
est confidence believing in the estimate 4�̂1 è̂5, we are
especially interested in the robustness of the DICE
model at this estimate. Therefore, except otherwise
mentioned, we always use 4�̂1 è̂5 as the starting solu-
tion for Algorithm SQMP.

4.1. Performance Measures
Making global warming polices is an extremely com-
plicated multiobjective problem. There are a great
number of performance measures that people may
be interested in, and different people may emphasize
different aspects. A full discussion of all these per-
formance measures is beyond the knowledge of the
authors and clearly out of the scope of this paper.
In this paper, we consider only three types of perfor-
mance measures: (1) the average net present values
(NPV, trillions of 2005 U.S. dollars) of abatement costs
and climate damages; (2) the average global tempera-
ture increases (GTI, �C) by 2,105 from the preindustrial
level; and (3) the probabilities that the GTI by 2,105
exceeds 2�C, 3�C, and 4�C. Because the DICE model
conducts a standard expected cost-benefit analysis, the
first two performance measures are often used. In par-
ticular, NPVs are often used to compare different poli-
cies. However, a major concern or reservation about
the DICE model is perhaps that such a cost-benefit
analysis would fail when human beings might suffer
an indefinitely large loss from abrupt climate changes,
where an abrupt climate change is defined as a large-
scale change in the climate system that takes place
over a few decades or less, persists (or is anticipated
to persist) for at least a few decades, and causes sub-
stantial disruptions in human and natural systems
(U.S. Climate Change Science Program 2008). In global
warming literature, there has been extensive research
on the temperature change threshold that may trigger
abrupt climate changes. Plentiful investigations sup-
port that 2�C above the preindustrial level can be the
threshold. For instance, in a recent expert elicitation,
significant probability was attached to the possibility
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Table 1 Performance Measures of the DICE Model Under N4�̂1 è̂5

Policy Avg. NPV Avg. GTI P(GTI> 2) P(GTI> 3) P(GTI> 4)

No controls 24064 3017 00900 00574 00177
2×CO2 20089 2037 00739 00144 <00001
2�C increase 27027 NA 00000 00000 00000
Stern review 38053 1054 00113 00007 <00001
Gore proposal 53067 1049 00107 00000 00000

of crossing major tipping points in the climate sys-
tem (that would yield specific abrupt changes) for a
warming of above 2�C (Kriegler et al. 2009), and more
recently, Bahn et al. (2011) provide a warming tar-
get close to 2�C by 2,100 to avoid a particular tip-
ping point in the climate system (namely, a collapse of
the Atlantic thermohaline circulation). Nevertheless,
there are also considerable studies suggesting that the
threshold can be as high as 4�C above the preindustrial
level. For instance, the United Kingdom’s Met Office
Hadley Centre prepared a map depicting some of the
impacts that may occur if the temperature increases
by 4�C.6 In our study, we report the probabilities of
the GTI by 2,105 exceeding 2�C, 3�C, as well as 4�C
to measure the risk of abrupt climate changes. It is
worthwhile noting that these probabilities are not con-
sidered in Nordhaus (2008).

In Table 1 we report the estimated values of the per-
formance measures for the DICE model under the
MVN distribution N4�̂1 è̂5. If we only compare the
NPVs of various policies, one may falsely conclude
that, facing global warming, the no controls policy
is a competitive policy because its NPV is less than
not only the Stern review and Gore proposal but also
the 2�C increase policy proposed by the Copenhagen
Accord, and only higher than the 2 × CO2 policy. If
the risks of abrupt climate changes are taken into con-
sideration, however, the no controls policy is clearly a
dangerous policy. Its temperature increase by 2,105 is
very likely to exceed 2�C and has a significant proba-
bility of exceeding 4�C, representing a risk level that is
too high to be acceptable. The 2 × CO2 policy has the
lowest NPV and a negligible probability of exceed-
ing 4�C, although its probability of exceeding 2�C is
very large. The 2�C increase policy of the Copenhagen
Accord has a higher NPV than the 2 × CO2 pol-
icy, but its tight temperature control leads to a zero
probability of exceeding 2�C. The NPVs of the Stern
review and Gore proposal policies appear too high
to be competitive compared to the 2 × CO2 and 2�C
increase policies. The results reported in Table 1 are
obtained without considering the robustness of the
model. They serve as benchmarks when the robust-
ness is considered.

6 See http://www.actoncopenhagen.decc.gov.uk/en/ambition/
evidence/4-degrees-map/ (last accessed August 1, 2012).

4.2. Mean Robustness
We begin by studying the mean robustness for the
DICE model. Because the estimates of Nordhaus
(2008) are subjective or judgemental, to model the
ambiguity of the means of the parameters, we first
suppose there exists a 10% estimation error for the
mean vector and set the ambiguity set as M̂ =

8�2 009�̂≤�≤ 101�̂9. We fix the covariance matrix è=

è̂ and let the mean vector vary in M̂, and we report
the worst-case outputs in Table 2.

To view the change of worst-case performances
more explicitly, we define the sensitivity ratio (SR) for
a given performance measure and a given ambiguity
set as

SR =
WEP − NEP

NEP
1

where WEP denotes the worst-case expected per-
formance when the distribution varies in the given
ambiguity set and NEP denotes the nominal expected
performance, i.e., the expected performance when the
distribution is N4�̂1 è̂5. It is worthwhile noting that
the definition of SR is not new. Similar notions have
been introduced in the portfolio optimization litera-
ture to study the effects of errors in random distri-
butions on optimal portfolio choice (see, for instance,
Chopra and Ziemba 1993). Together with the consid-
ered ambiguity sets, the SR helps better understand
the sensitivity/robustness of the performances.

In Table 2, columns 1, 3, 5, 7, and 9 show the worst-
case values of the considered performance measures,
and columns 2, 4, 6, 8, and 10 show the correspond-
ing SR values. Our first finding from the simulation
study is that the DICE model is indeed sensitive to
the means of the uncertain parameters. For the given
10% perturbation of the mean vector of the MVN dis-
tribution, the worst-case average NPVs are 30%–60%
higher than the current average NPVs for all the poli-
cies and the worst-case probabilities also show sig-
nificant changes for some policies. Specially, we note
that the worst-case probability of GTI exceeding 4�C
for the no controls policy has almost doubled. The
sensitivity of average GTI shows a similar pattern
compared to that of the average NPV, except that the
changes are not as dramatic. This is to some extent
reasonable as the global temperature cannot vary too
much. Our second finding is that different perfor-
mance measures may attain their worst cases at quite
different points in the ambiguity sets. For instance, if
we consider the mean of the total factor productivity
g(TFP), maximizing the NPV pushes it to its lower
bound, whereas maximizing the GTI or probabilities
pushes it to the upper bound. This is because the NPV
consists of both climate damages and abatement costs.

Because the SR values for the 10% perturbation
ambiguity set are large, we change the size of the
ambiguity set by reducing the perturbation to 5%, and

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
02

 S
ep

te
m

be
r 

20
14

, a
t 2

2:
39

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Hu, Cao, and Hong: Robust Simulation of Global Warming Policies Using the DICE Model
2202 Management Science 58(12), pp. 2190–2206, © 2012 INFORMS

Table 2 Worst-Case Performance for � ∈ M̂ and è= è̂

Policy Avg. NPV SR (%) Avg. GTI SR (%) P(GTI> 2) SR (%) P(GTI> 3) SR (%) P(GTI> 4) SR (%)

No controls 36058 48046 3061 13088 00949 5044 00752 31001 00351 98.31
2×CO2 30043 45067 2056 8002 00826 11077 00263 82064 <0001 NA
2�C increase 42057 56011 NA NA 00000 NA 00000 NA 00000 NA
Stern review 57007 48012 1068 9009 00218 92092 00017 142086 <00001 NA
Gore proposal 71075 33069 1064 10007 00254 137038 00000 NA 00000 NA

we report the results in Table 7 in the electronic com-
panion to this paper. Table 7 shows that even for the
case of 5% error, the changes are still significant. This
further confirms that the DICE model is sensitive to
the estimation of the means. We also considered a
larger ambiguity set where the perturbation is set as
20%. For this case, as expected, we observed changes
that are more significant than the ones reported in
Table 2.

4.3. Variance Robustness
As Nordhaus (2008) suggests that the eight uncertain
parameters are independent, we first consider this
independent case. For this case, it is natural to con-
sider the robustness of the DICE model with respect
to the variances of the uncertain parameters. To study
the variance robustness, we fix the correlations at
the nominal estimate zero and consider the following
ambiguity set

Ŝ1 =
{

è2 005è̂ii ≤èii ≤ 102 è̂ii1

èij = 01 i 6= j1 i1 j = 11 0 0 0 18
}

0

As discussed in §2.2.2, Ŝ1 models the situation where
the uncertain parameters are independent and their
variances can vary in certain intervals. Note that, in
his estimation of the variances, Nordhaus (2008) has
already significantly enlarged some of the variances
because he believes that “the empirical estimates of
those variances are likely to underestimate the uncer-
tainty” (p. 126). Therefore, to take his adjustments
into consideration, we allow the variances to go down
more than they can go up in Ŝ1. Furthermore, the
upper bounds used in Ŝ1 may not be further enlarged
because larger variances may cause certain truncation
problems.

We make robustness analysis for Ŝ1 by fixing
�= �̂, and we summarize the results in Table 3. We
first look at the average NPV and average GTI. From

Table 3 Worst-Case Performance for �= �̂ and è ∈ Ŝ1

Policy Avg. NPV SR (%) Avg. GTI SR (%) P(GTI> 2) SR (%) P(GTI> 3) SR (%) P(GTI> 4) SR (%)

No controls 24065 0004 3018 0032 00954 6000 00593 3031 00199 12.43
2×CO2 20073 −0077 2042 2011 00827 11091 00179 24031 <00001 NA
2�C increase 27053 0095 NA NA 00000 NA 00000 NA 00000 NA
Stern review 39001 1025 1057 1095 00126 11050 00008 14029 <00001 NA
Gore proposal 55038 3019 1048 −0067 00138 28097 00000 NA 00000 NA

Table 3, we see that the worst-case performances of
these two measures are very close to the average
cases. Considering the simulation noise, it is indeed
difficult to identify such differences. Note that, for
the average NPV of the 2 × CO2 policy and aver-
age GTI of the Gore proposal, we even obtain neg-
ative changes, for which an intuitive explanation is
that the response surfaces are too flat with respect to
the design variables and the estimation errors may
sometimes dominate the small differences. The above
finding suggests that if the independence assump-
tion of Nordhaus (2008) holds, then the variances of
the uncertain parameters may have very little impact
on the average NPV and average GTI of the DICE
model. It essentially provides a theoretical support to
the observation of Nordhaus (2008, p. 136) that “the
estimates in the certainty-equivalents model are very
close to the estimates in the uncertainty model.”

However, this conclusion does not necessarily hold
for all the performance measures. From Table 3, we
observe that the probabilities may have substantial
changes. An intuitive explanation of this observation is
that the GTI may exhibit a certain level of symmetry, so
that its expectation may not be affected by the increase
of its variance but its tail probabilities may.

We also further enlarge the upper bounds of the vari-
ances in Ŝ1 to 105 times of the nominal estimates (with
the risk of some truncation problems) and summarize
the results in Table 8 in the electronic companion to
this paper. From the table, we find that the worst-case
performances of the measures show a similar pattern.
Because ±50% is a considerably large perturbation,
these results reinforce the robustness assertion for the
variances when the independence assumption holds.

4.4. Covariance Robustness
We have discussed the variance robustness for the
independent case. However, as mentioned in the intro-
duction, the independence has not been validated
and there may exist nontrivial dependence among the
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Table 4 Worst-Case Performance for �= �̂ and è ∈ Ŝ2

Policy Avg. NPV SR (%) Avg. GTI SR (%) P(GTI> 2) SR (%) P(GTI> 3) SR (%) P(GTI> 4) SR (%)

No controls 26069 8032 3018 0032 00956 6022 00599 4036 00203 14.69
2×CO2 22084 9033 2042 2011 00831 12045 00182 26039 <00001 NA
2�C increase 29030 7044 NA NA 00000 NA 00000 NA 00000 NA
Stern review 42068 10077 1057 1095 00153 35040 00011 57014 <00001 NA
Gore proposal 58072 9041 1049 0000 00134 25023 00000 NA 00000 NA

parameters. In what follows we study the covariance
(variances plus correlations) robustness for the DICE
model. The effects of the correlations among the ran-
dom parameters are more complicated, and they are
often ignored by environmental modelers. As has been
emphasized multiple times, in his Monte Carlo study,
Nordhaus (2008) assumed that the eight parameters in
the DICE model are independent. He then estimated
the distributions for these parameters separately with-
out taking into account the possible correlations. In
this subsection, we investigate the robustness of the
DICE model to the covariances using two ambiguity
sets introduced in §2.2. The first one is

Ŝ2 = 8è2 005è̂�è� 102è̂91

whose upper and lower bounds are set based on the
same logic used in setting the bounds in Ŝ1. However,
compared to Ŝ1, Ŝ2 is a bigger set and it allows the
correlations to take nonzero values. The second one is

Ŝ3 = 8è2 èii ≤ è̂ii1 i = 11 0 0 0 181 è� 005è̂90

As discussed in §2.2.2, Ŝ3 essentially loosens the
restriction on the dependence among parameters and
thus can be used to examine specifically the effects
of the correlations. In Ŝ3, we set the lower bound of
the covariance matrix as 005è̂ based on the same logic
used in setting the lower bounds in Ŝ1.

We compute the worst-case performances for Ŝ2

and Ŝ3 and summarize the results in Tables 4 and 5,
respectively. From the tables, we find that the covari-
ances have a significant impact on the average NPV
and the probabilities of various temperature increases.
It suggests that the performance measures of the
DICE model, especially the average NPV, may take a
quite nonlinear form with respect to the eight param-
eters. Now let us take a closer look at these results.
Comparing Ŝ1 and Ŝ2, we see that the two sets have

Table 5 Worst-Case Performance for �= �̂ and è ∈ Ŝ3

Policy Avg. NPV SR (%) Avg. GTI SR (%) P(GTI> 2) SR (%) P(GTI> 3) SR (%) P(GTI> 4) SR (%)

No controls 32013 30040 3026 2084 00959 6056 00600 4053 00214 20.90
2×CO2 25065 22079 2044 2095 00836 13013 00199 38019 <00001 NA
2�C increase 33047 22074 NA NA 00000 NA 00000 NA 00000 NA
Stern review 49020 27069 1060 3090 00202 78076 00018 157014 <00001 NA
Gore proposal 68011 26091 1050 0067 00155 44086 00000 NA 00000 NA

the same range for the variances, but Ŝ2 allows the
correlations to have some freedom perturbing around
zero. Consequently, the changes of worst-case perfor-
mances for Ŝ2 are much more significant than that
for Ŝ1. Coming to Ŝ2 and Ŝ3, the range of the vari-
ances for Ŝ3 is smaller than that for Ŝ2, whereas
Ŝ3 allows the correlations to have more freedom to
perturb. As a result, the changes of worst-case per-
formances for Ŝ3 are much more significant than that
for Ŝ2. These facts suggest that the correlations play
a critical role in the changes.

4.5. Overall Robustness
The above analysis has shown us that the specifica-
tion of the MVN distribution has a significant impact
on the simulation outputs of the DICE model. In this
subsection, we examine an overall robustness by con-
sidering both the mean and covariance ambiguities
simultaneously and see how it affects the simulation
outputs. We let the mean vector and covariance
matrix vary in M̂ × Ŝ2. Note that the ambiguity set
M̂× Ŝ2 requires the most computational effort for
running Algorithm SQMP among all the considered
situations. For this set, if we stop the algorithm when
the difference between the objective values of two
consecutive iterations is less than 0001 for NPV and
0.001 for GTI and the probabilities, Algorithm SQMP
typically terminates in 10–50 iterations with compu-
tational time typically varying in two to eight min-
utes. We summarize the worst-case performances in
Table 6. From the table, we find that the worst-case
performances are even more different from the aver-
age performances reported in Table 1.

Looking at all the results reported in Tables 2–8, we
find that the relative preferences of the five policies do
not change much in the worst cases for all the ambi-
guity sets that we considered, compared to the results
reported in Table 1. This further supports Nordhaus’
claim that moderately tight polices, e.g., the 2 × CO2
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Table 6 Worst-Case Performance for 4�1è5 ∈ M̂× Ŝ2

Policy Avg. NPV SR (%) Avg. GTI SR (%) P(GTI> 2) SR (%) P(GTI> 3) SR (%) P(GTI> 4) SR (%)

No controls 39064 60088 3078 19024 00981 9000 00821 43003 00395 123.16
2×CO2 32005 53042 2061 10013 00916 23095 00315 118075 <0001 NA
2�C increase 45096 68054 NA NA 00000 NA 00000 NA 00000 NA
Stern review 62012 61023 1074 12099 00252 123001 00016 128057 <00001 NA
Gore proposal 73088 37066 1068 12075 00277 158088 00000 NA 00000 NA

and 2�C increase policies, are more preferable because
they incur moderate costs but have the global warm-
ing under control.

4.6. Conclusions and Suggestions
Because of the lack of data and the lack of precise
understanding of the complex climate systems, there
is considerable amount of ambiguity in climate mod-
eling, which may have significant impacts on global
warming studies and policy makings. In this paper,
we take a robust approach to handling the ambigu-
ity in the DICE model. Based on our investigations,
we have the following suggestions:

• Whereas our primary study shows the DICE
model is relatively robust to the variances when the
independence assumption that is implicitly taken in
Nordhaus (2008) holds, the DICE model is sensitive
to the mean vector and covariance matrix (correla-
tions play an important role). This suggests that (1)
to improve the effectiveness and reliability of the
model, superior effort needs to be spent on improv-
ing the estimates of the means; and (2) the indepen-
dence assumption needs more scientific justifications.
If there is no ground for assuming independence,
then dependence among those key uncertain param-
eters should be considered into the global warming
modeling as such dependence may have a significant
impact on global warming decision making, though
we believe this would be challenging.

• Although the values may change significantly
for all three types of performance measures, these
changes in general do not alter our preferences over
different policies, i.e., the rankings of the policies are
robust with respect to the ambiguities of both mean
vector and covariance matrix. Therefore, we can say
that the DICE model is relatively robust in comparing
alternative policies.

• As emphasized in Nordhaus (2008), aggressive
global warming policies such as the Stern review and
Gore proposal are cost ineffective. Such ineffective-
ness is enlarged significantly when the ambiguity of
distribution is taken into consideration. On the other
hand, no control policies may have high risks of caus-
ing abrupt climate changes, and thus facing global
warming, doing nothing is by no means a rational
response. Essentially, our analysis supports the poli-
cies with moderately tight climate limits, such as the
2 × CO2 policy and 2�C increase policy.

• For the two policies with moderately tight cli-
mate limits, the 2�C increase policy is suggested in
the Copenhagen Accord, whereas the 2 × CO2 pol-
icy has not attracted that much attention. The most
important merit of the 2�C increase policy may be
that it can totally control the risk of global warming.
Yet, according to our study, the 2�C constraint may be
a little binding and will incur a moderate cost. The
incurred cost may be enlarged by the ambiguity of
random parameters. On the other hand, the 2 × CO2
policy, which limits atmosphere CO2 concentration to
560 ppm, is more cost-effective than the 2�C increase
policy in both average case and worst case. If the 2 ×

CO2 policy is used, it is unlikely that global temper-
ature increase will exceed 4�C. Nevertheless, there is
a significant probability that the temperature increase
will exceed 2�C, and a moderate probability that the
temperature increase will exceed 3�C.

• Ambiguity should be taken into consideration
not only in the process of making global warming
policies but also in the process of implementing these
policies. Because our understanding of climate sys-
tems may change, the ambiguity in environmental
modeling may also change. Policy makers and pol-
icy implementers need to constantly monitor these
changes and adjust their policies accordingly.
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Appendix. Convergence of Sample-Average
Approximation
For simplicity of the notation, we let

L4�1X1�5

= 42�5−d/2 c4�5

f 4�5
exp

{

−
1
2
4� −�5TX4� −�5+

1
2

log detX
}

0
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It is easy to verify that, for every � ∈ <d , L4�1X1�5 is con-
tinuously differentiable on M×X. Let “ï�” denote the gra-
dient of a function with respect to � and “ïX” denote the
derivative of a function with respect to the matrix X. Note
that ïX log detX =X−1. Then, by the chain rule we have

ï�L4�1X1�5= 42�5−d/2 c4�5

f 4�5

· exp
{

−
1
2
4� −�5TX4� −�5+

1
2

log detX
}

X4� −�51

and

ïXL4�1X1�5

= 42�5−d/2 c4�5

f 4�5
exp

{

−
1
2
4� −�5TX4� −�5+

1
2

log detX
}

·

[

−
1
2
4� −�54� −�5T +

1
2
X−1

]

0

With a slight abuse of the notation, in what follows we
let � · � denote both the Euclidean norm in <d and the
Frobenius norm in the symmetric matrix space �d . We make
the following assumption on L4�1X1�5:

Assumption 1. There exist measurable functions Di4 · 51 i =

112, such that Ef 6Di4�57 <�1 i = 112, and

�ï�L4�1X1�5� ≤D14�51 ∀ 4�1X5 ∈M×X1 ∀� ∈ <
d3

�ïXL4�1X1�5� ≤D24�51 ∀ 4�1X5 ∈M×X1 ∀� ∈ <
d0

Assumption 1 states that 8�ï�L4�1X1�5�94�1X5∈M×X and
8�ïXL4�1X1�5�94�1X5∈M×X are dominated by some integrable
functions. It is a standard assumption for the convergence
of the SAA (see, e.g., Shapiro et al. 2009). In our problem,
it turns out to be a very weak assumption. For instance,
for any convex compact ambiguity sets M and S, where S
corresponds to X in Assumption 1, we have the following
proposition.

Proposition 1. Suppose there exist � > 0, �s ∈ <d , and èu ∈

�d
++, such that è�èu for all è ∈S, and E4�s1èu5

6c1+�4�57 <�.
Then Assumption 1 holds for any density f .

For Proposition 1, because S is a compact set in �d
++, it

is easy to find the matrix èu. Therefore, we only need to
verify the condition E4�s1èu5

6c1+�4�57 <�. This is, of course,
a very weak condition. Note that Proposition 1 does not
impose any restriction on the choice of density f 4 · 5. As
shall be seen, in our considered situations, any density f 4 · 5
that satisfies f 4x5 > 0 for all x ∈ <d can be used to ensure
the convergence of the SAA.

For any sets MA ×XA, MB ×XB ⊂ <d ×�d , we let

dist44�1X51MA×XA5= inf
4�′1X′5∈MA×XA

4��−�′
�

2
+�X−X ′

�
251/2

denote the distance from 4�1X5 ∈ <d ×�d to MA ×XA, and
let

�4MA ×XA1MB ×XB5= sup
4�1X5∈MA×XA

dist44�1X51MB ×XB5

denote the deviation of the set MA ×XA from the set MB ×

XB . Let v̄n and S̄n denote the optimal objective value and

the set of optimal solutions, respectively, of problem (5), and
let v and S denote the optimal objective value and the set
of optimal solutions, respectively, of problem (4). Then, we
have the following theorem on the convergence of the SAA.

Theorem 2. Suppose that Assumption 1 is satisfied. Then,
S is nonempty and S̄n are nonempty for all n, and, with proba-
bility 1 (w.p.1), v̄n → v and �4S̄n1 S5→ 0 as n→ �.

Theorem 2 shows that the optimal solutions of prob-
lem (5) provide good approximations to the optimal solu-
tions of problem (4) when n is large. Therefore, we can
solve problem (5) to approximate the optimal solutions of
problem (4).

Note that problem (5) may not be a convex optimization
problem, because ḡn4�1X5 may not be concave (or quasi-
concave). Then, finding an optimal solution to problem (5)
may be difficult. We often only find stationary points of
problem (5). Then, the conclusions of Theorem 2 may not
be applicable. Therefore, we need to investigate the conver-
gence of stationary points of the SAA.

Consider the convex compact subsets M of <d and X of
�d

++. Denote by NM4�5 the normal cone of M at a point � ∈

M and by NX4X5 the normal cone of X at a point X ∈X, i.e.,

NM4�5= 8z ∈ <
d2 zT 4�′

−�5≤ 01 ∀�′
∈M91

NX4X5= 8Z ∈ Sd2 tr4Z4X ′
−X55≤ 01 ∀X ′

∈X90

Recall that a point 4�1X5 ∈ M × X is a stationary point of
problem (4) if ï�g4�1X5 ∈ NM4�5 and ïXg4�1X5 ∈ NX4X5,
and is a stationary point of problem (5) if ï�ḡn4�1X5 ∈

NM4�5 and ïX ḡn4�1X5 ∈ NX4X5. Let K and K̄n denote the
sets of stationary points of problems (4) and (5), respec-
tively. Then, we have

K=84�1X5∈M×X2 ï�g4�1X5∈NM4�51ïXg4�1X5∈NX4X591

K̄n =
{

4�1X5 ∈M×X2 ï�ḡn4�1X5 ∈NM4�51

ïX ḡn4�1X5 ∈NX4X5
}

0

The next theorem is parallel to Theorem 2. It ensures that
the stationary points of the SAA are also good approxima-
tions to those of problem (4).

Theorem 3. Suppose that Assumption 1 is satisfied. Then, K
is nonempty and K̄n are nonempty for all n, and �4K̄n1K5 → 0
w0p01 as n→ �.

Remark 1. For nonlinear stochastic programs, the con-
vergence of the set of Karush–Kuhn–Tucker points of the
SAA is discussed by Shapiro et al. (2009) under the frame-
work of stochastic generalized equations. In Theorem 3,
we extend their result to semidefinite stochastic programs.

Because both problem (4) and its SAA are nonconvex
optimization problems, we cannot guarantee to find their
global optimal solutions. Therefore, we take one step back
and try to find a good local optimal solution. Theorem 3
shows that, if we can find a local optimal solution of prob-
lem (5), it provides a good approximation to a local optimal
solution of problem (4).
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