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Value-at-risk (VaR) and conditional value-at-risk (CVaR) are two widely used risk measures of large losses
and are employed in the financial industry for risk management purposes. In practice, loss distributions
typically do not have closed-form expressions, but they can often be simulated (i.e., random observations of
the loss distribution may be obtained by running a computer program). Therefore, Monte Carlo methods
that design simulation experiments and utilize simulated observations are often employed in estimation,
sensitivity analysis, and optimization of VaRs and CVaRs. In this article, we review some of the recent devel-
opments in these methods, provide a unified framework to understand them, and discuss their applications
in financial risk management.
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1. INTRODUCTION

Risk is a fundamental attribute of financial activities. When investors make financial
decisions, they consider not only potential returns but also potential risks. There are
various kinds of risks in the financial industry. For instance, an investment bank
may hold a portfolio of stocks for a period of time and the value of the portfolio may
evolve at random during the period. Then, the bank faces the market risk that the
value of the portfolio may fall below the initial value. Similarly, a commercial bank
may hold a portfolio of loans lent to different obligors. Then, the bank faces the credit
risk that some of the obligors may default. Because of the importance and ubiquity of
financial risks, individual financial institutions often want to identify and understand
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the risks in their activities, based on which they can then control or manage the risks.
Furthermore, because of the systematic nature of financial institutions, risks of one
institution can easily spread to other institutions or even to the entire financial system,
resulting in the so-called systemic risk. Such systemic risk may even affect the entire
economic and social system. Therefore, consensus has been reached that regulations
on financial systems and financial markets are necessary.

To understand risks, people typically look at the loss resulting from an activity. By
bringing in the tool of probability measure, such a loss can be modeled as a random
variable. This idea is simple but very useful. It provides a language to describe risks.
However, a random variable that can take multiple values according to some proba-
bility measure (distribution) is still difficult to interpret. The underlying randomness
creates difficulties in managing risks. It also creates difficulties for financial regula-
tions. For a long time, risk was difficult to handle, until the notion of risk measures
was brought in. A risk measure is a function that maps a random variable to a real
number. Using risk measures, people now can focus on a single number instead of tak-
ing into consideration the whole loss distribution. Such a number is easy to interpret
and understand. The introduction of risk measures paved the way for efficient and
systematical study of financial risks. For a thorough discussion on the background of
financial risk management, we refer readers to McNeil et al. [2005] and Jorion [2010].

There have been numerous risk measures introduced and employed in the finan-
cial industry. Value-at-risk (VaR) and conditional value-at-risk (CVaR, also known as
expected shortfall or tail conditional expectation), which we review in this article, are
among the most well-known and widely used ones and play dominating roles in practice.
For any α ∈ (0, 1), the α-VaR of a random loss L is the α quantile of L, while the α-CVaR
is the average of all β-VaR for β ∈ (α, 1). As we are typically interested in the risk of
large losses in practice, α is typically quite close to 1, for example, α = 0.9, 0.95, 0.99.
As pointed out by Hong and Liu [2009], if we define the large losses to be the losses in
the upper (1 − α)-tail of the loss distribution, then the α-VaR is the lower bound of the
large losses and the α-CVaR is the mean of the large losses. They provide information
on potential large losses that an investor may suffer.

Based on Jorion [2006], VaR was promoted by J. P. Morgan and RiskMetrics Group
as a tool for financial risk management in mid-1990s. In 1997, the U.S. Securities and
Exchange Commission ruled that public corporations must disclose their derivative
activities quantitatively, and many financial institutions chose to report the VaR in-
formation as a way to comply with the rule. In 1999, Basel II Accord was adopted
internationally and it also incorporated the concept of VaR in the measurement of fi-
nancial market risk and in determining regulatory capital requirements. Since then,
VaR has become a standard concept and approach in financial risk measurement.

Even though VaR was widely adopted in financial practice, there is also criticism on
its use as a risk measure. Artzner et al. [1999] defined four axioms and called a risk
measure that satisfies these axioms a coherent risk measure. One of these axioms is
the subadditivity axiom, which basically means that “a merger does not create extra
risk.” They further showed that VaR does not always satisfy the subadditivity axiom
and is therefore not a coherent risk measure. Rockafellar and Uryasev [2002], on the
other hand, showed that CVaR satisfies all four axioms and is therefore a coherent risk
measure (see also the study of Acerbi and Tasche [2002]). Kou et al. [2013], however,
argued that the subadditivity axiom is not necessary and suggested replacing it with
the comonotonic subadditivity axiom, which only requires subadditivity to hold for
random variables moving in the same direction. They showed that both VaR and CVaR
satisfy the comonotonic subadditivity axiom. However, they argued that, compared to
CVaR, VaR is often more robust to the tail behavior of the loss distribution, which
is in general difficult to characterize in practice, and is therefore more suitable for
regulatory purposes.
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The 2008 financial crisis indicated serious flaws in the financial risk management
methodologies. The use of VaR as a risk measure has also been criticized extensively.
Recently, the Basel Committee of Banking Supervision of the Bank for International
Settlements (2012) admitted in their consultative document that “a number of weak-
nesses have been identified with using VaR for determining regulatory capital require-
ments, including its inability to capture ‘tail risk,”’ and “it is questionable whether it
[VaR] meets the objectives of prudential regulation which seeks to ensure that banks
have sufficient capital to survive low probability, or ‘tail’ events.” Therefore, the docu-
ment suggested moving from VaR to expected shortfall (i.e., CVaR) because it “better
captures tail risk.” We agree that CVaR better captures tail risk than VaR, because
CVaR is the average of tail losses while VaR is only a lower bound. Therefore, the
use of CVaR may provide incentives for financial institutions to take into account tail
risks beyond VaR. However, the use of CVaR cannot solve the problem of risk modeling
entirely. In this article, we do not intend to participate in the debates of VaR and CVaR.
Instead, we consider the computational issues related to both VaR and CVaR when
using them in practice.

As closed-form expressions of portfolio loss distributions are typically not available
in practical situations, a computer program is often built to simulate the losses under
different scenarios based on a financial model (often an internal model of a financial
institution). Then, we may use the simulated losses to conduct analysis on VaR and
CVaR. This is what we call a “Monte Carlo method.” In the past two decades, along
with the wide adoption of VaR/CVaR risk management methodologies in the financial
industry, the research on Monte Carlo methods for VaR and CVaR has also attracted
a significant amount of attention from the academic community, and in particular, the
stochastic simulation community. Given the existence of a large amount of work in
this area, in this article we do not attempt to provide a thorough and comprehensive
review of the related literature. Instead, we focus on some of the recent developments
in these methods, especially on applications in financial risk management, and intend
to provide a unified framework to understand these methods.

In particular, we review three general topics in this article: (1) VaR and CVaR estima-
tions, (2) sensitivity analysis of VaR and CVaR, and (3) VaR and CVaR optimizations.
To use VaR and CVaR, one needs to be able to estimate them to the required precision.
In this part of the article, we first review the crude Monte Carlo estimators of VaR
and CVaR and discuss their asymptotic properties. As both VaR and CVaR concern tail
behaviors of a loss distribution, crude Monte Carlo estimators are often not efficient
and a large number of observations may be necessary to achieve the required preci-
sions. To address this issue, many variance reduction methods have been proposed to
obtain estimators with smaller variance. We briefly introduce the general framework
of using importance sampling for variance reduction and discuss several important
financial applications in greater detail. As many financial portfolios include derivative
contracts that may also need to be priced using Monte Carlo methods, to estimate VaR
and CVaR, we often encounter nested estimation problems (i.e., there are two levels
of expectations that need to be evaluated). This problem has attracted a significant
amount of attention recently. We also provide a short description of this problem and
introduce some of the recent developments for solving it.

Sensitivities of VaR and CVaR concern the derivatives of these risk measures with
respect to a parameter of the loss distribution. They measure how changes in the
parameter affect the values of VaR and CVaR and have a number of important ap-
plications in the financial industry. In portfolio optimization problems, for instance,
sensitivities of VaR (CVaR) can be incorporated into a gradient-based optimization al-
gorithm to solve problems with VaR (CVaR) objectives and/or constraints. In portfolio
capital allocation, for instance, individual assets’ marginal risk contributions, the sum
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of which is exactly the total risk of the portfolio, can be expressed as sensitivities of the
risk measures under appropriate conditions (see, e.g., Kalkbrener [2003], Kalkbrener
et al. [2004], and Kurth and Tasche [2003]). In model validation and comparisons, for
instance, sensitivities of VaR and CVaR can be used to evaluate the robustness of the
financial models with respect to the uncertainty in the model parameters. In Section 3
of our article, we provide a unified approach to deriving the closed-form expressions of
VaR and CVaR sensitivities, introduce Monte Carlo estimators of these sensitivities,
and discuss their properties. As VaR sensitivity requires the estimation of a conditional
expectation conditioning on a probability zero event, its estimator often has a rate of
convergence that is slower than a typical Monte Carlo estimator of a mean. We review
a number of available methods that devise estimators with faster rates of convergence.

Because VaR and CVaR are important risk measures, they are naturally used in
various decision models, resulting in optimization problems that either optimize certain
VaR/CVaR functions or optimize certain objectives subject to VaR/CVaR constraints. As
both VaR and CVaR typically do not have closed-form expressions, these optimization
problems are often solved using either deterministic approximation algorithms that
yield feasible but suboptimal solutions or Monte Carlo methods that solve a sample-
based optimization problem. In Section 4 of our article, we introduce various Monte
Carlo methods in solving VaR and CVaR optimization problems and discuss their
connections, advantages, and disadvantages. We also introduce some recent work that
solves VaR optimization problems by sequentially solving CVaR optimization problems.

As presented earlier, the three topics reviewed in this article are basic concepts of
financial risk management. Interestingly, the order in which we present the topics is
in line with other literature. For instance, Jorion [2006] discussed in sequence “passive
risk measurement,” “defensive risk control,” and “active risk management” using VaR.
Our topic (1) can be considered as some passive risk measurement, topic (3) can be
classified as certain active risk management, and topic (2) somehow falls in between.
This suggests that the three topics correspond to progressive actions in the practice of
risk management.

The rest of the article is organized as follows. Section 2 considers the estimation
of VaR and CVaR, introduces asymptotic properties of the estimators and variance
reduction issues, and discusses applications and recent advances in portfolio risk mea-
surement. Section 3 considers the estimation of sensitivities of VaR and CVaR and dis-
cusses their closed-form expressions, asymptotic properties, and methods for efficiency
improvement. Section 4 considers VaR and CVaR optimization problems, discusses
properties of these problems, and introduces some recently developed Monte Carlo
algorithms for solving these problems. The article concludes in Section 5 with some
discussions on the topics that we think are interesting and deserve further studies.

2. ESTIMATIONS OF VAR AND CVAR

As a starting point, we define VaR and CVaR and explore their inherent connections. Let
L be the random loss of interest and F(y) = Pr{L ≤ y} be the cumulative distribution
function (CDF) of L. Then, the inverse CDF of L can be defined as F−1(γ ) = inf{y :
F(y) ≥ γ }. Following the definitions of Trindade et al. [2007], for any α ∈ (0, 1), we
define the α-VaR of L as

vα = F−1(α),

and define the α-CVaR of L as

cα = 1
1 − α

∫ 1

α

vβ dβ. (1)
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Pflug [2000] showed that cα is also the optimal value of the stochastic program:

cα = inf
t∈�

{
t + 1

1 − α
E[L − t]+

}
, (2)

where [a]+ = max{0, a}. Let T be the set of optimal solutions to the stochastic program
defined in Equation (2). Then it can be shown that T = [vα, uα], where uα = sup{t :
F(t) ≤ α} (see, e.g., Rockafellar and Uryasev [2002] and Trindade et al. [2007]). In
particular, note that vα ∈ T . Therefore,

cα = vα + 1
1 − α

E[L − vα]+. (3)

When L has a positive density in the neighborhood of vα, then vα = uα. Therefore, the
stochastic program defined in (2) has a unique solution, and

cα = E[L|L ≥ vα], (4)

while the right-hand side of Equation (4) is also known as expected shortfall or tail
conditional expectation. To be meaningful, we assume that cα is finite for all discussions
related to CVaR in this article.

2.1. Crude Monte Carlo Estimation

Suppose that L1, L2, . . . , Ln are n independent and identically distributed (i.i.d.) obser-
vations from the loss L. Then, the α-VaR of L can be estimated by

v̂n
α = L�nα�:n,

where �a� denotes the smallest integer larger than or equal to a, and Li:n is the ith
order statistic from the n observations.

Trindade et al. [2007] suggested to use the estimator

ĉn
α = inf

t∈�

{
t + 1

n(1 − α)

n∑
i=1

[Li − t]+
}

(5)

to estimate the α-CVaR of L. Let

Fn(y) = 1
n

n∑
i=1

1{Li≤y}

be the empirical CDF constructed from L1, L2, . . . , Ln, where 1{·} is the indicator func-
tion. Then

ĉn
α = inf

t∈�

{
t + 1

1 − α
E[L̃ − t]+

}
,

where the CDF of L̃ is Fn. Since v̂n
α = F−1

n (α), then by Equation (3), we have

ĉn
α = v̂n

α + 1
n(1 − α)

n∑
i=1

[
Li − v̂n

α

]+
. (6)

Therefore, we can apply Equation (6) to directly estimate cα instead of solving the
stochastic program in Equation (5).

Consistency and asymptotic normality of the estimators v̂n
α and ĉn

α have been studied
extensively in the literature (see, e.g., Serfling [1980] and Trindade et al. [2007]).
Regarding the asymptotic properties, a result that is even sharper is the Bahadur
representation [Bahadur 1966].
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As a unified view, we present the asymptotic properties of v̂n
α and ĉn

α using the Bahadur
representations. To this end, we first make the following assumption.

ASSUMPTION 1. There exists an ε > 0 such that L has a positive and continuously
differentiable density f (x) for any x ∈ (vα − ε, vα + ε).

Assumption 1 requires that L has a positive and differentiable density in a neigh-
borhood of vα. It implies that F(vα) = α and cα = E[L|L ≥ vα].

Bahadur representations of v̂n
α and ĉn

α are summarized in the following theorem,
whose proof can be found in Sun and Hong [2010].

THEOREM 2.1. For a fixed α ∈ (0, 1), suppose that Assumption 1 is satisfied. Then

v̂n
α = vα + 1

f (vα)

(
α − 1

n

n∑
i=1

1{Li≤vα}

)
+ An, and

ĉn
α = cα +

(
1
n

n∑
i=1

[
vα + 1

1 − α
(Li − vα)+

]
− cα

)
+ Bn,

where An = Oa.s.(n−3/4(log n)3/4), Bn = Oa.s.(n−1 log n), and the statement Yn = Oa.s.(g(n))
means that Yn/g(n) is bounded by a constant almost surely.

Consistency and asymptotic normality of v̂n
α and ĉn

α follow straightforwardly from
Theorem 2.1. Specifically, if Assumption 1 is satisfied, then v̂n

α → vα and ĉn
α → cα with

probability 1 (w.p.1) as n → ∞, and

√
n

(
v̂n

α − vα

) ⇒
√

α(1 − α)
f (vα)

N(0, 1), as n → ∞, (7)

where “⇒” denotes “converge in distribution,” and N(0, 1) represents the standard
normal random variable. If, in addition, E[(L − vα)21{L≥vα}] < ∞, then

√
n

(
ĉn
α − cα

) ⇒ σ∞ · N(0, 1), as n → ∞, (8)

where

σ 2
∞ = lim

n→∞ nVar
(
ĉn
α

) = 1
(1 − α)2 · Var([L − vα]+).

2.2. Variance Reduction

In the simulation literature, there has been a significant amount of work on the topic
of variance reduction for VaR estimation. For instance, Hsu and Nelson [1990] and
Hesterberg and Nelson [1998] studied the use of control variates. Avramidis and Wilson
[1998] employed correlation-induction techniques for variance reduction in quantile
estimation. Glynn [1996] considered the use of importance sampling (IS) and discussed
its asymptotic properties. The problem of estimating portfolio VaR has been studied
in Glasserman et al. [2000] and Glasserman et al. [2002], where IS and stratified
sampling are employed.

Among various variance reduction methods proposed in the literature, IS is particu-
larly attractive, given the rare-event features of many practical problems. It has proven
to be a very effective variance reduction technique in this context, and much work has
been done regarding this issue.

In what follows, we discuss a general IS method for estimating VaR and CVaR, with
a focus on the asymptotic properties of the IS estimators. Specifically, suppose that L is
simulated under another CDF G(·), where F is absolutely continuous with respect to G
in [vα − ε,∞), with ε > 0 being a fixed constant, that is, F(dx) = 0 if G(dx) = 0 for any
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x ∈ [vα − ε,∞). We refer to G as the IS distribution and let l(x) = F(dx)/G(dx) denote
the likelihood ratio function (also called score function) associated with the change of
measure. Note that for x ∈ [vα − ε,∞),

F(x) = EF
[
1{L≤x}

] = EG
[
1{L≤x}l(L)

]
,

where EF and EG denote taking expectations with respect to F and G, respectively.
Then we may estimate F(x) by

Fn,IS(x) = 1
n

n∑
i=1

1{Li≤x}l(Li).

Then the IS estimators of vα and cα, denoted by v̂n,IS
α and ĉn,IS

α , can be defined as follows:

v̂n,IS
α = F−1

n,IS(α) = inf{x : Fn,IS(x) ≥ α}, and

ĉn,IS
α = v̂n,IS

α + 1
n(1 − α)

n∑
i=1

(
Li − v̂n,IS

α

)+l(Li).

Recently, Sun and Hong [2010] and Chu and Nakayama [2012] independently studied
the Bahadur representations of the IS estimators. To present this result, we follow the
framework of Sun and Hong [2010] and make a further assumption.

ASSUMPTION 2. There exist ε > 0 and C > 0 such that l(x) ≤ C for any x ∈ (vα −
ε, vα + ε), and there exists p > 2 such that EG

[
lp(L)

]
< ∞.

Assumption 2 requires that the likelihood ratio is bounded from above in a neigh-
borhood of vα and has a finite p > 2 moment on the right tail of the loss.

The Bahadur representations of the IS estimators of vα and cα are summarized in the
following theorem. Interested readers may refer to Sun and Hong [2010] for its proof.

THEOREM 2.2. For a fixed α ∈ (0, 1), suppose that Assumptions 1 and 2 are satisfied.
Then,

v̂n,IS
α = vα + 1

f (vα)

(
α − 1

n

n∑
i=1

1{Li≤vα}l(Li)

)
+ Cn, and

ĉn,IS
α = cα +

(
1
n

n∑
i=1

[
vα + 1

1 − α
(Li − vα)+l(Li)

]
− cα

)
+ Dn,

where Cn = Oa.s.(max{n−1+2/p+δ, n−3/4+1/(2p)+δ}) and Dn = Oa.s.(n−1+2/p+δ) for any δ > 0.

Asymptotic normality of the estimators follows immediately from Theorem 2.2. In
particular, under Assumptions 1 and 2,

√
n
(
v̂n,IS

α − vα

) ⇒
√

VarG
[
1{L≥vα}l(L)

]
f (vα)

N(0, 1), as n → ∞.

If, in addition, EG[(L − vα)2l2(L)1{L≥vα}] < ∞, then

√
n
(
ĉn,IS
α − cα

) ⇒
√

VarG
[
(L − vα)+l(L)

]
1 − α

N(0, 1), as n → ∞.

If l(x) ≤ 1 for all x ≥ vα, then it can be easily verified that VarG[1{L≥vα}l(L)] ≤ α(1 −α)
and VarG[(L − vα)+l(L)] ≤ Var[(L − vα)+]. Then, compared to Equations (7) and (8),
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it can be seen that the asymptotic variances of the IS estimators are smaller than
those of the estimators without IS, given that l(x) ≤ 1 for all x ≥ vα. In practice, an
effective IS distribution (with a density function g) often satisfies g(x) ≥ f (x) for x ≥ vα.
This provides a guideline for selecting an appropriate IS distribution during practical
implementation.

2.3. Applications in Portfolio Risk Measurement

In financial applications such as portfolio risk measurement, the random variable L
discussed in previous sections typically represents the loss of a portfolio up to a future
time horizon. When the portfolio risk is measured by α-VaR or α-CVaR, it becomes a
rare-event simulation problem, because the confidence level α is usually close to 1 and
thus the upper tail of the loss distribution is of major concern in risk measurement. In
this setting, IS has been successfully applied to enhance estimation efficiency. In what
follows, we briefly review the use of IS in such contexts. For greater detail, interested
readers may refer to Glasserman et al. [2000, 2002], Glasserman [2004], Glasserman
and Li [2005], Glasserman et al. [2007, 2008], Bassamboo et al. [2008], and references
therein.

2.3.1. Equity Portfolios. Consider a portfolio consisting of a number of financial instru-
ments (e.g., stocks, options, etc.). The value of each instrument may depend on several
risk factors (e.g., stock prices, interest rates, exchange rates, etc.). Suppose there are m
risk factors on which the portfolio value depends. Let S(t) = (S1(t), . . . , Sm(t))T denote
the values of the m risk factors at t, and V (S(t), t) denote the value of the portfolio at
time t. Over a future time interval [t, t + �t], the loss of the portfolio is

L = V (S(t), t) − V (S(t + �t), t + �t).

At time t, the loss of the portfolio relies on the change in risk factors during the
time interval [t, t + �t], which is denoted by �S = S(t + �t) − S(t). In a financial
simulation, one typically simulates a number of scenarios of �S and then evaluates
the corresponding loss L for each scenario. Then, based on the sample of L, estimates
of the portfolio risk can be obtained. In practical problems, a large number of scenarios
is usually required to obtain an accurate estimate because the portfolio risk is usually
associated with the upper tail of the loss distribution. For instance, when estimating
α-VaR with α = 99.9%, a very large sample may be required to obtain an accurate
estimate because of the large estimation variance. In the literature, a considerable
amount of work has been done to reduce the estimation variance. This subsection
focuses on the use of IS and reviews the related work.

Estimating the risk associated with L (e.g., VaR and CVaR) is closely related to
the problem of estimating Pr(L > x) for a given x. To see why it is so, we note that
estimating α-VaR of L is equivalent to finding x such that Pr(L > x) = 1 − α when
L is a continuous random variable. In other words, if the probability Pr(L > x) can
be estimated efficiently for a sequence of x values, then an estimate of α-VaR can be
easily obtained by taking the inverse of the CDF. When the objective is to estimate
CVaR, one typically employs a two-step procedure, in which an estimate of α-VaR,
v̂α, is obtained in the first step, and then an estimate of E[L|L ≥ v̂α] is obtained in
the second step. It turns out that IS techniques that work for estimating Pr(L > v̂α)
usually perform well for estimating E[L|L ≥ v̂α] in the second step. Therefore, when
studying IS techniques, much of the work in the literature starts with the problem
of estimating the probability Pr(L > x). For instance, Glynn [1996] proposed several
IS-based estimators for quantiles and showed that inverting the sample average (in
terms of G) of 1 − 1{L>x}l(L) sometimes leads to a preferred quantile estimator when
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α is close to 1. Glasserman et al. [2000] mainly focused on Pr(L > x) when using IS
techniques to estimate VaR.

To design an IS method for estimating Pr(L > x), the basic idea of Glasserman et al.
[2000] is to approximate the portfolio loss by a quadratic function of the risk factors
and to use this quadratic approximation to guide the selection of an appropriate IS
distribution. More specifically, the portfolio loss can be approximated by

L ≈ a0 + aT �S + (�S)T A�S ≡ a0 + Q,

where a0 is a scalar, a is a vector, and A is a matrix. As noted in Glasserman et al.
[2000], such an approximation becomes more accurate when �t becomes smaller.

Based on the delta-gamma approximation, a0 = −	�t, a = −δ, and A = − 1
2
, where

	 = ∂V/∂t, δi = ∂V/∂Si, and 
i j = ∂2V/∂Si∂Sj (all partial derivatives are evaluated
at (S(t), t)). In financial industries, 	, δ, and 
 are known as the Greek letters and are
often routinely computed for other purposes.

In Glasserman et al. [2000], �S is assumed to follow a multivariate normal distribu-
tion with mean zero and covariance matrix �. If we let C be such that CCT = �, then
�S can be generated by �S = CZ, where Z is a vector of independent standard nor-
mals. For the covariance matrix �, there are different choices for matrix C. Glasserman
et al. [2000] show how to find such a C so that CT AC is a diagonal matrix. Then,

Q = aT CZ + ZT CT ACZ = aT CZ + ZT 
Z = bT Z + ZT 
Z =
m∑

i=1

(
λi Z2

i + bi Zi
)
,

where bT = aT C, 
 is a diagonal matrix with λis in the diagonal, and it is assumed
that λ1 ≥ λ2 ≥ · · · ≥ λm for ease of discussion.

Intuitively, a large number of scenarios of L may be required to obtain an accurate
estimate of Pr(L > x) because very few scenarios are obtained in the important region
L ≈ x when x is large. To address this issue, Glasserman et al. [2000] suggested using
exponential twisting to change the mean of Z from 0 to μ and its covariance from the
identity matrix I to B such that the mean of L is equal to x under the IS distribution,
thus generating more scenarios in the important region. More specifically, the changes
in covariance B and in mean μ are restricted to the forms

B(θ ) = (I − 2θ
)−1, and μ(θ ) = θ B(θ )b,

respectively, where θ is the twisting parameter satisfying 1 − 2θλi > 0 for all i.
Exponential twisting requires a finite moment generating function of Q, and the

likelihood ratio associated with the IS distribution can be represented as

l(Z) = exp(−θ Q+ ψ(θ )),

where ψ(θ ) is the logarithm of the moment generating function of Q and is given by

ψ(θ ) =
m∑

i=1

1
2

(
(θbi)2

1 − 2θλi
− log(1 − 2θλi)

)
.

Let Eθ denote expectation under the IS distribution with twisting parameter θ . Then,

Pr(L > x) = E
[
1{L>x}

] = Eθ

[
1{L>x}l(Z)

]
,

where Z follows a multivariate normal distribution with mean μ(θ ) and covariance
B(θ ).

To select a good IS distribution, the basic principle is to choose a twisting parameter
such that the variance of 1{L>x}l(Z) is minimized, which is equivalent to minimizing its
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second moment

m2(x, θ ) = Eθ

[
1{L>x}l2(Z)

]
.

However, directly minimizing m2(x, θ ) is difficult. By noticing that

m2(x, θ ) ≤ exp(2ψ(θ ) − 2θ (x − a0)), (9)

Glasserman et al. [2000] suggested minimizing the upper bound in Equation (9), which
is equivalent to finding θx that solves the nonlinear equation

ψ ′(θx) = x − a0.

As illustrated in Glasserman et al. [1999], this nonlinear equation is easy to solve
numerically. An observation that is worth mentioning is that although θx is derived
for the threshold value x, numerical evidence suggests that it is also an appropriate
twisting parameter for nearby threshold values. This property is of great use when one
estimates VaR by taking the inverse CDF.

The exponential twisting method in Glasserman et al. [2000] builds on the assump-
tion that the risk factors �S follow a multivariate normal distribution. However, em-
pirical evidence in finance literature suggests that the risk factors may be heavy tailed.
When the risk factors are modeled by heavy-tailed distributions, such as a multivariate
t distribution, the exponential twisting method is inapplicable because of the nonex-
istence of the moment generating function. To fix this issue, Glasserman et al. [2002]
transformed the heavy-tailed problem into a light-tailed one and then applied expo-
nential twisting.

Glasserman et al. [2002] developed efficient computational procedures based on mod-
eling the joint distribution of risk factors using a multivariate t distribution and some
extensions of it. We briefly describe their main idea as follows. Consider the case where
�S follows a multivariate t distribution with mean zero. It can be represented by

Z√
Y/ν

,

where Z is a multivariate normal random variable with mean zero and covariance �,
and Y is a chi-square random variable with ν degrees of freedom. Moreover, Z and Y
are independent.

Recall that because L ≈ a0 + Q, the problem becomes one of selecting an efficient
change of measure for estimating Pr(Q > x − a0) for large x. Define

Qx = (Y/ν)(Q− x + a0).

Then

Pr(Q > x − a0) = Pr(Qx > 0).

While Q is heavy tailed, the newly defined Qx is light tailed, and thus exponential
twisting can be applied when estimating Pr(Qx > 0). Via an argument similar to
the multivariate normal case, Glasserman et al. [2002] determine a good twisting
parameter and provide explicit IS distributions of Y and Z. Interested readers may
refer to Glasserman et al. [2002] for more details.

2.3.2. Credit Portfolios. The IS methods reviewed in the previous subsection rely on
quadratic approximations of portfolio loss, and the underlying model framework typi-
cally applies to equity portfolios. In the financial industry, another important problem
is the risk measurement of credit portfolios that consist of defaultable instruments
such as corporate bonds, bank loans, and credit derivatives. The model frameworks for
credit portfolios are quite different from those for equity portfolios. The major modeling
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challenge in portfolio credit risk is how to capture the dependence among the defaults
of different borrowers or obligors. A widely used modeling framework assumes that
the defaults of individual obligors are conditionally independent given a set of un-
derlying factors, which may represent the common macroeconomic or industry-wide
environment. In what follows, we focus on this conditional-independence framework
and review the IS techniques tailored for this framework.

Consider a credit portfolio associated with m obligors. For k = 1, . . . , m, we let Yk
denote the default indicator for the kth obligor, that is, Yk = 1 if the obligor defaults
over a fixed time horizon [0, T ], and Yk = 0 otherwise. Marginal default probability of
the kth obligor is denoted by pk, which is an input to the model and is assumed to be
a known constant. The loss resulting from the default of the kth obligor is assumed to
be a continuous random variable Ck with a density fk(·), where Cks are assumed to be
independent. Then the loss of the credit portfolio is

L =
m∑

k=1

CkYk. (10)

One of the most widely used models in capturing the dependence among Yks is
the Gaussian copula model; see Gupton et al. [1997] and Li [2000]. In this model,
the default indicator Yk is specified as Yk = 1{Xk>xk} for k = 1, . . . , m, where latent
variables X1, . . . , Xm follow standard normal distributions, and the constant xk is chosen
to match the marginal default probability pk. Dependence among Yks is captured by
the covariance of X = (X1, . . . , Xm). More specifically, the covariance structure of X is
determined by the following factor model:

Xk = ak1 Z1 + · · · + akdZd + bkεk, k = 1, . . . , m,

where Z = (Z1, . . . , Zd)T denotes the systematic risk factors, ε = (ε1, . . . , εm)T denotes
the idiosyncratic risk factors of individual obligors, A = (aij) is the factor loading matrix,

and bi =
√

1 − ∑d
j=1 a2

i j , where we assume that
∑d

j=1 a2
i j ≤ 1 for all i = 1, . . . , m. Here Z

and ε are assumed to be independent of each other and both of them follow standard
multivariate normal distributions.

Note that in the Gaussian copula model, Yks are conditionally independent given
the systematic risk factors Z. Specifically, conditional on Z, Yk is a Bernoulli random
variable with a success probability

pk(Z) = Pr (Yk = 1|Z) = �

(
akZ + �−1(pk)

bk

)
, (11)

with ak = (ak1, . . . , akd), and � denoting the standard normal CDF.
Similar to the argument in the previous subsection, study of IS for portfolio credit

risk starts with the problem of estimating Pr(L > x) for a given x. Glasserman and
Li [2005] suggested a two-step IS such that more scenarios of L can be generated in
the important region L ≈ x. In the first step, the mean of the independent standard
normal random vector Z is changed to a vector μ. Then, in the second step, the default
probabilities pk(Z)s and losses given defaults Cks are exponentially twisted conditional
on Z. We adopt the notation in Glasserman [2008] and illustrate the idea in greater
detail.

We first consider the second step. Note that Yks are conditionally independent
Bernoulli random variables given Z. Given a twisting parameter θ ∈ �, define the
cumulant generating functions of Ck and L by


k(θ ) = log E[exp(θCk)]
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and

ψL(θ, Z) =
m∑

k=1

log(1 + pk(Z)(exp(
k(θ )) − 1)).

Exponential twisting suggests changing the conditional default probability pk(Z) to

pk,θ (Z) = pk(Z)e
k(θ)

1 + pk(Z)(e
k(θ) − 1)

and changing the density of Ck from fk(·) to fk,θ (v) = eθv−
k(θ) fk(v) for each k = 1, . . . , m.
By the definitions of 
k and ψL, it can be verified that ∂θψL(θ, Z) is equal to the mean

of L after changing pk(Z) and fk(v) to pk,θ (Z) and fk,θ (v), respectively. In other words,
∂θψL(θ, Z) is the mean of L after exponential twisting with the parameter θ .

To select a good twisting parameter conditional on Z, a natural choice is to find a θ
such that the mean of L is equal to x, that is, to solve the equation

∂

∂θ
ψL(θx(Z), Z) = x.

A subtle issue arises when the solution θx(Z) < 0 for some Z, which corresponds to
the case E[L|Z] > x. In this case, one may prefer to replace θx(Z) with 0, because
conditional on Z, {L > x} is not a rare event and thus no exponential twisting is
required. In summary, one may choose the twisting parameter as

θ+
x (Z) = max(θx(Z), 0),

and the corresponding conditional likelihood for this change of measure is

l2(Z, L) = exp
(− θ+

x (Z)L + ψL
(
θ+

x (Z), Z
))

.

In the first step of the IS method, the mean of Z is changed from zero to μ, and
thus the corresponding likelihood ratio is l1(Z) = exp(−μT Z + μT μ/2). To select an
appropriate IS distribution of Z, one may choose μ so that it reduces variance in
estimating the integral of Pr(L > x|Z) against the density of Z. An ideal IS distribution
of Z for this problem has the well-known zero-variance density that is proportional
to Pr(L > x|Z = z) exp(−zT z/2). However, sampling from this zero-variance density is
in general impossible, because the normalization constant in this density is Pr(L >
x), which is the quantity we seek. To circumvent this difficulty, Glasserman and Li
[2005] suggested choosing μ such that the IS distribution of Z and the zero-variance
distribution have the same mode, which corresponds to setting μ as the value of z that
maximizes

Pr(L > x|Z = z) exp(−zT z/2).

However, directly solving this optimization problem is difficult. To obtain an approxi-
mation, Glasserman and Li [2005] noticed that

Pr(L > x|Z = z) exp(−zT z/2) ≤ exp
( − θ+

x (z)x + ψL
(
θ+

x (z), z
) − zT z/2

)
(12)

and suggested minimizing the upper bound in Equation (12).
To summarize, the likelihood ratio of the two-step IS method is

l(Z, L) = l1(Z)l2(L, Z) = exp
( − θ+

x (Z)L + ψL
(
θ+

x (Z), Z
))

exp(−μT Z + μT μ/2),

and thus Pr(L > x) can be estimated based on

Pr(L > x) = Ẽ
[
1{L>x}l(Z, L)

]
,
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where Z and L are generated from the two-step IS measure, and Ẽ denotes the expec-
tation under this IS measure.

On the theoretical side, Glasserman and Li [2005] showed the asymptotic optimal-
ity of the previous IS method for single-factor homogeneous models where Z is one-
dimensional. For a multifactor model where Z is multidimensional, Glasserman et al.
[2008] studied the asymptotic optimality of an IS method that is based on a mixture of
mean shifts for Z.

The previous IS method works for a Gaussian copula model. For other credit risk
models, it is not applicable. Bassamboo et al. [2008] studied a class of extremal de-
pendence models, including the t copula as a special case. In contrast to the Gaussian
model where the latent variable Xk is represented by Xk = akZ + bkεk, they assumed
that

Xk = akZ + bkεk

W
, (13)

where W is a nonnegative random variable independent of Z and εks. When W takes
values close to zero, all Xks are likely to be large, leading to many simultaneous defaults.
Thus, W helps to capture the effect of common shocks.

For the extremal dependence models, Bassamboo et al. [2008] proposed two IS al-
gorithms to efficiently estimate the portfolio risk. The first algorithm is based on ex-
ponential twisting of the common shock random variable W and conditional default
probabilities, while the second algorithm is based on hazard-rate twisting on 1/W and
exponential twisting on conditional default probabilities. For a detailed discussion of
these algorithms, we refer readers to Bassamboo et al. [2008]. Another line of research
on modeling of portfolio credit risk focuses on dynamic intensity-based point process
models. For such models, Deng et al. [2012] recently proposed a sequential importance
sampling and resampling scheme for estimating rare-event probabilities. They showed
that a logarithmically efficient estimator of the probability of large loss can be obtained
by selecting appropriate resampling weights.

2.4. Recent Advances in Portfolio Risk Measurement

Recall that in a financial simulation, one typically simulates a number of scenarios
of the risk factors and then evaluates the corresponding loss L for each scenario.
Then, based on the samples of L, estimates of the portfolio risk can be obtained. This
simulation is often computationally costly because of two issues. The first issue is that
a large number of scenarios for the risk factors is required because the portfolio risk
is usually associated with the upper tail of the loss distribution. As reviewed in the
previous subsection, IS has been successfully applied to address this issue.

The second issue is that given a scenario of the risk factors, evaluation of the
corresponding portfolio loss L may be computationally costly. In many practical
problems, closed-form formulas of L are not available, especially when complex pricing
models are used. In this case, one may need to resort to numerical methods (e.g.,
Monte Carlo simulation and numerical integration) to approximate L. In recent years,
increasing attention has been paid to this nested setting where both the risk factors
and the corresponding portfolio loss require Monte Carlo simulation. Sometimes it is
also referred to as a two-level simulation, in which the risk factors are simulated in the
outer level, while the portfolio loss given each scenario of risk factors is simulated in
the inner level. Straightforward implementation of the two-level (or nested) simulation
scheme is computationally intensive. A key issue in this regard is to develop efficient
ways to allocate computational budget to both outer and inner levels such that the
resulting estimator achieves an optimal rate of convergence in a certain sense. Other
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work toward addressing this issue focuses on the development of efficient simulation
methods that are not limited to the nested simulation framework.

For ease of presentation, we simplify the notation. Denote the risk factors at time
t by a random vector X and the discounted payoff of the portfolio at a maturity time
T (T > t) by a random variable P. Then the portfolio loss L is a function of X. By
standard option pricing theory [Duffie 2001],

L ≡ L(X) = V0 − EM[P|X] = EM[V0 − P|X] = EM[Y |X],

where the constant V0 denotes the value of the portfolio at time 0, Y � V0 − P, and EM
denotes that the expectation is taken under the pricing martingale measure. Then the
problem of interest becomes estimating a risk measure associated with L, for example,
VaR or CVaR of L.

The standard nested simulation approach to the previous problem can be described as
follows. We first simulate n scenarios of X, denoted by {Xi, 1 ≤ i ≤ n}. Then conditional
on each Xi for i = 1, . . . , n, we simulate K observations of Y , denoted by {Yik, 1 ≤ k ≤ K}.
Let Li = 1

K

∑K
k=1 Yik. Then the samples {Li, 1 ≤ i ≤ n} can be used to estimate the

portfolio risk. To ensure the convergence of the estimate, both n and K need to go
to infinity. In many practical situations, the main computational effort is spent on
simulating the inner-level sample Yiks. Thus, the total computational effort required
for the standard nested simulation scheme is approximately proportional to nK.

Traditionally, the computational burden of the standard nested simulation scheme is
often perceived to be unacceptable for practical problems. However, Gordy and Juneja
[2010] showed that this perception is not necessarily true in the context of portfolio
risk measurement. On the theoretical side, they analyzed how a fixed computational
budget can be allocated to the inner and outer levels to minimize the mean square error
(MSE) of the resulting estimator and established an asymptotic result that MSE of the
estimator converges to zero at a rate of 
−2/3, where 
 represents the computational
budget; see also Lee [1998] for a similar analysis. On the practical side, they showed
that a relatively small number of inner-level samples could yield accurate estimates
when measuring portfolio risk. It should also be noted that when Y is linear in X, the
standard nested simulation scheme leads to an unbiased estimator even with K = 1.

The standard nested simulation scheme can be improved by exploiting structural
information of the risk measures being considered. When the risk measure of inter-
est is CVaR, an intuition is that the outer-level scenarios that lead to large portfolio
losses play more important roles in estimation. To make use of this property, Lan
et al. [2010] proposed using ranking-and-selection techniques to screen out some less
important scenarios and thus allocate more of the computational effort to the remain-
ing scenarios. For scenarios that survive screening, they set the sample size of the
inner-level simulation proportional to the sample variance of the inner estimate, with
the goal of equalizing the standard errors of the inner estimates. By doing so, they
developed an efficient simulation scheme to construct a confidence interval for CVaR.
Liu and Staum [2010] used stochastic kriging, a metamodeling technique studied in
Ankenman et al. [2010], to speed up the nested simulation of CVaR by noticing that
inner-level simulation is not necessary for every outer-level scenario when a metamodel
has been constructed. When the risk measure of interest is the probability of a large
loss, Broadie et al. [2010] proposed a sequential simulation scheme to allocate compu-
tational effort nonuniformly across outer-level scenarios. Their main idea is to allocate
additional computational effort to scenarios with greater expected marginal changes
to the risk measure. They used a Chebyshev bound to approximate the marginal
change, which leads to implementable allocation rules. They further showed that the
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nonuniform inner sampling approach results in an estimator with a faster rate of
convergence than its uniform counterpart.

Different from the nested simulation schemes, Broadie et al. [2011] recently pro-
posed estimating the inner expectation E[Y |X] using the least-squares method (LSM)
and provided a theoretical analysis of the method. LSM is related to a vast literature
in the area of approximate dynamic programming, in particular, on the least-squares
approximations of value function in solving Bellman’s equation; see Bertsekas [2007]
for a good overview. In the context of optimal stopping, LSM was first investigated by
Longstaff and Schwartz [2001] and Tsitsiklis and Van Roy [2001]; see also the previous
work of Carrière [1996]. Note that LSM can also be interpreted from a metamodeling
perspective. The method in Broadie et al. [2011] requires only one inner sample for
each outer scenario and can be efficiently implemented. Its major drawback is that
the estimate does not converge to the true value of the risk measure due to the bias
introduced in the selection of basis functions. Under the same setting where only one
inner sample is required for each outer scenario, Hong et al. [2012b] studied a ker-
nel smoothing approach to estimating E[Y |X] and analyzed its asymptotic properties,
especially the impact of dimensionality (e.g., number of risk factors) on the rate of
convergence. While their asymptotic results suggest that the kernel smoothing ap-
proach is preferable over nested simulation only for low-dimensional problems, they
illustrated through numerical experiments that kernel smoothing may have superior
finite-sample performance for quite high dimensions, at least as high as 20. By noticing
that each individual instrument in a portfolio often depends on only a relatively small
number of risk factors, they further proposed a dimension reduction technique, through
which a high-dimensional portfolio risk measurement problem can be decomposed into
low-dimensional ones. With this dimension reduction technique, the kernel smoothing
approach may become a viable tool for portfolio risk measurement.

Efficient simulation of portfolio risk under the nested setting is an important and
challenging simulation problem. It is still an evolving area of research, in which further
investigation is desirable and would be of benefit to simulation practitioners, especially
given the widespread use of simulation in risk management practice.

2.5. Estimation Based on Stochastic Approximation

So far we have mainly discussed estimations of VaR/CVaR using a sample counterpart
approach; that is, one first generates a set of observations and then uses the whole
sample to construct estimates. This is also the main stream of study on estimations
of VaR/CVaR. Besides this, there also exist other approaches to estimating VaR and
CVaR. An interesting one is based on stochastic approximation, a classical procedure
used to solve stochastic optimization problems (we call it a stochastic approximation
(SA) approach). The main idea of the SA approach is to convert the estimation prob-
lem as a stochastic root finding problem and then apply corresponding procedures for
example, a Robbins-Monro algorithm, combined with variance reduction techniques,
for example, importance sampling to solve the root finding problem (see, e.g., Bardou
et al. [2009]). As noted in Bardou et al. [2009], there is no reason to expect that a pure
stochastic approximation procedure can do better than directly using the sample to
conduct estimation. Nevertheless, the merit of the stochastic approximation approach
is that it can incorporate certain variance reduction techniques to achieve efficient
estimation.

3. SENSITIVITY ANALYSIS FOR VAR AND CVAR

To analyze the sensitivities of VaR and CVaR, we let θ denote the parameter with
respect to which we calculate sensitivities. Without loss of generality, in this article,
we assume that θ is one-dimensional and θ ∈ 	, where 	 ⊂ � is an open set. If θ is
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multidimensional, we may treat each dimension as a one-dimensional parameter while
fixing other dimensions constants.

The random loss of interest may depend on the parameter, and thus we write it as
L(θ ) to incorporate the dependence. Correspondingly, we let F(·, θ ) and f (·, θ ) denote
its CDF and probability density function (PDF), respectively, and vα(θ ) and cα(θ ) denote
the α-VaR and α-CVaR, respectively. Furthermore, the subsequent sensitivity analysis
may involve the derivative of L′(θ ). In particular, we let L′(θ ) = dL(θ )/dθ be the path-
wise derivative, representing the sensitivity of a sample path of L(θ ) with respect to an
infinitesimal perturbation on θ (see, e.g., Ho and Cao [1983] for early work on pertur-
bation analysis and Glasserman [1991] and Fu and Hu [1997] for detailed treatments
and applications). We assume that L′(θ ) can be evaluated for all θ ∈ 	.

We give simple examples to help understand the notations and the framework. Con-
sider first the equity portfolio example discussed in Section 2.3.1. Suppose we use the
delta-gamma approximation of Glasserman [2004] to model the random loss:

L = a0 + aT �S + �ST A�S,

where a0, a, and A are specified as in Section 2.3.1. Suppose further that �S follows a
multivariate normal distribution with mean vector μ and covariance matrix �, where
μ and � are estimated using historical data. The investor may want to know how
estimation errors in μ and �, especially in μ, affect the portfolio risk of interest, as
he or she realizes that the historical data may not be sufficient and the mean μ is
especially difficult to estimate. Thus, he or she may want to know the sensitivities of
the risk (measured by VaR and CVaR) of the portfolio with respect to μ. Without loss of
generality, let us consider sensitivity to the mean μ1 of the first element of �S. In this
case, we can let θ = μ1 and write L as L(θ ), and VaR and CVaR of L(θ ) become functions
of θ . Sensitivities of VaR and CVaR with respect to θ can then be used to quantify the
impact of estimation errors on the portfolio risk.

Consider next the credit risk model of Bassamboo et al. [2008] introduced in
Section 2.3.2. In the model, the loss function L is given by Equation (10) and Xk is
defined by Equation (13), where Z is a common risk factor, εk represents idiosyncratic
risk factor of obligor k, and W is a nonnegative random variable that models the com-
mon shock to all obligors. Suppose that Z, Xk, and W are independent of each other.
Suppose further that Z follows a standard normal distribution, Xk follows a normal
distribution with mean μk and variance σ 2

k , and W follows an exponential distribution
with rate μ. As in the equity portfolio example, the modeler does not fully trust the
estimate of the individual obligor parameter μk as well as the common shock parame-
ter μ. Then the modeler can study the sensitivities of the credit portfolio risk to these
parameters. In this case, we can set θ = μk or θ = μ, treat L as a function of the
parameters, and estimate the derivatives of vα(θ ) and cα(θ ) accordingly.

In this section, we attempt to provide a unified view of sensitivities of VaR and CVaR
by summarizing the results presented in several papers of the authors. We first derive
the closed-form expressions of sensitivities of VaR and CVaR, then discuss the issues
of Monte Carlo estimation, including asymptotic properties. Methods to accelerate the
rates of convergence of VaR sensitivity estimators are also discussed.

3.1. Closed-Form Expressions

As a starting point toward deriving the closed-from expressions, we note that VaR
(quantile) and CDF are closely related. Specifically, for a fixed α ∈ (0, 1),

F(vα(θ ), θ ) = α. (14)

We explore this relation to link together VaR sensitivity and probability sensitivity.
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Since a CDF is simply an expectation and is easier to analyze, we start by analyzing
probability sensitivity. We let py(θ ) = F(y, θ ) = Pr{L(θ ) ≤ y} for some threshold y. We
treat py(θ ) as a function of θ with y being a parameter. To facilitate the analysis, we
first make the following assumptions.

ASSUMPTION 3. For any θ ∈ 	, L′(θ ) exists w.p.1 and there exists a random variable
K, which may depend on θ , such that E(K) < ∞ and |L(θ + �θ ) − L(θ )| ≤ K|�θ | for any
�θ that is close enough to 0.

ASSUMPTION 4. For any θ ∈ 	, F(t, θ ) is continuously differentiable at (y, θ ).

Assumption 3 is a typical assumption used in pathwise derivative estimation (see,
e.g., L’Ecuyer [1990], Glasserman [1991], and Broadie and Glasserman [1996]). It
is essentially a form of the Lebesgue dominated convergence theorem and guaran-
tees the validity of interchanging differentiation and expectation when evaluating
dE(r(L(θ )))/dθ for any Lipschitz-continuous function r(·). Assumption 4 requires that
F(t, θ ) is continuously differentiable in the subregion of the two-dimensional region
� × 	 (i.e., fix the first dimension at y). Typically this is satisfied for practical prob-
lems. More discussions on this assumption can be found in Hong and Liu [2010].

Given the assumptions, Hong [2009] showed the following result.

THEOREM 3.1. Suppose that Assumptions 3 and 4 are satisfied. Then,

p′
y(θ ) = −∂yE

[
L′(θ ) · 1{L(θ)≤y}

]
,

where ∂y denotes the operator of taking partial derivative with respect to y. Furthermore,
if E[L′(θ )|L(θ ) = t] is continuous at t = y, then

p′
y(θ ) = − f (y, θ )E[L′(θ )|L(θ ) = y].

Theorem 3.1 shows that probability sensitivity can be written as the product of a
density and a conditional expectation. This is an important step toward developing
estimation methods.

Starting from the result of Theorem 3.1, we may easily arrive at a closed-form
expression of VaR sensitivity. The key is to use the identity in Equation (14). Specifically,
by differentiating with respect to θ on both sides of Equation (14), we have

∂t F(vα(θ ), θ )v′
α(θ ) + ∂θ F(a, θ )

∣∣
a=vα (θ) = 0. (15)

Noting that ∂t F(vα(θ ), θ ) = f (vα(θ ), θ ) and ∂θ F(a, θ ) = p′
a(θ ), we immediately have

v′
α(θ ) = − 1

f (vα(θ ), θ )
p′

a(θ )|a=vα(θ) = E[L′(θ )|L(θ ) = vα(θ )]. (16)

In other words, VaR sensitivity can be written as a conditional expectation, which is
summarized in the following theorem.

THEOREM 3.2. Suppose that Assumptions 3 and 4 are satisfied at y = vα(θ ), and
E[L′(θ )|L(θ ) = t] is continuous at t = vα(θ ). Then,

v′
α(θ ) = E[L′(θ )|L(θ ) = vα(θ )].

Theorem 3.2 shows that under appropriate regularity conditions, VaR sensitivity is
an expectation taken in the set defined by {L(θ ) = vα(θ )}. Because the set is often a
probability-zero set in many practical problems, the representation in Theorem 3.2
may not be directly applied for estimating VaR sensitivity. However, it does tell us a
fact that only samples that lie in a neighborhood of {L(θ ) = vα(θ )} play crucial roles in
estimation.
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To derive a closed-from expression for CVaR sensitivity from VaR sensitivity, we can
use the relation

cα(θ ) = vα(θ ) + 1
1 − α

E[L(θ ) − vα(θ )]+.

The basic idea is to differentiate (with respect to θ ) the previous equation on both sides.
Since h(x) = x+ is a Lipschitz continuous function, the interchange of expectation and
differentiation is valid under some mild regularity conditions. We present the closed-
form expression of CVaR sensitivity in the following theorem. The detailed proof of the
result can be found in Hong and Liu [2009].

THEOREM 3.3. Suppose that Assumptions 3 and 4 are satisfied at y = vα(θ ), and vα(θ )
is differentiable for any θ ∈ 	. Then, for any θ ∈ 	,

c′
α(θ ) = E[ L′(θ )

∣∣ L(θ ) ≥ vα(θ )].

3.2. Monte Carlo Estimation

To simplify the notation, we let D(θ ) denote L′(θ ) and suppress the dependence of L
and D on θ when there is no confusion. Let (L1, D1), . . . , (Ln, Dn) be n i.i.d. observations
of (L, D). Moreover, we let L(i) denote the ith order statistic of {L1, . . . , Ln}, and D(i)
the corresponding pathwise derivative. We are interested in estimating v′

α(θ ) and c′
α(θ )

using these observations.
Hong [2009] proposed a batch-mean estimator for v′

α(θ ). The key idea is that D(�nα�) can
be viewed as an IPA (infinitesimal perturbation analysis) estimator of v′

α(θ ). However,
it has been shown that this IPA estimator is not consistent [Hong 2009]. To circumvent
the problem, a batch-mean estimator can be devised, which is consistent. Specifically,
suppose that there exist positive integers m and k such that m× k = n. Then, we divide
the n i.i.d. observations into k batches and each batch has m observations. For each
batch, we calculate the IPA estimator, denoted by Db

m. Then, we have k observations of
Db

m, denoted as Db
m,1, . . . , Db

m,k. A batch-mean estimator of v′
α(θ ) is then proposed:

D̄mk = 1
k

k∑
l=1

Db
m,l. (17)

Another estimator of VaR sensitivity stems from kernel regression estimation, given
the observation that v′

α(θ ) can be viewed as a regression function in nonparamet-
ric statistics [Bosq 1998]. Suppose that K is a bounded symmetric density such that
yK(y) → 0 as |y| → ∞ and

∫ ∞
−∞ y2K(y) dy < ∞. Then K is called a kernel on �. For

instance, the standard normal density is a kernel. Moreover, we define the so-called
bandwidth parameter δn, which satisfies δn → 0 and nδn → ∞ as n → ∞. Then, a
kernel estimator of v′

α(θ ) can be proposed as follows:

V̄n =
∑n

i=1 Di K
( v̂n

α−Li

δn

)
∑n

i=1 K
( v̂n

α−Li

δn

) . (18)

Intuitively, the kernel estimator in Equation (18) can be viewed as a weighted average
of Lis. The weight depends on the distance between Li and vα. If the distance is small,
typically a larger weight is assigned. In other words, the observations closer to VaR
play a more important role in the estimation.

Compared to VaR sensitivity, estimation of CVaR sensitivity is relatively simpler,
in the sense that a typical sample-mean-type estimator can be proposed. Based on
the closed-form expression for CVaR sensitivity, Hong and Liu [2009] proposed the
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following estimator of c′
α(θ ):

C̄n = 1
n(1 − α)

n∑
i=1

Di1{Li≥v̂n
α}. (19)

Compared to the kernel estimator proposed in Scaillet [2004] for linear loss functions,
this estimator is more intuitive and does not require the selection of kernel function
and bandwidth function.

We now outline the asymptotic results, mainly consistency and asymptotic normality,
of the sensitivity estimators discussed earlier in this subsection. We do not go deep into
the technical conditions that are imposed in the asymptotic analysis. Instead, we aim
to provide a sketch of the major results.

For the batch-mean estimator in Equation (17), if m → ∞ and k → ∞ as n → ∞,
Hong [2009] proved its consistency under some regularity conditions. Furthermore, if
limn→∞

√
k/m = 0, it can be shown that

√
k
(
D̄mk − v′

α(θ )
) ⇒ σmN(0, 1)

for some σm > 0. Therefore, the rate of convergence of the batch-mean estimator is k−1/2,
which is always strictly slower than n−1/3 due to the constraint that limn→∞

√
k/m = 0

and n = m× k.
For the kernel estimator in Equation (18), Liu and Hong [2009] showed that it is

consistent and follows asymptotic normality. Specifically, if δn → 0 and nδ5
n → c as

n → ∞ for some constant c > 0, and supn(nδ3
n)−1 < ∞, then under some regularity

conditions, √
nδn

(
V̄n − v′

α(θ )
) ⇒ μ + σ N(0, 1)

for some constants μ and σ . It can be verified that the optimal bandwidth δn should be
of order n−1/5 if the criterion is to minimize the asymptotic mean square error. Under
this optimal choice of bandwidth, the rate of convergence of the kernel estimator is
n−2/5.

For both the batch-mean and kernel estimators, we can see that the rates of conver-
gence are slower than n−1/2, which is the typical rate of convergence of sample-mean
estimators. From this perspective, there is still room for improvement. In Section 3.3,
we will discuss in more detail how to accelerate the rate of convergence.

The form of the CVaR sensitivity estimator in Equation (19) is very much like a
sample-mean estimator, except that it involves a VaR estimator v̂n

α. Although v̂n
α in-

duces some technical complications in the analysis of C̄n, it does not affect the rate of
convergence of the estimator. Hong and Liu [2009] showed that under some regularity
conditions, √

n
(
C̄n − c′

α(θ )
) ⇒ σ1N(0, 1),

where

σ1 = 1
(1 − α)2 Var

[
(L − v′

α(θ ))1{L≥vα(θ)}
]
.

In other words, C̄n does achieve the typical n−1/2 rate of convergence.
Recently, Heidergott and Volk-Makarewicz [2012] applied the concept of measure-

valued differentiation (MVD) to the estimation of VaR sensitivities. Note that, by
Equation (15), we have

v′
α(θ ) = −∂θ F(vα(θ ), θ )

∂t F(vα(θ ), θ )
= −∂θ F(vα(θ ), θ )

f (vα(θ ), θ )
. (20)
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By the theory of spacings of order statistics of i.i.d. data,

lim
m→∞ m

(
L�mα�:m − L�mα�−1:m

) ⇒ E
f (vα(θ ), θ )

,

where E denotes an exponential random variable with mean one. Then, combined with
Equation (20) and the VaR estimator L�mα�:m, Heidergott and Volk-Makarewicz [2012]
obtained that

v′
α(θ ) = lim

m→∞ E
[−m

(
L�mα�:m − L�mα�−1:m

)
∂θ F

(
L�mα�:m, θ

)]
.

Furthermore, by applying MVD, we can often write

∂θ F(t, θ ) = c(θ )[F+(t, θ ) − F−(t, θ )]

for some constant c(θ ) and F±(t, θ ) distribution functions. Then, one may use a batching
idea to estimate v′

α(θ ). Suppose that there are n observations of L. One may divide them
into k batches and each batch consists of m independent observations of L. Then, for
each batch, an estimator in the form of

−mc(θ )
(
L�mα�:m − L�mα�−1:m

)[
F+(

L�mα�:m, θ
) − F−(

L�mα�:m, θ
)]

can be computed. Then, the sample mean of all k estimators is the MVD estimator of
v′

α(θ ). Heidergott and Volk-Makarewicz [2012] further studied cases where an explicit
form of F(t, θ ) is not available and also proved the consistency and asymptotic normality
of the MVD estimator. It is worthwhile to note that the MVD estimator has the same
optimal rate of convergence as the batching estimator of Hong [2009].

3.3. Accelerating the Rate of Convergence of VaR Sensitivity Estimators

As shown in the previous subsection, a kernel estimator of VaR sensitivity may not
achieve the n−1/2 rate of convergence, which is the typical rate of convergence for sta-
tistical estimation. To improve estimation efficiency, it is desirable to develop methods
that may accelerate the rate of convergence. This is still an evolving area of research
that is of great interest to both researchers and practitioners. In general, successful
adoption of such methods depends significantly on the problem being tackled, and it
often comes with an exploration of the specific features of the problem itself. In what
follows, we present a simulation framework of accelerating the rate of convergence
using two classical simulation techniques, IS and conditional Monte Carlo, which has
proven to be effective in some practical problems. Interested readers may refer to Hong
and Liu [2010] and Fu et al. [2009] for more details of using IS and conditional Monte
Carlo in this context.

3.3.1. Importance Sampling. Before the presentation, we want to first clarify a slight
difference between the IS we employ here and the classical IS used in the context
of variance reduction. Our primary goal is to accelerate the asymptotic rate of con-
vergence, while classical IS has a different focus and may not accelerate the rate of
convergence. Related work on the classical use of IS for estimating VaR sensitivity
includes Glasserman [2005] and Tasche [2009], which apply the IS method developed
in Glasserman and Li [2005] to reduce the variance in estimating risk contributions.
However, their methods do not accelerate the asymptotic rate of convergence.

Recall that VaR sensitivity can be written as E[D|L = vα], the estimation of which
involves two key issues. The first is that vα is unknown and thus has to be estimated.
The second is how to estimate the conditional expectation given an estimate of vα.
It turns out that the first issue can be easily resolved by replacing vα with a known
estimator in the literature, for example, the sample quantile v̂n

α. The second issue is of
major concern, and thus we focus exclusively on this issue during the discussions of

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 4, Article 22, Publication date: November 2014.



Monte Carlo Methods for Value-at-Risk and Conditional Value-at-Risk: A Review 22:21

accelerating the rate of convergence. In particular, the problem of interest now is how
to estimate r(y) ≡ E[D|L = y] for a given y.

As a starting point, we first consider the kernel estimator of r(y). If we choose the
kernel function to be a uniform density over [−1, 1], then it can be seen that a kernel
estimator of r(y) is

V̄n =
1

2nδn

∑n
i=1 Di1{y−δn≤Li≤y+δn}

1
2nδn

∑n
i=1 1{y−δn≤Li≤y+δn}

. (21)

Note that V̄n is a ratio of two estimators, where both numerator and denomina-
tor are kernel estimators. We may first analyze the numerator, while analysis of the
denominator follows in a similar manner. Specifically, let

M̄n = 1
2nδn

n∑
i=1

Di1{y−δn≤Li≤y+δn}

denote the numerator. Because the denominator in Equation (21) is a kernel estimator
of f (y), M̄n is actually an estimator of r(y) f (y).

An implication of the kernel estimator in Equation (21) is that only the observations
in the region {y − δn ≤ L ≤ y + δn} play roles in the estimation. Thus, we call it an
important region. Intuitively, the total number of observations that lie in the important
region is of order nδn. This explains why the rate of convergence of both the numerator
and denominator of Equation (21) is of order

√
nδn. Based on an analysis of ratio

estimators (see, e.g., Law and Kelton [2000], pp. 532–533), it can be shown that the
rate of convergence of V̄n is also of order

√
nδn (see, e.g., Liu and Hong [2009] for a

rigorous proof).
To accelerate the rate of convergence of V̄n, a reasonable direction is to generate

more observations that fall into the important region. To do so, IS is a natural choice.
Among many possible alternatives, one choice of IS scheme is to force all observations
to fall into the important region under the IS distribution. We will show how this can be
achieved under quite a general simulation framework. It should be emphasized that in
this setting, the original distribution is not absolutely continuous with respect to the IS
distribution. Instead, absolute continuity is satisfied only within the important region
{y−δn ≤ L ≤ y+δn}, which is sufficient for IS to work in our setting; Glynn and Iglehart
[1989] also noticed such a sufficient condition in a discussion on general IS theory.

Because the density of L is typically unknown, a construction of IS scheme directly
from the density function of L may not be feasible. However, in simulation models, L can
often be expressed as a function of a sequence of random variables with known densi-
ties. Suppose that L = L(X1, X2, . . . , Xk) and D = D(X1, X2, . . . , Xk), where X1, X2, . . . , Xk
are independent random variables with known densities f1, f2, . . . , fk, respectively.
Then the joint density of (X1, X2, . . . , Xk) is f (x1, x2, . . . , xk) = f1(x1) f2(x2) · · · fk(xk).

Suppose that X1, X2, . . . , Xk are generated sequentially in the simulation to obtain
observations of (L, D). Let

A = {
(x1, x2, . . . , xk) ∈ �k : L(x1, x2, . . . , xk) ∈ [y − δn, y + δn] and f1(x1) · · · fk(xk) > 0

}
.

Then A corresponds to the important region. Let A1 be the projection of the set A to
the first dimension, A2(X1) be the projection of the set A to the second dimension given
X1, . . . , and Ak(X1, X2, . . . , Xk−1) be the projection of the set Ato the kth dimension given
X1, X2, . . . , Xk−1. Then we may define the IS distribution as

f̃ (x1, x2, . . . , xk) = f1(x1)
Pr{X1 ∈ A1} · f2(x2)

Pr{X2 ∈ A2(x1)} · · · fk(xk)
Pr{Xk ∈ Ak(x1, . . . , xk−1)}

for all (x1, x2, . . . , xk) ∈ A, and f̃ (x1, x2, . . . , xk) = 0 otherwise.

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 4, Article 22, Publication date: November 2014.



22:22 L. J. Hong et al.

In an ideal case, sampling from this IS distribution can be accomplished by first
simulating X1 given that X1 ∈ A1, then simulating X2 given that X2 ∈ A2(X1), and so
on. (Whether such a sampling procedure is practically feasible is problem dependent;
see Hong and Liu [2010] for several examples on successful design of such sampling
procedures.) Then we can compute L and D and ensure that L ∈ [y − δn, y + δn] w.p.1.
Since the IS distribution f̃ is absolutely continuous with respect to f in the set A, the
likelihood ratio

Pn = f (X1, X2, . . . , Xk)
f̃ (X1, X2, . . . , Xk)

= Pr{X1 ∈ A1} · Pr{X2 ∈ A2(X1)|X1} · · · Pr{Xk ∈ Ak(X1, . . . , Xk−1)|X1, . . . , Xk−1}.
Since (X1, X2, . . . , Xk) is a random vector, Pn is also a random variable and Pn ≤ 1. Then
IS estimators of r(y) f (y) and r(y) are

M̄IS
n = 1

2nδn

n∑
i=1

Pn,i · Di1{y−δn≤L≤y+δn} = 1
2nδn

n∑
i=1

Pn,i · Di,

and

V̄ IS
n =

1
2nδn

∑n
i=1 Pn,i · Di

1
2nδn

∑n
i=1 Pn,i

,

respectively, where the observations (Li, Di, Pn,i) are generated under the IS
distribution.

Let Ẽ and Ṽar denote taking expectation and variance under the IS distribution.
Then it can be easily shown that Ẽ(M̄IS

n ) = E(M̄n) and

Ṽar
(
M̄IS

n

) = 1
4nδ2

n

[
E

(
D2 · Pn · 1{y−δn≤L≤y+δn}

) − E2(D · 1{y−δn≤L≤y+δn}
)]

≤ 1
4nδ2

n

[
E

(
D2 · 1{y−δn≤L≤y+δn}

) − E2(D · 1{y−δn≤L≤y+δn}
)] = Var(M̄n).

Therefore, M̄IS
n has a smaller variance than M̄n when both estimators use the same δn.

Note that Ẽ(Pn) = E(1{y−δn≤L≤y+δn}) = 2 f (y)δn+o(δn). In many situations, we can prove
that Pn = Knδn, where Kn is some random variable for which E(Kn · D2 · 1{y−δn≤L≤y+δn}) is
often of O(δn). Then,

Ṽar
(
M̄IS

n

) = 1
4δ2

n

[
Ẽ

(
P2

n · D2) − Ẽ2(Pn · D
)]

= 1
4nδ2

n

[
δnẼ

(
PnKn · D2 · 1{y−δn≤L≤y+δn}

) − Ẽ2(Pn · D · 1{y−δn≤L≤y+δn}
)]

= 1
4nδ2

n

[
δnE

(
Kn · D2 · 1{y−δn≤L≤y+δn}

) − E2(D · 1{y−δn≤L≤y+δn}
)]

,

which is of O(n−1). Then the rate of convergence of M̄IS
n is n−1/2, and so is V̄ IS

n [Law and
Kelton 2000, pp. 532–533], if nδ4

n → a with a ≥ 0 as n → ∞.
The previous framework shows that IS can be employed to improve the performance

of the VaR sensitivity estimators and may achieve the n−1/2 rate of convergence, which
is the canonical rate that can be achieved for a typical Monte Carlo estimator.

We close this section by emphasizing that successful adoption of this framework is
problem dependent. Other than the examples illustrated in Hong and Liu [2010] and
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Liu [2012] considered the problem of simulating capital allocations for credit portfolio
where the portfolio risk is measured by VaR. The use of the IS framework in other
potential applications is interesting and deserves further investigation.

3.3.2. Conditional Monte Carlo. Conditional Monte Carlo (CMC) is an important simu-
lation technique that can be used for both variance reduction and sensitivity analysis
(see, e.g., Asmussen and Glynn [2007] and Fu and Hu [1997]). It turns out that CMC
may also be employed in the context of estimating VaR sensitivities and may lead to
estimators that achieve the n−1/2 rate of convergence.

Recall that

F(vα(θ ), θ ) = α,

and thus differentiating with respect to θ on both sides we have

v′
α(θ ) = − ∂θ F(t, θ )

∂t F(t, θ )

∣∣∣∣
t=vα (θ)

.

Note that the CDF F(t, θ ) is essentially the expectation of an indicator, that is,
F(t, θ ) = Pr{L(θ ) ≤ t} = E[1{L(θ)≤t}]. Because the indicator is a discontinuous function,
the interchange of differentiation and expectation is not valid. However, this problem
can be circumvented using conditional Monte Carlo, which cancels the discontinuity
and thus makes the interchange valid. Specifically, we have the following theorem,
whose proof can be found in Fu et al. [2009].

THEOREM 3.4. Suppose that there exist random variables X1(θ ) and X2(θ ) such that

F(t, θ ) = E[Pr{L(θ ) ≤ t|Xi(θ )}] = E[Gi(t, Xi(θ ), θ )], i = 1, 2,

where G1(t, X1(θ ), θ ) is differentiable w.p.1 with respect to θ and G2(t, X2(θ ), θ ) is dif-
ferentiable w.p.1 with respect to t, and there exist random variables K1 and K2 with
E(K1) < ∞ and E(K2) < ∞ such that

|G1(t, X1(θ + �θ ), θ + �θ ) − G1(t, X1(θ ), θ )| ≤ K1|�θ |, and
|G2(t + �t, X2(θ ), θ ) − G2(t, X2(θ ), θ )| ≤ K2|�t|,

for all small enough �θ and �t. If F(t, θ ) and vα(θ ) are both differentiable, then

v′
α(θ ) = − E[∂θ G1(t, X1(θ ), θ )]

E[∂tG2(t, X(θ ), θ )]

∣∣∣∣
t=vα (θ)

.

Theorem 3.4 shows that under appropriate conditions, VaR sensitivity can be written
as a ratio of two expectations. In some practical problems, by carefully selecting appro-
priate X1(θ ) and X2(θ ), we may be able to calculate ∂θ G1(t, X1(θ ), θ ) and ∂tG2(t, X(θ ), θ )
analytically. In such cases, we may estimate VaR sensitivity using a ratio of two sample
means.

Specifically, let Y (t) and Z(t) denote ∂θ G1(t, X1(θ ), θ ) and ∂tG2(t, X(θ ), θ ), respec-
tively, for any t ∈ �. Suppose that, for any t ∈ �, we have n i.i.d. observa-
tions (L1, Y1(t), Z1(t)), . . . , (Ln, Yn(t), Zn(t)). Let Ȳn(t) = (1/n)

∑n
i=1 Yi(t) and Z̄n(t) =

(1/n)
∑n

i=1 Zi(t). Then we can estimate v′
α(θ ) by

V̄ CMC
n = − Ȳn(v̂n

α)
Z̄n(v̂n

α)
.

It has been shown in Fu et al. [2009] that under some regularity conditions, the rate
of convergence of V̄ CMC

n is n−1/2, which is the canonical rate that a typical Monte Carlo
estimator can achieve.
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Typically, the CMC estimators of VaR sensitivities perform very well when ap-
plicable. Fu et al. [2009] studied sensitivity analysis for the portfolio credit risk
model of Bassamboo et al. [2008]. Specifically, they considered the sensitivity to
some parameter of an individual obligor and the sensitivity to some parameter
of the common shock, and discussed how to calculate the corresponding functions
∂θ G1(t, X1(θ ), θ ) and ∂tG2(t, X(θ ), θ ). Furthermore, some numerical results have been
presented in Fu et al. [2009] to illustrate the advantages of CMC. However, as is
always the case in applying conditional Monte Carlo, the choice of appropriate con-
ditioning variables is problem dependent. Further investigation on applying CMC
to various practical problems is desirable and would be of benefit to simulation
practitioners.

4. OPTIMIZATION OF VAR AND CVAR

Evaluating values and sensitivities of risk measures is the foundation of risk assess-
ment and risk control. They are often considered as passive behaviors in the practice of
risk analysis. Perhaps a more active and important practice for decision makers is to
efficiently manage risks in financial activities. Quantification of risk via risk measures
allows decision makers to build various decision models. As important risk measures,
VaR and CVaR naturally enter these decision models, resulting in optimization prob-
lems that either optimize (say, minimize) certain VaR/CVaR functions, which we call the
VaR/CVaR minimization problem, or optimize certain objectives subject to VaR/CVaR
constraints, which we call the VaR/CVaR constrained program. In the optimization
models, the random loss L that we are interested in becomes a random variable that
depends on our decisions. More specifically, we assume that L = L(x, ξ ); that is, L is a
function of the decision vector x and the random vector ξ . Furthermore, to explicitly
show the dependence of risk measures to the loss function, we denote by vα(L(x, ξ )) and
cα(L(x, ξ )) the VaR and CVaR of L(x, ξ ).

Let us see the loss functions in simple examples of equity portfolio and credit portfolio.
Consider a one-period equity portfolio selection problem. Suppose the portfolio consists
of d assets and the investor would like to invest his or her wealth W among these
assets. The value of these assets will evolve during the period. Suppose the initial
value is ξ0 = (ξ1

0 , ξ2
0 , . . . , ξd

0 )T , which is given, and the value vector at maturity is
ξ = (ξ1, ξ2, . . . , ξd)T , which is a random vector. Let xj denote the wealth invested on
asset j. Then x = (x1, x2, . . . , xd)T is the decision vector and the loss of the portfolio
at maturity takes the expression L(x, ξ ) = (ξ0 − ξ )T x. Consider next a credit portfolio
selection problem, in which the investor wants to lend his or her wealth W to d obligors.
Similarly, let x = (x1, x2, . . . , xd)T , where xj is the wealth lending to obligor j. As in
Section 2.3.2, suppose Yj is the default indicator of obligor j. Then Yj depends on
some random vector ξ . To indicate the dependence, we write Yj as Yj(ξ ). Then the
loss function for the credit portfolio is L(x, ξ ) = ∑d

j=1 Yj(ξ )xj . In both examples, using
VaR and CVaR as risk measures, the investor can build different optimization models
according to his or her purpose. By solving the corresponding model, the investor can
obtain the desired investment decision.

In this section, we briefly review VaR and CVaR optimization models and the tech-
niques and approaches developed to handle them.

4.1. VaR Optimization

The VaR minimization problem takes the following representation

minimize
x∈X

vα(L(x, ξ )), (22)
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where X is the feasible region, which may be defined by a set of deterministic con-
straints. Throughout this article, we assume that X is a convex and compact subset of
the d-dimensional space �d. The VaR constrained program can be formulated as

minimize
x∈X

h(x) (23)

subject to vα(L(x, ξ )) ≤ 0,

where h(x) is the objective that we want to optimize. Note that in Problem (23), we
assume the right-hand side of the VaR constraint is 0. If it is another constant c, we
can redefine L = L − c and convert the problem into Problem (23) using the property
that vα(L + c) = vα(L) + c for any constant c.

Clearly, the difficulty of solving these models depends critically on the expression of h
and/or L. Furthermore, as has been mentioned in Section 1, VaR lacks the subadditivity
and is not a coherent risk measure. This implies the VaR optimization problems may
not be a convex optimization problem even when h(x) is convex in x and L(x, ξ ) is
convex in x for every ξ . Therefore, models involving VaR are in general difficult to
solve. Due to the difficulty, in the following discussion we mainly focus on the simple
linear equity portfolio model introduced earlier. We also mention if the methodologies
can be applied to more complicated cases such as the credit portfolio model. Also, due
to the nonconvexity, we typically try to find a good feasible solution or a locally optimal
solution for the problems instead of guaranteeing to find a globally optimal solution.
On the other hand, there exist some cases where VaR optimization problems turn out
to be convex, which we may or may not know a priori.

A basic fact is that vα(L(x, ξ )) itself is a nonlinear function of the decision vector x.
Therefore, we can view VaR optimization problems as general nonlinear optimization
problems. Suppose that vα(L(x, ξ )) is smooth in x. We can implement gradient-based
nonlinear optimization algorithms to solve them. The key to this approach is to estimate
the function values as well as the gradients of VaR at different feasible points. We have
reviewed a number of techniques in Sections 2 and 3 that can do this. Using these
estimates, we can implement the gradient-based approach with the estimated function
values and gradient values to solve the problems. Clearly, to apply the gradient-based
approach, one first step is to check the smoothness (in x) of the vα(L(x, ξ )) function. In
the equity portfolio problem, if ξ is some continuous random vector, the smoothness can
typically be guaranteed. However, in the credit portfolio problem, the indicator Yj(ξ )
has a discrete distribution. Thus, the smoothness may be difficult to ensure.

Another, or perhaps a more conventional, way to handle VaR optimization problems
is to treat them as chance-constrained programs (CCPs). Specifically, Problem (22) can
be reformulated as the following CCP:

minimize
x∈X,t∈�

t (24)

subject to Pr{L(x, ξ ) − t ≤ 0} ≥ α,

whereas Problem (23) is equivalent to the following CCP:

minimize
x∈X

h(x) (25)

subject to Pr{L(x, ξ ) ≤ 0} ≥ α.

CCPs are a large class of stochastic programs. They were first introduced and studied
by Charnes et al. [1958], Miller and Wagner [1965], and Prékopa [1970]. Since then,
there have been various approaches developed to handling the CCPs. In this section,
we mainly focus on those approaches that rely on Monte Carlo simulations.
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4.1.1. Scenario Approach. An important method to handle the CCPs is called the sce-
nario approach. This approach was studied first by Calafiore and Campi [2005, 2006]
and De Farias and Van Roy [2004], independently, and developed further by Nemirovski
and Shapiro [2005]. The basic idea of the scenario approach is to require the constraint
within the probability function to be satisfied for all the scenarios generated from the
random vector ξ . When applied to Equation (25), for n independent realizations of ξ
denoted by ξ1, ξ2, . . . , ξn, this gives the scenario counterpart of the CCP:

minimize
x∈X

h(x) (26)

subject to L(x, ξ j) ≤ 0, j = 1, 2, . . . , n.

If h and L are convex, then Equation (26) is a convex problem and there are efficient
techniques to solve it. The fundamental question of the scenario approach is how to
determine the sample size n so that the optimal solution of the scenario counterpart
is in the feasible region of the original CCP with a specified probability. Calafiore and
Campi [2006] showed that, if h(x) is convex in x and L(x, ξ ) is convex in x for every ξ ,
and if

n ≥
⌈

inf
v∈(0,1)

1
1 − v

(
1

1 − α
log

1
δ

+ d + d
1 − α

log
1

v(1 − α)
+ 1

1 − α
log

(d
e

)d

d!

)⌉
, (27)

then under some additional regularity conditions, the optimal solution of Problem (26)
is feasible to Problem (25) with probability at least 1 − δ, where δ ∈ (0, 1) is typically a
small positive constant. Calafiore and Campi [2006] further pointed out that a special
case of the bound Equation (27) is

n ≥
⌈

2
1 − α

log
1
δ

+ 2d + 2d
1 − α

log
2

1 − α

⌉
.

The elegant result of Calafiore and Campi [2006] shows that the lower bound on the
sample size n is independent of the functions h(x) and L(x, ξ ). The merit of the scenario
approach is that it is very general and easy to apply. Furthermore, according to our
experience, solving the scenario counterpart is often computationally easy even when
the sample size n is large. However, there are also some potential concerns about the
scenario approach. It is not difficult to see that the scenario approach does not really
solve the original CCPs. A consequence is that the solutions are often very conservative.
Furthermore, the solutions obtained may vary significantly across simulation replica-
tions and do not converge as the sample size n goes to infinity. Nemirovski and Shapiro
[2006] showed that the scenario approach is often more conservative than a convex
conservative approximation called Bernstein approximation that they proposed. The
numerical experiments in Hong et al. [2011] also revealed some numerical issues of
the scenario approach.

To further understand the scenario approach for VaR optimization, we now apply
the approach to the VaR minimization Problem (24), which yields the following
optimization problem:

minimize
x∈X

t (28)

subject to L(x, ξ j) − t ≤ 0, j = 1, . . . , n.

The optimal value of Problem (28) is equal to that of the following problem:

minimize
x∈X

maximize
j=1,...,n

L(x, ξ j). (29)
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Problem (29) explicitly shows that using the scenario approach to solve the VaR min-
imization problem is equivalent to minimizing the worst-case loss function when the
random vector takes values in the set of scenarios that have been observed. Conse-
quently, when the sample size n becomes larger and larger, the optimal value of Prob-
lem (29) that is used to approximate the optimal VaR value typically becomes larger
and larger. In the extreme case where ξ takes all values in its support, Problem (29) be-
comes the framework of robust optimization. Understanding this relation, we think the
scenario approach may not be an ideal technique to solving VaR minimization problems.

4.1.2. Sample Average Approximation. Note that CCPs are stochastic programs of a spe-
cial category, in that the probability function can be expressed as the expectation of an
indicator function, that is,

Pr{L(x, ξ ) > 0} = E
[
1{L(x,ξ )>0}

]
.

There are a number of Monte Carlo methods that can be used to solve stochastic
programs. Sample average approximation (SAA) is a very popular one. However, the
indicator function inside of the expectation is discontinuous. This may create both
theoretical and computational issues for the use of SAA. Using SAA to handle CCPs
has been studied in the literature (see, e.g., Luedtke and Ahmed [2008] and Pagnoncelli
et al. [2009]). In contrast to the scenario approach, which requires the constraints to
be satisfied for all the realizations of the random vector, the SAA approach uses the
sample mean estimator to replace the expectation and suggests solving the following
problem:

minimize
x∈X

h(x) (30)

subject to
1
n

n∑
j=1

1{L(x,ξ j )>0} ≤ 1 − α.

Luedtke and Ahmed [2008] considered a more general form of Problem (30) by re-
placing 1 − α with an arbitrary γ (e.g., γ could be 0). They studied how to use the SAA
approach to obtain optimality bounds and feasible solutions for the original CCP in
some probability sense. They also demonstrated that when γ = 0, the SAA is actually
the scenario counterpart in the scenario approach. On the other hand, it is worthwhile
to note that in the scenario approach (i.e., in Equation (26)), it is required that the
constraint holds for all j = 1, 2, . . . , n. If one requires it only for the �nα� order statistic,
the resulting problem will coincide with Equation (30). Pagnoncelli et al. [2009] stud-
ied both theoretical and computational aspects of the SAA for CCPs. They showed that
under some regularity conditions, the optimal value and the set of optimal solutions
of Problem (30) converge to those of Problem (25), respectively, as n goes to infinity.
Note that Problem (30) becomes a deterministic combinatorial optimization problem.
To practically solve Problem (30), Luedtke and Ahmed [2008] and Pagnoncelli et al.
[2009] suggested reformulating it into some mixed integer program (MIP) and then
applying certain MIP techniques. Specifically, by introducing binary decision variables
zj, j = 1, . . . , n, Problem (30) can be reformulated as the following MIP:

minimize h(x)
subject to L(x, ξ j) ≤ Mjzj, j = 1, . . . , n,

1
n

n∑
j=1

zj ≤ 1 − α

x ∈ X, zj ∈ {0, 1} , j = 1, . . . , n,
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where Mj is a large positive number satisfying Mj ≥ supx∈X L(x, ξ j). Theoretically, to
obtain a good approximation, the sample size n in the SAA should be set as large as
possible. However, the resulting MIP may become excessively computationally difficult
when n becomes large. In current implementations of the SAA, the sample size can
only be moderate, for example, a few hundreds. How to efficiently solve the MIPs with
a large sample size, say, n = 10,000, especially by incorporating special structures of
the problems, is an interesting research topic.

4.1.3. DC Approach. Recently, Hong et al. [2011] took a different approach and proposed
an ε-approximation approach to solving CCPs. Recall that [a]+ = max{0, a}. Hong et al.
[2011] showed that

inf
t>0

1
t
{E[[L(x, ξ ) + t]+] − E[[L(x, ξ )]+]} = Pr{L(x, ξ ) ≥ 0}

and suggested solving

minimize
x∈X

h(x) (31)

subject to inf
t>0

1
t
{E[[L(x, ξ ) + t]+] − E[[L(x, ξ )]+]} ≤ 1 − α

instead of the CCP. To handle Problem (31), Hong et al. [2011] suggested fixing t = ε
where ε > 0 is a small constant, and then solving the following ε-approximation:

minimize
x∈X

h(x) (32)

subject to E[[L(x, ξ ) + ε]+] − (1 − α)ε − E[[L(x, ξ )]+] ≤ 0.

Note that by assuming convexity of h and L, the constraint function in Problem (32)
is a DC function (i.e., a difference of two convex functions). Problem (32) is known as
a DC program. To solve it, Hong et al. [2011] proposed a DC algorithm. They showed
that the algorithm converges to the stationary points of the ε-approximation. They also
showed that the optimal value, the set of optimal solutions, and the set of stationary
points of the ε-approximation converge to those of the true CCP, respectively, as ε tends
to 0 under a certain set of conditions. The DC approach can be viewed as a nonlinear
optimization technique and enjoys nice properties. To practically solve the optimization
problem in each iteration of the DC algorithm, Hong et al. [2011] used a gradient-based
Monte Carlo method.

Although the ε-approximation approach has the desired convergence property, it
also has some limitations. Especially, the ε-approximation approach was developed for
smooth joint chance constrained programs (JCCPs). Note that in a JCCP, the chance
constraint takes the following form:

Pr{Li(x, ξ ) ≤ 0, i = 1, 2, . . . , m} ≥ α. (33)

However, in many real applications, the smoothness of a JCCP could be violated very
easily. To overcome such a difficulty, Hu et al. [2013b] suggested a smooth Monte Carlo
(SMC) approach to solving general JCCPs. The basic idea of the SMC approach is to
conservatively approximate the ε-approximation using the difference of two logarithm-
sum-exponential functions. Specifically, it can be shown that for any ai, i = 1, 2, . . . , m
and μ > 0,

[max {a1, . . . , am}]+ ≤ μ log

[
1 +

m∑
i=1

exp(μ−1ai)

]
≤ [max {a1, . . . , am}]+ + μ log(m+ 1),
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which together with the ε-approximation shows that

μ log

[
1 +

m∑
i=1

exp{μ−1(Li(x, ξ ) + ε)}
]

− (1 − α)ε − μ log

[
1 +

m∑
i=1

exp{μ−1Li(x, ξ )}
]

+ μ log(m+ 1) ≤ 0 (34)

is a conservative approximation to Equation (33). Hu et al. [2013b] suggested solving
constraint (34) instead of the original joint chance constraint (33). They further demon-
strated that the parameter ε in Equation (34) can be relaxed as a decision variable.
The SMC approach is capable of handling smooth and nonsmooth JCCPs where the
distribution of ξ can be either continuous, discrete, or mixed.

4.2. CVaR Optimization

Parallel to VaR optimization formulations, a CVaR minimization problem takes the
following expression:

minimize
x∈X

cα(L(x, ξ )), (35)

whereas a CVaR constrained program has the following form:

minimize
x∈X

h(x) (36)

subject to cα(L(x, ξ )) ≤ 0.

Different from VaR, CVaR satisfies the subadditivity axiom and is a coherent risk
measure; see Artzner et al. [1999], Rockafellar and Uryasev [2000], and Pflug [2000].
This implies that cα(L(x, ξ )) is convex in x if the loss function L(x, ξ ) is convex in x for
every ξ . Therefore, CVaR optimization problems are typically technically significantly
more tractable than VaR optimization problems. Indeed, there is a vast literature
on CVaR optimization, which is still an evolving area of research. A full review of this
topic is clearly beyond the scope of this article. In what follows, we review some popular
approaches that rely on Monte Carlo simulations.

4.2.1. Linear Approach. Along with introducing the notion of CVaR, Rockafellar and
Uryasev [2000] proposed a linear approach to solving CVaR minimization problems.
This approach has significantly stimulated the use of CVaR in the field of decision under
uncertainty. Subsequently, Andersson et al. [2001] generalized the linear approach to
handle credit risk optimization problems with the CVaR objective. Krokhmal et al.
[2002] extended the approach to solving portfolio optimization problems with the CVaR
objective and constraints. More recently, Rockafellar and Royset [2010] used the linear
approach to solve the buffered failure probability constrained problems in reliability
engineering design.

One critical step of the linear approach of Rockafellar and Uryasev [2000] is to refor-
mulate the CVaR minimization problem as a standard stochastic program. Specifically,
by the stochastic program representation (2) of CVaR, Problem (35) is equivalent to the
following optimization problem:

minimize
x∈X, t∈�

1
1 − α

E[[L(x, ξ ) + t]+] − t. (37)

Similarly, Problem (36) can be equivalently formulated as the following problem:

minimize
x∈X, t∈�

h(x) (38)

subject to E[[L(x, ξ ) + t]+] − (1 − α)t ≤ 0.
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We review the linear approach from the perspective of implementing the SAA for
the stochastic programs. Suppose that ξ1, ξ2, . . . , ξn are n i.i.d. observations from the
random vector ξ . As mentioned in Section 4.1, SAA suggests using the sample mean
1
n

∑n
j=1[L(x, ξ j)+t]+ to estimate the expectation function E[[L(x, ξ )+t]+]. Consequently,

Problems (37) and (38) can be approximated by

minimize
x∈X, t∈�

1
n

n∑
j=1

[L(x, ξ j) + t]+ − (1 − α)t (39)

and

minimize
x∈X, t∈�

h(x) (40)

subject to
1
n

n∑
j=1

[L(x, ξ j) + t]+ − (1 − α)t ≤ 0,

respectively. The rationale for solving Problems (39) and (40) instead of the original
CVaR optimization problems is guaranteed by the theory of SAA (see, e.g., Shapiro
et al. [2009]). In particular, it can be shown that, under some regularity conditions,
the optimal values and the set of optimal solutions of Problems (39) and (40) converge
to those of the true optimization problems, respectively, as the sample size n goes to
infinity. Therefore, when selecting a reasonably large sample size, solving the SAA
provides a good approximation to the true stochastic program.

By introducing a set of auxiliary decision variables zj, j = 0, 1, . . . , n, Problem (39)
can be reformulated as

minimize z0 (41)
subject to L(x, ξ j) + t ≤ zj, j = 1, . . . , n,

1
n

n∑
j=1

zj − (1 − α)t − z0 ≤ 0,

x ∈ X, t ∈ �, z0 ∈ �, zj ≥ 0, j = 1, . . . , n.

Similarly, introducing auxiliary decision variables zj, j = 1, 2, . . . , n, one can reformu-
late Problem (40) as the following problem:

minimize h(x) (42)
subject to L(x, ξ j) + t ≤ zj, j = 1, . . . , n,

1
n

n∑
j=1

zj − (1 − α)t ≤ 0,

x ∈ X, t ∈ �, zj ≥ 0, j = 1, . . . , n.

When the set X is defined by linear constraints, the function h(x) is linear, and L(x, ξ ) is
linear in x for every ξ ∈ �, Problems (41) and (42) are linear programs. That is why this
approach is called the linear approach. Linear programs can be solved using standard
optimization techniques such as simplex methods or interior point methods. When
h(x) and/or L(x, ξ j) are nonlinear but convex, the linear approach typically results in
standard convex optimization problems, which can be solved using conventional convex
optimization techniques.

The linear approach needs to introduce auxiliary variables, and both the decision
variables and the number of constraints are proportional to the sample size n. Conse-
quently, solving the resulting sample problems, that is, Problems (41) and (42), could
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become quite slow, especially when n is large, say, n ≥ 10,000. To partially address this
issue, a dual-program approach was proposed when the sample problems are linear.
Ogryczak and Śliwiński [2011] formulated the dual problem of the sample CVaR opti-
mization problem of Rockafellar and Uryasev [2000] and found that the dual problem is
much easier to solve. Specifically, they considered instances with 50,000 scenarios and
100 and 200 instruments and compared the computational efforts of solving the primal
and dual problems. They found that the increase in efficiency is encouraging. In the
linear approach, although there exist numerous constraints, a significant proportion
of these constraints may be inactive for a specific solution searched. This structure
was explored by Basova et al. [2011], who implemented an active-set method to solve
Problem (41). The basic idea of the active-set method is to construct at each iteration
a set of subscripts, of which the constraints at the currently searched solution are
essentially tight, and solve the corresponding optimization problem, which only has
constraints contained in the active set. Basova et al. [2011] compared the linear ap-
proach and the active-set method. They found that the active-set method is significantly
faster than the linear approach for their reliability-based optimal design problems.

4.2.2. Other Approaches. Note that the operator [·]+ in Problem (40) makes the SAAs
nonsmooth. To remove the nonsmoothness, the linear approach introduces extra de-
cision variables with the price of increasing the dimension of decision vector and the
scale of the problem. An alternative approach is to treat the SAA as a nonsmooth opti-
mization problem and implement some nonsmooth optimization techniques to solve it.
Lim et al. [2010] proposed a three-phase subgradient approach to solve Problem (40).
They showed that the approach is computationally much more efficient than the linear
approach for a set of test examples. Another idea for removing the nonsmoothness is to
smooth the maximum operator [Alexander et al. 2006; Xu and Zhang 2009]. Alexander
et al. [2006] compared the smoothing method and the linear approach and found that
the smoothing method is much more efficient for their set of test problems. Iyengar
and Ma [2013] suggested a fast gradient descent method to solving the linear portfolio
CVaR optimization problem. The idea of Iyengar and Ma [2013] is to reformulate their
problem as a min-max problem using a dual representation of CVaR and then use a
fast iterative procedure developed in Nesterov [2005] to solve the resulting nonsmooth
problem.

Similar to the VaR optimization, we can view the CVaR optimization problems
as standard nonlinear optimization problems. When the optimization problems are
smooth, we can also solve them using a gradient-based approach. Hong and Liu [2009]
studied the gradients of CVaR and showed how to use the gradient estimates to solve
CVaR constrained optimization problems. They compared their approach with the lin-
ear approach and showed that the gradient-based method is at least an order of mag-
nitude faster than the linear approach for the portfolio optimization problem that they
considered. However, it is worthwhile to note that the gradient-based method requires
more conditions on the loss function L(x, ξ ) and the distribution of the random vector ξ
to ensure the differentiability of the CVaR function, while other approaches, such as the
linear approach, can often handle more general types of CVaR optimization problems.

4.2.3. Links Between VaR and CVaR Optimizations. We have briefly reviewed optimization
problems of VaR and CVaR. Besides being considered as popular decision models, CVaR
optimization problems are also often used as approximations of VaR optimization
problems. From the definitions, it is clear that CVaR is an upper bound of VaR.
Therefore, minimizing CVaR can often help achieve some small value of VaR. This idea
is due to Rockafellar and Uryasev [2000]. Also, the bounding relation between VaR
and CVaR shows that Problem (36) is a conservative approximation of Problem (23). In
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the literature, Problem (36) is called CVaR approximation to Problem (23). Nemirovski
and Shapiro [2006] demonstrated that the CVaR approximation is the best convex
conservative approximation of the VaR constrained program under their generating
function scheme.

Recently, Hong et al. [2012a] discovered some interesting connections between VaR
constrained programs and their CVaR approximations. They showed that a VaR con-
strained program may be solved by solving a sequence of CVaR-like approximations.
We briefly review their approach in the following. Consider Problem (31), which is a
reformulation of Problem (23). The DC structure in Problem (31) is the source of non-
convexity. Thus, a natural idea is to convexify the DC constraint. To do this, we can
find some concave function g satisfying g(x) ≤ E[[L(x, ξ )]+] and then use g to approxi-
mate E[[L(x, ξ )]+]. In particular, replacing E[[L(x, ξ )]+] with 0 in Problem (31), one can
obtain the following problem:

minimize
x∈X

h(x) (43)

subject to inf
t>0

1
t

E[[L(x, ξ ) + t]+] ≤ α.

It can be shown that under some minor conditions Problem (43) is equivalent to the
CVaR approximation, that is, Problem (36). Therefore, roughly speaking, the CVaR
approximation loses a term E[[L(x, ξ )]+] and this term determines the conservatism of
the CVaR approximation. However, using 0 to approximate E[[L(x, ξ )]+] may be quite
conservative. It is desirable to have other less conservative approximations. Suppose a
feasible solution y ∈ X of Problem (31) has been obtained. For instance, y could be an
optimal solution of the CVaR approximation. Suppose y satisfies Pr{L(y, ξ ) > 0} < 1−α.
Let

C(x, y) = E[[L(y, ξ )]+] + ∇xE[[L(y, ξ )]+]T(x − y)
be the first-order Taylor approximation of E[[L(x, ξ )]+] at point y. Then, C(x, y) ≤
E[[L(x, ξ )]+]. We can then convexify the DC function in Problem (31) using C(x, y) and
propose solving the following problem:

minimize
x∈X

h(x) (44)

subject to inf
t>0

1
t
{E[[L(x, ξ ) + t]+] − C(x, y)} ≤ α.

It can be shown that under some conditions, Problem (44) is equivalent to

minimize
x∈X

h(x) (45)

subject to CVaR1−α(c(x, ξ )) − α−1C(x, y) ≤ 0.

Note that C(x, y) is affine in x. Problem (45) takes a similar expression as the CVaR
approximation. It is called a CVaR-like approximation in Hong et al. [2012a]. Because
y is a feasible solution of Problem (45), by solving Problem (45), one can obtain an
improved solution. Once an improved solution is obtained, one can construct another
CVaR-like approximation. This suggests that we can solve a VaR constrained program
by iteratively solving CVaR-like approximations. Based on this, Hong et al. [2012a]
proposed some procedure for VaR constrained programs and studied properties and
performances of such procedure.

4.3. More Discussions on Optimization

Optimization problems involving VaR/CVaR are typically difficult to solve. As discussed
in this article, we often have to resort to sampling-based techniques. When the sample
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size is small, the sampling approximations may not be accurate. On the other hand,
when the sample size is large, solving the sampling problems may become computa-
tionally expensive. Deriving a promising tradeoff is often problem dependent and thus
needs dedicated investigation. In preceding sections, we have discussed the asymptotic
properties for various estimates of values and derivatives of VaR and CVaR. It would
be desirable to build asymptotic results (e.g., central limit theorems) for the optimal so-
lutions and optimal values in VaR/CVaR optimization problems when using sampling-
based procedures. Such asymptotic analysis can provide certain guides for setting the
sample size. Also, to improve the efficiency of the sampling-based procedures, it is good
to implement variance reduction techniques in the optimization algorithms. In the
stochastic optimization literature, asymptotic analysis for expectation-based stochas-
tic programs has been studied for a long time (see, e.g., King and Rockafellar [1993]
and Shapiro [1993]). There also exists much study on the application of variance re-
duction techniques for expectation-based stochastic programs. The recent paper by
Homem-de-Mello and Bayraksan [2013] provided an excellent review on Monte Carlo
sampling-based stochastic optimization. Readers can refer to it, especially Section 2
and Section 7 therein, for a detailed introduction of these topics. However, VaR and
CVaR functions are often more complicated and more difficult to handle than an expec-
tation function. Therefore, building asymptotic results and applying variance reduction
techniques for VaR and CVaR optimization should be more challenging. These could be
interesting future research topics.

5. CONCLUSIONS AND FURTHER DISCUSSIONS

This article provides a unified view of the simulation of VaR, CVaR, and their sensi-
tivities. It also gives a brief review on VaR and CVaR optimization. These topics are
inherently related and are important content of financial risk management. We be-
lieve the methodologies and techniques covered in this article are very important for
financial risk management practice.

However, the context of this article is far from sufficient for the practice of risk man-
agement. In this article, we have mainly focused on research for dealing with VaR and
CVaR. We did not study in depth the properties of VaR and CVaR risk measures. Every
risk measure has its properties, advantages, and disadvantages. Understanding these
properties is important and could be beneficial from a risk management perspective.
For instance, one important feature of using VaR optimization is that the model may
result in very skewed loss distribution, and consequently, the risk may hide in the
tail of the distribution (see, e.g., Natarajan et al. [2008]). This issue is very important
for risk management practice. Similarly, we think using the CVaR optimization model
may also bring in important issues. For instance, Lim et al. [2011] showed that CVaR
is fragile in portfolio optimization; that is, estimation errors in CVaR may affect opti-
mization results and thus decisions significantly. Also, we did not include any empirical
study on VaR and CVaR, which is very important. It is of great meaning to analyze
VaR/CVaR-based models and to study the pros and cons of these models in practice
using data and information available.

Another important theoretical question is the specification of distributions of random
variables in risk management models. In the context of this article, we have assumed
that an input distribution is predetermined and is given to modelers. However, in
practice, it is often difficult to specify the input distribution precisely. A considerable
amount of research has been devoted to the issue of uncertainty in models of VaR/CVaR
(see, e.g., El Ghaoui et al. [2003], Zymler et al. [2013], Hu and Hong [2012], Hu et al.
[2013a], and many others). However, it is far from sufficient and more study on input
uncertainty is necessary in the context of financial risk management. Modeling input
uncertainty should incorporate information available and should reflect the practice.
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