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This article studies Joint Chance-Constrained Programs (JCCPs). JCCPs are often non-convex and non-smooth and thus are generally
challenging to solve. This article proposes a logarithm-sum-exponential smoothing technique to approximate a joint chance constraint
by the difference of two smooth convex functions, and uses a sequential convex approximation algorithm, coupled with a Monte
Carlo method, to solve the approximation. This approach is called a smooth Monte Carlo approach in this article. It is shown that the
proposed approach is capable of handling both smooth and non-smooth JCCPs where the random variables can be either continuous,
discrete, or mixed. The numerical experiments further confirm these findings.
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1. Introduction

The use of optimization to support management decisions
has become a common practice in the business world. In
many industrial optimization problems, however, there are
uncertainties associated with the set of constraints. The
following are some examples.

1. To make production and inventory decisions, a man-
ufacturer needs to maximize its profit while satisfying
demands from customers. However, there are often un-
certainties in the demands of the customers.

2. To make investment decisions, an agent needs to max-
imize her client’s expected return while satisfying the
client’s cash requirements in the future. However, there
are uncertainties in the returns of financial products.

3. To make resource allocation decisions, a planner needs
to minimize the total allocation cost while meeting de-
mands from different nodes. However, there are uncer-
tainties in the demands of the nodes (Chen et al., 2010).

To handle the uncertainties in the constraints, a natural ap-
proach is to require that all constraints be satisfied with
a given high probability; e.g., 90%. The resulting opti-
mization problem is called a Chance-Constrained Program

∗Corresponding author

(CCP). Its solution guarantees to satisfy the original con-
straints with the given probability. Note that the probabil-
ity can also be viewed as the level of confidence. Therefore,
this approach is also consistent with the typical approach
of handling uncertainties used in statistical inferences.

In this article, we consider the CCP represented as fol-
lows:

minimize
x∈X

h(x),

subject to Pr{c1(x,ξ) ≤ 0, . . . , cm(x,ξ) ≤ 0} ≥ 1 − α,

(1)

where x is a d-dimensional vector of decision variables; ξ
is a k-dimensional vector of uncertain parameters, and the
support of ξ, denoted as �, is a closed subset of �k; X
is a subset of �d ; h : �d → � and ci : �d × � → �, i =
1, . . . , m, are real-valued functions. Moreover, throughout
this article we assume that X is a convex and compact set,
which may be defined by some deterministic constraints,
and the functions h and ci , i = 1, . . . , m, are convex and
continuously differentiable in x for every ξ ∈ �. Problem
(1) is called a Single CCP (SCCP) if m = 1 and a Joint CCP
(JCCP) if m > 1.

The literature on CCPs can be dated back to Charnes
et al. (1958), who first considered an SCCP, and Miller and
Wagner (1965), who first considered a JCCP. Since then,
both theories and applications of CCPs have been studied
extensively. For a comprehensive literature review on the
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Smooth Monte Carlo approach to JCCP 717

topic, readers are referred to Prékopa (2003), Nemirovski
and Shapiro (2006), Hong et al. (2011), and references
therein.

There are three major difficulties in solving a CCP. First,
the chance constraint is typically difficult to evaluate. For
instance, even when the original constraints are linear in x
and the uncertain parameters follow a multivariate normal
distribution, the joint chance constraint in general may not
have a closed-form expression. Second, the chance con-
straint does not necessarily preserve the convexity of the
original constraints. Even though the original constraints
define a convex set for any given ξ ∈ �, the set defined
by the chance constraint may not be convex. It is prov-
ably convex only under very restrictive conditions (see,
e.g., Prékopa (2003) and Nemirovski and Shapiro (2006)).
Third, the chance constraint does not necessarily preserve
the smoothness of the original constraints. For instance,
when ξ follows a discrete distribution or m > 1, the left-
hand side of the chance constraint is often a non-smooth
function of x. Moreover, it is often difficult to know a priori
whether a CCP is smooth.

A number of general approaches have been proposed in
the literature to solve CCPs. In this article we introduce
two of the most popular ones. The first one is the so-called
convex conservative approximations, which include the
quadratic approximation of Ben-Tal and Nemirovski
(2000), the Bernstein approximation of Nemirovski
and Shapiro (2006), the second-order conic program
approximation of Chen et al. (2010), and the Conditional
Value-at-Risk (CVaR) approximation of Rockafellar and
Uryasev (2000). This approach seeks to find a convex subset
of the (possibly non-convex) feasible set and finds the op-
timal solution in the subset. It handles the three difficulties
at the same time by choosing a convex subset that is defined
by a set of constraints that are easy to evaluate, convex,
and smooth. These approximations are often significantly
easier to solve than the CCPs and their solutions are guar-
anteed to be feasible for the CCPs. However, these solutions
do not satisfy any optimality conditions of the CCPs and
their qualities are hard to quantify. Among these convex
conservative approximations, the CVaR approximation
is known as the best because the feasible regions defined
by all other approximations are known to be subsets of
the feasible region defined by the CVaR approximation.
Furthermore, these approximations are often designed to
solve SCCPs. To handle JCCPs, probabilistic inequalities
(e.g., Bonferroni’s inequality) have to be used to break a
joint chance constraint into multiple single chance con-
straints, which often makes the approximations even more
conservative. The second approach is the so-called scenario
approach (see, for instance, De Farias and Van Roy (2004)
and Calafiore and Campi (2005, 2006)). It replaces the
chance constraint in Problem (1) by a set of constraints
ci (x, ξ�) ≤ 0, i = 1, . . . , m, � = 1, . . . , n, where {ξ1, . . . , ξn}
is a collection of independent scenarios of ξ and n needs
to be determined carefully to ensure the probability
requirement. The new problem under the scenario

approach is easier to solve because ci is convex, smooth,
and easy to evaluate. However, Nemirovski and Shapiro
(2006) and Hong et al. (2011) found that the solutions of
the approach can be drastically different when different
collections of scenarios are used and the solutions are in
general very conservative.

Recently, Hong et al. (2011) proposed an ε-
approximation approach, which reformulated a JCCP into
a Difference of Convex (DC) program, and used an ε-
approximation together with a Sequential Convex Approx-
imation (SCA) algorithm to solve it. In each iteration of
the SCA algorithm, the approach applies a gradient-based
Monte Carlo method to solve a convex stochastic program.
They showed that, under some technical conditions, the
solutions found by their approach converge to the set of
Karush–Kuhn–Tucker (KKT) points of the JCCP. To the
best of our knowledge, the ε-approximation approach is
the only approach in the literature that is capable of solv-
ing general JCCPs while guaranteeing certain optimality
conditions.

Although the ε-approximation approach has appealing
properties, it is designed to solve only smooth JCCPs. As
we pointed out earlier in this article, the non-smoothness
is a major difficulty of JCCPs. Therefore, by assuming that
JCCPs are smooth, the ε-approximation approach avoids
this difficulty but also significantly limits its applicability in
practice.

In this article, based on the ε-approximation approach,
we propose a Smooth Monte Carlo (SMC) approach that
handles the third difficulty as well as the first two. In this
approach, we no longer solve an ε-approximation. Instead,
we smooth the ε-approximation using a logarithm-sum-
exponential function. This results in a new smooth DC
program even when the JCCP is not smooth. Furthermore,
we show that once the ε-approximation is smoothed, the pa-
rameter ε can be treated as a decision variable, often result-
ing in a better solution than the original ε-approximation.
Similar to Hong et al. (2011), we propose to use an SCA
algorithm to solve the smooth DC program and use a
Monte Carlo method to solve the convex subproblem in
each iteration of the SCA algorithm. We show that the
SMC approach is a conservative approximation of the orig-
inal JCCP and analyze its convergence under some tech-
nical conditions. Note that “conservative approximation”
throughout this article means that the feasible region of
the approximation problem is a subset of the original prob-
lem, which is consistent with the stochastic optimization
literature.

Smooth approximations to non-smooth optimization
problems have been studied extensively in the literature of
non-linear optimization. Readers interested in this topic
are referred to, e.g., Bertsekas (1975), Fukushima and Qi
(1998), and Nesterov (2005) for comprehensive reviews. In
the stochastic optimization context, Alexander et al. (2006)
proposed a smoothing technique to handle CVaR opti-
mization problems. They compared their approach with the
well-known linear approach of Rockafellar and Uryasev
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718 Hu et al.

(2000) and found that their approach is computationally
much more efficient than the linear approach. Inspired by
Alexander et al. (2006), Xu and Zhang (2009) proposed a
smooth scheme for the stochastic programs where the non-
smooth objective function is in an expectation form and
proved the convergence of the smoothed sample-average
approximation.

The rest of this article is organized as follows. In Sec-
tion 2 we introduce the ε-approximation of Hong et al.
(2011) and discuss its limitations. In Section 3 we propose
a logarithm-sum-exponential smoothing technique to ap-
proximate a JCCP as a smooth DC program and show that
this approach guarantees the desired convergence proper-
ties. Furthermore, we show that the smooth DC program
can be strengthened by treating the parameter ε as a de-
cision variable. We implement Monte Carlo methods and
propose an SCA algorithm to solve the smooth DC pro-
gram in Section 4. The results of some numerical experi-
ments are reported in Section 5. We conclude the article in
Section 6 and include some lengthy proofs in the Appendix.

2. Background

Let us consider the joint chance constraint:

Pr{c1(x,ξ) ≤ 0, . . . , cm(x,ξ) ≤ 0} ≥ 1 − α.

Clearly, simultaneously handling multiple constraints
c1(x,ξ) ≤ 0, . . . , cm(x,ξ) ≤ 0 is difficult. One approach is
to implement probabilistic inequalities (e.g., Bonferroni’s
inequality) to break the joint chance constraint into a num-
ber of single chance constraints (see, e.g., Nemirovski and
Shapiro (2006)). However, this typically results in a con-
servative approximation of the original joint chance con-
straint since the probabilistic inequalities are generally not
tight. Another approach is to use a maximum operator
c(x,ξ) = max{c1(x,ξ), . . . , cm(x,ξ)}. Then, it is easy to see
that

Pr{c1(x,ξ) ≤ 0, . . . , cm(x,ξ) ≤ 0} = Pr{c(x,ξ) ≤ 0}.

Note that c(x,ξ) is convex in x for any ξ ∈ �. Therefore,
we can convert a JCCP to an SCCP in this way without
destroying the convexity structure embedded in the proba-
bility function. Then, Problem (1) can be rewritten as

minimize
x∈X

h(x),

subject to Pr{c(x,ξ) > 0} ≤ α. (2)

Although the approach of using a maximum operator con-
verts a JCCP to an SCCP, it also introduces the additional
difficulty that c(x,ξ) may no longer be smooth in x even
though ci (x,ξ), i = 1, . . . , m are smooth. In this article we
mainly focus on this issue.

2.1. ε-approximation

We first introduce the ε-approximation of Hong et al. (2011)
in this subsection and discuss its limitations in next subsec-
tion. Let

π(z, t) = 1
t
{[z + t]+ − [z]+},

where [z]+ = max{z, 0}. Hong et al. (2011) showed
that inf t>0 E[π(c(x,ξ), t)] = Pr{c(x,ξ) ≥ 0} and suggested
solving:

minimize
x∈X

h(x),

subject to inf
t>0

E[π(c(x,ξ), t)] ≤ α. (3)

Let �0 and � denote the feasible sets of Problem (2)
and Problem (3), respectively. Note that Pr{c(x,ξ) ≥ 0} =
Pr{c(x,ξ) > 0} + Pr{c(x,ξ) = 0}. Then, � ⊂ �0. There-
fore, Problem (3) in general is a conservative approximation
of Problem (2).

Furthermore, Hong et al. (2011) make the following
assumption.

Assumption 1. For any x ∈ X, Pr{c(x,ξ) = 0} = 0.

Then, when Assumption 1 is satisfied, Problems (2) and (3)
are equivalent and one only needs to solve Problem (3) to
find the optimal solutions of Problem (2).

Note that E[π(c(x,ξ), t1)] ≤ E[π(c(x,ξ), t2)] when 0 <

t1 ≤ t2 and

inf
t>0

E[π(c(x,ξ), t)] = lim
t↘0

E[π(c(x,ξ), t)],

where t ↘ 0 denotes that t decreasingly goes to zero. There-
fore, a natural approach to approximating Problem (3) is
to fix t = ε for some ε > 0 and solve

minimize
x∈X

h(x),

subject to E[π(c(x,ξ), ε)] ≤ α. (4)

Hong et al. (2011) call Problem (4) an ε-approximation.
Let �ε denote the feasible set of Problem (4). Note that

E[π(c(x,ξ), ε)] ≥ lim
t↘0

E[π(c(x,ξ), t)].

Then, �ε ⊂ � ⊂ �0. Therefore, Problem (4) is also a con-
servative approximation to Problem (2) no matter whether
or not Assumption 1 is satisfied.

To solve Problem (4), we let

g1(x, ε) = E[[c(x,ξ) + ε]+] − αε,

g2(x) = E[[c(x,ξ)]+].

Then, Problem (4) can be written as the following optimiza-
tion problem:

minimize
x∈X

h(x),

subject to g(x, ε) := g1(x, ε) − g2(x) ≤ 0. (5)
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Smooth Monte Carlo approach to JCCP 719

Note that both g1(x, ε) and g2(x) are convex functions of
x. Therefore, g(x, ε) takes the form of the difference of two
convex functions, which is known as a DC function, and
Problem (5) is known as a DC program.

Hong et al. (2011) proposed to solve Problem (5) using
an SCA algorithm. The algorithm starts with a feasible
solution and, in each iteration (say iteration k), it solves

minimize
x∈X

h(x),

subject to g1(x, ε) − [g2(xk−1)+∇xg2(xk−1)T(x−xk−1)]≤0,

(6)

where xk−1 is the optimal solution of the problem in iter-
ation k − 1. Because it uses a first-order Taylor expansion
at xk−1 to approximate the convex function g2(x) in Prob-
lem (5), Problem (6) is a convex optimization problem.
Furthermore, Hong et al. (2011) showed that, under cer-
tain conditions, the sequence of the solutions generated by
the SCA algorithm converges to the set of KKT points of
Problem (5), which also converges to the set of KKT points
of Problem (2) as ε → 0. To actually solve Problem (6),
Hong et al. (2011) proposed a gradient-based Monte Carlo
method and also analyzed its convergence.

2.2. Limitations of the ε-approximation

Although the ε-approximation approach has the desired
convergence property that is often missed by the algorithms
in the JCCP literature, it also has some limitations. One
of the major limitations is that the approach is designed
to solve only smooth JCCPs. The theoretical framework
and the SCA algorithm of this approach critically depend
on the following two assumptions on the smoothness of
c(x,ξ) = max{c1(x,ξ), . . . , cm(x,ξ)}:
1. c(x,ξ) is a continuous random variable with a continu-

ous density function for any x ∈ X, and
2. c(x,ξ) is differentiable with respect to x with probability

one at any x ∈ X.

However, these two assumptions are often violated
for practical problems. When ξ has a discrete distribu-
tion, c(x,ξ) is typically a discrete random variable, which
violates the first assumption and often the second as
well. When ξ has a continuous distribution, the second
assumption may also be violated. Note that c(x,ξ) =
max{c1(x,ξ), . . . , cm(x,ξ)} is typically not smooth for any
fixed ξ. The second assumption basically requires that
the probability of being at the kink points is zero. For
instance, when c(x,ξ) = max{c1(x,ξ), c2(x,ξ)}, c(x,ξ) is
typically not differentiable at x where c1(x,ξ) = c2(x,ξ).
Therefore, a condition often used to ensure the assumption
is to have Pr{c1(x,ξ) = c2(x,ξ)} = 0. However, even for
the simple case where c1(x,ξ) = ξT

1 x and c2(x,ξ) = ξT
2 x,

Pr{c1(x,ξ) = c2(x,ξ)} = 1 at x = 0 and the assumption is
violated. Furthermore, even when the assumptions are sat-
isfied, it is often difficult to know a priori.

When the JCCP is not smooth, there exist a number
of issues on the theory and implementation of the ε-
approximation. First, KKT conditions and KKT points are
only defined for smooth non-linear optimization problems.
Therefore, when the JCCP is not smooth, the optimality
conditions for smooth optimization are no longer appli-
cable. Second, the SCA algorithm requires linearizing the
convex function g2(x) using a first-order Taylor expansion.
However, if g2(x) is not differentiable, the SCA algorithm
can no longer be implemented. Third, the SCA algorithm
requires solving a sequence of convex optimization prob-
lems that are typically non-smooth when either g1(x, ε) or
g2(x) are non-smooth. However, this may create significant
difficulties because non-smooth optimization problems are
in general much more difficult and slower to solve than
their smooth counterparts and, especially, as we know, in
the stochastic optimization context the use of non-smooth
techniques is still relatively scarce.

In this article we handle the non-smoothness of JCCPs by
a smooth approximation approach. This approach handles
the three issues simultaneously. Furthermore, it provides an
opportunity for us to further treat ε as a decision variable
that may significantly improve the performance of the SCA
algorithm.

3. A smooth approximation to a JCCP

In this section, we propose a logarithm-sum-exponential
smoothing approach to smooth the ε-approximation, study
its convergence properties, and show how it may be im-
proved by treating ε as a decision variable.

3.1. Logarithm-sum-exponential smoothing
to maximum function

Note that g1(x, ε) and g2(x) may be written as

g1(x, ε) = E[[c(x,ξ) + ε]+] − αε

= E[max{0, c1(x,ξ) + ε, . . . , cm(x,ξ) + ε}] − αε,

(7)
g2(x) = E[[c(x,ξ)]+]

= E[max{0, c1(x,ξ), . . . , cm(x,ξ)}], (8)

respectively. Therefore, it is clear that the non-smoothness
of Problem (5) is caused by the maximum operator. In this
subsection we use a logarithm-sum-exponential function to
smooth the maximum operator.

Let a = max{a1, . . . , am}. Then [a]+ = max{0, a1, . . . ,

am}. It is not difficult to show that for any μ > 0 (see, e.g.,
Rockafellar and Wets (1998) and Boyd and Vandenberghe
(2004)):

[a]+ ≤ μ log

[
1 +

m∑
i=1

exp(μ−1ai )

]
≤ [a]+ + μ log(m + 1),

(9)
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720 Hu et al.

where the second inequality is tight when a1 = · · · = am =
0. We call μ log[1 + ∑m

i=1 exp(μ−1ai )] a logarithm-sum-
exponential approximation of [a]+.

To analyze the logarithm-sum-exponential approxi-
mation to g1(x, ε) and g2(x), we consider a general
vector-valued random function F(x,ξ) = ( f1(x,ξ), . . . ,
fm(x,ξ)) : �d × � → �m with each fi being a real-valued
function. Let f (x,ξ) = max{ f1(x,ξ), . . . , fm(x,ξ)}. Then,
we use the function

H(x,ξ, μ) := μ log

[
1 +

m∑
i=1

exp{μ−1 fi (x,ξ)}
]

to smooth the function [ f (x,ξ)]+ and consequently use

	(x, μ) := E[H(x,ξ, μ)]

to smooth the expectation E[[ f (x,ξ)]+]. One of the merits
of the logarithm-sum-exponential smoothing approach is
that it has very nice properties, which we summarize in the
following proposition.

Proposition 1. Suppose that fi (x,ξ), i = 1, . . . , m are con-
vex in x for every ξ ∈ �. Then H(x,ξ, μ) is jointly convex
in (x, μ) and non-decreasing in μ for every ξ ∈ �, 	(x, μ) is
jointly convex in (x, μ) and non-decreasing in μ, and for any
μ > 0:

E[[ f (x,ξ)]+] ≤ 	(x, μ) ≤ E[[ f (x,ξ)]+] + μ log(m + 1).

Moreover,

E[[ f (x,ξ)]+] = inf
μ>0

	(x, μ).

Proof. First, it is known that the logarithm-sum-
exponential function log[1 + ∑m

i=1 exp(ai )] is convex in
(a1, . . . , am)T. Since μ log[1 + ∑m

i=1 exp(μ−1ai )] is the
perspective function of the logarithm-sum-exponential
function and the perspective operation preserves the con-
vexity (for function f : �n → �, the perspective of f is
the function g : �n+1 → � defined by g(x, t) = t f (x/t)
with domain domg = {(x, t) | x/t ∈ dom f, t > 0}; see,
e.g., Section 3.2.6 of Boyd and Vandenberghe (2004)),
we have μ log[1 + ∑m

i=1 exp(μ−1ai )] is jointly convex in
(a1, . . . , am, μ)T. Moreover, μ log[1 + ∑m

i=1 exp(μ−1ai )] is
increasing in each component ai , i = 1, . . . , m. Note also
that for every ξ ∈ �, fi (x,ξ), i = 1, . . . , m are convex in
x. Using the composition rules of convex functions (Boyd
and Vandenberghe, 2004), we have that for every ξ ∈ �,
μ log[1 + ∑m

i=1 exp{μ−1 fi (x,ξ)}] (i.e., H(x,ξ, μ)) is con-
vex in (x, μ). It follows that 	(x, μ) is convex in (x, μ).

Note that from Equation (9), we have for every ξ ∈ �

and μ > 0

[ f (x,ξ)]+ ≤ H(x,ξ, μ) ≤ [ f (x,ξ)]+ + μ log(m + 1).

This immediately implies E[[ f (x,ξ)]+] ≤ 	(x, μ) ≤
E[[ f (x,ξ)]+] + μ log(m + 1).

To prove the monotonicity of H(x,ξ, μ) and 	(x, μ)
in μ, we only need to prove the function μ log[1 +

∑m
i=1 exp(μ−1ai )] is non-decreasing in μ for every

(a1, . . . , am)T. For any (a1, . . . , am)T and μ > 0, note that

∂

∂μ

{
μ log

[
1 +

m∑
i=1

exp(μ−1ai )

]}

= log

[
1 +

m∑
i=1

exp(μ−1ai )

]
−

∑m
i=1(μ−1ai ) exp(μ−1ai )

1 + ∑m
i=1 exp(μ−1ai )

≥ log

[
1 +

m∑
i=1

exp(μ−1ai )

]

− [maxi=1,...,m{μ−1ai }]+
∑m

i=1 exp(μ−1ai )
1 + ∑m

i=1 exp(μ−1ai )

≥ log

[
1 +

m∑
i=1

exp(μ−1ai )

]
−

[
max

i=1,...,m
{μ−1ai }

]+

≥ 0,

where the last inequality is due to Equation (9). Therefore,
μ log[1 + ∑m

i=1 exp(μ−1ai )] is non-decreasing in μ. This im-
plies that H(x,ξ, μ) and 	(x, μ) are non-decreasing in μ.
Finally, by the monotone convergence theorem (Durrett,
2005), we obtain

inf
μ>0

	(x, μ) = E[inf
μ>0

H(x,ξ, μ)]

= E[max{0, f1(x,ξ), . . . , fm(x,ξ)}] = E[[ f (x,ξ)]+].

This concludes the proof of the proposition. �

Proposition 1 provides a foundation for our smooth
approximation. It shows that we may bound the (possibly)
non-smooth functions g1(x, ε) and g2(x) from both above
and below using smooth functions. Furthermore, these
approximations preserve the convexity of the original
functions and the approximation errors can be bounded
explicitly.

3.2. Smooth approximation to the ε-approximation

Now we return to Problems (1) and (5) and show how to use
the logarithm-sum-exponential functions to approximate
both g1(x, ε) and g2(x) to obtain a smooth approximation
to Problem (1). For any fixed ε, we let.

H1(x, ε,ξ, μ) = μ log

[
1 +

m∑
i=1

exp{μ−1(ci (x,ξ) + ε)}
]

,

	1(x, ε, μ) = E [H1(x, ε,ξ, μ)] ,

H2(x,ξ, μ) = μ log

[
1 +

m∑
i=1

exp{μ−1ci (x,ξ)}
]

,

	2(x, μ) = E [H2(x,ξ, μ)] .

Then, for any μ > 0, both H1(x, ε,ξ, μ) and H2(x,ξ, μ)
are continuously differentiable in x for every ξ ∈ �. Let

ḡ1(x, ε, μ) = 	1(x, ε, μ) − αε and
ḡ2(x, μ) = 	2(x, μ) − μ log(m + 1).
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Smooth Monte Carlo approach to JCCP 721

By Equations (7) and (8) and Proposition 1, we have

g1(x, ε) ≤ ḡ1(x, ε, μ) ≤ g1(x, ε) + μ log(m + 1),
g2(x) − μ log(m + 1) ≤ ḡ2(x, μ) ≤ g2(x),

which implies that

g1(x, ε) − g2(x) ≤ ḡ1(x, ε, μ) − ḡ2(x, μ)
≤ g1(x, ε) − g2(x) + 2μ log(m + 1). (10)

Equation (10) serves as the basis for our smooth approx-
imation. It suggests that we can use the following smooth
optimization problem to approximate Problem (5).

(Pμ)
minimize

x∈X
h(x),

subject to ḡ(x, ε, μ) := ḡ1(x, ε, μ) − ḡ2(x, μ) ≤ 0.

From Proposition 1 we see that both ḡ1(x, ε, μ) and ḡ2(x, μ)
are convex in x. Therefore, Problem (Pμ) is also a DC pro-
gram. To analyze the smoothness of the problem, we make
the following assumption, which is a standard assump-
tion in stochastic optimization and is also a very weak
assumption in practical situations (see, e.g., Broadie and
Glasserman (1996), Hong and Liu (2009), and Shapiro et al.
(2009)).

Assumption 2. There exist random functions Mi (ξ) > 0
and Ki (ξ) with E[Mi (ξ)] < ∞ and E[Ki (ξ)] < ∞ such that
|ci (x,ξ)| ≤ Mi (ξ) and ‖∇xci (x,ξ)‖ ≤ Ki (ξ) for all x ∈ X,
ξ ∈ �, and i = 1, . . . , m.

Let M(ξ) = ∑m
i=1 Mi (ξ). By Assumption 2, we have

E[M(ξ)] < ∞ and

|H1(x, ε,ξ, μ)| ≤ M(ξ) + ε + μ log(m + 1),
|H2(x,ξ, μ)| ≤ M(ξ) + μ log(m + 1)

for all x ∈ X and ξ ∈ �. Similarly, let K(ξ) = ∑m
i=1 Ki (ξ).

We have E[K(ξ)] < ∞ and

|H1(x1, ε,ξ, μ) − H1(x2, ε,ξ, μ)|

≤
m∑

i=1

sup
x∈X

‖∇xci (x,ξ)‖‖x1 − x2‖ ≤ K(ξ) ‖x1 − x2‖,

|H2(x1,ξ, μ) − H2(x2,ξ, μ)|

≤
m∑

i=1

sup
x∈X

‖∇xci (x,ξ)‖‖x1 − x2‖ ≤ K(ξ) ‖x1 − x2‖,

for all x1, x2 ∈ X, and ξ ∈ �. Then it follows from Theo-
rem 7.52 of Shapiro et al. (2009) that both ḡ1(x, ε, μ) and
ḡ2(x, μ) are continuously differentiable in x and

∇xḡ1(x, ε, μ) = E[∇x H1(x, ε,ξ, μ)] and
∇xḡ2(x, μ) = E[∇x H2(x,ξ, μ)]. (11)

Therefore, Problem (Pμ) is a smooth optimization problem,
which we refer to as a smooth DC program or a smooth ap-
proximation to distinguish from the possibly non-smooth
ε-approximation.

Note that Equation (10) shows that the difference be-
tween the constraint functions ḡ(x, ε, μ) and g(x, ε) can

be bounded by 2μ log(m + 1), which decreases to zero as
the smoothing parameter μ decreasingly goes to zero. This
motivates us to consider the asymptotic behaviors of the
smooth DC program; i.e., Problem (Pμ), as μ goes to zero.
To cope with the analysis, we make the following assump-
tion on the constraint qualification of the ε-approximation.
It is worthwhile noting that this type of assumption is
commonly used in non-linear programming (e.g., Zangwill
(1969) and Bazaraa et al. (1993)). For a detailed justifica-
tion of Assumption 3, readers are referred to the discussion
that follows Assumption 5 of Hong et al. (2011) as well as
the Electronic Companion of Hong et al. (2011).

Assumption 3. Let �I
ε = {x ∈ X : g1(x, ε) − g2(x) < 0}.

Then �ε = cl(�I
ε ) (cl(·) denotes the closure of a set).

For sets A, B ⊂ �d , let dist(x, A) = infx′∈A ‖x − x′‖ de-
note the distance from x ∈ �d to A and D(A, B) =
supx∈A dist(x, B) denote the deviation of the set A from
the set B (Shapiro et al., 2009). Note that it is a measure
of the distance between two sets. Let �(ε, μ) = {x ∈ X :
ḡ(x, ε, μ) ≤ 0}. Recall that it is the feasible set of Problem
(Pμ). Let S(ε, μ) and S(ε) denote the sets of optimal so-
lutions of Problem (Pμ) and Problem (5) respectively, and
ν(ε, μ) and ν(ε) denote the corresponding optimal values,
respectively. We have the following theorem, whose proof
is provided in the Appendix.

Theorem 1.

(a) �(ε, μ) ⊂ �ε for any μ > 0, and �(ε, μ2) ⊂ �(ε, μ1)
for any 0 < μ1 ≤ μ2.

(b) Suppose that Assumption 3 is satisfied. Then,

lim
μ↘0

�(ε, μ) = �ε, lim
μ↘0

ν(ε, μ) = ν(ε) and

lim
μ↘0

D(S(ε, μ), S(ε)) = 0.

Theorem 1 summarizes the properties of the smooth
approximation. The first property of Theorem 1 shows
that the smooth approximation is a conservative approx-
imation of the ε-approximation and is therefore also a
conservative approximation of the original JCCP. It also
indicates that the feasible region of the smooth approxi-
mation enlarges as the smoothing parameter μ decreases.
The second property shows that the feasible region of the
smooth approximation converges to the feasible region of
Problem (5)—i.e., the ε-approximation—as μ decreasingly
goes to zero. Furthermore, it shows that both the opti-
mal value and the set of optimal solutions of the smooth
approximation converge to those of the ε-approximation,
respectively.

Theorem 1 builds the convergence of optimal solutions
for the smooth approximation. However, the optimal solu-
tions of the smooth approximation may not be guaranteed
by typical numerical algorithms due to the non-convexity.
Thus, it is natural to study the convergence of the stationary
points for the smooth approximation. Because Problem
(Pμ) is a smooth non-linear optimization problem, we can
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722 Hu et al.

use the conventional KKT conditions as its optimality con-
ditions. Let 
(ε, μ) denote the set of KKT pairs of Problem
(Pμ). Then,


(ε, μ)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩(x, λ) ∈ �(ε, μ) × �+ :

0 ∈ ∇xh(x) + λ[∇xḡ1(x, ε, μ)
−∇xḡ2(x, μ)] + NX(x)

λ [ḡ1(x, ε, μ) − ḡ2(x, μ)]
= 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where NX(x) denotes the normal cone to X at x. The ma-
jor issue arising is that the ε-approximation—i.e., Problem
(5)—may be non-smooth and non-convex, which makes
its optimality conditions difficult to define. However, we
note that g(x, ε) is a DC function, and the subdifferen-
tials for both its first convex part g1(x, ε) and its second
convex part g2(x) are well defined (Shapiro et al., 2009).
This allows us to borrow the definitions of the optimal-
ity conditions for non-smooth convex optimization prob-
lems to define the optimality conditions for Problem (5).
Specifically, we define the set of stationary pairs of Problem
(5) as


(ε)

=

⎧⎪⎨⎪⎩(x, λ) ∈ �ε × �+ :

0 ∈ ∇xh(x) + λ[∂xg1(x, ε)
−∂xg2(x)] + NX(x)

λ [g1(x, ε) − g2(x)] = 0

⎫⎪⎬⎪⎭ ,

where ∂xg1(x, ε) and ∂xg2(x) denote the sets of subdiffer-
entials with respect to x for g1(x, ε) and g2(x) (Shapiro
et al., 2009). When g1(x, ε) and g2(x) are differentiable, we
have ∂xg1(x, ε) = ∇xg1(x, ε) and ∂xg2(x) = ∇xg2(x). Con-
sequently, the newly defined optimality conditions reduce
to the KKT conditions and 
(ε) becomes the set of
KKT pairs of Problem (5). Problem (5) is essentially a
quasi-differentiable optimization problem in the sense of
Demyanov and Rubinov (1980), and we can also use the
methodology in Shapiro (1984) to investigate its optimality
conditions. However, the optimality conditions introduced
here are suitable for analyzing convergence properties of
numerical algorithms.

As the optimality conditions for both the approximation
problem and original problem have been defined, we can
now analyze the convergence of the stationary points for
the smooth approximation. The following theorem summa-
rizes the convergence property. The proof of the theorem is
provided in the Appendix.

Theorem 2. Suppose that Assumptions 2 and 3 are satisfied.
Then lim supμ↘0 
(ε, μ) ⊂ 
(ε).

Theorems 1 and 2 ensure that Problem (Pμ) can
approximate Problem (5) very well. Therefore, we can
solve Problem (Pμ) instead of Problem (5) provided that
the smoothing parameter μ is sufficiently close to zero. It
is worthwhile noting that Problem (Pμ) is always a con-
servative approximation of Problem (5), and hence of the

original JCCP, no matter whether the related convergence
properties can be guaranteed. Thus, by solving Problem
(Pμ), even when optimality cannot be reached (e.g., the
related assumptions are not satisfied), we can still obtain
a good feasible solution for the JCCP.

3.3. Optimizing over ε

An important question in the ε-approximation is how to
set the parameter ε. Based on the convergence analysis, one
should select a very small ε to reduce the approximation
error. However, as reported by Hong et al. (2011, p. 630),
“extremely small ε may cause numerical problems and may
require longer time to solve the subproblem in each itera-
tion.” This motivates us to imbed the selection of ε in the
optimization process. In this subsection, we show how we
may treat ε as a decision variable in the smooth approxima-
tion and improve the performance of the approximation.

By treating ε as a decision variable (hereafter ε is denoted
as t to avoid confusion), Problem (Pμ) may be strengthened
as follows:

(Po
μ)

minimize
x∈X, t≥0

h(x),

subject to ḡ(x, t, μ) := ḡ1(x, t, μ) − ḡ2(x, μ) ≤ 0.

We can see that the functions ci (x,ξ) + t, i = 1, . . . , m are
jointly convex in (x, t) for every ξ ∈ �. It follows from
Proposition 1 that 	1(x, t, μ) is jointly convex in (x, t). Con-
sequently, the function ḡ1(x, t, μ) is jointly convex in (x, t).
Note that ḡ2(x, μ) does not include t. Therefore, Problem
(Po

μ) is also a DC program for (x, t). In what follows we
study the properties of this new DC program and show
that it could be a superior approximation to the JCCP,
compared with Problem (Pμ). Analogous to Assumption
3, to analyze the asymptotic behaviors of the new DC pro-
gram, we need the following assumption on the constraint
qualification of the original JCCP.

Assumption 4. Let �I = {x ∈ X : Pr{c(x,ξ) ≥ 0} < α}.
Then � = cl(�I ).

Let Zo(μ) be the feasible set of Problem (Po
μ) and

�o(μ) be the projection of Zo(μ) on X; i.e., �o(μ) =
{x ∈ X : ∃ t ≥ 0, such that (x, t) ∈ Zo(μ)}. Let νo(μ) be
the optimal value of Problem (Po

μ) and So(μ) be the
projection of the set of optimal solutions of Problem
(Po

μ) on X; i.e., So(μ) = {x ∈ X : ∃ t ≥ 0, such that
(x, t) is an optimal solution of Problem (Po

μ)}. The follow-
ing theorem summarizes the properties of Problem (Po

μ).
The proof of the theorem is deferred to the Appendix.

Theorem 3.

(a) For any μ > 0 and ε > 0, �(ε, μ) ⊂ �o(μ) ⊂ � and
ν ≤ νo(μ) ≤ ν(ε, μ).
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Smooth Monte Carlo approach to JCCP 723

(b) �o(μ2) ⊂ �o(μ1) for any 0 < μ1 ≤ μ2.
(c) Suppose that Assumption 4 is satisfied. Then,

lim
μ↘0

�o(μ) = �, lim
μ↘0

νo(μ) = ν and

lim
μ↘0

D(So(μ), S) = 0.

Comparing Theorem 3 with Theorem 1, we see that Prob-
lem (Po

μ) is also a smooth conservative DC approximation
of the original JCCP and is a better approximation than the
smooth approximation (Pμ). Therefore, to solve the JCCP,
we can solve either Problem (Pμ) or Problem (Po

μ). In Sec-
tion 4 and the numerical experiments reported in Section 5
we approximate and solve JCCPs using Problem (Po

μ).
Similarly, as Problem (Po

μ) may be non-convex, its op-
timal solutions may not be guaranteed by the optimiza-
tion procedures such as the SCA algorithm that will be
introduced in Section 4. Therefore, what remains is the
convergence of the “possible” stationary points for the
strengthened smooth approximation Problem (Po

μ). We ob-
serve that Problem (Po

μ) directly approaches to Problem (3)
(or the original JCCP) as μ ↘ 0. However, the probability
function Pr{c(x,ξ) > 0} in the JCCP is in general non-
smooth, non-convex, and also may not be locally Lipschitz
continuous. Consequently, none of its gradient, subdiffer-
ential in convex context, and Clarke’s generalized gradient
(Clarke, 1983) are available, which makes the conventional
KKT conditions for smooth optimization, the subdifferen-
tial conditions for non-smooth convex optimization, and
the generalized gradient conditions for locally Lipschitz
continuous optimization not applicable to the JCCP. In
this article, we try to give a depiction of the possible opti-
mality conditions for the JCCP and show the convergence
of the stationary points for Problem (Po

μ) in the proposed
new context. As the analysis is quite involved, we include
it in the Appendix (Section A4). In the rest of the article
we shall focus on the computational and implementation
issues of the proposed smooth approach.

4. Solving smooth approximations using
a Monte Carlo approach

In this section, we discuss how to solve Problem (Po
μ). As

has been discussed, Problem (Po
μ) is a stochastic DC pro-

gram. Thus, solving it typically requires combining Monte
Carlo methods with algorithms that solve deterministic DC
programs. DC programs have been studied extensively in
recent years. They can typically be solved using an SCA
algorithm (Hong et al., 2011). In the following subsection,
we show how to fit the SCA algorithm to Problem (Po

μ) and
build the convergence of the algorithm accordingly.

4.1. SCA

To facilitate the analysis, we use z ∈ �d+1 to denote (x, t) ∈
�d+1. Since ḡ(x, t, μ) → +∞ uniformly on X as t → ∞, in

Problem (Po
μ) we can further assume that t is constrained

in a compact set, say, t ∈ [0, T] for some large T. Due to
this, we define Z = X × [0, T]. If a function f (x) only de-
pends on x, we simply define f (z) = f (x). The basic idea
of using the SCA algorithm to solve a DC program is to
convexify the DC constraint via a first-order Taylor ap-
proximation. Specifically, for Problem (Po

μ), we can use the
first-order Taylor expansion ḡ2(y, μ) + ∇zḡ2(y, μ)T(z − y)
at any point y ∈ Zo(μ) to approximate ḡ2(z, μ). Because
ḡ2(z, μ) is convex in z, we have

ḡ2(z, μ) ≥ ḡ2(y, μ) + ∇zḡ2(y, μ)T(z − y), ∀ z ∈ Z,

which implies that

ḡ1(z, μ) − ḡ2(z, μ) ≤ ḡ1(z, μ)
− [ḡ2(y, μ) + ∇zḡ2(y, μ)T(z − y)]. (12)

Let

Z(μ, y) = {z ∈ Z : ḡ1(z, μ)
− [ḡ2(y, μ) + ∇zḡ2(y, μ)T(z − y)] ≤ 0}.

It follows from Equation (12) that for any y ∈ Zo(μ), the
inclusion Z(μ, y) ⊂ Zo(μ) holds. Moreover, since the right-
hand side of Equation (12) is a smooth convex function of
z, we have Z(μ, y) is a convex subset of Zo(μ). Let Problem
CP(μ, y) denote the following optimization problem:

(CP(μ, y)) minimize {h(z) : z ∈ Z(μ, y)}.
Then, for any y ∈ Zo(μ), CP(μ, y) is a convex conservative
approximation of Problem (Po

μ). Because y is a feasible solu-
tion of Problem CP(μ, y), the optimal solution of Problem
CP(μ, y) is at least as good as y. Then, we can repeat the
above process at the newly found solution. This leads us to
the following algorithm.

Algorithm Smooth-SCA

Step 0. Give an initial point z0 ∈ Zo(μ) and set k = 0.
Step 1. Stop if zk is a KKT point of Problem (Po

μ).
Step 2. Solve CP(μ, zk) to obtain its optimal solution zk+1.
Step 3. Set k = k + 1 and go to Step 1.

Algorithm smooth-SCA is easy to implement, since
we only need to solve the convex optimization problem
CP(μ, zk) in each iteration. It also has some desired prop-
erties, which we summarize in the following theorem.
Note that we say that Slater’s condition holds at y ∈ Z if
int Z(μ, y) �= φ, where int A denotes the interior of a set A.
Slater’s condition is one of the most commonly used con-
straint qualifications for convex optimization (Boyd and
Vandenberghe, 2004). The proof of Theorem 4 follows di-
rectly from the results of Hong et al. (2011) and it is pro-
vided in the Appendix for completeness.

Theorem 4. Suppose {zk} is a sequence of solutions generated
by Algorithm Smooth-SCA for Problem (Po

μ) starting from
z0 ∈ Zo(μ). Then,
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724 Hu et al.

1. {zk} ⊂ Zo(μ) and {h(zk)} is a convergent non-increasing
sequence.

2. if zk+1 = zk at which Slater’s condition holds, then zk is a
KKT point of Problem (Po

μ).
3. Suppose z̄ is a cluster point of {zk} satisfying Slater’s

condition. Then z̄ is a KKT point of Problem (Po
μ).

The first property in Theorem 4 shows that we always
search better solutions in the feasible region, which is sim-
ilar to the framework of interior-point methods. It also
shows that we make improvement at each iteration and the
sequence of objective values converges to a certain value.
The second property shows that, if our algorithm termi-
nates after a finite number of iterations, we actually reach a
KKT point. The third property ensures that all limit points
of the sequence of solutions generated are KKT points. To-
gether with the second property, it demonstrates that our
algorithm has the desired convergence property. If Problem
(Po

μ) only has a single KKT point or has only a KKT point
that is better than the initial solution, or Problem (Po

μ) is
convex, our algorithm guarantees to converge to a global
optimal solution.

Note that Algorithm Smooth-SCA can start from any
feasible solution of the JCCP. However, there is a natural
initial solution for our problem. We can drop the second
term ḡ2(z, μ) from Problem (Po

μ) to obtain the following
optimization problem:

minimize
z∈Z

h(z),

subject to ḡ1(z, μ) ≤ 0. (13)

Note that ḡ1(z, μ) ≤ 0 is the smooth conservative approx-
imation of E[[c(x,ξ) + t]+] − αt ≤ 0, while the latter con-
straint is equivalent to the CVaR constraint in the CVaR
approximation mentioned in Section 1 (Nemirovski and
Shapiro, 2006). Therefore, Problem (13) is also a convex
conservative approximation of the original JCCP and thus
its optimal solution can be used as the initial solution to Al-
gorithm Smooth-SCA. In this article we call Problem (13)
a smooth CVaR approximation and call its optimal solu-
tion a smoothed CVaR solution. In the numerical studies
reported in Section 5 we use the smoothed CVaR solutions
as the initial solutions.

4.2. Sample-average approximation

To implement Algorithm Smooth-SCA, we need to solve
Problem CP(μ, y) efficiently. Note that Problem CP(μ, y)
is a standard smooth convex stochastic program. It has
been studied extensively in the literature (Shapiro et al.,
2009). When ξ is a discrete random vector and takes values

ξ1, ξ2, . . . , ξn with probabilities p1, p2, . . . , pn (
∑n

j=1 p j =
1), the functions

	1(z, μ) =
n∑

j=1

p j H1(z, ξ j , μ) and

	2(z, μ) =
n∑

j=1

p j H2(z, ξ j , μ)

are deterministic smooth convex functions. In this case,
Problem (Po

μ) degenerates to a deterministic DC program.
Consequently, Problem CP(μ, y) becomes a deterministic
convex optimization problem and thus it can be solved ef-
ficiently. When ξ is a continuous random vector, the closed
form of the right-hand side of Equation (12) is typically
unavailable. In this case, we can solve Problem CP(μ, y)
using a Sample-Average Approximation (SAA) approach.
In what follows we implement the SAA approach to solve
CP(μ, y). For a comprehensive review about the SAA, read-
ers are referred to Shapiro et al. (2009).

Suppose that we have an independent and identically
distributed (i.i.d.) sample {ξ1, ξ2, . . . , ξn} from the random
vector ξ, which may be generated from a simulation study
or extracted from historical data. Using the sample, the
functions ḡ1(z, μ) and ḡ2(y, μ) may be estimated by

ḡ1,n(z, μ) := 1
n

n∑
j=1

H1(z, ξ j , μ) − αt and

ḡ2,n(y, μ) := 1
n

n∑
j=1

H2(y, ξ j , μ) − μ log(m + 1),

respectively. It follows from Equation (11) that the gradient
∇zḡ2(y, μ) can be estimated by (1/n)

∑n
j=1 ∇z H2(y, ξ j , μ).

Therefore, we can use the following sample problem to
approximate Problem CP(μ, y):

minimize
z∈Z

h(z),

subject to ḡ1,n(z, μ)

−
[

ḡ2,n(y, μ) + 1
n

n∑
j=1

∇z H2(y, ξ j , μ)T(z − y)

]
≤ 0. (14)

Let νn(μ, y) and Sn(μ, y) denote the optimal value and
the set of optimal solutions of Problem (14), respectively,
and ν(μ, y) and S(μ, y) denote the optimal value and the
set of optimal solutions of Problem CP(μ, y), respectively.
Intuitively, when the sample size n is sufficiently large,
νn(μ, y) and Sn(μ, y) should provide good approximations
to ν(μ, y) and S(μ, y), respectively. This intuition is con-
firmed by the following theorem. The proof of the theorem
is provided in the Appendix.
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Smooth Monte Carlo approach to JCCP 725

Theorem 5. Suppose that Assumption 2 is satisfied, and
Slater’s condition holds at y. Then with probability one
(w.p.1.):

lim
n→∞ νn(μ, y) = ν(μ, y) and

lim
n→∞ D(Sn(μ, y), S(μ, y)) = 0.

Note that Problem (14) is a deterministic convex opti-
mization problem, in which the gradients of the objective
function and constraint function can be evaluated. We can
then use a gradient-based method to directly solve Prob-
lem (14). In the numerical results reported in Section 5, we
combine the SAP with Algorithm Smooth-SCA to solve
Problem (Po

μ). Note that this approach is called the SMC
approach in this article, as mentioned in Section 1.

4.3. Numerical stability

Similar to the ε-approximation, a very first step of imple-
menting the SMC approach is to set the smoothing param-
eter μ. To reduce the approximation error of the smooth
approximation, as has been demonstrated, we often prefer
very small μ values. However, this may cause certain numer-
ical stability issue, as the computation involves dangerous
operations such as exp(μ−1(·)); see, for instance, Nesterov
(2005). In this article, we adopt the following approach that
was suggested by Nesterov (2005) to address this issue. For
any vector (a0, a1, . . . , am), let ā = max{a0, a1, . . . , am} and
bi = ai − ā, i = 0, 1, . . . , m. Then

μ log

[
m∑

i=0

exp(μ−1ai )

]
= ā + μ log

[
m∑

i=0

exp
(
μ−1bi

)]
.

It is easily seen that all bi , i = 0, 1, . . . , m are non-positive
and at least one of them has a level of zero. Therefore, the
function value of the logarithm-sum-exponential function
can be computed with small numerical errors. Furthermore,
it can be verified that

∇a μ log

[
m∑

i=0

exp(μ−1ai )

]
= ∇b μ log

[
m∑

i=0

exp
(
μ−1bi

)]
.

Therefore, we can also use the technique to compute
the gradient of the logarithm-sum-exponential function.
Nesterov (2005) showed that this approach is very effective
even for a quite small μ (e.g., μ = 10−3, 10−4) and has quite
high accuracy.

5. Numerical experiments

We study the performances of our method through two
classes of examples. The first class is non-smooth JCCPs
where the random parameters follow discrete distributions,
whereas the second one is smooth JCCPs where the random
distributions are continuous. We use the examples to test
the efficacy of our SMC approach and compare the SMC
approach with the ε-approximation of Hong et al. (2011).

We implement Algorithm Smooth-SCA in MATLAB and
use MATLAB function fmincon to solve the convex opti-
mization problem in each iteration. All of the programs are
run on a laptop with Intel Core 2 Duo CPU (2.26 GHz,
2.27 GHz) and 4 GB of RAM.

5.1. JCCPs with discrete random variables

In this subsection we assume that the random vector ξ in
Problem (1) takes only n scenarios ξ1, . . . , ξn with equal
probabilities. It can be checked that the smoothness of
this JCCP is violated. We use such examples to show that
the SMC approach can handle non-smooth JCCPs with
discrete distributions.

5.1.1. Linear JCCPs with discrete random variables
We first consider a very simple instance that takes the form
of Formulation (1.3) of Prékopa (2003):

minimize
x∈X

eTx

subject to Pr{ξ − Bx ≤ 0} ≥ 1 − α, (15)

where x = (x1, . . . , xd )T is a d-dimensional vector in �d ,
ξ = (ξ 1 . . . , ξm)T is an m-dimensional random vector, e
is a d × 1 deterministic vector, and B is an m × d deter-
ministic matrix. Specifically, we set d = 2, k = 2, α = 0.42,
e = (1, 1)T, B = I, where I is a 2 × 2 identity matrix, and
X = {x : −14 ≤ x ≤ 14}. We assume ξ j , j = 1, 2, indepen-
dently take values in {−10, −5, 0, 5, 10} with equal proba-
bilities. Thus, the random vector ξ takes 25 scenarios with
equal probabilities. Under the setting, the feasible region
of Problem (15) is the irregular polygon AEBFCGHDA
shown in Fig. 1(a), and the optimal solutions are A(0, 10),
B(5, 5), and C(10, 0) with optimal objective value being 10.
They are used as benchmarks to evaluate the performances
of our method. It can be verified that for this example the
two sets �I and � are the same and they are just the poly-
gon minus the segments DA, AE, EB, BF, FC, and CG.
This means that Assumption 4 is not satisfied for the ex-
ample (but we do have cl �I = �0). However, we do not
care about the violation of the constraint qualification. We
just use the SMC approach to solve the problem and see
what will happen. In the implementation of the SMC ap-
proach, we use the smoothed CVaR solution as the initial
solution for our algorithm and stop the algorithm if the
difference of objective function values between two con-
secutive iterations is less than or equal to 10−4. We first
set the smoothing parameter μ as 10−4. Because the in-
stance problem is a small-scale deterministic optimization
problem, our algorithm always converges to the same so-
lution in only three iterations with a negligible amount of
computational time (less than 1 second).

The convergence of the solutions is shown in Fig. 1(a).
From the plot we see that our algorithm succeeds in
converging to the optimal solution B starting from the
smoothed CVaR solution. The convergence of the objective
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Fig. 1. Performances of SMC approach for discrete random variables: (a) the convergence of the solutions and (b) the convergence of
the objective values.

values is also shown in Fig. 1(b). The optimal value of the
smooth CVaR approximation is about 18.6, and our algo-
rithm improves on this value and converges to the optimal
value 10, which is significantly lower than the objective
function value guaranteed by the smooth CVaR approxi-
mation. It seems that in this example the kink points E and
F keep the smooth CVaR approximation from finding bet-
ter solutions. Once we further make convex approximation
around the smoothed CVaR solution, the effects of points
E and F vanish, which then enables the SMC approach to
find the optimal point B. This example suggests that the
SMC approach could be very effective in solving the JC-
CPs even when the JCCPs admit irregular characteristics
and even when they are not covered by the convergence
theory built in this article (Assumption 4 is violated). We
also used a number of different feasible points as the initial
solution for our algorithm. The experiments show that our
algorithm has similar performances.

To investigate the effects of the smoothing parameter μ

and the behavior of the t-component of the decision vector,
we now consider different values of μ. The results obtained
are summarized in Table 1. The first row of Table 1 is the
number of iterations that are taken for the algorithm to
converge. It shows that for all of the μ values considered,
the algorithm can quickly converge to the optimal solution

from the smoothed CVaR solution. The second row shows
the optimal value for the smooth approximation obtained
by the algorithm, from which we find that the approxi-
mation error becomes smaller and smaller as μ gradually
decreases, and the optimal value of the smooth approxi-
mation is already very close to the optimal value of the
original JCCP when μ is as small as 10−2. The last row
displays the behavior of the t-component of the optimal
solutions produced by the algorithm. From this row we see
that the t-component gets closer and closer to zero as μ

gradually reduces to zero.

5.1.2. Non-linear JCCPs with discrete random variables
We have studied some properties of the SMC approach
via the above simple example. Now we implement our ap-
proach to a slightly more complicated model that takes the
following form:

minimize
0≤x≤100

xT�0x + aTx

subject to Pr
{
ξT

i �i x + bi ≤ 0, i = 1, . . . , m
} ≥ 1 − α,

(16)

where x = (x1, . . . , xd)T is a d-dimensional vector in �d ,
ξi = (ξ 1

i . . . , ξ d
i )T, i = 1, . . . , m are d-dimensional random

Table 1. Performances of SMC approach for different μ

μ

10−1 10−2 10−3 10−4 10−5 10−10

Number of iterations 4 3 3 3 3 3
Optimal value 14.1718 10.4172 10.0417 10.0042 10.0004 10.0000
Optimal t 1.9444 0.1944 0.0196 0.0021 1.9238 10−4 1.6731 10−6
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Smooth Monte Carlo approach to JCCP 727

vectors, �i , i = 0, 1, . . . , m are d × d deterministic positive
semi-definite matrices, a is a d × 1 deterministic vector, and
bi , i = 1, . . . , m are deterministic parameters. Problem (16)
is a non-smooth JCCP with a quadratic objective function.
It is often referred to as a chance-constrained quadratic pro-
gram (Zheng et al., 2012).

To conduct the experiments, we set m = 10 and bi =
−200, i = 1, . . . , m. In each replication of the experiments,
we randomly generate parameters �i , i = 0, 1, . . . , m from
the matrix UUT where U is a d-dimensional random
vector whose components are independent and follow
[0, 1] uniform distribution and generate a from a ran-
dom vector U whose components are independent and
follow [−100, 0] uniform distribution. Also in each repli-
cation, we construct each ξi via the following proce-
dure (Steps (i) and (ii)): (i) independently generate 500
scenarios from a random vector U whose components are
independent and follow [−10, 10] uniform distribution; (ii)
assume that ξi takes the 500 scenarios with equal probabili-

ties. Once the input parameters and the scenarios are given,
Problem (16) becomes a deterministic problem. However,
because the scale of the problem is very large, it is difficult to
solve the problem to obtain its optimal values. We mainly
compare the SMC approach with the smooth CVaR ap-
proximation. We conduct experiments for d = 10, 50, 100
and α = 0.1, 0.2, 0.3, 0.4. For each combination of d and
α, we make five replications (i.e., randomly generate the
input parameters and the discrete random vector and con-
duct the experiments five times). In the experiments, we set
the smoothing parameter μ = 10−4. The stopping rule is
the same as that for Problem (15). Table 2 shows the typical
computational results.

As can be seen in Table 2, there are five columns for
each combination of d and α. Column 1 (SCVaR) shows
the optimal objective value of the smooth CVaR approx-
imation, whereas Column 2 (SMC) shows the optimal
objective value obtained by the SMC approach. The per-
centage changes of Column 2 from Column 1 are reported

Table 2. Performances of SMC approach for chance-constrained quadratic program

α = 0.1 α = 0.2

d SCVaR SMC Change (%) Ite CPUT SCVaR SMC Change (%) Ite CPUT

10 −1099 −1257 14.4 10 54 −1024 −1313 28.2 6 34
10 −1649 −2251 36.5 11 50 −1164 −1479 27.1 10 76
10 −926 −1114 20.3 5 21 −1013 −1277 26.1 13 107
10 −1010 −1260 24.8 7 34 −924 −1173 27.0 21 120
10 −1109 −1454 31.1 7 48 −2018 −2970 47.2 7 35
50 −581 −680 17.0 6 63 −750 −916 22.1 10 217
50 −674 −807 19.7 4 34 −721 −867 20.3 11 216
50 −622 −714 14.8 12 149 −800 −1134 41.8 8 153
50 −618 −739 19.6 8 163 −810 −990 22.2 9 192
50 −653 −765 17.2 7 156 −767 −977 27.4 7 134

100 −429 −498 16.1 5 139 −547 −685 25.2 8 281
100 −487 −588 20.7 13 600 −603 −776 28.7 10 655
100 −605 −716 18.4 6 407 −566 −689 21.7 8 546
100 −476 −536 12.6 7 350 −594 −737 24.1 18 883
100 −617 −753 22.0 12 571 −543 −658 21.2 7 373

α = 0.3 α = 0.4

d SCVaR SMC Change (%) Ite CPUT SCVaR SMC Change (%) Ite CPUT

10 −1185 −1771 49.5 8 44 −1068 −1577 47.7 8 56
10 −1317 −1730 31.4 7 48 −1000 −1271 27.1 10 56
10 −910 −1304 43.3 6 20 −1274 −2103 65.1 10 59
10 −1265 −1595 26.1 8 60 −1245 −1756 41.0 11 88
10 −1216 −1561 28.4 9 48 −1176 −1755 49.2 7 30
50 −677 −851 25.7 17 482 −850 −1179 38.7 7 77
50 −865 −1094 26.5 13 313 −847 −1100 29.9 9 245
50 −691 −855 23.7 12 329 −798 −1100 37.8 10 214
50 −768 −971 26.4 11 200 −738 −1020 38.2 9 189
50 −825 −1063 28.9 9 203 −757 −986 30.1 14 312

100 −543 −696 28.2 9 561 −642 −832 29.6 10 577
100 −589 −726 23.3 11 589 −627 −841 34.1 9 528
100 −657 −861 31.1 10 390 −546 −742 35.9 11 608
100 −567 −745 31.4 13 679 −567 −754 33.0 12 707
100 −669 −907 35.6 10 599 −574 −776 35.2 6 193
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728 Hu et al.

in Column 3 (Change (%)). The results show that the
improvement achieved by the SMC approach is quite sig-
nificant. The last two columns show the number of itera-
tions (Ite) and the CPU time (CPUT, seconds, computed
by MATLAB function cputime) for the algorithm to termi-
nate. Note that in our experiments the CPU time is signifi-
cantly longer (1.5–2 times) than the Elapsed time computed
using MATLAB function tic/toc, whereas the Elapsed time
is the real running time of the algorithm. The results sug-
gest that the SMC approach can often stop in a number of
iterations, spending a reasonable computational time. We
have also observed the behaviors of the t-component of the
solutions and found that for all of the replications the t-
component approaches to zero. Table 2 empirically shows
that the SMC approach could be very effective in solving
realistic-scale non-smooth JCCPs.

5.2. JCCPs with continuous random variables

In this subsection we solve the norm optimization problem
of Hong et al. (2011) where the random variables take
continuous distributions and the problem is indeed smooth.
We use this example to compare our SMC approach with
the ε-approximation approach. After some transformation
the problem can be written as the following JCCP:

minimize
x≥0

−
d∑

j=1

xj

subject to Pr

⎧⎨⎩
d∑

j=1

ξ 2
i j x

2
j ≤ 100, i = 1, . . . , m

⎫⎬⎭ ≥ 1 − α,

(17)

where x = (x1, . . . , xd)T is a d-dimensional vector in �d ,
and ξ = (ξ1 . . . ,ξd ), with ξi = (ξi1, . . . ,ξid )T for i =
1, . . . , m is a d × m matrix of random variables.

Let ci (x,ξ) = ∑d
j=1 ξ 2

i j x
2
j − 100, i = 1, . . . , m, and c(x,

ξ) = maxi=1,...,m{ci (x,ξ)}. Then, Problem (17) takes the
form of Problem (2). According to Hong et al. (2011),
this JCCP is smooth (c(x,ξ) satisfies the smooth condi-
tions) and thus the ε-approximation can be used. Our ma-
jor aim of using this example is to demonstrate the bene-
fits of treating ε as a decision variable. It is worth noting
that implementing the SMC approach does not require
checking the smoothness. To conduct the experiments, we
set d = 10, m = 10, and α = 0.1. We assume the random
variables ξi j , i = 1, . . . , m, j = 1, . . . , d are i.i.d. standard
normal random variables. Under the assumption, the op-
timal solution and optimal value of Problem (17) can be
derived analytically, which are (2.082, 2.082, . . . , 2.082)T

and −20.82, respectively (Hong et al., 2011). We set the
sample size as 10 000 and still set the smoothing param-
eter μ as 10−4. The algorithm is stopped if the difference
of objective values between two consecutive iterations is
less than or equal to 10−2. We ran Algorithm Smooth-SCA
multiple times and these replications always showed similar
performances. We also ran the ε-approximation where the
parameter ε was set as 0.05, as used in Hong et al. (2011).
We report a typical simulation run for the two approaches
in Fig. 2.

We plot the objective values in Fig. 2(a). From the plot
we see that the SMC approach starts from the objective
value of the smooth CVaR approximation and converges
to the optimal value in less than 10 iterations, while the ε-
approximation starts from the objective value of the CVaR
approximation and converges to the optimal value in about
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Fig. 2. Performances of SMC and ε-approximation approaches: (a) convergence of the objective values and (b) the values of the
probability constraint.
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Smooth Monte Carlo approach to JCCP 729

Table 3. Performances for different ε

ε

0.1 0.05 0.02

Number of iterations 17 23 32 8
Elapsed time 285 405 688 171

20 iterations. Figure 2(b) shows the values of the left-hand
side of the joint chance constraint, estimated at solutions
generated by the two approaches. From the plot we see
that both approaches keep on relaxing the joint chance
constraint until the probability level decreases to the pre-
specified level 1 − α. In the two approaches, the Elapsed
time per iteration is similar. However, the SMC approach
reduces both the number of iterations and the total com-
putational time by more than half compared with the ε-
approximation. This shows the superiority of the SMC
approach. To further highlight this phenomenon, we var-
ied the parameter ε in the ε-approximation and ran the
ε-approximation to see the effects of ε. Especially, we con-
sidered ε = 0.05, 0.02, 0.1 and randomly made five repli-
cations for each value. We report the average number of
iterations and average Elapsed (running) time in Table 3.
The experiments show that while the optimal values are
somewhat insensitive to ε, the running time of the algo-
rithm varies significantly over the three values. We also
randomly ran Algorithm Smooth-SCA five times and re-
port the average results in the last column of Table 3. The
experiments suggest that the SMC approach enjoys a faster
convergence than the ε-approximation for reasonably se-
lected ε. One possible explanation for this is that we treat
ε as a decision variable t in the SMC approach and t can
automatically adapt itself to the Taylor expansion in each
iteration and thus can help find the global optimal solution
very quickly.

Similar to the first example, we varied the parameter μ

to see the effects of μ on the performances of Algorithm
Smooth-SCA. The results obtained show a pattern similar
to those reported in Table 1, except that the current prob-
lem admits a stochastic nature and there exists some minor
difference across different simulation runs. Especially, we
again observed that the t-component of the solutions pro-
vided by Algorithm Smooth-SCA gets closer and closer to
zero as μ gradually decreases to zero.

We also studied two additional cases. In the first case, we
assumed that the elements of the random vector ξ were de-
pendent and followed normal distributions. In the second
case, we assumed that the elements of ξ were indepen-
dent and followed a lognormal distribution. For the two
cases, both the SMC approach and the ε-approximation
show similar patterns as for the independent normal case
reported above.

6. Conclusions

In this article, we propose a logarithm-sum-exponential
smoothing approach to approximate possibly non-smooth
JCCPs as smooth stochastic DC programs. We then com-
bine Monte Carlo methods with an SCA algorithm to solve
the smooth stochastic DC programs. The SMC approach
developed in this article can handle both smooth and non-
smooth JCCPs where the random variables can be either
continuous or discrete. We also show that this approach
guarantees desired convergence properties under certain
conditions. Even when the conditions are violated, the pro-
posed smooth approximation is still implementable and is a
conservative approximation of the original JCCP and thus
the solutions obtained by the SMC approach still guaran-
tee feasibility for the original JCCP. The numerical results
show that the SMC approach works well on both smooth
and non-smooth JCCPs.
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Appendix

A1: Proof of Theorem 1

We first prove (a). For any μ > 0 and any x ∈ �(ε, μ), we
have from Equation (10) that

g1(x, ε) − g2(x) ≤ ḡ1(x, ε, μ) − ḡ2(x, μ) ≤ 0,

which implies x ∈ �ε. Therefore, the inclusion �(ε, μ) ⊂
�ε holds.

Let

λ̄ j (x, ε,ξ, μ) = exp(μ−1(c j (x,ξ) + ε))∑m
i=0 exp(μ−1(ci (x,ξ) + ε))

,

j = 0, 1, . . . , m,

λ̃ j (x, ε,ξ, μ) = exp(μ−1c j (x,ξ))∑m
i=0 exp(μ−1ci (x,ξ))

, j = 0, 1, . . . , m,

(A1)

where we define both c0(x,ξ) ≡ 0 and c0(x,ξ) + ε ≡ 0 for
consistency of notation. Then simple calculation shows

H2(x,ξ, μ) =
m∑

j=0

λ̃ j (x, ε,ξ, μ)c j (x,ξ)

− μ

m∑
j=0

λ̃ j (x, ε,ξ, μ) log[̃λ j (x, ε,ξ, μ)].

By calculating the derivative of ḡ(x, ε, μ) with respect to μ,
we have

∂

∂μ
ḡ(x, ε, μ)

= μ−1 E

⎡⎣H1(x, ε,ξ, μ) −
m∑

j=0

λ̄ j (x, ε,ξ, μ)
(
c j (x,ξ) + ε

)⎤⎦
− μ−1 E

⎡⎣H2(x,ξ, μ) −
m∑

j=0

λ̃ j (x, ε,ξ, μ)c j (x,ξ)

⎤⎦
+ log(m + 1)

≥ μ−1 E

⎡⎣[c(x,ξ) + ε]+ −
m∑

j=0

λ̄ j (x, ε,ξ, μ)
(
c j (x,ξ) + ε

)⎤⎦
− μ−1 E

⎡⎣H2(x,ξ, μ) −
m∑

j=0

λ̃ j (x, ε,ξ, μ)c j (x,ξ)

⎤⎦
+ log(m + 1)

≥ −μ−1 E

⎡⎣H2(x,ξ, μ) −
m∑

j=0

λ̃ j (x, ε,ξ, μ)c j (x,ξ)

⎤⎦
+ log(m + 1)

= E

⎡⎣ m∑
j=0

λ̃ j (x, ε,ξ, μ) log[̃λ j (x, ε,ξ, μ)]

⎤⎦
+ log(m + 1) (here 0 log 0 ≡ 0)

≥ min

⎧⎨⎩
m∑

j=0

λ j log λ j :
m∑

j=0

λ j = 1, λ j ≥ 0, j = 0, . . . , m

⎫⎬⎭
+ log(m + 1)

= 0.

Therefore, the function ḡ(x, ε, μ) is non-decreasing in μ.
Thus, we have ḡ(x, ε, μ1) ≤ ḡ(x, ε, μ2) for 0 < μ1 ≤ μ2 and
�(ε, μ2) ⊂ �(ε, μ1).

Now we prove (b). As �(ε, μ) is monotone in μ, it fol-
lows from Exercise 4.3 of Rockafellar and Wets (1998) that
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Smooth Monte Carlo approach to JCCP 731

limμ↘0 �(ε, μ) exists. From (a) and the fact that �ε is a
closed set (ensured by Assumption 3), we can easily get the
inclusion limμ↘0 �(ε, μ) ⊂ �ε. We only need to prove the
opposite inclusion. For any x ∈ �I

ε , let η = g2(x) − g1(x, ε).
Then, η > 0. Let μ̄ = η/[4 log(m + 1)]. Then from Equa-
tion (10) we have

ḡ1(x, ε, μ) − ḡ2(x, μ) ≤ g1(x, ε) − g2(x)
+ 2μ log(m + 1) ≤ −η + η/2 = −η/2 < 0

for any μ ∈ (0, μ̄), which implies that x ∈ �(ε, μ) for any
μ ∈ (0, μ̄). Therefore, we have x ∈ limμ↘0 �(ε, μ). Thus, we
obtain that limμ↘0 �(ε, μ) ⊃ �I

ε . Since limμ↘0 �(ε, μ) is a
closed set, we have by Assumption 3, limμ↘0 �(ε, μ) ⊃ �ε.
Therefore, limμ↘0 �(ε, μ) = �ε.

As limμ↘0 �(ε, μ) = �ε holds and ḡ(x, ε, μ) is contin-
uous in x, the rest of (b) can be proven using the same
argument for Theorem 2 of Hong et al. (2011). �

A2: Proof of Theorem 2

For consistency of notation, we define ḡ2(x, ε, μ) =
ḡ2(x, μ) and g2(x, ε) = g2(x) throughout the proof of The-
orem 2. To prove Theorem 2, we need the following lemma.

Lemma A1. Let x ∈ X. Then:

(a) for i = 1, 2, limμ↘0 ∇xḡi (x, ε, μ) exists and belongs to
∂xgi (x, ε);

(b) for i = 1, 2.

lim sup
x′→x,μ↘0

{∇xḡi (x′, ε, μ)} ⊂ ∂xgi (x, ε).

Proof. Without loss of generality, we only prove the con-
clusion for i = 1.

(a) Since:

∇x H1(x, ε,ξ, μ) =
m∑

j=0

λ̄ j (x, ε,ξ, μ)∇x(c j (x,ξ) + ε),

where λ̄ j (x, ε,ξ, μ), j = 0, 1, . . . , m are defined by
Equation (A1), we have

∇x	1(x, ε, μ) = E [∇x H1(x, ε,ξ, μ)]

= E

⎡⎣ m∑
j=0

λ̄ j (x, ε,ξ, μ)∇x(c j (x,ξ) + ε)

⎤⎦ .

Note that we can rewrite λ̄ j (x, ε,ξ, μ), j = 0, 1, . . . ,

m as

λ̄ j (x, ε,ξ, μ)

= exp(μ−1(c j (x,ξ) + ε − [c(x,ξ) + ε]+))∑m
i=0 exp(μ−1(ci (x,ξ) + ε − [c(x,ξ) + ε]+))

,

j = 0, 1, . . . , m.

Then it can be verified that

lim
μ↘0

λ̄ j (x, ε,ξ, μ) =

⎧⎪⎨⎪⎩
1

|I(x,ξ, ε)| j ∈ I(x,ξ, ε),

0 j /∈ I(x,ξ, ε),

where I(x,ξ, ε) = { j : c j (x,ξ) + ε = [c(x,ξ) + ε]+,

0 ≤ j ≤ m}. Therefore, we have from Lebesgue Dom-
inated Convergence Theorem that

lim
μ↘0

∇x	1(x, ε, μ)

= E

⎡⎣lim
μ↘0

m∑
j=0

λ̄ j (x, ε,ξ, μ)∇x(c j (x,ξ) + ε)

⎤⎦
= E

⎡⎣ ∑
j∈I(x,ξ,ε)

1
|I(x,ξ, ε)|∇x(c j (x,ξ) + ε)

⎤⎦
∈ E[∂x[c(x,ξ) + ε]+] = ∂xg1(x, ε).

From the definition of ḡ1(x, ε, μ), we have that (a)
holds.

(b) We first prove the following inclusion:

lim sup
x′→x, μ↘0

{∇x H1(x′, ε,ξ, μ)} ⊂ ∂x[c(x,ξ) + ε]+. (A2)

For any v ∈ lim supx′→x, μ↘0{∇x H1(x′, ε,ξ, μ)}, there
exists a sequence {(xk, μk)} satisfying xk → x and
μk ↘ 0 such that v = limk→∞ ∇x H1(xk, ε,ξ, μk).
From the definition of I(x,ξ, ε), there exists some
δ > 0 such that

c j (x,ξ)+ε − [c(x,ξ) + ε]+ ≤ −δ for j /∈ I(x,ξ, ε).

Since x′ → c j (x′,ξ) + ε − [c(x′,ξ) + ε]+ is continu-
ous, for large enough k > 0 we have

c j (xk, ξ )+ε −[c(xk, ξ ) + ε]+ ≤ −δ/2 for j /∈ I(x,ξ, ε).

It follows that

λ̄ j (xk, ε,ξ, μk)≤exp
(−μ−1

k δ/2
)→0 for j /∈ I(x,ξ, ε).

On the other hand, there exist non-negative scalars
μ̄ j for j ∈ I(x,ξ, ε), such that

∑
j∈I(x,ξ,ε) μ̄ j = 1 and

there exists a subsequence {ki } satisfying

λ̄ j (xki ,ξ, ε, μki ) → μ̄ j for j ∈ I(x,ξ, ε).

Therefore,

v = lim
k→∞

∇x H1(xk, ε,ξ, μk)

= lim
i→∞

∇x H1(xki , ε,ξ, μki )

=
∑

j∈I(x,ξ,ε)

μ̄ j∇x(c j (x,ξ) + ε) ∈ ∂x[c(x,ξ) + ε]+,
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732 Hu et al.

and the inclusion (A2) is proved. Noting (A2), we have
from Dominated Convergence for Selection Expecta-
tion (Theorem 1.38 in Molchanov (2005)) that

lim sup
x′→x,μ↘0

∇x	1(x′, ε, μ)

= lim sup
x′→x,μ↘0

E[∇x H1(x′, ε,ξ, μ)]

⊂ E
[

lim sup
x′→x,μ↘0

∇x H1(x′, ε,ξ, μ)
]

⊂ E[∂x[c(x,ξ) + ε]+] = ∂xg1(x, ε).

From the definition of ḡ1(x, ε, μ), we have (b) holds.

�

Now we can prove Theorem 2.

Proof. For any (x, λ) ∈ lim supμ↘0 
(ε, μ), there exist
{(xk, λk)} and {μk}, such that (xk, λk) ∈ 
(ε, μk), μk ↘
0 and (xk, λk) → (x, λ). The inclusion (xk, λk) ∈ 
(ε, μk)
means:

−[∇xh(xk) + λk(∇xḡ1(xk, ε, μk)
−∇xḡ2(xk, ε, μk))] ∈ NX(xk), (A3)
λk [ḡ1(xk, ε, μk) − ḡ2(xk, ε, μk)] = 0, λk ≥ 0. (A4)

It follows from Lemma A1 that

lim sup
k→∞

{∇xḡi (xk, ε, μk)} ⊂ ∂xgi (x, ε), i = 1, 2,

from which there exist an subsequence {kj }, two vectors v1
and v2 such that

lim
j→∞

∇xḡi (xkj , ε, μkj ) = vi ∈ ∂xgi (x, ε), i = 1, 2.

Noting the outer semi-continuity of NX, letting j → ∞, we
have from Equations (A3) and (A4) that

−[∇xh(x) + λ(v1 − v2)] ∈ NX(x),
v1 ∈ ∂xg1(x, ε), v2 ∈ ∂xg2(x, ε),
λ [g1(x, ε) − g2(x, ε)] = 0, λ ≥ 0,

which implies (x, λ) ∈ 
(ε). The proof is completed. �

A3: Proof of Theorem 3

(a) Note that in Problem (Pμ), ε is fixed. Then, for any
x ∈ �(ε, μ), we have (x, ε) ∈ Zo(μ) for the fixed ε. This
implies x ∈ �o(μ). Therefore, �(ε, μ) ⊂ �o(μ).
Now we prove the second inclusion. For any x ∈
�o(μ), by the definition of �o(μ) we can find some
t ≥ 0 such that (x, t) ∈ Zo(μ). We argue that t �= 0. If
t = 0, we have

0 ≥ ḡ1(x, t, μ) − ḡ2(x, μ) = μ log(m + 1) > 0.

This is a contradiction. Therefore, we must have t > 0.
From Equation (10), we have

g1(x, t) − g2(x) ≤ ḡ1(x, t, μ) − ḡ2(x, μ) ≤ 0.

It follows that (1/t){E[[c(x,ξ) + t]+] − E[[c(x,ξ)]+]}
≤ α, which further implies that x ∈ �. Therefore,
�o(μ) ⊂ �. Because the inclusions �(ε, μ) ⊂ �o(μ) ⊂
� hold, we have ν ≤ νo(μ) ≤ ν(ε, μ).

(b) Given any 0 < μ1 ≤ μ2, consider any x ∈ �o(μ2).
From the definition of �o(μ2), we can find ε ≥ 0 such
that ḡ(x, ε, μ2) ≤ 0. Similarly, as in (a), we can fur-
ther show that ε > 0. From the proof of (a) of The-
orem 1 we have that ḡ(x, ε, μ) is non-decreasing in
μ. Therefore, ḡ(x, ε, μ1) ≤ ḡ(x, ε, μ2). It follows that
ḡ(x, ε, μ1) ≤ 0, which implies x ∈ �o(μ1). Therefore,
�o(μ2) ⊂ �o(μ1).

(c) From (b) we have limμ↘0 �o(μ) exists. From (a) and
the fact that � is a closed set (ensured by As-
sumption 4), we have limμ↘0 �o(μ) ⊂ �. Now we
prove the opposite inclusion. For any x ∈ �I , be-
cause inf t>0 E[π(c(x,ξ), t)] = Pr{c(x,ξ) ≥ 0} < α, we
can find ε > 0 such that E[π(c(x,ξ), ε)] < α. This im-
plies g1(x, ε) − g2(x) < 0. Since ḡ(x, ε, μ) converges to
g1(x, ε) − g2(x) as μ ↘ 0, we can find μ̄ > 0 such that
ḡ(x, ε, μ̄) < 0. This means x ∈ �o(μ̄) ⊂ limμ↘0 �o(μ).
Therefore, �I ⊂ limμ↘0 �o(μ). Since limμ↘0 �o(μ)
is a closed set, we have by Assumption 4, that
� ⊂ limμ↘0 �o(μ). Therefore, limμ↘0 �o(μ) = �. As
limμ↘0 �o(μ) = � holds and ḡ(x, t, μ) is continuous
in (x, t), using the same argument for Theorem 2 of
Hong et al. (2011), we have limμ↘0 νo(μ) = ν and
limμ↘0 D(So(μ), S) = 0. This concludes the proof of
the theorem. �

A4: Asymptotic behaviors of strengthened
smooth approximation

Let con[A] denote the convex hull of a set A (Rockafellar
and Wets, 1997). We define

∂x Pr{c(x,ξ) > 0}

= con

[
lim sup

x′→x,t↘0,μ↘0
t−1{∇x	1(x, t, μ) − ∇x	2(x, μ)}

]
,

and


 =

⎧⎪⎨⎪⎩(x, λ) ∈ � × �+ :

0 ∈ ∇xh(x) + λ∂x Pr{c(x,ξ) > 0}
+NX(x)

λ [Pr{c(x,ξ) > 0} − α] = 0

⎫⎪⎬⎪⎭ .

The set such as ∂x Pr{c(x,ξ) > 0} is often used in non-
smooth optimization, especially when we use a sequence
of functions to approximate a function; see, e.g., Rock-
afellar and Wets (1997). In this article we still call the
set ∂x Pr{c(x,ξ) > 0} the subdifferential of the function
Pr{c(x,ξ) > 0} and call 
 the set of stationary pairs of
the JCCP. In the case where Pr{c(x,ξ) > 0} is locally Lip-
schitz continuous, following Clarke (1983), the generalized
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Smooth Monte Carlo approach to JCCP 733

directional derivative of Pr{c(x,ξ) > 0}, at point x in the
direction v, is defined as

◦
Pr{c(x,ξ) > 0; v}

:= lim sup
y→x,λ↓0

Pr{c(y + λv,ξ) > 0} − Pr{c(y,ξ) > 0}
λ

,

and Clarke’s generalized gradient of Pr{c(x,ξ) > 0}, at
point x, is defined as

∂̄x Pr{c(x,ξ) > 0}
:= {

ζ ∈ �d :
◦

Pr{c(x,ξ) > 0; v} ≥ 〈v, ζ〉 for all v in �d}.
Clarke (1983) showed that ∂̄x Pr{c(x,ξ) > 0} is well defined
and is a compact set. More important, because under As-
sumption 1

1
t
{	1(x, t, μ) − 	2(x, μ)} → Pr{c(x,ξ) > 0},
as μ → 0, t → 0,

it follows from Corollary 8.47 and Theorem 9.61 of
Rockafellar and Wets (1997) that ∂x Pr{c(x,ξ) > 0} is also
a compact set, and ∂̄x Pr{c(x,ξ) > 0} ⊂ ∂x Pr{c(x,ξ) > 0}.
When the function Pr{c(x,ξ) > 0} is not locally Lipschitz
continuous, Clarke’s generalized gradient is not defined,
but the set ∂x Pr{c(x,ξ) > 0} above is still available. Note
especially that, in the smooth case, we have the following
proposition.

Proposition A1. Suppose that Assumptions 1 to 5 of
Hong et al. (2011) are satisfied. Then ∂x Pr{c(x,ξ) > 0} =
∇x Pr{c(x,ξ) > 0}.
Proof. Consider any xk → x, tk ↘ 0, and μk ↘ 0. Because
Assumptions 1 to 5 of Hong et al. (2011) are satisfied,
we have Pr{c(x,ξ) > 0} is continuously differentiable and
	1(x, t, μ) and 	2(x, μ) are continuously differentiable in
x for any t > 0 and μ > 0. This implies that we can change
the order of the operators limk→∞ and ∇x. Furthermore,
by the Lebesgue Dominated Convergence Theorem, we can
change the order of the operators limk→∞ and E [·]. There-
fore, we have

lim
k→∞

1
tk

[∇x	1(xk, tk, μk) − ∇x	2(xk, μk)]

= ∇xE

[
lim

k→∞
1
tk

[
μk log

[
1+

m∑
i=1

exp
{

1
μk

(ci (xk,ξ) + tk)
}]

− μk log

[
1 +

m∑
i=1

exp
{

1
μk

ci (xk,ξ)
}]]]

= ∇xE

[
lim

k→∞

∑m
i=1 exp

{
(1/μk)(ci (xk, ξ ) + t̃k)

}
1 + ∑m

i=1 exp
{
(1/μk)(ci (xk, ξ ) + t̃k)

}]
= ∇x Pr{c(x,ξ) > 0},

where the second equality follows from the mean-
value theorem and t̃k ∈ [0, tk] is some value that de-

pends on ξ, xk, tk, μk. To justify the last equality, con-
sider any ξ ∈ �. Suppose c(x,ξ) < 0; i.e., ci (x,ξ) < 0
for all i = 1, . . . , m. Since tk ↘ 0 and ci (y,ξ) is con-
tinuous in y, we have for k large enough ci (xk,ξ) +
t̃k < 0 and ci (xk,ξ) + t̃k → ci (x,ξ) < 0. Therefore a :=∑m

i=1 exp
{
μ−1

k (ci (xk, ξ ) + t̃k)
} → 0, which implies a/(1 +

a) → 0. Suppose c(x,ξ) > 0; i.e., there exists j such
that c j (x,ξ) > 0. Then, exp

{
μ−1

k (c j (xk,ξ) + t̃k)
} → +∞.

It follows that a := ∑m
i=1 exp

{
μ−1

k (ci (xk,ξ) + t̃k)
} → +∞,

which implies a/(1 + a) → 1. Note that c(x,ξ) is a con-
tinuous random variable. We have the last equality holds.
Recall the definition of the outer limit “lim sup,” we obtain
∂x Pr{c(x,ξ) > 0} = ∇x Pr{c(x,ξ) > 0}. �

Proposition A1 suggests that in the smooth case, the set
∂x Pr{c(x,ξ) > 0} defined in this article coincides with the
conventional gradient, and consequently 
 defined in this
article is consistent with the set of stationary pairs 
0 of
Hong et al. (2011). The above facts suggest that it may
be appropriate to depict the optimality conditions for the
JCCP using ∂x Pr{c(x,ξ) > 0} and 
, although we believe
that other better alternatives may exist. To facilitate the
discussion, we make the following assumption about the
original JCCP.

Assumption A1. For every x ∈ X and v ∈ ∂x Pr{c(x,ξ) > 0},
the following regularity condition holds:

0 ∈ λv + NX(x)

λ ≥ 0; λ [Pr{c(x,ξ) > 0} − α] = 0

}
=⇒ λ = 0.

Assumption A1 is a non-smooth analogy to Assumption
6 of Hong et al. (2011), whereas Assumption 6 of Hong et al.
(2011) is a very commonly used regularity condition in nu-
merical optimization. Readers may refer to the discussion
that follows Assumption 6 in Hong et al. (2011).

Let (x, t, λ) be any KKT pair of Problem (Po
μ), and 
o(μ)

be the set of KKT pairs of Problem (Po
μ). Let 
� be the

projection of 
 on X. Then we have the following theorem.

Theorem A1. Suppose that ∂x Pr{c(x,ξ) > 0} is bounded,
and Assumptions 1, 2, 4, and A1 are satisfied. For any {μk}
with μk → 0, Suppose (xk, tk, λk) ∈ 
o(μk), xk → x̄ and
tk → 0. Then x̄ ∈ 
�.

Proof. Following the definition of KKT pairs, (xk, tk, λk) ∈

o(μk) reads:

(xk, tk, λk) ∈ Zo(μk) × �+
0 ∈ ∇xh(xk) + λk [∇xḡ1(xk, tk, μk) − ∇xḡ2(xk, μk)]

+ NX(xk) (A5)
0 ∈ ∇th(xk) + λk [∇t ḡ1(xk, tk, μk) − ∇t ḡ2(xk, μk)]

+ N[0,+∞)(tk) (A6)
λk [ḡ1(xk, tk, μk) − ḡ2(xk, μk)] = 0.

It follows from Theorem 3 that x̄ ∈ �. Suppose there exists
{kj } such that λkj = 0, j = 1, 2, . . . . Then from Equation
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734 Hu et al.

(A5) we have 0 ∈ ∇xh(xkj ) + NX(xkj ). Letting j → ∞, and
noting the fact that h is continuously differentiable, we ob-
tain 0 ∈ ∇xh(x̄) + NX(x̄), which indicates that x̄ is a global
optimal solution of the JCCP. For this case it can be veri-
fied that (x̄, 0) ∈ 
 and thus x̄ ∈ 
�. Therefore, in the rest
of the proof we can assume without loss of generality that
starting from a sufficiently large k, λk �= 0.

Because (xk, tk) ∈ Zo(μk), as in the proof of The-
orem 3, we can verify that tk > 0, which implies
N[0,+∞)(tk) = {0}. From Equation (A6) we immediately ob-
tain ∇t ḡ1(xk, tk, μk) = 0, which is equivalent to the follow-
ing equality by changing the order of ∇t and E [·]:

E

[ ∑m
i=1 exp

{
μ−1

k (ci (xk,ξ) + tk)
}

1 + ∑m
i=1 exp

{
μ−1

k (ci (xk,ξ) + tk)
}]

− α = 0. (A7)

Note that tk → 0 and Assumption 1 holds. Letting k → ∞
on both sides of Equation (A7) and using the argument in
the proof of Proposition A1 again we obtain Pr{c(x̄,ξ) >

0} − α = 0.
Because tk �= 0, Equations (A5) and (A6) can be rewritten

as

0 ∈ ∇xh(xk) + λktk

[∇x	1(xk, tk, μk) − ∇x	2(xk, μk)
tk

]
+ NX(xk) (A8)

λktk [∇t ḡ1(xk, tk, μk)] = 0. (A9)

Now we argue λktk �→ +∞. Suppose not. Note that
∂x Pr{c(x,ξ) > 0} is always closed (Rockafellar and Wets,
1998). The assumption that ∂x Pr{c(x,ξ) > 0} is bounded
implies the compactness of ∂x Pr{c(x,ξ) > 0}. Therefore,
by passing to a subsequence if necessary, we can assume
t−1
k {∇x	1(xk, tk, μk) − ∇x	2(xk, μk)} converges to a vec-

tor v̄ ∈ ∂x Pr{c(x,ξ) > 0}. Dividing both sides of Equation
(A8) by λktk and letting k → ∞, we obtain 0 ∈ v̄ + NX(x̄).
Dividing both sides of Equation (A9) by λktk and let-
ting k → ∞, by the above analysis we obtain Pr{c(x̄,ξ) >

0} − α = 0. This contradicts Assumption A1. The contra-
diction shows that λktk �→ +∞.

Because λktk �→ +∞, {λktk} has a convergent subse-
quence. By passing to a subsequence if necessary, we can as-
sume {λktk} converges; i.e., λktk → λ̄ for some λ̄ ≥ 0. Again,
because ∂x Pr{c(x,ξ) > 0} is compact, we can assume that
t−1
k {∇x	1(xk, tk, μk) − ∇x	2(xk, μk)} converges to a vec-

tor v̄ ∈ ∂x Pr{c(x,ξ) > 0}. Letting k → ∞ on both sides of
Equation (A8) yields

0 ∈ ∇xh(x̄) + λ̄v̄ + NX(x̄).

Letting k → ∞ on both sides of Equation (A9) we obtain

λ̄ [Pr{c(x̄,ξ) > 0} − α] = 0.

This shows (x̄, λ̄) ∈ 
, which means x̄ ∈ 
�. The proof is
finished. �

Note that when Pr{c(x,ξ) > 0} is smooth,
∂x Pr{c(x,ξ) > 0} degenerates to a singleton and thus
is bounded. When Pr{c(x,ξ) > 0} is locally Lipschitz
continuous, ∂x Pr{c(x,ξ) > 0} is compact and thus is
still bounded. Theorem A1 essentially shows that the
x-component of the cluster point (as μ → 0) of the
sequence of KKT points of Problem (Po

μ) is a stationary
point of the original JCCP. Therefore, the KKT points of
Problem (Po

μ) also serve as a good approximation to the
possible stationary points of Problem (3) or of the original
JCCP.

As we relax ε to a variable t in Problem (Po
μ), a natu-

ral question is then whether the t-component of the KKT
point of Problem (Po

μ) will finally converge to zero as μ ↘ 0.
The answer is yes in most real situations, but there ex-
ist exceptions. We briefly discuss it in the following. Sup-
pose now (x̄(μ), t̄(μ)) is a KKT point of Problem (Po

μ).
If the JCCP can attain its optimal value at some interior
points of its feasible region, then from Theorem 3 Prob-
lem (Po

μ) can also attain its optimal value at some inte-
rior points of its feasible region for any sufficiently small
μ. In this case, ḡ(x, t, μ) ≤ 0 does not need to be tight at
(x̄(μ), t̄(μ)), and x̄(μ) may finally converge to some optimal
solution x̄(0) of the JCCP as μ ↘ 0 while t̄(μ) has freedom
to take multiple values and does not need to converge to
zero. Note that in this case we still have x̄(0) ∈ 
� because
(x̄(0), 0) ∈ 
.

Consider now the more interesting case where all of
the optimal solutions of the JCCP make the joint chance
constraint tight. By passing to a subsequence if necessary,
we assume that (x̄(0), t̄(0)) is the limit of {(x̄(μ), t̄(μ))} as
μ ↘ 0. Since the JCCP cannot attain its optimal value
at any feasible points at which the chance constraint is
not tight, we have ḡ(x, t, μ) = 0 at (x̄(μ), t̄(μ)). (It can be
verified that if ḡ(x, t, μ) < 0 at (x̄(μ), t̄(μ)), then x̄(μ) is
an optimal solution of the JCCP and at the same time
Pr{c(x̄(μ),ξ) > 0} < α.) It follows that

	1(x̄(μ), t̄(μ), μ) − ḡ2(x̄(μ), μ)
t̄(μ)

= α. (A10)

Because 	1(x, t, μ) converges uniformly to E[[c(x,ξ)
+ t]+] and ḡ2(x, μ) converges uniformly to E

[
[c(x,ξ)]+

]
as μ ↘ 0, letting μ ↘ 0 on both sides of Equation (A10)
we have

E
[
[c(x̄(0),ξ) + t̄(0)]+

] − E
[
[c(x̄(0),ξ)]+

]
t̄(0)

= α, (A11)

provided that t̄(0) �= 0. Note that it may happen that the
random variable c(x̄(0),ξ) has no mass at some neighbor-
hood of zero. Therefore, in this subcase, t̄(0) still does
not need to be zero while the left-hand side of Equa-
tion (A11) can still be equal to inf t>0 E [π(c(x̄(0),ξ), t)].
Finally, we show t̄(0) �= 0 only when c(x̄(0),ξ) has
no mass between (−t̄(0), 0]. From the proof of
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Theorem A1 we have t̄(μ) minimizes ḡ1(x̄(μ), t, μ). Observe
that ḡ1(x̄(μ), t, μ) → E[[c(x̄(0),ξ) + t]+] − αt uniformly
on �+. Then t = t̄(0) minimizes E[[c(x̄(0),ξ) + t]+] − αt,
which implies Pr{c(x̄(0), ξ ) > −t̄(0)} ≤ α (Rockafellar and
Uryasev, 2002). On the other hand, from Equation (A11)
we have

E
[
[c(x̄(0),ξ) + t̄(0)]+

] − αt̄(0) = E[[c(x̄(0),ξ)]+].

This means that t = 0 also minimizes E[[c(x̄(0),ξ) + t]+] −
αt. Noting that under Assumption 1, E[[c(x̄(0),ξ) + t]+] −
αt is differentiable at t = 0, we have Pr{c(x̄(0),ξ) > 0} = α.
Therefore,

α = Pr{c(x̄(0),ξ) > 0} ≤ Pr{c(x̄(0),ξ) > −t(0)} ≤ α.

This means c(x̄(0),ξ) has no mass between (−t̄(0), 0].
The above analysis also confirms that if for any δ > 0,

c(x̄(0),ξ) has mass in [−δ, 0] (this includes the case where
c(x̄(0),ξ) has a continuous density at a neighborhood of
zero), then we must have t̄(0) = 0. In the numerical exper-
iments we observed that for both classes of our test prob-
lems the t-component of the solutions converges to zero.
It is worthwhile noting that the above multiple scenarios
further strengthen the advantage of treating ε as a deci-
sion variable: it can automatically identify these different
scenarios.

A5: Proof of Theorem 4

1. For any k ≥ 0, zk+1 is an optimal solution of Prob-
lem CP(μ, zk). Thus, zk+1 ∈ Z(μ, zk). Since Z(μ, y) ⊂
Zo(μ) for any y ∈ Z, we have zk+1 ∈ Zo(μ). Therefore,
{zk} ⊂ Zo(μ). Note that zk+1 is an optimal solution of
Problem CP(μ, zk) and zk is a feasible solution of Prob-
lem CP(μ, zk). We have h(zk+1) ≤ h(zk). This shows that
{h(zk)} is non-increasing. Because X is compact and h(·)
is continuous, we have that {h(zk)} is bounded. It follows
that {h(zk)} is convergent.

2. It follows from Lemma 6 of Hong et al. (2011) that the
result holds.

3. It follows from Property 3 of Hong et al. (2011) and
corresponding proof that the result holds. �

A6: Proof of Theorem 5

Note that Assumption 2 holds and ξ1, ξ2, . . . , ξn are i.i.d.
For any z ∈ Z, by the strong law of large numbers (Durrett,
2005), we have that

ḡ1,n(z, μ) −
⎡⎣ḡ2,n(y, μ) + 1

n

n∑
j=1

∇z H2(y, ξ j , μ)T (z − y)

⎤⎦
(A12)

converges to

ḡ1(z, μ) − [
ḡ2(y, μ) + ∇zḡ2(y, μ)T (z − y)

]
(A13)

w.p.1. as n → ∞. Because both Equations (A12) and (A13)
are convex functions of z, we have from Theorem 7.50 of
Shapiro et al. (2009) that Equation (A12) converges to
Equation (A13) w.p.1. uniformly on z as n → ∞. Given
Slater’s condition, it follows from Theorem 5.5 of Shapiro
et al. (2009) and the discussion that follows that the results
of this theorem hold. �
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