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We study optimization problems with value-at-risk (VaR) constraints. Because it lacks subadditivity, VaR
is not a coherent risk measure and does not necessarily preserve the convexity. Thus, the problems we

consider are typically not provably convex. As such, the conditional value-at-risk (CVaR) approximation is often
used to handle such problems. Even though the CVaR approximation is known as the best convex conservative
approximation, it sometimes leads to solutions with poor performance. In this paper, we investigate the CVaR
approximation from a different perspective and demonstrate what is lost in this approximation. We then show
that the lost part of this approximation can be remedied using a sequential convex approximation approach,
in which each iteration only requires solving a CVaR-like approximation via certain Monte Carlo techniques.
We show that the solution found by this approach generally makes the VaR constraints binding and is guaran-
teed to be better than the solution found by the CVaR approximation and moreover is empirically often globally
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optimal for the target problem. The numerical experiments show the effectiveness of our approach.
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1. Introduction

Financial risk management has emerged as one of
the major concerns of investors. To quantify the
potential risks and guide risk management, a num-
ber of so-called risk measures have been proposed
in academia as well as in practice in recent years.
Among them, value-at-risk (VaR) has reached a high
status and gained the most attention. VaR, also known
as quantile, can be interpreted as the maximum loss
that is not exceeded with a given probability. Math-
ematically, for a specified confidence level a € (0, 1),
the (1 — a@)-VaR of a random loss 7 is defined as
VaR,_,(n) :=inf{v € R: Pr{n < v} >1 — a}. It has
been incorporated in Basel II Accord and is widely
used among international banks and financial institu-
tions; for instance, the Bank for International Settle-
ment uses the 10-day VaR at the 99% level to measure
the adequacy of bank capital. For a comprehensive
review of the VaR, see Duffie and Pan (1997) and
Jorion (2010).
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In this paper, we consider the following decision
model:

minir}?ize h(x) 1)
subject to VaR;_,(c(x, £)) <0 2)

because of the central role and wide acceptance of
VaR in financial practice. We call problem (1) a
“VaR-constrained program” throughout the analysis.
In problem (1), x is a d-dimensional decision vec-
tor, £ is a k-dimensional vector of random parame-
ters, and the support of £, denoted as ZE, is a closed
subset of M*, X is a subset of N9, h: R — N is the
objective function, c¢: R — R is the loss function
that models the potential risks, and VaR,_,(c(x, £))
denotes the (1 — a)-VaR of the random variable c(x, &)
given x. Note that VaR,_,(c(x, §)) is a function of x.
We assume throughout this paper that X is a convex
compact set, h(x) is continuously differentiable and
convex (e.g., linear) in x, and c(x, £) is convex in x for
every £ € E.
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The optimization model (1) appears in a num-
ber of areas with various backgrounds. Port-
folio optimization, credit risk management, and
reliability-based optimal design are well-known rep-
resentatives of these areas. This model is also often
studied in another equivalent form known as chance-
constrained programs (CCP) (see, e.g., Charnes et al.
1958, Prékopa 2003, Hong et al. 2011, Hu et al. 2013).
As an example of problem (1), consider a portfo-
lio optimization problem where an investor aims to
maximize the expected future payoff of the portfolio,
while controlling the risk (the VaR of the portfolio)
below a certain threshold. Suppose the investor has
d assets with random returns. Let r = (r,, ..., ;)T and
x=(x;,...,x;)7, where r; is the return of asset j and
x; is the capital invested in this asset. Let 1 be the
d x 1 vector with all elements being 1. Suppose further
that w is the allowed risk limit, the total wealth to
be invested is 1, and short selling of the assets is not
allowed. Then the investor’s problem can be straight-
forwardly formulated as the following instance of
problem (1):

minimize —(E[r])Tx
subject to VaR,_,(—r"x) <w, 3)
1"™x <1, x=>0.

Problem (3) is a typical mean-VaR portfolio selection
formulation. The implication and impact of introduc-
ing a VaR constraint in mean-variance models, like
problem (3), have been studied widely in the portfo-
lio literature (see, e.g., Alexander and Baptista 2004,
Gaivoronski and Pflug 2005).

Because closed-form expressions for VaR functions
are typically not available except for some simple
cases, evaluations of VaR functions are typically
done using Monte Carlo simulation (e.g., Chu and
Nakayama 2012). This is motivation to solve prob-
lem (1) using a Monte Carlo method, in which the
VaR function is substituted by its Monte Carlo esti-
mate. However, even for the Monte Carlo counter-
part of problem (1), there exist certain difficulties
when applying an optimization procedure. First, VaR
(quantile) is a probability (expectation of an indica-
tor function)-based risk measure. Thus, the sampling-
based estimation/approximation will typically result
in optimization problems that have certain disconti-
nuity, which makes optimization procedures difficult.
Second, VaR fails to possess the so-called “coherency.”
The seminal paper by Artzner et al. (1999) defines
a set of axioms and calls a risk measure that satis-
fies these axioms a coherent risk measure. The authors
argue that a “good” risk measure should be coherent.
They also show that VaR does not always satisfy the
subadditivity axiom and thus is not a coherent risk
measure. The lack of subadditivity implies that VaR
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does not encourage diversification, whereas diversifi-
cation is generally considered a reasonable pursuit to
control the risks. From the computational aspect, the
lack of subadditivity implies that VaR,_,(c(x, £)) may
not be a convex function of x even though the orig-
inal loss function c(x, §) is convex in x for every ¢.
As a consequence, problem (1) may not be a convex
optimization problem.

The aforementioned discontinuity nature and the
nonconvexity become major obstacles in designing
efficient algorithms for solving problem (1) or its
Monte Carlo counterpart. Among the literature dis-
cussing Monte Carlo-based approaches, Pagnoncelli
et al. (2009) studied both theoretical and computa-
tional aspects of the sample average approximation
(SAA) for CCPs. Theoretically, they showed the con-
vergence of the SAA. To practically solve the SAA,
they reformulated the problem into some mixed-
integer program (MIP) and suggested certain MIP
tools. The MIP approach can handle a reasonably
large sample size—for example, a few hundreds—
but will encounter computational difficulty for Monte
Carlo-scaled sample size, say, 10,000. Indeed, little
progress has been made in the computational aspect
for the general VaR optimization models in the litera-
ture thus far. The existing methods are either suitable
for small problems or under some special assump-
tions on the distributions of the random parameters.

One possible compromise to the aforementioned
difficulties is to seek some convex conservative
approximation (CCA) for the VaR-constrained pro-
gram (e.g., Ben-Tal and Nemirovski 2000, Nemirovski
and Shapiro 2006, Ben-Tal et al. 2009, Chen et al.
2010, Rockafellar and Uryasev 2000). The conditional
value-at-risk (CVaR) approximation, popularized by
Rockafellar and Uryasev (2000), has been a represen-
tative of this kind of CCA. CVaR, conceptually inter-
preted as the mean of tail loss beyond VaR, was for-
mally defined in Rockafellar and Uryasev (2000) for
a random loss n with some continuous distribution.
Rockafellar and Uryasev (2002) further generalize the
notion to the general distributions (continuous, dis-
crete, or other mixed forms). In contrast to VaR, CVaR
satisfies the subadditivity and is a coherent risk mea-
sure (Rockafellar and Uryasev 2002). In Nemirovski
and Shapiro (2006), it was established that the CVaR
approximation is the “best” among all the CCAs of
the VaR-constrained program under the so-called gen-
erating function scheme, in the sense that it finds less
conservative solutions than other CCAs. The CVaR
approximation is in general a stochastic program, as
the CVaR functions are still typically not in analyti-
cal expressions. Rockafellar and Uryasev (2000) show
that the Monte Carlo (sample) counterpart of the clas-
sical portfolio optimization with a CVaR objective can
be reformulated into a linear program. This approach
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has been further developed or applied by Rockafellar
and Uryasev (2002), Krokhmal et al. (2002), Trindade
et al. (2007), and many others. Together with the
Monte Carlo methods, the CVaR approximation has
been widely used in practice as well as in research to
tackle VaR-related optimization problems.

Although using CVaR approximation to handle
problem (1) could be very convenient in the real
applications, it has to be admitted that there exists a
gap between the VaR constraint and corresponding
CVaR constraint, and solving the CVaR approxima-
tion does not really solve the original VaR-constrained
program. The solution obtained by the CVaR approxi-
mation does not satisfy any optimality conditions and
is generally an interior point of problem (1). However,
in real applications the optimal solutions of prob-
lem (1) often make the VaR constraint tight (binding)
because the VaR constraint is often the critical con-
straint that restricts the choice of decisions. Moreover,
in many situations, problem (1) is already a convex
optimization problem, though we do not know this
a priori. In this circumstance, implementing a con-
vex approximation to approximate a convex problem
seems like a waste of the convexity of the original
problem.

These concerns draw our interests and motivate our
research. In this paper, we are especially interested in
the gap between VaR and CVaR that has scarcely been
studied; we aim to investigate the possible connec-
tions between VaR and CVaR when they are involved
in risk constraints in optimization models. To accom-
plish this, we rederive the CVaR approximation using
the formulation of Hong et al. (2011) that represents
the VaR constraint as a limit of the difference of con-
vex functions (DC) constraint and demonstrate what
is lost in the CVaR approximation. Based on the con-
servatism of the CVaR approximation, we convexify
the DC function via a Taylor approximation and show
that the newly formulated optimization problem is
equivalent to a “CVaR-like approximation” problem.
We then use a sequential convex approximation (SCA)
procedure to recover the part that is discarded by
the CVaR approximation. Our approach starts from
the solution found by the CVaR approximation and
makes improvements at each iteration by solving a
CVaR-like approximation; it finally leads to an opti-
mal solution of the original VaR constrained program,
or a feasible solution essentially tightening the VaR
constraint (the notion of “essentially” will be intro-
duced in §3.2).

Note that this result leads to two properties for our
approach. First, our solution is better than any CCAs
of the generating function types, as the CVaR approxi-
mation is the best among them. Second, our approach
can ensure either that a global optimal solution is
found or that the VaR constraint essentially becomes
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tight. We implement our approach to the mean VaR
portfolio selection problem introduced earlier and a
credit risk optimization model. The numerical results
show that our approach works well and achieves sig-
nificantly improved decisions for both problems.

Briefly, the main contributions of this paper can
be clarified as follows: (1) We clarify the relation
between the CVaR approximation and various CCAs
of the VaR-constrained program, place CVaR prop-
erly when Monte Carlo techniques are brought in,
and make the picture more complete. (2) We build
an interesting linkage between VaR and CVaR con-
straints and demonstrate the conservatism of the
CVaR approximation. (3) We introduce various opti-
mization techniques and approaches for solving the
CVaR-related optimization problems, make compar-
isons for these approaches, and provide guidance on
how to select and apply these techniques in different
situations. (4) We design efficient procedures to rem-
edy the CVaR approximation and use CVaR optimiza-
tion techniques to solve the VaR-constrained program.

The remainder of this paper is organized as fol-
lows. In §2 we introduce the CVaR approximation
and discuss its conservatism. In §3 we show how to
remedy the lost part of the CVaR approximation via
iteratively solving a sequence of CVaR-like approxi-
mations. In §4 we implement Monte Carlo methods
and introduce multiple approaches to solve the CVaR-
like approximations. The numerical experiments are
conducted in §5, which show the performances of our
method. Section 6 concludes the paper. All the proofs
are included in the online supplement (available as
supplemental material at http://dx.doi.org/10.1287/
ijoc.2013.0572).

2. Conservatism of CVaR

Approximation
First, we impose the following assumptions to make
problem (1) more clearly defined.

AssuMPTION 1. For every x € X, Pr{c(x, §) =0} =0.

AssUMPTION 2. For every x € X, c(x, §) is continu-
ously differentiable at x for almost every & € E.

AssuMPTION 3. There exists a random function M(§)
with E[M(§)] < oo such that

le(x, §)l < M(§), VxeX, ek,

Furthermore, there exists a random function K(&) with
E[K(£)] < oo such that

le(xy, &) —c(x, E)| <K (&)X — x5, Vx1,x,€X, E€E.

Assumption 1 means that c(x, £) has no mass at 0.
It is simply satisfied when c(x, £) is a continuous
random variable. Assumption 2 states that c(x, &) is
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smooth in x. It can also be easily satisfied. Assump-
tion 3 requires that c(x, £) is dominated by an inte-
grable random variable and satisfies the Lipschitz
condition. It is a standard assumption in stochastic
optimization literature; see, for instance, Shapiro et al.
(2009) and Hong and Liu (2009). It is also a critical
assumption for the expectations considered next to be
well-defined and differentiable. Assumptions 1-3 are
imposed on the original loss function c(x, £) within
the VaR constraint. They are used to clearly specify
the problems we target. The mean-VaR portfolio selec-
tion problems serve as simple examples that satisfy
the assumptions.

2.1. CVaR Approximation and Its Relation to

Various Convex Conservative Approximations
We first introduce the CVaR approximation and
briefly review its relation to the various CCAs in
the literature. The conventional conditional expecta-
tion definition of the CVaR could be quite subtle as
it requires differentiating continuous and noncontin-
uous distributions. Rockafellar and Uryasev (2002)
show that the CVaR for general distributions can be
expressed in a unified way, as the following stochastic
program:

CVaR,_(n) = itg{{%E[[n - t}, @)

where [z]" = max{z, 0}. Let VaR] ,(n) := inf{v € ):
Pr{n < v} >1— a}. Then VaR,_,(n) < VaR{ _(n) and
the two coincide except when the distribution func-
tion Pr{n < v} is the constant 1 — a over a certain
v interval. Rockafellar and Uryasev (2002) further
show that the infimum in (4) is (only) attained at
any point of the interval [—VaR{ (), —VaR,_,(n)].
Plugging — VaR;_,(7n) in (4), we immediately see that
CVaR is an upper bound of VaR; therefore, minimiz-
ing CVaR also results in low VaR. The idea of min-
imizing CVaR to lower VaR is from Rockafellar and
Uryasev (2000). Nemirovski and Shapiro (2006) noted
that this idea can also be used to handle the VaR
constraint. In particular, using a generating function
scheme, they derived the following so-called “CVaR
approximation”:

minir}x{ﬁze h(x) (5)
subject to CVaR;_,(c(x, £)) <0. (6)

As discussed, because CVaR bounds VaR from above,
problem (5) is a conservative approximation of prob-
lem (1); because CVaR is a coherent risk measure,
CVaR,_,(c(x, &) is a convex function of x. Thus,
problem (5) is a CCA of problem (1). Nemirovski
and Shapiro (2006) further demonstrated that under
their generating function scheme, problem (5) is the
best CCA.
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From (4) it is not difficult to show that problem (5)
is equivalent to

minimize h(x)
xeX, teR (7)
subject to E[[c(x, &) +t]1] — at <0,

in the sense that x is an optimal solution of prob-
lem (5) if and only if there exists ¢ such that (x, t) is an
optimal solution of problem (7) (e.g., Krokhmal et al.
2002). Suppose (x,t) is a feasible solution of prob-
lem (7). Then we must have t > 0. Furthermore, given
any feasible solution (x, t), let t(x) = — VaR,_,(c(x, £)).
Then (x, t(x)) is also a feasible solution of problem (7).
Note that from Assumption 3 we have for every x € X,

t(x) = —inf{v e R: Pr(c(x, §) <v)>1—a}
< —inflv e N: Pr(—M(€) <v)>1—a}
= —VaR,_,(—M(é)).

This suggests we can further assume in problem (7)
that t is constrained in a bounded closed interval T,
eg., T =[0,—VaR,_,(—M(&))]. This treatment does
not affect our analysis and computation and is only
used to make the feasible region compact. Reformu-
lating problem (5) as problem (7) allows us to solve
problem (5) using a standard SAA approach that has
been studied extensively in the literature. In §4 we
will introduce different approaches to handle prob-
lems (5) and (7).

The CVaR approximation, the best CCA of the
generating function type, turns out to have a close
relation with the various CCAs in the literature.
The multiple CCAs can often be derived by finding
a certain convex function 7 (-) to bound E[[-]*] from
above and then replacing E[[-]*] with 7(-) in the
stochastic representation (4) of the CVaR. An inter-
esting construction of w(-) is to use the exponen-
tial function pwexp(u='(z + t) — 1), where u > 0 to
bound the piecewise linear function [z + f]*. Replac-
ing [c(x, &)+ t]T in (4) with wexp(u="(c(x, &) +1)—1),
we clearly have the following constraint:

infinf{lE[Mexp<%—l>i|—t}50, (8)

teR u>0 | o

which is a CCA of constraint (6). Suppose the settings
and assumptions are the same as in Nemirovski and
Shapiro (2006). It can be proven that (8) is equiva-
lent to the Bernstein approximation. Actually, the two
infima in (8) can be interchanged freely. Switching the
order, the infimum with respect to ¢ € % is attained at

t = —,ulogE[exp(@)} +uloga+ .

Substituting t* into (8) yields
c(x, €)
I

in%p,logE[exp( )i|—,u,10ga§0,
w>
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which is exactly the Bernstein approximation of
Nemirovski and Shapiro (2006). This shows the
Bernstein approximation is indeed a CCA of the CVaR
approximation (see online supplement for more dis-
cussion). Taking a step further, the quadratic approx-
imation in Ben-Tal and Nemirovski (2000) can also be
derived using the above bounding scheme. Actually,
Nemirovski and Shapiro (2006) pointed out that the
quadratic approximation of Ben-Tal and Nemirovski
(2000) can be derived by further bounding the loga-
rithmic moment generating function in the Bernstein
approximation, and thus can be viewed as a less
accurate version of Bernstein approximation. Because
the Bernstein approximation is a CCA of the CVaR
approximation, there exists a certain gap between
the two approximations. To bridge this gap, Ben-Tal
et al. (2009) suggested replacing the single exponen-
tial function in the Bernstein approximation with an
exponential polynomial, which results in a bridged
Bernstein-CVaR approximation. Ben-Tal et al. (2009)
and Nemirovski (2012) showed numerically that this
bridged Bernstein-CVaR approximation can fill the
gap to a large extent.

In the more general robust optimization frame-
work, the interesting relation between CVaR and var-
ious robust approximations was uncovered by Chen
et al. (2010). They showed that the multiple robust
approximations of the VaR-constrained program can
be obtained from bounding the CVaR function by
incorporating all kinds of information on the ran-
dom parameters, e.g., the mean, the variance, and the
forward and backward deviations. They also demon-
strated how to combine those robust approximations
to reduce the conservatism of the robust optimization
framework.

In summary, this analysis shows that the various
CCAs of the VaR-constrained program are actually
CCAs of the CVaR approximation. The CCA frame-
work works on one side of the CVaR, proposes to find
a good deterministic CCA of the CVaR, and tries to
get close to the CVaR.

2.2. Conservatism of Conditional Value at Risk
Approximation: An Example
Despite being the best CCA within a certain category,
the CVaR approximation is not an accurate approxi-
mation of problem (1). The solution obtained by the
CVaR approximation does not satisfy any optimality
conditions and is generally an interior point of prob-
lem (1). Thus, the following question raises wide con-
cerns: How conservative is the CVaR approximation?
This question is generally difficult to answer.
In some cases, problem (5) provides an ideal approx-
imation to problem (1), whereas in many situations
it is rather conservative. Let us consider a simple
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instance of problem (3). To derive problem (3) ana-
lytically, we assume r follows a multivariate nor-
mal distribution with mean vector w and covariance
matrix 3. Simple computation shows that

VaR, o (—+"x) = —uTx + K, ()y/xTSx, with
Kki(a)=D7(1—a);
CVaR, ,(—7"x) = —u"x + ky(a)y/xTSx, with
k(@) =a PP (1-w)),

where ®1(z) is the inverse of the standard normal
cumulative distribution function and ¢(z) is the den-
sity function of the standard normal distribution (e.g.,
Rockafellar and Uryasev 2000). It follows that the VaR
function in problem (3) is convex provided a <1/2,
and the corresponding CVaR function is always con-
vex no matter what value o takes. Note that this is
consistent with the fact that the CVaR approximation
is a convex optimization problem. Therefore, under
the normality assumption, both problem (3) and its
CVaR approximation can be converted to determinis-
tic convex optimization problems. Such deterministic
problems are known as second-order cone programs
(SOCP), which can be solved efficiently using conven-
tional software (e.g., CVX package) or more profes-
sional software (e.g., Mosek and SeDuMi).

The parameters «;(a), i=1,2 are often viewed as
the risk factor (e.g., El Ghaoui et al. 2003). Obviously,
the conservatism of the CVaR approximation depends
on the difference between the risk factors k;(«)
and k,(a). For instance, we assume E[r;] is evenly
spread between 0.04 and 0.50 and increasing with i,
the standard deviation std[r;] = E[#;] +0.05 for all i =
1,...,d and the correlation between r;, and r; is 0.35
for any i # j (the parameters are the same as that used
in Hong and Liu (2009, Problem (25)), except that the
variances are slightly enlarged). We consider differ-
ent combinations of d, @, and w and compute optimal
values for problem (3) and its CVaR approximation
by solving the SOCPs, and summarize the results in
Table 1.

Table 1 Conservatism of CVaR Approximation

a=0.10 a=0.05 a =001
d=10  w=005 0139/0422  0.084/0.182  0.047/0.062
w=010 0.278/0.440  0.167/0.348  0.094/0.125
w=015 0375/0.449  0.251/0.405  0.141/0.187
d=50 w=005 0230/0485  0.116/0.355  0.059/0.082
w=010 0433/0.488  0.232/0.467  0.118/0.163
w=015 0471/0.490  0.348/0.480  0.177/0.245
d=100 w=005 0261/0492  0.128/0.425  0.062/0.086
w=010 0464/0.494  0.249/0.483  0.123/0.172
w=015 0485/0.495  0.374/0.490  0.185/0.259
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In Table 1 there are two values for each parame-
ter combination; the second is the (negative) optimal
value of problem (3) and the first is the (negative)
optimal value of corresponding CVaR approximation
(all results are rounded to three digits). From Table 1,
we see clearly that for some parameter combinations,
the CVaR approximation is close to the VaR con-
strained program (e.g., d =100, « =0.1, and w = 0.15).
However, for some combinations, the CVaR approx-
imation is rather conservative (e.g., d =50, a =0.05,
and w = 0.10). Clearly, the investors concerned only
about VaR risk wish to gain more than what the CVaR
approximation can provide.

2.3. A Different Scheme
Let us look at the CVaR approximation from an
angle other than the generating function scheme of
Nemirovski and Shapiro (2006). It is not difficult to
verify that the VaR constraint (2) is equivalent to
Pr{c(x, §) <0} > 1 — a. Consequently, problem (1) can
be rewritten as the following problem:
minimize h(x)
xeX (9)
subject to p(x) <a,
with p(x) := Pr{c(x, £) > 0}. Hong et al. (2011) pro-
posed a new approach to handle problem (9), and
their basic idea was to reformulate p(x) as the infi-
mum of a DC function. Specifically, define 7 (z, t) =

Y[z + ] —[z]T} on % x R, ,, where %, denotes the
set of positive reals. Then

Elm(c(x, &), 0] = 4 (Elle(x, &) + 1'] ~ Elle(x, &)]']}.

Moreover, for every z, m(z,t) is nondecreasing in ¢
and lim, y 7(z, t) = 1|, (2), where 1,(z) denotes the
indicator function of A that equals 1 if z€ A, and 0
otherwise. It follows that for any ¢ > 0,

B[ (c(x, £), )] = B[y, 1) (c(x, £))] =Pr{c(x, £) = 0}.

By the monotone convergence theorem, we have
Pr{c(x, ) = 0} = inf,_ E[7(c(x, §),t)], from which
it is immediately seen that inf, (E[7(c(x,§), )] <a
implies p(x) < «. Noting the definition of
E[m(c(x, £), t)], we obtain the following problem:

minir}t{lize h(x) (10)
. o1
subject to inf ; {El[e(x, &) +]7]

—E[lc(x, HI'l} =,  (11)

which is a conservative approximation of problem (9).
Let O, and ) denote the feasible sets of problem (9)
and problem (10), respectively. Then Q C ), and

Q\Q={xeX: Pr{c(x,£)>0}>a,Pr{c(x, &) >0} <a}.
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By Assumption 1, Q,\Q is an empty set. Therefore,
problem (10) is equivalent to Problem (9).

It seems that reformulating problem (1) into prob-
lem (10) does not simplify the analysis. However,
problem (10) has a structure that is worthwhile noting:
both E[[c(x, §)+t]] and E[[c(x, £)]T] are convex func-
tions of x; consequently, E[[c(x, &) +t]T] —E[[c(x, €)]*]
is a DC function of x. Given this DC structure, one
possible approach to handle problem (10) is to find
a concave function g(x) bounding E[[c(x, £)]*] from
below, ie., g(x) < E[[c(x, §)]T] for all x € X, and
then use

inf +{Ellc(x, &) + 1] - (0} <

to approximate constraint (11). Naturally, different
g(x) functions will result in different conservative
approximations of problem (10). Perhaps the simplest
choice under this scheme is to use the lower bound
g(x) =0 to approximate E[[c(x, §)]*]. This results in
the following optimization problem:

minir}r{lize h(x) (12)
1
subject to 1tng ;E[[c(x, H+t]<a. (13)

It turns out that this optimization problem is
directly linked to the CVaR approximation, as shown
in the following proposition.

PrOPOSITION 1. Suppose Assumption 1 is satisfied.
Then problem (12) is equivalent to problem (5).

Proposition 1 shows that we can rederive the CVaR
approximation using the DC reformulation approach
under certain conditions, which is different from
the generating function scheme of Nemirovski and
Shapiro (2006) and Ben-Tal et al. (2009). This new
approach also suggests that the CVaR approximation
actually drops a term E[[c(x, £)]*] from the original
constraint (11). Thus, roughly speaking, the value of
function E[[c(x, £)]*] determines the conservatism of
the CVaR approximation.

ReMaRrk 1. Constraint (13) is closely related to con-
straint (2.8), i.e.,

itgg[E[[c(x, &) +1t]*]—ta] <0. (14)

As is easily seen, constraint (14) can be obtained by
multiplying both sides of constraint (13) by ¢ and
placing ta on the left-hand side. Note that Nemirovski
and Shapiro (2006) deduced constraint (14) using
the generating function scheme as the best CCA
of the VaR constraint (2) and showed further that
(14) is equivalent to the CVaR constraint, i.e., con-
straint (6). We may conjecture that constraint (13) is
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also equivalent to constraint (6) without any condi-
tions. However, we should be cautious here, as the
equivalence of the two constraints might be destroyed
by the operation of multiplying ¢t when the infi-
mum is attained at t =0. A simple one-dimensional
example, inf,_y{x*>+1—x%} <0, is not equivalent to
inf, o t{x*+1—x?} <0. Actually, (13) and (6) are not
equivalent in general. For instance, if x € X sat-
isfies c(x,é) =0 for every ¢ € E, then x satisfies
constraint (6) but violates constraint (13). Therefore,
Assumption 1 is required for the equivalence to
hold. This nonequivalence is indeed counterintuitive.
In the online supplement, we discuss the relationship
between constraints (13) and (6) in a more general set-
ting. As will be seen, Proposition 1 can actually be
embedded into that general setting.

3. Remedy of CVaR Approximation
We have rewritten problem (9) as problem (10) under
certain assumptions. Our major concern about the
CVaR approximation here, is that using g(x) =0 to
approximate function E[[c(x, §)]7] may be rather con-
servative. Can we improve on this bound, and can
we find the lost term E[[c(x, £)]*], provided that the
computational budget is not critical? In this section
we focus on these questions. Before the discussion,
we first introduce some properties of the CVaR and
its stochastic program representation. We summarize
the properties in the following proposition.

ProrosiTION 2. For any x € X,
CVaR,_,(c(x, §)) < o "E[[c(x, OI']- (15)

Suppose  that Assumption 1 is satisfied. Then
aYE[[c(x, €) + t]*] is differentiable at t =0 and

Vt{éE[[c(x, & +t]'] - t}

—p@)/a—1.  (16)

t=0

Furthermore, the following are equivalent:
(@) p(x) =«
(b) t=0 is a minimizer of (4).
(c) Equality holds in (15).
(d) VaR;_,(c(x, §)) <0< VaR[_,(c(x, £)).

From Proposition 2 we see that the kink point 0
is critical in the formulations of the CVaR and
its stochastic program representation. That is the
main reason we impose Assumption 1. Proposition 2
explores the inherent connection between the prob-
ability (VaR) value and the optimal solution of the
stochastic program representation of CVaR. We will
frequently use these results in the following analysis.
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3.1. CVaR-like Approximation

Let us still focus on the convex function E[[c(x, £)]7]
that is embedded in the infimum of constraint (11).
Suppose that Assumptions 1-3 are satisfied. Then we
can easily verify the conditions (Al), (A2), and (A4)
in Shapiro et al. (2009, Theorem 7.44) for [c(x, £)]*.
It follows from the theorem that E[[c(x, £)]T] is
differentiable at any x € X and V,E[[c(x, &)]T] =
E[V,[c(x, §)]T], where V, denotes the gradient of a
function with respect to x. Clearly, the best (least con-
servative) concave approximation of the convex func-
tion E[[c(x, §)]] is the hyperplane that supports the
convex function E[[c(x, £)]*] at certain point (such a
hyperplane is called a tangent hyperplane). This moti-
vates us to linearize function E[[c(x, £)]T] at some
specific point. Now suppose y € X is any interior
point of problem (9); i.e., p(y) < a. Let

L(x, y) =Ellc(y, 1"+ V.Elle(y, O (x —y)

be the first-order Taylor approximation of E[[c(x, §)]*]
at point y. We can then make the DC function convex
in constraint (11) using L(x, y) and propose a solution
for the following problem:

minir}r{lize h(x)
1 (17)
subject to inf —{E[[c(x, &) +#]'] - L(x, y)} = e

The linearization approach that makes the DC func-
tion convex and leads to Problem (17) is a standard
approach in the DC program literature. At first glance,
problem (17) seems still intractable, since it involves
taking the infimum. However, problem (17) turns out
to be a convex optimization problem in this con-
text. Besides, the following theorem states that prob-
lem (17) is actually equivalent to the optimization
problem:

minimize h(x)
xeX (18)
subject to CVaR,_,(c(x, £)) —a'L(x, y) <0.

THEOREM 1. Suppose that y € X satisfies p(y) < a, and
Assumptions 1-3 are satisfied. Then problems (17) and (18)
are equivalent.

Theorem 1 serves as the basis for designing the
remedy procedure. Since L(x, y) is linear in x, prob-
lem (18) is a convex optimization problem. Note that
problem (18) takes a similar form of problem (5).
In this paper we refer to problem (18) as a CVaR-
like approximation. Provided that the values and the
gradients of the function E[[c(x, §)]T] at specified
points can be estimated efficiently, the complexity of
such CVaR-like approximations is essentially the same
as that of the CVaR approximation. In §4 we will
discuss how to solve the CVaR-like approximations
efficiently.
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REMARK 2. Some careful observation suggests that
problem (18) can actually be derived by linearizing
the second term of the following DC constraint at
point y:

CVaR,_,(c(x, §)) —a 'E[[c(x, ]']<0  (19)

There is a plausible way from (11) to (19). That is,
(11) is equivalent to

inf +{a Elle(x, &) + 1]
— o 'E[[e(x, §)]"]} -1 =0. (20)
Multiplying both sides of (20) by ¢ yields
itgg{a‘lE[[c(x, £+t -t}
—a 'E[[c(x, §)]"1=0, (21)

which is very close to (19). This naturally leads to
the conjecture that constraint (2) is equivalent to con-
straint (19). However, (15) tells us that inequality (19)
always holds and actually defines the whole space
and thus is not equivalent to (2). Indeed, letting t — 0
in (21), we can see that (21) also always holds, and
thus (21) is not equivalent to (20). Then where is the
error? The error hides in the fact that the infimum in
(20) is attained at t = 0: multiplying 0 on both sides
of (20) results in an invalid inequality, i.e., (21), that
always holds. This is similar to the issue discussed in
Remark 1. It is somewhat tricky that before the lin-
earization, the DC constraint (19) defines the whole
space, but once we convexify it using a linear approxi-
mation, the new convex constraint only defines a sub-
set of the region defined by constraint (2). To show
that this phenomenon could indeed happen, con-
sider a simple one-dimensional example. Suppose
that our feasible region is X ={xef: -5 <x <5,
x? — (x241) < 0}. Note that x> — (x> + 1) < 0 always
holds and thus defines the whole space 9. However,
if we linearize x> 4+ 1 at x = 1, then the new convex
constraint x? — 2x < 0 will define a convex set [0, 2].
The convex set [0, 2] obtained is a subset of our orig-
inal feasible set X.

The following proposition further states that the
feasible region €, or ¥, lies in the interior of the fea-
sible region of Problem (9).

PROPOSITION 3. Suppose that y e X satisfies p(y) <a
and Assumptions 1-3 are satisfied. Then

CVaR,_.(c(y, §)) —a 'Ly, y) <0,
and for any x € €, p(x) < a.

3.2. Remedy Procedure
Suppose we have solved problem (5) and obtained its
optimal solution x,. Because x, is a feasible solution
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of problem (5), we have CVaR,_,(c(x,, £)) <0, which
implies p(x;) < a. Furthermore, p(x;) = a can be ex-
cluded, because if this is the case, from Proposition 2
wehave a'E[[c(x,, )] F]=CVaR,_,(c(xy,£)) <0, which
contradicts p(x;) = a. Therefore, we have p(x)) < «,
which suggests we can start from x, and set y = x,
in problem (18). From Proposition 3, x, is a feasible
solution of problem (18). Solving problem (18) we can
obtain a solution x; that is at least as good as x; i.e.,
h(x,) < h(xy). Moreover, from Proposition 3 we also
have p(x;) < a. Note that once we obtain x;, we do
not need to stop there. We can repeat this procedure
at x; and search for better solutions. This suggests we
can use a SCA procedure to gradually recover the lost
part of the CVaR approximation. We propose the fol-
lowing algorithm to handle problem (9).

Algorithm (CVaR-SCA)

Step 0. Solve problem (5) and denote the solution
as x,. Set k=0.

Step 1. Solve

(Cp minigm{lize h(x)

subject to CVaR;_,(c(x, §))
—a'L(x, x,) <0

to obtain its optimal solution x;_;.
Step 2. Set k=k+1 and go to Step 1.

Algorithm CVaR-SCA is easy to implement, as we
only need to solve a CVaR-like approximation in each
iteration. Besides this, Algorithm CVaR-SCA has the
desired properties. We summarize these properties in
the following theorem.

THEOREM 2. Suppose that Assumptions 1-3 are satis-
fied. Then Algorithm CVaR-SCA satisfies the following
properties:

1. For k=1,2,...,x; is a strictly feasible solution of
problem (9), i.e., p(x;) < a.

2. {h(x), k=1,2,...} is a convergent nonincreasing
sequence; i.e., h(xp.;) < h(x;). Moreover, if h(x; ) =
h(x,) for some k, then x, is a global optimal solution of
problem (9).

3. The algorithm will either terminate after a finite
number of iterations, or any cluster point X of {x;, k =
1,2,...} satisfies p(X) = a and VaR,_,(c(x,§)) <0 <
VaR{_,(c(%, £)).

The first property in Theorem 2 shows that we
always search solutions in the interior of the feasible
region of problem (9). The second property states that
we will make improvements at each iteration and the
sequence of objective values will decreasingly con-
verge to a certain value. Moreover, if the objective
value no longer decreases at some iteration, then we
have reached the global optimal solution. The third
property implies that if all the stationary solutions
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of the original VaR-constrained program make the
VaR constraint tight, then our algorithm will con-
verge to certain point at which the chance constraint
is tight, and the VaR constraint is essentially tight; i.e.,
either the VaR constraint is tight, or the VaR constraint
strictly holds but the corresponding random variable
has no mass between the VaR value and 0.

Some other observations and discussions also fol-
low Theorem 2. The theorem suggests that if the
objective value of Problem (9) does not improve after
a finite number of iterations, then we have actually
found the global optimal solution. Now let us discuss
the binding of the chance constraint. Consider prob-
lem (9) and the following optimization problem that is
obtained by removing the chance constraint p(x) <«
from problem (9):

minir}pize h(x). (22)

Then we will fall in one of the following cases:

* Optimal values for problem (9) and problem (22)
are equal and all the optimal solutions of problem (22)
satisfy p(x) < a. In this case, the chance constraint
p(x) < a is redundant, and to solve (9) we only need
to solve (22).

* Optimal values for problems (9) and (22) are
equal, but some of the optimal solutions of prob-
lem (22) violate constraint p(x) < @. In this case we
cannot simply drop p(x) < @, and solving (22) does
not automatically solve (9), because the algorithm
may return an optimal solution of (22) that violates
p(x) <a. In this case it is possible for Algorithm
CVaR-SCA to stop at a global optimal solution of (9)
where the chance constraint is not tight.

* Optimal values for problems (9) and (22) are not

equal. In this case, problem (9) cannot attain optimal
value at point x for which p(x) < «, and our algorithm
will not stop at point x for which p(x) < a. Any clus-
ter points will be on the boundary, i.e., will satisfy
p(x)=a.
Clearly, the third case is the typical situation that we
encounter. In this case suppose ¥ is a cluster point
of the sequence of solutions generated by Algorithm
CVaR-SCA. Then we have p(x) = a. It follows from
Proposition 2 that

CVaR,_(c(¥, £)) — @ 'E[[c(*, §)]"] =0.

Note that in §2.3, we show that the CVaR approxima-
tion loses a term E[[c(x, £)]*]. The previous equation
shows that our approach can actually find this term.

RemMARK 3. Implementing gradient-involved Monte
Carlo methods to handle the VaR constraints or
chance constraints typically requires certain differen-
tiability for the constraint functions, and our remedy
procedure is no exception. However, surprisingly, our
approach only requires that the function E[[c(x, £)]*]
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is differentiable in x, which can be ensured by
Assumptions 1-3. Generally speaking, the require-
ment of differentiability of E[[c(x, §)]*] should be
much weaker than the differentiability of the VaR
function or the probability function, and estimating
the gradient for E[[c(x, £)]*] is also relatively eas-
ier than that for the VaR function or the probability
function. Of course, Theorem 2 does not build that
the remedy procedure will finally guarantee certain
stationary points for the VaR-constrained program.
Whether the procedure will converge to some station-
ary point of the VaR-constrained program and under
what conditions such convergence can be ensured are
still open to the authors.

We end this section by briefly comparing our ap-
proach with the approach of Hong et al. (2011).
To handle problem (10), Hong et al. (2011) propose to
fix t as a small constant & > 0 and call the resulted
problem an & approximation to problem (10). They
show that the & approximation is a DC program and is
a conservative approximation to problem (10); more-
over, under a certain set of strong conditions, both
the optimal solutions and stationary points of the &
approximation converge to those of problem (10) as ¢
goes to 0. They then focus on solving the & approxi-
mation via a SCA procedure.

The approach developed in this paper is quite dif-
ferent from Hong et al. (2011). We no longer propose
any problem to approximate problem (10) as a whole
at the first stage. Instead, we directly make prob-
lem (10) convex in each iteration and directly con-
struct convex sets within the feasible region of prob-
lem (10) such that these sets contain better and better
solutions. Clearly, the approximation scheme and con-
vergence trajectory of our approach are different from
that of the &€ approximation approach. In some sense,
our approach succeeds in removing the parameter &.
More importantly, it builds an interesting connection
between VaR and CVaR. This allows us to obtain a
certain sense of the conservatism of the CVaR approx-
imation and to bridge the gap between the CVaR and
the VaR constraints.

4. Monte Carlo Approaches to the
CVaR-like Approximation

To implement the remedy procedure proposed in §3,
we need to solve a sequence of CVaR-like approxima-
tions. In this paper we use Monte Carlo methods com-
bined with deterministic convex optimization tools
to solve the CVaR-like approximations. Suppose that
we have n independent and identically distributed
(i.i.d.) observations of the random vector ¢, denoted
as &,&,...,&,. Then E[[c(x;, £)]T] can be estimated
by the sample mean n~! Z?zl[c(xk,gj)]+. Following
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the discussion in §3.1, the gradient V,E[[c(x;, §)]7] can
be estimated by

TLEIc(, £ = - 3V, €)1, oy (e, )
j=1

Consequently, we can estimate the linear function
L(x, x;) by
1 n

Ln (x/ xk) =
j=1

After approximating L(x, x;) by L,(x, x;), solving
the CVaR-like approximation is essentially the same
as solving the CVaR approximation, i.e., problem (5).
In the past decade, CVaR optimization problems have
attracted great attention. Various techniques have
been developed to handle the CVaR function. In par-
ticular, Rockafellar and Uryasev (2000, 2002) sug-
gested a linear approach to solve the CVaR optimiza-
tion problem. Subsequently, Andersson et al. (2001)
generalized the approach to handle credit risk opti-
mization problems with CVaR objectives. Krokhmal
et al. (2002) extended the approach to solve portfo-
lio optimization problems with CVaR objectives and
constraints. More recently, Rockafellar and Royset
(2010) used the approach to solve the buffered failure
probability—constrained problems in reliability engi-
neering design. In the following sections we briefly
introduce how to use the linear approach to solve
the CVaR-like approximation and discuss the possible
impediments of implementing this approach. We then
suggest a number of approaches that may serve as
alternatives to the linear approach.

4.1. Linear Approach
The linear approach is based on the following result
that reformulates problem (C;) as a d +1-dimensional
optimization problem.

LemMa 1. Problem (C,) is equivalent to
(C)  minimize h(x)
subject to E[[c(x, &) +t]*] — at — L(x, x;) <0

in the sense that x is an optimal solution of problem (C)
if and only if there exists t such that (x,t) is an optimal
solution of problem (C,).

Lemma 1 is a simple analogy to the equivalence
between problems (5) and (7). We omit the proof since
it is straightforward. As has been mentioned, prob-
lem (C)) is a standard convex stochastic optimization
problem. Thus it can be solved by the SAA (see, e.g.,
Shapiro et al. 2009 for a comprehensive review about
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Y ler, E)7+ (VEle(, ') (r—x,).

this topic). The SAA of problem (C}) takes the follow-
ing form:

minimize h(x)
xeX, teT

1 n
subject to - > [e(x, &)+t —at—L,(x, x,) <0.
j=1
The linear approach suggests introducing a set of aux-
iliary decision variables z;, j =1, ..., n and reformu-
lating the sample problem as the following problem:

minimize h(x)
subject to c(x,gj)—i—tgzj, j=1,...,n,

12 23
;sz—at—L”(x,xk)so, @3
j=1

xeX,teT, zjzo, j=1,...,n

Note that when the loss function c(x, §) is linear
in x, problem (23) becomes a linear programming
problem. That’s why we call this approach a linear
approach, though it does not necessarily yield a linear
problem in our context. One of the merits of the lin-
ear approach is that it does not require differentiabil-
ity conditions on the CVaR function. The convexity
of the objective and constraint functions will ensure
the uniform convergence of the random variables,
which will further ensure the convergence of the SAA
and thus the linear approach (see, e.g., Shapiro et al.
2009, Theorems 7.49 and 5.3). In contrast, the num-
ber of decision variables and the number of con-
straints in problem (23) are proportional to the sam-
ple size n, thus solving it could become quite slow,
especially when n is relatively large, say n > 10,000.
Alexander et al. (2006) considered the CVaR optimiza-
tion in portfolio selection and observed that the lin-
ear programming problem of the sample CVaR prob-
lem of Rockafellar and Uryasev (2000) becomes ill
conditioned and time consuming to solve when con-
siderable samples are simulated. Undoubtedly, when
c(x, &) is nonlinear, problem (23) will be more time
consuming to solve.

To speed up the computation, we looked at a num-
ber of alternative approaches. Ogryczak and Sliwiriski
(2011) suggested a dual approach. They formulated
the dual problem of the sample CVaR optimization
problem of Rockafellar and Uryasev (2000) and found
that the dual problem is much easier to solve than
the primal one. Specifically, they considered 50,000
scenarios and 100/200 instruments and compared
the computational efforts of solving the primal and
dual problems. They found that the efficiency of the
dual approach is encouraging. Of course, the prob-
lem they considered has a much simpler structure than
our CVaR-like approximation, and their dual problem
takes a rather simple form. How to implement
the dual approach to handle the sample CVaR-like
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approximation, or the general CVaR-related optimiza-
tion problems, can be a potential research topic.
Besides the dual approach, Alexander et al. (2006)
implemented the smoothing method to approximate
the CVaR optimization problem. Lim et al. (2010)
suggested a nondifferentiable optimization algorithm.
Chung et al. (2010) proposed an active-set method.
Iyengar and Ma (2013) developed a fast gradient
descent method. The recent work of Basova et al.
(2011) compared the linear approach, the active-set
method, and the smoothing method. They found that
the active-set method and the smoothing method are
significantly faster than the linear approach for their
reliability-based optimal design problems. Clearly, all
these methods can be tailored to solve our CVaR-like
approximation. This provides great freedom for imple-
menting the remedy procedure.

4.2. Gradient-Based Approach

When the CVaR function is sufficiently smooth, then
a gradient-based approach can be directly applied to
solve the CVaR-like approximation. Hong and Liu
(2009) provided a gradient-based Monte Carlo algo-
rithm that directly solves the CVaR-constrained pro-
gram. The gradient-based approach directly solves
problem (C,) at each iteration. It requires the evalu-
ation of function values and gradients of the objec-
tive and constraint functions for a fixed feasible
point x € X. Suppose now we have an ii.d. sample
&,6&,..., &, from the random vector £. For every
x € X, let cpyq_q.q(x) denote the [n(1—a)]th order
statistic of c¢(x, &) from n observations, where
[n(1— )] is the largest integer not exceeding n(1 — «).
Then cp,q_q..(x) is a strongly consistent estimator
of VaR,_,(c(x, &)) (see, for instance, Serfling 1980).
We can estimate CVaR,_,(c(x, &)) by

1 n
CvaRl—a,n(C(x/ g)) = na Zl:C(x’ g/) : 1[C(Xr§j)ZCpx(l—uﬂ:n]'
j=

The estimator CVaR,_, ,(c(x, £)) is a consistent esti-
mator of CVaR,_,(c(x, €)) under the assumption that
E[c(x, £€)%] < oo (Trindade et al. 2007).

The gradient of CVaR can also be estimated directly.
Specifically, we have the following result from Hong
and Liu (2009).

LEmMMA 2. Suppose Assumptions 1-3 are satisfied. Sup-
pose that VaR,_,(c(x, €)) is differentiable for any x € X.
Then for any x € X,

V. CVaR,_,(c(x, €)) = E[Vie(x, €) [ c(x, §)
> VaR;_,(c(x, €))]-

Based on Lemma 2, we can use

_ 1
Vx CvaRl—a(C(xl g)) = na Z ch(x’ g])l{‘:(xl §j)ZC[H(1—aﬂ:n]
j=1
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to estimate V,CVaR,_,(c(x, §)). Following the analy-
sis in Hong and Liu (2009), we can easily prove
that V,CVaR,_,(c(x, £)) is a consistent estimator of
V,CVaR_,(c(x, £)). Note that problem (C;) is a con-
vex optimization problem. We can then directly use a
gradient-based algorithm to solve problem (C;) with
the estimated function values and gradients.

As has been observed in the literature (e.g.,
Hong and Liu 2009), the gradient-based method is
at least an order of magnitude faster than the linear
approach. This is reasonable because smooth opti-
mization methods are generally faster than their non-
smooth counterparts. However, it is worth noting that
the gradient-based method requires more conditions
on the function c(x, §), to ensure the differentiability
of the CVaR function, as shown in Lemma 2, and thus
may be not as applicable as the linear approach.

The plentiful and relatively mature techniques for
the CVaR optimization problems also reveal the
advantages of our remedy procedure. Overall, we
believe both the VaR and the CVaR, as risk measures,
have their rationality and the decision maker may
prefer one over the other in different situations. How-
ever, we do see that the CVaR is more considered
and studied than the VaR in the aspect of compu-
tation. The optimization models built in the litera-
ture often evade the VaR not because of its rational-
ity but because of the computation difficulties. In this
paper, the problem we consider is VaR-constrained
programs. But we convert handling VaR-constrained
programs into solving CVaR optimization problems.
Therefore, our approach can make full use of the tech-
niques and tools developed for CVaR optimization.

4.3. Practical Consideration of Stopping Criteria

A major concern of using a Monte Carlo counter-
part to approximate the true stochastic optimization
problem, as suggested in this paper, may be that
this approach does not necessarily guarantee a fea-
sible solution of the true problem because of the
simulation error. This is a common situation when
using sampling-based methods to handle constraints
involving random parameters. However, we argue
that this is not a large problem, for the following
reasons. First, our approach always makes approxi-
mation in the interior of the feasible region of the
original problem and belongs to the inner approx-
imation, and in most cases the solution found by
our method is feasible even if some simulation error
exists. When implementing Algorithm CVaR-SCA, we
typically stop the algorithm if the difference between
two consecutive iterations is less than a certain tol-
erance level. We find that when the tolerance level
is comparable to the simulation error, our proce-
dure will generally stop at solutions that rarely vio-
late the original constraint. Second, once we obtain
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a candidate solution at each iteration of the algo-
rithm, we can always verify the feasibility via Monte
Carlo estimation using a very large sample size, and
we can stop the algorithm if the solution hits the
boundary. For instance, we can generate a new set of
samples that are independent of those used in Algo-
rithm CVaR-SCA and use a standard sample mean
to estimate the probability function at the candidate
solution. This simulation approach is easy to imple-
ment and is computationally cheap compared to the
optimization procedure. In the numerical experiments
conducted in the following section, we suggest check-
ing the feasibility of the solutions using Monte Carlo
estimation during implementing the algorithm and
embedding it in the stopping criteria.

5. Numerical Illustration

In this section, we study the performance of our
method through two numerical examples. The first
example is the mean-VaR portfolio management prob-
lem that we introduced in §2.2; the second is a VaR-
constrained program abstracted from the credit risk
model. We use the examples to demonstrate how to
implement our approach in real applications.

5.1. Mean-VaR Portfolio Selection

Let us consider the mean-VaR portfolio selection
problem in §2.2. Note that Table 1 summarizes the
optimal values of problem (3) and its CVaR approx-
imation for different parameter combinations. In the
experiments, we use these results as the benchmark.
We implement Algorithm CVaR-SCA to solve the
problem for all the parameter combinations. Because
the problem is sufficiently smooth, we apply the
gradient-based approach introduced in §4 to solve
the CVaR-like approximations. We use a sample size
n=20,000 for d = 10 and 50 and n = 50,000 for
d =100, and implement MATLAB function fmincon
to conduct optimization with the estimated objective
function values, constraint function values, and cor-
responding estimated gradients. We also use a sam-
ple size of 10° to check the feasibility of the solution
obtained in each iteration. The algorithm is stopped
if the difference of objective values of two consec-
utive iterations is less than or equal to 107 or if
the solution reaches the boundary of the feasible
region. For each parameter combination we first ran-
domly conduct experiments five times. The experi-
ments show that the performances across replications
are similar. The algorithm typically converges in 5-20
iterations with total computational time varying from
a few seconds to a few minutes. We found that even
for d =100 and n = 50,000, the computation is still
fast. This shows the effectiveness of the gradient-
based approach. We compute the average values of
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Table 2 Recovery of CVaR Approximation

a=0.10 a=0.05 a=0.01
d=10 w=0.05 0.139/0.420 0.084/0.179 0.048/0.061
w=0.10  0.280,0.438 0.168/0.345 0.095/0.120
w=015  0.375/0.445 0.253/0.402 0.141/0.184
d=50 w=0.05 0.233/0.486 0.116/0.323 0.062/0.078
w=010  0.435/0.486 0.229/0.465 0.119/0.158
w=0.15  0.465/0.492 0.349/0.480 0.179/0.240
d=100 w=0.05 0.238/0.493 0.125/0.421 0.053/0.083
w=010  0.460/0.493 0.248/0.483 0.124/0.167
w=0.15  0.475/0.494 0.381,/0.491 0.184,0.255

the five replications and summarize the results in
Table 2.

Comparing Table 2 with Table 1, we see that the
objective values achieved by both the CVaR approx-
imation and our approach are very close to the true
ones. This suggests that the SAA approach is quite
effective. It also shows that our approach succeeds
to remedy the lost part of the CVaR approximation
as well as to converge to the optimal solution of the
original VaR-constrained program.

Next we conduct a more extensive numerical study
to see the performance of the algorithm. Specifically,
we make 1,000 replications for 4 =10 and 100 replica-
tions for d =50. Once we obtain a solution, we plug
it into the true objective function to obtain its true
objective value. We compute the average values, and
the empirical 0.25,0.50,0.75 quantile of the replica-
tions, and report the results in Table 3. From Table 3
we see that the remedy procedure for the considered
example is quite stable.

To further observe the behavior of the proposed
remedy procedure, we take a representative combina-
tion d =50, @ =0.05, and w =0.10 and report numer-
ical results for this combination. Note that « =0.05 is
the most popular risk level in financial risk manage-
ment and d =50 is a moderately large dimension for
a portfolio. We plot a typical simulation run in Fig-
ures 1 and 2. In Figure 1, we plot the optimal objective

Table 3 Recovery of CVaR Approximation with Multiple Replications

a=0.10 a=0.05 a=0.01

d=10 d=50 d=10 d=50 d=10 d=50

w=0.05 0.25 quantile 0.420 0.484 0.173 0.309 0.060 0.074
0.50 quantile 0.421 0.484 0.176 0.323 0.061 0.076

0.75 quantile 0.422 0.485 0.180 0.336 0.062 0.078

Average  0.421 0484 0176 0.320 0.061 0.076

w=0.10 0.25 quantile 0.439 0.488 0.342 0.464 0.120 0.149
0.50 quantile 0.440 0.488 0.345 0.465 0.122 0.154

0.75 quantile 0.440 0.483 0.348 0.466 0.123 0.157

Average  0.440 0488 0.345 0.465 0.122 0.153

w=0.15 0.25 quantile 0.448 0.489 0.403 0.479 0.181 0.223
0.50 quantile 0.448 0.489 0.404 0.479 0.183 0.232

0.75 quantile 0.449 0.490 0.405 0.479 0.185 0.235

Average  0.448 0489 0.404 0479 0.183 0.229
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Figure 1 Performance of Algorithm CVaR-SCA for Portfolio
Optimization

value of problem (3) and the objective value obtained
by the corresponding CVaR approximation (see the
dashed horizontal lines).

There are two curves in the figure. The dashed curve
is the objective values for all iterations of the algorithm
and the solid curve is the objective values obtained
by plugging in the solutions generated in the true
objective function —u'x. Both curves start from the
CVaR approximation and approach the optimal objec-
tive value. Of course there exists a minor difference
between the two curves because of simulation error.

Figure 2 shows the constraint behavior for the
algorithm. In the left panel we plot the values
VaR,_,(—rTx) for the sequence of solutions generated
by the algorithm. It can be seen that the VaR con-
straint is quite loose (about 0.035) for the solution of
the CVaR approximation. While Algorithm CVaR-SCA
keeps on tightening the VaR constraint until the VaR
constraint becomes tight (w = 0.1). The right panel is
about the probability levels Pr{—rTx < w} for the gen-
erated solutions. Similarly, the probability level for the
CVaR approximation is about 98%, which is relatively
conservative, and our algorithm keeps on relaxing the
level until it falls to the target level (95%). Note that
in this example the correlations are chosen to be equal
and positive. In the online supplement we also con-
sider the case where some correlations are negative.
Note also that in this example the closed form of the
VaR/chance constraint can be derived. In cases where
the constraints cannot be derived analytically, we can
still run simulations to track the constraint behavior of
the solutions generated by our algorithm.

RIGHTS L

5.2. Credit Risk Optimization

As a second example we consider a credit risk opti-
mization problem. The example is constructed from
Andersson et al. (2001). Suppose there are d obligors
and the investor wants to allocate money among
these obligors. Credit risk may occur if the oblig-
ors fail to fulfill the obligations in full on the due
date or thereafter. The investor wants to maximize
the expected loan portfolio return while keeping the
potential credit loss from obligors’ credit migration
under some threshold. More specifically, the investor
resorts to the following optimization model:

d
D qitix;

i—1
d
Z qi
i=1

subject to VaR,_,((b—¢&)™x) <w, (24)

d d
Z q;ix; = Z qir
i=1 i=1

minimize —

I<x<u

d
g:x; <0203 q;, i=1,...,d.
i=1

For a more detailed background of credit risk opti-
mization, readers are referred to Andersson et al.
(2001), or the general credit risk literature such as J.P.
Morgan’s CreditMetrics (Gupton et al. 1997). In prob-
lem (24), x = (x;,...,x,;)" is the vector of obligor
weights that the investor wants to determine. Thus,
it is the decision vector of the problem. ! and u
are the trading limits that restrict the change of
obligor weights. The vector b= (b, ..., b;)" denotes
the future values from the obligors in the absence of
credit migration, and ¢ is the vector of future values
from the obligors with credit migration. Therefore,
c(x, &) := (b — é)"x is the credit loss of the loan port-
folio. The first constraint in problem (24) requires that
the VaR level of the portfolio loss be below the thresh-
old w. The vector 4= (g, ..., q,)" denotes the current
mark-to-market counterparty values. The second con-
straint maintains the current value of the loan port-
folio. The third constraint restricts each long individ-
ual position from exceeding 20% of the total current
portfolio value. The expected return from obligor i
in the absence of credit migration is 7. Andersson
et al. (2001) suggest that the expected portfolio return
can be expressed as Y, 4;t;X;/ >_i_; g;x;. With the sec-
ond constraint of problem (24), the expected port-
folio return is also equal to >, g;t;x;/ >i_; g;- Thus
in problem (24) we actually minimize the negative
expected portfolio return.

We consider d = 50, « = 0.05, w = 250, | =
(=2,...,-2)T, and u=(2,...,2)7, and let r; evenly
spread in [0.02, 0.12]. Since the magnitude of g does
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Figure 3 Performances of Algorithm CVaR-SCA for Credit Risk Optimization

not affect the model, we assume that the components
of g spread evenly in [0, 10]. Following Andersson
et al. (2001), we assume the future value vector ¢ has
a density p(£). Because the loss distribution is often
skewed and has a long, fat tail (Andersson et al. 2001),
we assume b — £ follows a multivariate log-normal
distribution. Specifically, we assume b — ¢ can be sim-
ulated by exp(n) — u, where u = (uy, ..., u,)" with u;
evenly spreading in [1,4] and 7 following a multi-
variate normal distribution N(u, 2). We assume the
means u,;, i =1,...,d evenly spread in [0.5, 2], the
standard deviation of each component of 7 is half of
its mean, and all the correlations between two compo-
nents are 0.2. Note that in such a setting, it is difficult
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to derive the analytical form of problem (24). But we
can still use our approach to handle the problem.

As in the first example, we implement the
gradient-based approach using the fmincon function
in MATLAB. The sample size is set as n =50,000 and
the stopping rule is the same as that of the preced-
ing example except that we reduce the tolerance level
to 107%. We run Algorithm CVaR-SCA multiple times;
the algorithm also shows similar performances.

In Figure 3 we report a typical run. The left panel
of the figure shows the convergence of the func-
tion values, and the right panel shows the behav-
ior of Pr{(b — &)Tx < w} values, estimated at the
generated solutions. From the plot we see the CVaR
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approximation provides an allocation vector of
obligor weights whose expected portfolio return is
about 6.6%. The probability constraint for this solu-
tion is greater than 98%, which is rather conser-
vative. Our algorithm improves on the allocation
vector found by the CVaR approximation and finally
approaches a new allocation vector with expected
portfolio return of approximately 8.2%. At the same
time the probability constraint is gradually relaxed
to the required level. The results again suggest that
our remedy procedure may help achieve much better
decisions.

6. Conclusion

In this paper, we have investigated the VaR-
constrained program. We reexamine the CVaR
approximation that is the best CCA of the VaR con-
strained program and propose a SCA approach to
recover the lost part of the CVaR approximation.
The approach starts from the solution found by the
CVaR approximation and makes improvement at each
iteration by solving a CVaR-like approximation; it
finally leads to an optimal solution of the original
VaR-constrained program, or a solution essentially
binding the VaR constraint. We introduce various
approaches that solve the CVaR-like approximation
encountered at each iteration and make some compar-
isons among them. The comparisons provide infor-
mation that may be useful for selecting techniques
to solve CVaR optimization problems. The numerical
experiments show that our approach works well.

We have also discussed the role of CVaR in the
multiple approaches of handling the VaR/chance con-
straints. The picture becomes clear now. The CVaR
turns out to be a watershed in solving stochastic opti-
mization problems involving VaR/chance constraints.
To handle the VaR/chance constraints, the various
CCAs of the VaR-constrained program propose to find
a good tractable CCA of the CVaR and try to get close
to the CVaR. The merit of these CCAs is that they
can be solved very efficiently by simple determinis-
tic optimization techniques. However, they may suffer
from conservatism. As can be seen, our work is on the
other side of the watershed. We start from the CVaR
and try to bring in Monte Carlo methods to improve
on the CVaR. Compared to the deterministic CCA
approach, our approach is not so neat and is often
more computationally demanding. But if computa-
tional budget is allowed, our approach may obtain
improved solutions. In many cases such improvement
can be significant and encouraging. Our approach
provides a new way of trading the computational
effort and the quality of the solutions.
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