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Response surface methodology (RSM) is a widely used method for simulation optimization. Its strategy is
to explore small subregions of the decision space in succession instead of attempting to explore the entire

decision space in a single attempt. This method is especially suitable for complex stochastic systems where little
knowledge is available. Although RSM is popular in practice, its current applications in simulation optimization
treat simulation experiments the same as real experiments. However, the unique properties of simulation experi-
ments make traditional RSM inappropriate in two important aspects: (1) It is not automated; human involvement
is required at each step of the search process; (2) RSM is a heuristic procedure without convergence guarantee;
the quality of the final solution cannot be quantified. We propose the stochastic trust-region response-surface
method (STRONG) for simulation optimization in attempts to solve these problems. STRONG combines RSM
with the classic trust-region method developed for deterministic optimization to eliminate the need for human
intervention and to achieve the desired convergence properties. The numerical study shows that STRONG can
outperform the existing methodologies, especially for problems that have grossly noisy response surfaces, and
its computational advantage becomes more obvious when the dimension of the problem increases.
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1. Introduction
Stochastic optimization refers to the minimization
(or maximization) of a function in the presence of
randomness; this optimization in practice has wide
applications. For example, a financial manager may
want to design an optimal portfolio to maximize
the expected total profits with stochastic asset prices;
a production manager may want to decide on an opti-
mal production plan to minimize the expected inven-
tory cost with stochastic customer demands; and an
engineer may want to determine the safety param-
eters so as to optimize the design of a vehicle with
stochastic operational conditions.

Among the stochastic optimization problems, some
applications have (deterministic) closed-form objec-
tive functions and can be solved in minutes by tra-
ditional linear or nonlinear optimization techniques,

such as portfolio optimization. Others, however, may
have little knowledge of the structure of objective
functions and require real experiments that may take
days or even months to solve, for example, the vehicle
collision tests. Statistical methods such as metamodel-
based strategies that require only running experi-
ments on solutions are designed to solve these types
of problem (Barton and Meckesheimer 2006). Simula-
tion optimization problems are in between those men-
tioned. The objective function in these problems can
be evaluated only by stochastic simulation. A stochas-
tic simulation model is a simplified representation
of the actual system. A credible simulation model
accounts for details that are important to system per-
formance. In contrast with real experiments, the sys-
tem’s mechanisms or dynamics to be simulated are
usually known because discrete-event simulation is a
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bottom-up approach, but there is no closed form for
the objective function.

Much literature has discussed the methodology
development of simulation optimization, for example,
Banks (1998), Fu (2002), Tekin and Sabuncuoglu
(2004), and Fu (2006). Stochastic approximation (SA)
(Kiefer and Wolfowitz 1952) is among the most popu-
lar and well-studied methods. One significant advan-
tage of SA is that it is conceptually easy to implement.
Moreover, it has a provable convergence guarantee
under regularity conditions (Kushner and Yin 1997).
However, the convergence of SA is typically slow
in practice, and the performance of the algorithm is
highly sensitive to the setting of the gain sequence
(Andradóttir 2007), which is hard to tune without
prior knowledge of the objective function. Some SA
variants with improved computational performance
have been discussed, for example, in Ljung et al.
(1992), Yin and Zhu (1992), and Spall (2000). Many
metaheuristics are also developed for black-box prob-
lems. For example, the Nelder-Mead simplex method
is a direct-search-based method that has been widely
used in practice (Barton and Ivey 1996); others include
genetic algorithm, tabu search, and scatter search. Dif-
ferent metaheuristics suit different problems. Their
disadvantages are that they may require excessive
computing time; moreover, they usually have no con-
vergence guarantees (Spall 2003, Sakalauskas and
Krarup 2006, Bartz-Beielstein et al. 2010).

Currently, metamodel-based statistical methods
have been widely applied in simulation optimization
(Barton and Meckesheimer 2006). The most popu-
lar one in real-life experiments may be the response
surface methodology (RSM). As stated in Myers
et al. (2009, p. 1), “RSM is a collection of statistical
and mathematical techniques useful for developing,
improving, and optimizing processes.” The funda-
mental strategy of RSM is to sequentially approximate
the underlying response surface by low-order poly-
nomials within subregions of the domain. RSM was
originally proposed as a tool to optimize operating
conditions for a chemical process (Box and Wilson
1951) but later evolved to be a general heuristic
approach for complex systems (Kleijnen 1998, Wu and
Hamada 2000). One of the most significant advan-
tages of RSM is that it applies well-studied statis-
tical techniques, such as the design of experiments
and regression analysis, in its framework so that
it can enjoy computational efficiency when solv-
ing higher-dimensional problems. Moreover, the local
metamodel approximation approach requires little
prior knowledge about the system. The sequential
approach also makes it fit for computer experiments.
Over the past three decades, RSM has become one of
the most popular heuristics for simulation optimiza-
tion (Biles and Swain 1979, Hood and Welch 1993,

Kleijnen 2008). Full, in-depth coverage of RSM can be
found in many classic texts such as Khuri and Cornell
(1996) and Myers et al. (2009). Angün et al. (2009)
further generalize the framework of RSM, enabling it
to deal with stochastic constraints in case of multiple
stochastic responses.

Although RSM has significant advantages, its
current application in simulation optimization treats
simulation experiments the same as physical exper-
iments. However, they have unique properties that
are different from physical experiments. First, simula-
tion experiments are usually faster and less expensive.
One simulation run often takes only seconds or min-
utes, but one physical experiment may require days
or even months. Second, after the simulation model is
constructed, the simulation experiment has minimal
monetary costs, but the physical experiment can still
remain expensive. The following issues then become
relevant for the methodology of simulation optimiza-
tion: (1) Large-sample property. The algorithm is desired
to possess asymptotical convergence; that is, when
infinite computational effort is allowed, the algo-
rithm should achieve the true optimum of the orig-
inal problem of interest. Traditional RSM and other
metamodel-based algorithms are all heuristic (Barton
and Meckesheimer 2006); the quality of the final solu-
tion is not guaranteed. (2) Automation. In simulation
optimization, the number of iterations can be very
large, and thus it is impractical for the algorithm
to stop and ask for human input at each iteration,
as required in traditional RSM (note also that the
experimenter may have no idea about the location of
the optimum). Moreover, the simulation experiments
are conducted on computers, which can facilitate the
automation. An automated version of RSM is pro-
posed in Neddermeijer et al. (2000) and Nicolai et al.
(2004). As far as we know, the convergence issue is
yet to be addressed. Furthermore, in simulation stud-
ies, because the inner workings of simulation model
are often known, deriving an effective gradient esti-
mator before experimenting is possible. If this is so,
the use of gradient information can significantly help
the algorithm to achieve better performance, which is
not allowed in traditional RSM. These gaps motivate
us to develop a new RSM-based framework that is
suitable for simulation experiments and is capable of
handling problems to which existing methods are not
applicable.

We propose the stochastic trust-region response-
surface method for unconstrained simulation opti-
mization. For convenience, we refer to it as STRONG.
As an improved response surface method, STRONG
combines the advantages of traditional RSM with
the trust-region method (TRM) (Conn et al. 2000)
developed for nonlinear deterministic optimization.
The introduction of trust-region concepts helps the
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algorithm to achieve the desired convergence and
automation properties.

The basic idea of STRONG is described as fol-
lows. Similar as traditional RSM, STRONG takes a
sequential strategy in search of the optimal solu-
tion. At each iteration, a subregion is defined, called
“trust region,” where a local model, either a first-
order or a second-order polynomial, is constructed to
approximate the underlying response surface. A lin-
ear or quadratic deterministic optimization problem
is solved within the trust region. Based on quality of
the solution and fidelity of the local model, STRONG
will automatically determine whether the new solu-
tion should be accepted, select the appropriate local
model, and update the size of the trust region for the
next iteration.

STRONG is a general framework in which the
metamodel construction can be based on an exist-
ing gradient estimator (i.e., a white-box approach) or
a black-box gradient estimation. When there is no
gradient information, STRONG applies the design of
experiments (DOE) and regression analysis to con-
struct the metamodel, as traditional RSM does. On the
other hand, for simulation models that can provide
a gradient estimate, STRONG takes advantage of the
gradient information to enhance the computational
performance. We will show that STRONG can achieve
convergence based on the white-box framework. For
the black-box framework, we also show that the con-
vergence analysis is similarly applicable under the
assumption that the underlying response surface is
quadratic, and it approximates well when the trust
region is small but the underlying response surface is
not quadratic. Details will be presented in §§4 and 5.

The trust-region concept has been applied in
stochastic and simulation optimizations (e.g., Bastin
et al. 2006, Deng and Ferris 2009). These approaches
are essentially based on the sample average approxi-
mation approach (SAA), also called sample path method
or Monte Carlo sampling approach, which is a well-
recognized method in simulation optimization (Spall
2003, Fu 2002). The basic idea is to generate enough
sample paths and then to approximate the expected
value function by the sample average function. By fix-
ing a sequence of sample paths, the stochastic prob-
lem is converted to a deterministic problem and a
proper deterministic method; for example, the TRM
can be applied to solve it. Although these methods
may seem close to STRONG, there are several crucial
differences. First, the distribution of sample paths in
STRONG is allowed to vary depending on location;
in SAA, however, a fixed set of sample paths is typ-
ically used across the decision space. As a result, for
problems where the sample path is not identically dis-
tributed in the decision space, SAA may not be appli-
cable. Second, STRONG is a new RSM-based algo-
rithm that takes advantage of many well-established

statistical tools, such as the DOE technique and
regression analysis, and its computational advantage
becomes more obvious when the dimension of the
problem increases (Kleijnen et al. 2005, Sanchez 2008).
By contrast, SAA generates a sequence of sample
paths, treats the problem as a deterministic prob-
lem, and applies the existing deterministic approach
to solve the problem. For large-scale problems, this
may require generating and storing a large number of
sample paths and thus may not be efficient. Thirdly,
for problems where the gradient estimator can be
derived, such as infinitesimal perturbation analysis
(IPA) or likelihood ratio/score function (LR/SF) (Fu
2006), STRONG allows use of the existing gradient
estimator to improve the overall efficiency, which is
not possible in SAA. Section 6 will demonstrate the
computational advantages of STRONG in which both
the DOE and the trust-region updating techniques are
employed.

The remainder of this article is organized as
follows. In §2, we present the main concepts of
STRONG. Then, in §3, we detail the algorithm of
STRONG. The convergence analysis of STRONG is
presented in §4, and in §5, we discuss the DOE-based
gradient and Hessian estimators for black-box prob-
lems. In §6, we demonstrate the numerical perfor-
mances of DOE-based STRONG, and we finish with
conclusions and future research in §7.

2. Problem Definition
Consider the following simulation optimization
problem:

min
x∈�p

E6G4x571 (1)

where x is the vector of continuous decision variables,
and G4x5 is the stochastic response evaluated at x0
We assume that G4x5 may be obtained by running
simulation experiments at x.

Let g4x5 = E6G4x57 and �24x5 = Var6G4x57. Fol-
lowing the convention of traditional RSM literature,
we assume that G4x5 follows a normal distribution
with mean g4x5 and variance �24x5. Furthermore,
we assume that supx∈�p �24x5 < �. Because the opti-
mization is over �p, which is infinitely large, it is more
realistic to allow G4x5 to have unequal variances. Note
that our formulation in Equation (1) does not include
quantiles. However, the proposed STRONG frame-
work may also be applicable to quantile-based prob-
lems when some conditions hold.

RSM is a popular choice to solve problem (1).
A typical RSM algorithm consists of two stages.
In stage I, it constructs a first-order polynomial (in x),
uses the model to find a better solution in a region
of interest, and repeats the process. Once a first-order
polynomial is no longer appropriate, it switches to
stage II, where a second-order (quadratic) polynomial

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
02

 S
ep

te
m

be
r 

20
14

, a
t 2

2:
45

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Chang, Hong, and Wan: Stochastic Trust-Region Response-Surface Method (STRONG)
INFORMS Journal on Computing 25(2), pp. 230–243, © 2013 INFORMS 233

(in x) is constructed to predict the optimal solution.
Several statistical tests have been designed to deter-
mine the transition between the two stages and the
optimality of the solution (Myers et al. 2009). This
method has several problems. First, a region of inter-
est needs to be specified at every iteration, which typ-
ically requires human involvement. Second, there is
no (convergence) guarantee on the optimality of the
solution found by the method.

STRONG solves these problems by introducing the
concept of “trust region” (Conn et al. 2000). A trust
region at a solution x′ with a radius ã> 0 is defined
as B4x′1ã5= 8x ∈�p2 �x−x′� ≤ã9, where � · � denotes
the Euclidian norm. At any iteration of the algo-
rithm, for example iteration k, the current solution is
denoted as xk and the trust-region radius as ãk. Then
the trust region at iteration k is B4xk1ãk5. STRONG
uses the trust region as the region of interest and auto-
matically adjusts it, thus avoiding the need for human
involvement. Furthermore, the trust region also deter-
mines the use of the first- or second-order polyno-
mials and helps the algorithms converge to the set
of optimal solutions as the simulation effort goes to
infinity.

In this research, the decision variables are assumed
properly coded, for example, in the way described in
(Myers et al. 2009, p. 23). The advantage of coded
variables is that they are “effective for determin-
ing the relative size of factor effects” (Montgomery
2005). Note that classic RSM uses the steepest descent
method to search for the improved solution; therefore
in general it is scale dependent. Kleijnen et al. (2004)
proposed a scale-independent gradient estimator that
can yield better search directions. This estimator can
also be incorporated in STRONG to improve its com-
putational efficiency. In this paper, however, we avoid
this complication and simply assume that the steepest
descent method is used.

To prove convergence of the STRONG algorithm
presented in §3, we will need the following assump-
tion, which is concerned with the functional behavior
of the underlying response surface. Our proof closely
follows that for the deterministic trust-region method
(Conn et al. 2000), though there are significant differ-
ences between them. In Assumption 1, we use ïg4x5
and H4x5 to denote the gradient and Hessian at x1
and “w.p.1” to denote “with probability one.”

Assumption 1. The objective function g4x5 is bounded
below, twice differentiable, and there exist two positive con-
stants, �1 and �11 such that the gradient �ïg4x5� ≤ �1

and the Hessian �H4x5� ≤ �11 for all x ∈�p.

Assumption 1 provides some regularity conditions
for problem (1). It requires that g4x5 has uniformly
bounded gradient and Hessian.

3. The STRONG Algorithm
STRONG has two stages and an inner loop. In stage I,
it constructs and optimizes a first-order polynomial,
and in stage II it constructs and optimizes a second-
order polynomial. The transitions between stages I
and II depend on the size of the trust region. If ãk

is large, which implies that a first-order polynomial
may suffice to find an improved solution, a first-order
polynomial will be used to estimate the underlying
response surface; otherwise a second-order polyno-
mial will be used for a better fitting. In both stages
I and II (which we call the outer loop), the algorithm
uses a fixed number of observations to construct the
models. However, the noise in the estimates may
cause a poor fitting of the surface. Therefore when the
algorithm fails to generate a good solution in stage II,
it will enter an inner loop where additional simulation
effort is allocated to reduce error in function and gra-
dient estimates.

At any iteration of the algorithm, for example
iteration k, STRONG conducts the following four
steps:

Step 1. Construct a local model rk4x5 around the
center point xk.

Step 2. Solve x∗

k ∈ arg min8rk4x52 x ∈B4xk1ãk59.
Step 3. Simulate several observations at x∗

k and esti-
mate g4x∗

k5.
Step 4. Conduct so-called ratio-comparison (RC)

and sufficient-reduction (SR) tests to examine the
quality of x∗

k and to update xk+1 and the size of the
trust region ãk+10
These four steps and the sample-allocation scheme
in the inner loop are cornerstones of STRONG. In the
rest of this section, we give a more detailed descrip-
tion of these steps. We use ki to denote the ith inner
loop of the kth iteration when the algorithm enters the
inner loop. The full algorithm is provided in Figures 1
and 2 in the online supplement (available at http://dx
.doi.org/10.1287/ijoc.1120.0498).

3.1. Estimation of Gradients and Hessians
At any iteration of the outer loop of STRONG, for
example, iteration k, there is a center point xk. Then
several simulation replications are taken to estimate
g4xk5, ïg4xk5, and H4xk50 Based on the size of the trust
region, the algorithm decides to construct a first- or
second-order polynomial,

rk4x5= ĝk4xk5+ ï̂gT
k 4xk54x− xk5 and

rk4x5= ĝk4xk5+ ï̂gT
k 4xk54x− xk5

+
1
2 4x− xk5

T Ĥk4xk54x− xk51

respectively. If the algorithm is in the ith inner loop of
kth iteration, it constructs a second-order polynomial
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at the center point xk, which is

rki 4x5 = ĝki
4xk5+ ï̂gT

ki
4xk54x− xk5

+
1
2 4x− xk5

T Ĥki
4xk54x− xk51

where ĝki
4xk5, ï̂gki

4xk51 and Ĥki
4xk5 are the estimates

of the value, gradient, and Hessian of the center
point xk at the ith inner loop of the kth iteration.

To construct these models, we need the estimates
of g4xk5, ïg4xk5, and H4xk5. To simplify the pre-
sentation, we suppose that there is a random vec-
tor D4x5 at any x such that ïg4x5 = E6D4x57. Note
that many methods, including infinitesimal pertur-
bation analysis (Ho and Cao 1991, Cao 1994) and
the likelihood ratio or score function method (Glynn
1990, Rubinstein and Shapiro 1993), can be used to
derive D4x5. Fu (2006) provided many practical exam-
ples, including the stochastic activity network and the
inventory system, among others, in which the unbi-
ased gradient estimators can be derived. Spall (2003)
also has in-depth discussions about gradient estima-
tion and the associated regularity conditions for them
to be unbiased. In §5, we discuss how to use linear
regression to simultaneously estimate ïg4x5 and H4x5
when D4x5 is not readily available. In this section and
succeeding sections, however, we assume that D4x5 is
available.

Let G14x51 0 0 0 1Gn4x5 and D14x51 0 0 0 1Dm4x5 denote
independent and identically distributed (i.i.d.) ran-
dom variables of G4x5 and D4x5, respectively. We let
the averages

Ḡ4x1n5=
1
n

n
∑

i=1

Gi4x5 and

D̄4x1m5=
1
m

m
∑

i=1

Di4x50

(2)

Suppose that the center point xk has nk and mk (or nki
and mki

, if in the inner loop) replications of G4xk5 and
D4xk5. Then we have the estimators ĝk4xk5= Ḡ4xk1nk51
and ï̂gk4xk5 = D̄4xk1mk5 (or ĝki

4xk5 = Ḡ4xk1nki
51 and

ï̂gki
4xk5 = D̄4xk1mki

5, if in the inner loop) as the esti-
mates of g4xk5 and ïg4xk5.

Assumption 2. The estimators of g4x5 and ïg4x5 sat-
isfy supx∈�p �Ḡ4x1n5 − g4x5� → 0 w.p.1 as n → � and
supx∈�p �D̄4x1m5−ïg4x5� → 0 w.p.1 as m→ �0

Assumption 2 provides some regularity conditions
on the estimators of both g4x5 and ïg4x5. It requires
that both Ḡ4x1n5 and D̄4x1m5 follow uniform law of
large numbers (ULLN). Notably, for any strongly con-
sistent estimator, it is possible to extend it to ULLN
as long as the conditions given in Andrews (1992) are
satisfied.

The Hessian matrix H4xk5 is often difficult to esti-
mate directly. In this paper, we suggest using the
BFGS (Broyden-Fletcher-Goldfarb-Shanno) method as
in deterministic nonlinear optimization (Nocedal and
Wright 1999) shown as follows:

Ĥk = Ĥk−1 −
Ĥk−1sk−1s

T
k−1Ĥk−1

sTk−1Ĥk−1sk−1

+
yk−1y

T
k−1

yT
k−1sk−1

1 (3)

where Ĥk = Ĥk4xk5, Ĥk−1 = Ĥk−14xk−15, yk−1 = ï̂gk4xk5−
ï̂gk−14xk−15, sk−1 = xk − xk−1. The initial Ĥ04x05 can
be either estimated by using the finite-difference
method at x0 or simply set as an identity matrix. Fur-
thermore, we impose an upper bound on the norm
of Ĥk0 We let

Ĥk 2= � · Ĥk/�Ĥk�

if Ĥk calculated by Equation (3) has a norm larger
than a large positive constant �. In the inner loop,
because the Hessian matrix will not affect the algo-
rithm convergence, Ĥki

is simply set as Ĥk0
It is remarkable that the convergence of STRONG

does not require the convergence of Ĥ4x5. The BFGS
formula introduced in Equation (3) approximates the
Hessian matrix well in deterministic cases and it helps
the BFGS algorithm achieve a superlinear rate of con-
vergence (Nocedal and Wright 1999). Therefore, we
also suggest using it in STRONG.

3.2. Estimation of a Better Solution
Once the local model is constructed, we need to use it
to find a better solution within the trust region. In this
section, we discuss this step. Without loss of general-
ity, we consider only the outer loop, where the model
is either first- or second-order. If the algorithm is in
the inner loop, it is the same as the second-order poly-
nomial of the outer loop, except for the notation.

At iteration k, we have the current center point xk,
a trust region B4xk1ãk5, and a constructed response
model rk4x5 that is either first- or second-order.
Ideally, we may set

x∗

k ∈ arg min8rk4x52 x ∈B4xk1ãk591

which is the best solution within the trust region
predicted by the model rk4x5. However, seeking an
exactly optimal solution within the trust region may
be time consuming and is certainly not necessary for
STRONG to converge. Instead, we follow the deter-
ministic TRM to find a Cauchy point x∗

k that is a
nearly optimal solution (Nocedal and Wright 1999).
The Cauchy point calculation is as follows:

Cauchy point calculation:
Step 1. Find the steepest descent direction dk =

arg min8ĝk4xk5+ ï̂gT
k 4xk5d2 �d� ≤ãk90

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
02

 S
ep

te
m

be
r 

20
14

, a
t 2

2:
45

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Chang, Hong, and Wan: Stochastic Trust-Region Response-Surface Method (STRONG)
INFORMS Journal on Computing 25(2), pp. 230–243, © 2013 INFORMS 235

Step 2. Choose a step size �k = arg min8rk4�dk52
� > 01��dk� ≤ãk90

Step 3. Let x∗

k = xk + �kdk.
In the following lemma, we show that the Cauchy

point provides a sufficient reduction on the model
surface, which is critical to prove the convergence of
STRONG. The proof of the lemma is provided in the
Online Supplement.

Lemma 1. For any iteration k, if the algorithm is in
stage I, stage II, or the ith inner loop, respectively,

rk4xk5− rk4x
∗

k5≥ �k 2= �ï̂gk4xk5� ·ãk1

rk4xk5−rk4x
∗

k5≥�k 2=
1
2
�ï̂gk4xk5�·min

{

�ï̂gk4xk5�

�Ĥk4xk5�
1ãk

}

1

rki 4xk5− rki 4x
∗

ki
5

≥ �ki 2=
1
2
�ï̂gki

4xk5�min
{

�ï̂gki
4xk5�

�Ĥki
4xk5�

1ãki

}

0

3.3. Acceptance/Rejection of the New Solution
There are two tests in the algorithm to decide
whether the new solution should be accepted; namely,
the ratio-comparison (RC) test and the sufficient-
reduction (SR) test. The RC test compares the
“observed reduction” with the “predicted reduction”
given by the model and decides whether the model
in the trust region is trustworthy. The SR test decides
whether the observed reduction is statistically signifi-
cant. For every new solution, the RC test is conducted
first, followed by the SR test if it passes the RC test.
In the deterministic TRM, there is only the RC test.
In the stochastic settings, however, we also need the
SR test to ensure that the observed reduction is not
entirely caused by noise in the estimates.

3.3.1. Ratio-Comparison Test. We first consider
the outer loop. At iteration k, once a Cauchy point x∗

k is
identified, n0 simulated observations will be allocated
to estimate g4x∗

k5. We let ĝk4x
∗

k5 = Ḡ4x∗

k1n05. Note that
although n0 replications are always allocated to any
new solutions x∗

k identified in the outer loop, xk may
have more than n0 replications; i.e., nk may be larger
than n0 because xk may have been chosen by an inner
loop that allocates more replications in the previous
iteration to improve the estimate of g4xk5. In this case,
nk replications will be used for xk.

The RC test computes

�k =
ĝk4xk5− ĝk4x

∗

k5

rk4xk5− rk4x
∗

k5
0

Let 0 <�0 <�1 < 11 for example, we may set �0 = 1/4,
�1 = 3/40 If the ratio is large (�k ≥ �1), which implies
that the new observed solution is significantly bet-
ter than the current one, the new solution will be
accepted. If the ratio is moderate (�0 ≤ �k <�1), which

implies that the observed reduction has fair agree-
ments with the predicted reduction, the procedure
will also accept the new solution. If �k is close to zero
or negative (�k <�0), which implies that the observed
reduction does not agree with the predicted reduc-
tion, the new solution will be rejected. This RC test is
similar to the one in the deterministic TRM.

The same idea applies to the inner loop, except
that xk and x∗

ki
have nki

and n∗

ki
replications, respec-

tively. The details of how sample size changes in the
inner loop will be discussed later in §3.4. Let ĝki

4xk5=

Ḡ4xk1nki
5 and ĝki

4x∗

ki
5 = Ḡ4x∗

ki
1n∗

ki
5. In the inner loop,

we use

�ki
=

ĝki
4xk5− ĝki

4x∗

ki
5

rki 4xk5− rki 4x
∗

ki
5

to conduct the RC test.

3.3.2. Sufficient-Reduction Test. The RC test does
not take into consideration that the observed reduc-
tion is estimated and that the ratio is subject to sam-
pling error. To ensure that the reduction is sufficient
and statistically significant, an SR test is further con-
ducted. For any iteration k of the outer loop, the new
solution x∗

k is said to yield sufficient reduction if g4xk5−
g4x∗

k5 > �2
0�k, and for any ith inner loop of iteration k,

the new solution x∗

ki
is said to yield sufficient reduc-

tion if g4xk5− g4x∗

ki
5 > �2

0�ki , where both �k and �ki are
defined in Lemma 1.

Then the SR test is defined as

H02 g4xk5− g4x∗

k5≤ �2
0�k versus

H12 g4xk5− g4x∗

k5 > �2
0�k

in the outer loop and

H02 g4xk5−g4x∗

ki
5≤�2

0�ki versus

H12 g4xk5−g4x∗

ki
5>�2

0�ki

in the inner loop. In both tests, the type I error is set
as �k. If H0 is rejected, we then conclude that the new
solution yields a sufficient reduction.

In general, hypothesis testing implies that the null-
hypothesis H0 is rejected only in case of strong coun-
terevidence; in our case, H0 is rejected if the new
solution is “much” lower than the original solution.
For the SR test in the outer loop, we let S24xk1nk5 and
S24x∗

k1n05 denote the heterogeneous variances of xk
and x∗

k (the so-called Behrens-Fisher problem), and
we let

S2
k =

S24xk1nk5

nk

+
S24x∗

k1n05

n0
1

df = S4
k ·

[

4S24xk1nk5/nk5
2

nk − 1
+

4S24x∗

k1n05/n05
2

n0 − 1

]−1

0
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We then compute

t∗ =
ĝk4xk5− ĝk4x

∗

k5−�2
0�k

Sk

and reject H0 if t∗ > t1−�k1df
(Montgomery 2005).

For the SR test in the inner loop, we can similarly
compute the test statistics. Therefore we omit the
details, except to note that the type I error is set to
�k for all inner loops of iteration k. To ensure the con-
vergence of STRONG, we require that the sequence
of 8�k9 satisfies

∑�

k=1 �k <�.
A solution that passes the SR test becomes the cen-

ter point of the next iteration, i.e., xk+1 = x∗

k in the outer
loop and xk+1 = x∗

ki
in the inner loop. If a solution is

rejected by the SR test, the center point remains until
a satisfactory solution is found.

3.3.3. Updating the Size of Trust Region. To im-
plement STRONG, the user needs to select an ini-
tial size of the trust region, denoted as ã0 > 0, and
a threshold ã̃ > 0; typically ã0 > ã̃. In any iteration,
such as iteration k, if ãk > ã̃, STRONG uses a first-
order polynomial to fit the response surface; other-
wise, a second-order polynomial is used.

STRONG automatically updates the size of the trust
region based on the results of the RC and SR tests.
Let 0 < �1 < 1 < �2, for example, �1 = 1/2 and �2 = 20
In stage I, if x∗

k fails either the RC or SR test, the cen-
ter point remains and the trust region shrinks, i.e.,
xk+1 = xk and ãk+1 = �1ãk; if �k ≥ �1 and x∗

k passes
the SR test, the center point then moves to the new
solution and the trust region enlarges, i.e., xk+1 = x∗

k

and ãk+1 = �2ãk0 If �0 ≤ �k < �1 and x∗

k passes the SR
test, then the center point will move to the new solu-
tion and the trust region remains; i.e., xk+1 = x∗

k and
ãk+1 =ãk.

Once the size of the trust region falls below ã̃1 the
procedure goes to stage II. Based on the same concept,
the size of the trust region is updated as in stage I.
However, because the trust region is typically small
in stage II, STRONG is specially careful about fur-
ther shrinking the trust region. Specifically, if the new
solution fails either in the RC test or in the SR test in
stage II, the trust region does not shrink. Instead, the
algorithm goes to the inner loop to collect more infor-
mation. In the inner loop, the size of the trust region is
updated based only on the RC test, and the SR test is
used only to determine whether the inner loop should
be stopped. Once a satisfactory solution is found in
the inner loop, such as x∗

ki
1 STRONG terminates the

inner loop, moves to the new solution, i.e., xk+1 = x∗

ki
,

and resumes the size of the trust region at iteration k
before entering the inner loop, so ãk+1 =ãk. Note that
this mechanism also implies that ãk ≥ �1ã̃ for any
iteration k.

3.4. Inner Loop
Stages I and II both may find no satisfactory solu-
tion that can pass the RC and SR tests. The inner loop
is designed so that it can always find a satisfactory
solution, thus avoiding the algorithm getting stuck at
a suboptimal solution (i.e., a solution that is neither
locally nor globally optimal).

Two mechanisms in the inner loop help the algo-
rithm find a satisfactory solution. First, the quality
of the local model will be continuously improved as
the inner loop continues. The algorithm will increase
the sample sizes of the value and gradient estima-
tors to improve their precision. In this way, the model
can achieve the desired precision to yield a satisfac-
tory solution. Second, the sample sizes of the current
and new solutions are also increased to reduce the
sampling error. This allows the algorithm to correctly
determine the acceptance or rejection of a new solu-
tion and the size of the next trust region.

Let n∗

ki
and nki

denote the sample sizes for estimat-
ing the value of the new solution x∗

ki
and the center

point xk in the ith inner loop of the kth iteration of
STRONG. To prevent the trust region from shrinking
to zero before the algorithm finds a satisfactory solu-
tion, we require n∗

ki
to satisfy the following inequality

n∗

ki
≥ 4�1/�4

1� + 15 ·n∗

ki−1
0 (4)

Because the center point may have obtained samples
from previous iterations, we let

nki
= max8nki−1

1n∗

ki
90 (5)

For the sample size of the gradient estimator in the
ith inner loop of the kth iteration, we require

mki
≥ 4�1/�2

1� + 15 ·mki−1
0 (6)

Equations (4)–(6) are developed to help the algo-
rithm achieve convergence (see proof of Lemma 2).

4. Convergence Analysis
The inner loop is mainly used to ensure the con-
vergence of STRONG. We analyze it in detail. Note
that ĝki

4xk5 = Ḡ4xk1nki
5 and ï̂gki

4xk5 = D̄4xk1mki
5.

By Assumption 2 and Equations (4)–(6), we can prove
Lemma 2, which states that the estimation errors in
both the value and gradient of the center point xk
are bounded by ã2

ki
and ãki

, respectively, whenever
the inner loop counter i is sufficiently large. Note
that Lemmas 2–4 are for the inner loop, in which
the center point xk is fixed, and 8ãki

1 i = 011121 0 0 09
is a deterministic sequence (because ãki

shrinks by
�1 for each additional inner loop). We use “i.o.” to
denote “infinitely often,” which refers to the limit
when i → �.
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Lemma 2. Suppose that Assumptions 1 and 2 hold.
Then, for any xk ∈�p and given k,

Pr8�ĝki
4xk5− g4xk5�>ã2

ki
i0o09= 01 (7)

Pr8�ï̂gT
ki
4xk5−ïgT 4xk5�>ãki

i0o09= 00 (8)

In the next lemma, we show that the difference
between the metamodel prediction and the observed
value at the new solution is bounded by an error term
that is of order of ã2

ki
.

Lemma 3. Suppose that Assumptions 1 and 2 hold.
Then, for any xk ∈�p and given k,

Pr8�rki 4x
∗

ki
5− ĝki

4x∗

ki
5�> c ·ã2

ki
i0o09= 0 (9)

for some constant c > 0.

In the next lemma, we show that the inner loop at
any iteration k can always find a satisfactory solution,
one that can pass both the RC test and the SR test,
if the center point xk is not a stationary point, i.e.,
if �ïg4xk5�> 0.

Lemma 4. Suppose that Assumptions 1 and 2 hold.
Then, for any xk ∈ �p and given k, if �ïg4xk5� > 0, the
algorithm can always find a new satisfactory solution in
iteration k.

After analyzing the inner loop, we now show the
convergence of STRONG by analyzing the outer loop.
Lemmas 5 and 6 and Theorem 1 are for the outer
loop. To present the convergence proof, we need some
additional notations. For every iteration k, we let
ï̂g′

k4xk5, Ĥ
′

k4xk5, and ã′

k denote the estimates of gradi-
ent and Hessian at xk and the trust-region size at the
end of iteration k before the algorithm moves to iter-
ation k + 1. If STRONG finds a satisfactory solution
in the outer loop, i.e., xk+1 = x∗

k , then ï̂g′

k4xk5= ï̂gk4xk5
and ã′

k = ãk; if it finds a satisfactory solution in the
inner loop, such as the ith inner loop, i.e., xk+1 = x∗

ki
, then

ï̂g′

k4xk5= ï̂gki
4xk5 and ã′

k =ãki
.

Suppose the algorithm yields an infinite (random)
sequence of solutions 8xk9

�

k=0. Because ã′

k denotes the
trust-region size when the inner loop at iteration k is
terminated, and because each iteration k may have
a different number of passes through the inner loop,
8ã′

k1 k ≥ 09 is a random sequence. Lemma 5 indicates
that the size of the trust region is bounded away
from zero almost surely if �ï̂g′

k4xk5� is bounded away
from zero.

Lemma 5. Suppose that Assumptions 1 and 2 hold. Then,
w.p.1, lim infk→� ã′

k > 0 if lim infk→� �ï̂g′

k4xk5�> 0.

Let kj , j = 1121 0 0 0 1 denote a subsequence of k =

1121 0 0 0. In the next lemma, we show that if there
exists a subsequence of xk whose gradient estimates

converge to zero, the actual gradients of this subse-
quence will also converge to zero. It turns out that,
to prove convergence of the gradients, we need only
to analyze the convergence of gradient estimates.

Lemma 6. Suppose that Assumptions 1 and 2 hold.
If there is a subsequence of 8xk9

�

k=0, denoted as 8xkj 9
�
j=0,

such that limj→��ï̂g′

kj
4xkj 5�=0, then limj→��ïg4xkj 5�

=0 w.p.1.

With these lemmas, we have the following theorem
on the convergence of STRONG.

Theorem 1. Suppose that Assumptions 1 and 2 hold.
If STRONG has infinitely many successful iterations, then
lim infk→� �ïg4xk5� = 0 w.p.1.

The conclusion of Theorem 1 is a typical conver-
gence condition for a nonlinear optimization algo-
rithm; see, for instance, page 46 of Nocedal and
Wright (1999). It shows that there exists at least a
subsequence of solutions of which the true gradient
goes to zero w.p.1. Furthermore, based on the simi-
lar argument in Theorem 6.4.6 in Conn et al. (2000),
we believe that the conclusion of Theorem 1 can be
extended to a stronger result: limk→� �ïg4xk5� = 0
w.p.1.

5. Black-Box Estimation of
Gradient and Hessian Matrix

In §3, we assumed a strongly consistent gradient
estimator and suggested using the BFGS method to
obtain estimates of the Hessian matrix. In this section,
we discuss a situation where no gradient estimator
exists, and the simulation model is considered as a
black box. We suggest the use of DOE and regression
analysis for obtaining estimates of the gradient and
Hessian matrix.

The DOE approach is widely adopted in classi-
cal RSM. It has several advantages. First, when the
local model is a second-order polynomial (stage II or
the inner loop), the linear and quadratic terms give
the gradient and Hessian matrix estimations, respec-
tively. In other words, the regression analysis can
estimate the gradient and Hessian matrix simultane-
ously. Second, DOE has been demonstrated to enjoy
computational advantages compared to random sam-
pling (Montgomery 2005, Sanchez 2008). This effi-
ciency gain is more obvious when the dimension of
the problem increases. In this section, we will show
how to apply the black-box estimation to STRONG
and also analyze the convergence of STRONG. The
numerical evaluations in §6 shows the efficiency gain
of incorporating experimental designs.

The DOE approach works as follows: at each outer
loop or inner loop, there is a center point. We use DOE
techniques to determine several input combinations
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(design points) to run simulation experiments. The
collected observations will be used to estimate the
gradient (and Hessian, if necessary) at the center
point. Without distinguishing outer loops and inner
loops, we let x denote the center point, n the number of
replications at x, and m the number of design points.
Let Xm denote the design matrix with only the main
effect columns, and X̃m the design matrix with the
main effect, quadratic, and interaction columns. Note
that Xm is used to estimate gradient and ˜Xm to esti-
mate both gradient and Hessian simultaneously. Let

Ym = 4y11 0 0 0 1 ym5
T

− Ḡ4x1n5

be the centralized response vector, where yj is the out-
put of the simulation experiment conducted at the
design point xj . We then estimate ïg4x5 and H4x5 as
follows:

ï̂g4x5 = 4XT
mXm5

−1XT
mYm

(estimating only the gradient)1 (10)
[

ï̂g4x5

Ĥ4x5

]

= 4X̃T
mX̃m5

−1X̃T
mYm (estimating the gradient

and Hessian)1 (11)

where the gradient and Hessian are estimated by
applying the ordinary least squares (OLS) method.

To estimate the gradient of the center point through
Equation (10), we need at least p design points, where
p is the dimension of the decision space. To esti-
mate both the gradient and Hessian matrix of the
center point through Equation (11), we need at least
p4p+ 15/2 design points. When the problem dimen-
sion is large, it may be too costly to estimate both
the gradient and Hessian. We may then estimate
only the gradient and use the BFGS method to con-
struct the Hessian estimate. This will not affect the
convergence of STRONG, because the convergence
depends only on the consistency of the gradient esti-
mator. In the rest of this section, we show that the
gradient estimator of Equation (10) is strongly consis-
tent under certain conditions.

As described in §3, when the algorithm cannot find
a satisfactory solution in stage II, it enters the inner
loop where the local model will be improved. When
the DOE approach is applied in the inner loop, each
inner loop will add some new design points, and all
design points from the inner loops at the same itera-
tion will be accumulated. All of these points are used
to estimate the gradient of the center point. To ensure
the convergence of STRONG, we need the DOE-based
gradient estimator to be strongly consistent as the
number of design points goes to infinity. Theorem 2
gives a set of sufficient conditions under which the
OLS-based gradient estimator is strongly consistent.

Theorem 2 (Lai et al. 1979). Suppose that yi =

�1xi1 +�2xi2 + · · · +�pxip + �i 4i = 1121 0 0 05, the random
variables �11�21 0 0 0 are independent with E4�i5 = 0 ∀ i,
and supi E4�2

i 5 < �. Let Xm denote the design matrix
8xij91≤i≤m11≤j≤p, Yn = 4y11y21 0 0 0 1 ym5

T the response vector,
and � = 4�11�21 0 0 0 1�p5

T . For m ≥ q, the least squares
estimate 4XT

mXm5
−1XT

mYm → � w.p.1. if 4XT
mXm5

−1 → 0 as
m→ �.

Remark 1. For the response surface whose vari-
ances are nonhomogeneous, WLS (weighted least
squares) may be used to replace OLS (Kleijnen 2008,
p. 91) to obtain lower variances for the metamodel
parameters. Note, however, that using WLS requires
estimating the variance-covariance matrix, which may
be computationally demanding when the problem is
of large scale. Also, because RSM and STRONG fit
models only locally, OLS seems better than WLS.

Note that when the number of design points
increases in the inner loop, eventually we will have
enough to fit a quadratic surface. Theorem 2 basically
shows that the gradient and Hessian estimators of
Equation (11) are strongly consistent as m→ � if the
underlying response surface is indeed quadratic (so
E4�i5= 01 see Theorem 2). Although STRONG allows
general nonlinear response surfaces, the underlying
response surface inside of a trust region can be very
well approximated by a quadratic function when
the trust region is sufficiently small. Note that if
the number of design points goes to infinity in the
inner loop, the trust-region size also shrinks to zero.
Therefore the sufficient conditions of Theorem 2 are
reasonable when applied to analyze the strong con-
sistency of the OLS-based gradient estimators. Fur-
thermore, the strong consistency of the OLS-based
gradient estimator can also be extended to uniform
convergence under some additional regularity condi-
tions (Andrews 1992).

By Theorem 2, to ensure the strong consistency
of the OLS-based gradient estimator, we need the
main-effect design matrix Xm to satisfy 4XT

mXm5
−1 → 0

as m → �. In the following lemma, we show that
the requirement is satisfied if we use an orthogonal
design to estimate the main effects. All columns in
Xm are mutually orthogonal, or equivalently, XT

mXm =

mIm×m is a diagonal matrix (Im×m is a m×m identity
matrix). In main-effect orthogonal designs, the main
effects of each variable (i.e., the gradient estimate of
each dimension) are being assessed independently of
each other.

Lemma 7. If Xm is an orthogonal design matrix, then
4XT

mXm5
−1 = 41/m5Im×m → 0 as m→ �.

Theorem 2 and Lemma 7 suggest that the main-
effect orthogonal designs can be used to achieve
strong consistency for the OLS gradient estimator.
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To illustrate how to construct the design matrix
in the inner loop, let Qmki

be the newly generated
main-effect orthogonal design within the current trust
region ãki

, and the design matrix Xmki
= 6Xmki−1

1Qmki
7T

includes all the design points up to the inner loop ki.
It is clear that if both Xmki−1

and Qmki
are orthogonal,

then Xmki
is also orthogonal. The OLS-based gradi-

ent estimator is then strongly consistent as m → �.
With Theorem 2 and Lemma 7, we can also show that
Lemma 2 holds for STRONG with black-box gradient
estimation by applying the same argument to each
dimension of the gradient estimator.

In the numerical experiments reported in §6, we use
orthogonal designs (resolution III fractional factorial
designs in stage I and central composite designs in
stage II and the inner loop) to ensure strong consis-
tency of the gradient estimators (Montgomery 2005,
Myers et al. 2009). Note that the main-effect designs
in central composite designs are orthogonal, thereby
fulfilling the requirement. We observed that STRONG
works well with these designs. It is also worth men-
tioning that STRONG can incorporate a wide variety
of experimental designs into its framework. A suffi-
cient condition for the convergence to hold is that in
the inner loops, the main-effect design in the second-
order design needs to be orthogonal.

6. Numerical Evaluation
In this section, we use several examples to help us
understand the properties of the proposed STRONG
algorithm and to compare it with other optimization
algorithms.

6.1. Test Problems
The test problems used in this section are all con-
structed from deterministic functions with added
noise. We adopt this way instead of using real simu-
lation models because (1) the true value of the objec-
tive function is analytically available, and we can
therefore compare the performance of the algorithms
clearly and explicitly; (2) the settings of the test prob-
lem can be easily manipulated for investigating the
strengths and limitations of the algorithm; and (3) this
approach is more time efficient when the amount of
numerical evaluations is substantially large (Barton
and Ivey 1996).

We consider four types of problems with three
dimensionalities, p = 2161140 The three types of prob-
lems are selected from literature in nonlinear opti-
mization (More et al. 1981), and the fourth type is a
simple quadratic function. Specifically, the first type
is the extended Rosenbrock function,

g4x5=

p−1
∑

i=1

[

1004xi − x2
i+15

2
+ 41 − xi5

2
]

1 (12)

which is known to be a difficult problem even
in deterministic settings. Note that the “extended”

Rosenbrock function is different from the standard
Rosenbrock function in its functional form and the
number of (local) optimal solutions. The standard
Rosenbrock function has only one (locally and glob-
ally) optimal solution, but the extended Rosenbrock
function has more than one local optimal solu-
tions when dimensionality is greater than or equal
to four (Shang and Qiu 2006). The second type is the
Freudenstein and Roth function:

g4x5 =

p/2
∑

i=1

[

−13 + x2i−1 + 445 − x2i5x2i − 25x2i

]2

+
[

−29 + x2i−1 + 44x2i + 15x2i − 145x2i

]2
1 (13)

which is also a multimodal function (More et al. 1981).
The third and fourth types are both unimodal func-
tions. Specifically, the third type is the Beale function,

g4x5 =

3
∑

i=1

[

105 − x2i−141 − x2i5
]2

+
[

2025 − x2i−141 − x2
2i5
]2

+
[

20625 − x2i−141 − x3
2i5
]2
1 (14)

and the fourth type is a quadratic function, i.e.,

g4x5=

p
∑

i=1

x2
i 0 (15)

The stochastic responses of all test problems take
the form of G4x5 = g4x5 + �4x5, where �4x5 ∼

Normal 401�24x55. For each test problem, we consider
two scenarios of variance configurations: (1) �4x5= �
for all x ∈ �p1 and (2) �4x5 = 001 · g4x51 where �4x5
corresponds to the standard deviation of noise. The
first setting assumes homogeneous response surfaces
as assumed in the classic RSM; and the second set-
ting gives heterogeneous response surfaces, which are
typical in simulation experiments. Notice that in set-
ting (2), when the initial solution is selected far away
from the optimum, g4x5 is large; thus, the variance
of response variable can be very large. The stability
of algorithm can be tested in setting (2) when the
response surface is grossly noisy. We summarize all
24 scenarios in Table 1.

To evaluate the effect of initial solutions, we
select the initial solution in the following two ways:
(1) use a fixed initial solution, 20 · 1p1 where 1p =

61111 0 0 0 117T and p is the dimensionality of the
problem; and (2) randomly select an initial solution
from a p-dimensional Cartesian product 61001−1007×
61001−1007× · · · × 61001−1007.

6.2. Some Competing Algorithms
To understand the effectiveness of the DOE ap-
proach and the trust-region updating technique,
we compare the performances of STRONG, SPSA
(Spall 2003), NM (Nelder-Mead simplex method),
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Table 1 Twenty-Four Scenarios

Scenario Dimension Test function Variance setting

1 2 Extended Rosenbrock � 4x5= 50
2 2 Extended Rosenbrock � 4x5= 001g4x5
3 6 Extended Rosenbrock � 4x5= 50
4 6 Extended Rosenbrock � 4x5= 001g4x5
5 14 Extended Rosenbrock � 4x5= 50
6 14 Extended Rosenbrock � 4x5= 001g4x5
7 2 Freudenstein and Roth � 4x5= 50
8 2 Freudenstein and Roth � 4x5= 001g4x5
9 6 Freudenstein and Roth � 4x5= 50
10 6 Freudenstein and Roth � 4x5= 001g4x5
11 14 Freudenstein and Roth � 4x5= 50
12 14 Freudenstein and Roth � 4x5= 001g4x5
13 2 Beale � 4x5= 50
14 2 Beale � 4x5= 001g4x5
15 6 Beale � 4x5= 50
16 6 Beale � 4x5= 001g4x5
17 14 Beale � 4x5= 50
18 14 Beale � 4x5= 001g4x5
19 2 Quadratic � 4x5= 50
20 2 Quadratic � 4x5= 001g4x5
21 6 Quadratic � 4x5= 50
22 6 Quadratic � 4x5= 001g4x5
23 14 Quadratic � 4x5= 50
24 14 Quadratic � 4x5= 001g4x5

and RSM. In particular, for simultaneous perturbaton
stochastic approximation (SPSA) we use an existing
implementation provided at http://www.jhuapl.edu/
SPSA/Pages/MATLAB.htm. NM is originally a direct-
search-based heuristic method for deterministic non-
linear optimization but now it can be used to handle
stochastic optimization problems when proper mod-
ifications are employed. We code it based on the
fminsearch function in MATLAB (version 7) with mod-
ifications suggested in Barton and Ivey (1996). Lastly,
the recent version of RSM (Nicolai et al. 2004) is imple-
mented to compare with STRONG.

6.3. Parameter Settings
In our numerical study, the parameters are set as
Table 2. Among them, n0 and nd are the most impor-
tant because they determine how the simulation effort
is allocated. We provide a heuristic approach based
on signal/noise concept on how to acquire an edu-
cated setting. Note that n0 is the initial sample size of
the center point. It should allow the RC and SR test
to yield reasonable results. We suggest that no can be
determined based on signal/noise ratio, described as
follows, where the signal equals objective value and
noise equals standard error:

∣

∣

∣

∣

�

�/
√
n0

∣

∣

∣

∣

≥ 20 (16)

Table 2 Parameter Settings for All Test Problems

Parameters n0 nd ã0 ã̃ �0 �1 �1 �2 �k

Settings ≥ 3 ≥ 2 2 102 0001 003 009 1011 005× 0098k

Using Equation (16), we can estimate how many ini-
tial sample sizes (n0) are needed. Note that in prac-
tice, the true � and � in Equation (16) are usually
unknown, and estimates must be used. We believe
that the minimum sample size n0 for the RC and SR
test to be effective should be three.

As for nd1 it is the number of replications for
all design points in black-box gradient estimation.
To obtain a reliable local model when the response is
noisy, we also suggest using Formula (16) with the
replacement of n0 by nd. We believe that for better
estimates, two is the minimal sample size of nd0 The
optimal settings of other parameters, such as ã0, ã̃,
�0, �1, �1, �2, and �k are problem dependent and scale
dependent. We choose a standard setting as shown in
Table 2. In other words, in our numerical study, the
settings for ã0, ã̃, �0, �1, �1, �2, and �k are not fine
tuned across all 24 scenarios.

6.4. Performance Measure
To compare the performances of different algorithms,
we use “optimality gap” (OG) defined below to eval-
uate the performance of algorithm:

g4x∗

k5− g4x∗5

g4x05− g4x∗5
1

where x01 x
∗1 and x∗

k correspond to the initial solution,
the true optima of the underlying response surface
and the best solution before the algorithm terminates,
respectively. Note that when the test functions have
more than one local optimum, x∗ is defined as the
local optimum that is closest to the solution that the
running algorithm produces. We run 20 macrorepli-
cations for 24 scenarios for each algorithm (STRONG,
SPSA, NM, RSM) with fixed initial solutions and ran-
dom initial solutions. For each macroreplication, the
algorithm is terminated after 4,000 observations are
consumed, including the observations that are used
to estimate the gradient and Hessian matrix.

6.5. Results
The results are summarized in Tables 3 and 4 for fixed
and random initial solutions, respectively. Given 20
macroreplications, the average OG is reported, along
with the associated standard deviation given in the
parentheses. If at least one replication fails to con-
verge (i.e., OG ≥ 1), the percentage of successful repli-
cations is given in parentheses.

In all 24 scenarios where the initial solution is fixed
(Table 3), we can see that STRONG is remarkably
successful, giving results that are better than other
competing algorithms. In particular, we found that
SPSA can work well for quadratic functions (uni-
modal), but it fails to converge in other test prob-
lems that are either multimodal, higher dimensional,
or of larger variance. The results also coincide with
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Table 3 Optimality Gap for 24 Scenarios with Fixed Initial Solutions

STRONG SPSA NM RSM

Scenario Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.)

1 2026E−06 (1.50E−06) (0%) 2040E−06 (1.48E−06) 1020E−03 (9.76E−04)
2 2036E−06 (1.16E−06) (10%) 1024E−01 (3.06E−01) 1037E−03 (9.01E−04)
3 8006E−06 (4.87E−08) (0%) 5009E−06 (4.40E−06) 3098E−04 (1.68E−04)
4 9002E−06 (6.81E−06) (0%) (10%) 8067E−02 (2.65E−01)
5 7084E−06 (2.17E−08) (0%) 1036E−04 (1.89E−04) 2022E−04 (1.68E−10)
6 5013E−06 (4.72E−06) (0%) (10%) 3053E−02 (5.06E−02)
7 8093E−07 (9.54E−08) (45%) 1031E−06 (1.61E−07) 1047E−05 (2.37E−05)
8 2045E−06 (1.26E−06) (45%) 3002E−06 (1.67E−06) 1003E−05 (2.30E−05)
9 3009E−06 (1.73E−10) (15%) 4081E−06 (4.53E−08) 1017E−05 (2.03E−05)
10 2076E−06 (1.29E−06) (10%) 9029E−01 (2.15E−01) 1012E−03 (3.81E−03)
11 4023E−06 (1.21E−07) (0%) 1071E−05 (7.15E−07) 4040E−06 (3.86E−11)
12 2093E−06 (1.08E−06) (0%) (35%) 4087E−05 (6.85E−05)
13 2031E−09 (1.82E−10) (30%) 4064E−10 (3.03E−10) 1015E−03 (3.70E−03)
14 5082E−09 (3.25E−09) (20%) 1057E−11 (1.40E−12) 8064E−02 (2.66E−01)
15 3080E−09 (2.41E−10) (20%) 3008E−10 (3.31E−10) 3030E−04 (5.96E−04)
16 1006E−08 (3.61E−09) (15%) (40%) 5068E−03 (1.35E−02)
17 7055E−09 (6.40E−10) (0%) 6018E−09 (8.85E−09) 3027E−05 (4.79E−11)
18 1024E−08 (2.43E−09) (0%) (20%) 1091E−04 (2.87E−04)
19 5030E−03 (4.02E−03) 1027E−02 (9.90E−03) (50%) 2004E−02 (6.98E−02)
20 1016E−06 (1.62E−07) 6024E−06 (1.76E−06) (35%) 2039E−02 (8.34E−02)
21 3020E−03 (2.48E−03) 1061E−02 (9.40E−03) (0%) 5043E−02 (2.22E−01)
22 1049E−06 (1.44E−06) 6060E−06 (4.80E−06) (0%) 1005E−01 (2.82E−01)
23 3017E−03 (1.88E−03) 1015E−02 (4.90E−03) (0%) 3013E−03 (1.18E−03)
24 4048E−01 (1.80E−01) 1028E−05 (7.67E−06) (0%) 3036E−02 (2.91E−02)

the finding that the performance of SPSA is quite sen-
sitive to the initial solution, especially in multimodal
functions. Specifically, when the initial solution is not
selected close to the local optimum, it is quite likely

Table 4 Optimality Gap for 24 Scenarios with Random Initial Solutions

STRONG SPSA NM RSM

Scenario Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.)

1 7072E−05 (2.14E−04) (85%) 2017E−05 (8.82E−05) (95%)
2 4062E−05 (1.49E−04) (80%) (90%) (90%)
3 3033E−07 (6.60E−07) 2009E−02 (4.02E−02) 4002E−06 (7.01E−06) 2080E−03 (3.29E−03)
4 1007E−01 (1.82E−01) 7032E−03 (2.63E−03) (70%) 9025E−02 (2.51E−01)
5 1046E−07 (2.24E−07) 1008E−02 (6.24E−03) 8000E−04 (1.39E−03) 4002E−02 (1.55E−01)
6 6097E−01 (2.17E−01) 8020E−03 (3.11E−03) (35%) 9012E−02 (2.25E−01)
7 1089E−08 (1.16E−08) (90%) 4096E−04 (2.00E−03) (90%)
8 2037E−05 (1.05E−04) (70%) 5057E−04 (2.31E−03) (90%)
9 1019E−07 (2.31E−07) 6070E−03 (1.87E−02) 5033E−07 (1.47E−06) 1038E−03 (4.16E−03)
10 2077E−08 (2.60E−08) 1076E−02 (4.26E−02) 2092E−01 (3.74E−01) 5054E−02 (2.13E−01)
11 2036E−08 (3.20E−08) 6025E−04 (4.60E−04) 1018E−07 (1.54E−07) 2097E−03 (4.76E−03)
12 1087E−08 (1.74E−08) 9091E−04 (1.29E−03) (85%) 3081E−02 (9.60E−02)
13 2043E−05 (1.08E−04) (85%) 9026E−08 (3.48E−07) 1066E−03 (6.97E−03)
14 7040E−08 (2.25E−07) (80%) 1004E−06 (4.66E−06) 00030850441038E−015
15 1027E−04 (3.39E−04) 4043E−03 (1.53E−02) 1074E−12 (3.79E−12) 9041E−04 (2.78E−03)
16 3021E−04 (1.28E−03) 5028E−04 (1.05E−03) 2080E−01 (3.77E−01) 7085E−03 (3.47E−02)
17 5060E−05 (1.30E−04) 1049E−04 (2.71E−04) 9015E−10 (3.94E−09) 2021E−03 (4.82E−03)
18 9076E−05 (1.80E−04) 2078E−04 (5.00E−04) (85%) 1031E−02 (2.29E−02)
19 1074E−03 (1.48E−03) 3074E−03 (6.59E−03) 3003E−02 (2.27E−01) 1059E−02 (5.23E−02)
20 7008E−04 (2.68E−03) 1038E−06 (2.39E−06) (50%) 6099E−02 (2.04E−02)
21 6093E−04 (6.62E−04) 1057E−03 (1.50E−03) 6070E−02 (7.69E−02) 5021E−04 (1.95E−03)
22 1002E−02 (4.34E−02) 8044E−07 (5.39E−07) (45%) 2034E−01 (3.65E−01)
23 4019E−04 (2.85E−04) 1062E−03 (8.19E−04) 1059E−01 (9.35E−02) 1024E−04 (4.38E−04)
24 3045E−01 (2.92E−01) 3047E−06 (5.70E−06) (10%) 2004E−01 (3.17E−01)

that SPSA will result in poor performance or even
diverge. On the other hand, NM shows volatile per-
formance over different scenarios. The results of NM
are appalling when the response surface is grossly
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noisy, such as scenarios 2, 4, 6, 12, and 16. The
reason may be attributed to the moving direction
of NM being based on the rank of the stochastic
responses instead of on the function values them-
selves (Spall 2003); therefore when the response sur-
face is very noisy, the random error can corrupt the
relative ranks of solutions, leading the algorithm to
an incorrect direction and finally to failure of con-
vergence. RSM has robust performance over all sce-
narios. In most scenarios, however, it is inferior to
STRONG. We believe that the trust region (region of
interest) featured in STRONG allows the algorithm to
take adaptive steps, either more aggressive or more
conservative, in the search process. Moreover, the iter-
ative selection between first-order and second-order
polynomials also grants the algorithm more flexibility
to perform the optimization work.

Similar results are exhibited in Table 4, where 24 sce-
narios are evaluated with random initial solutions in
20 macroreplications. The standard deviation of per-
formance measures in this table, regardless of algo-
rithms and scenarios, is much larger than that in
Table 3 because of the random initial solutions. We can
see that the location of the initial solution can seriously
affect the performance of SPSA and RSM and lead to
large variation of performances. Again, NM performs
poorly in large variance situations, exhibited in sce-
narios 2, 4, 6, 12 ,14 18, 20, 22, and 24.

In both Tables 3 and 4, STRONG is more sta-
ble and has smaller OGs versus other algorithms.
Moreover, the computational advantage of STRONG
is more obvious when the dimension of the prob-
lem increases. This demonstrates the usefulness of
the DOE technique in improving algorithm effi-
ciency, especially in higher-dimensional problems.
In other numerical experiments we found that the
STRONG framework with random sample designs
instead of orthogonal designs had poorer perfor-
mance. Because of space limitations, those results
were not included here.

7. Conclusions
In this paper, we proposed STRONG, a new response-
surface-based method for unconstrained simula-
tion optimization with continuous decision vari-
ables. STRONG uses a series of local metamodel,
either a first-order or second-order polynomial, to
approximate the underlying complex response sur-
face; therefore it can handle problems in which the
response surface is very complex. Compared with
traditional RSM, STRONG applies the trust-region
updating technique to achieve the desired automa-
tion and convergence properties. The framework per-
mits the utilization of the existing gradient informa-
tion, or a wide variety of experimental designs to

obtain black-box gradient estimates. Our numerical
evaluations indicate the advantage of STRONG com-
pared with other competing algorithms. Moreover,
the design of experiments is found to significantly
improve the efficiency of the optimization procedure.

It is noteworthy that if the objective function in
Equation (1) is a quantile instead of an expected
value, by Serfling (1980) and Hong (2009) there exist
strongly consistent estimators of quantile and quantile
gradient. If Assumption 2 is satisfied, which means
that both the quantile and quantile gradient estima-
tors satisfy the uniform strong law of large numbers,
we believe that the gradient-based STRONG still con-
verges (i.e., the conclusion of Theorem 1 holds). How-
ever, gradient estimators are typically biased (see,
for instance, Serfling 1980). Therefore, the DOE-based
STRONG may fail to converge because the unbiased-
ness of quantile estimators is necessary for Theorem 2
(Lai et al. 1979) to hold.

The limitations of STRONG can be summarized as
follows. First, STRONG is an RSM-based algorithm;
therefore it is scale dependent, as is classic RSM. Sec-
ond, like RSM, STRONG provides a local rather than
global optimum. Third, we currently use central com-
posite designs (CCD) to construct the second-order
polynomials, which can be computationally demand-
ing for large-scale problems. Alternatives to CCD
are discussed in Kleijnen (2008). In the future, we
will explore the way of constructing the trust region
and the appropriate experimental designs to further
improve the efficiency of the STRONG framework.
Moreover, the use of variance reduction techniques
such as common random number (Law 2007), and
generalized least squares (Myers et al. 2009) will also
be investigated to improve the statistical accuracy of
the gradient estimate. It is also of interest to compare
the efficiency of STRONG and the traditional RSM in
practical applications.
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