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Estimating the sensitivities of portfolio credit risk with respect to the underlying model parameters is an
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closed-form expressions, we first develop an estimator for sensitivities, in a general framework, that relies on
the kernel method for estimation. The unified estimator allows us to further derive two general forms of the
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1. Introduction
Large financial institutions are exposed to multiple
sources of credit risk. A portfolio approach is then
needed to accurately measure and manage the overall
credit exposure. This need has become especially urgent
in view of the ongoing global financial crisis triggered,
among other reasons, by poor risk management by
some of the largest financial institutions. Some of the
key issues then include developing an accurate model
for measuring portfolio risk, selecting appropriate
performance measures to capture portfolio risk, and
devising effective portfolio risk hedging strategies.
Computing sensitivities of the selected performance
measure to underlying parameters is crucial to risk
analysis and management and to the related risk-
hedging problem. In this paper, we address this issue
for a large class of portfolio risk performance measures.

Accurately modeling dependence between default
events is a key issue in selecting a model for portfolio
credit risk. Three types of models that are commonly
used in practice are latent variable models, Bernoulli
mixture models, and doubly stochastic models. In latent
variable models, a default occurs if a random vari-
able (called a latent variable) falls below a certain

threshold, and the dependence between the default of
different firms is modeled by the dependence between
their respective latent variables. These models are
motivated by the seminal firm-value work by Merton
(1974). These are used in commercial products such as
J.P. Morgan’s CreditMetrics (Gupton et al. 1997) and
Moody’s KMV system (Kealhofer and Bohn 2001). It can
be shown that the Gaussian copula model proposed by
Li (2000), which is used commonly in pricing credit
derivatives, is a special instance of the latent variable
models. In Bernoulli mixture models, default proba-
bilities of individual obligors depend on each other
through a common set of macroeconomic factors. Condi-
tioned on these factors, default events are independent
Bernoulli random variables. These models are used
in CreditRisk+, a product developed by Credit Suisse
Financial Products (Credit-Suisse-Financial-Products
1997). In doubly stochastic models, also known as
Cox process models, a default occurs at the first jump
time of a doubly stochastic process with a nonnegative
intensity process. The dependence between obligors can
be captured by the dependence between the intensity
processes (see, e.g., Duffie and Singleton 1999).

Given a model of joint defaults, portfolio credit loss
is a random variable denoting the sum of losses caused
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by all of the default obligors. In many situations, to
manage credit risk or to price credit derivatives, we
are interested in performance measures that can be
written as expectations of some performance functions
of the credit loss. For instance, the probability that
the loss is beyond a certain threshold and the average
loss when it is beyond that threshold are related to
popular risk measures such as value-at-risk and tail
conditional expectation; the expected loss when it is
within a certain range (called a tranche) is the building
block that defines the price of a collateralized debt
obligation (CDO), a popular credit derivative.

In a model of joint defaults, there are often many
parameters. Some of them affect only individual oblig-
ors, such as the parameters related to an obligor’s
idiosyncratic risk, whereas some affect all of the oblig-
ors in the portfolio, such as the parameters related to
macroeconomic factors. Any changes to these param-
eters may affect the portfolio credit loss and, thus,
the performance measures that we are interested in.
One approach to characterizing the impact of parame-
ter changes is to calculate sensitivities, which are the
first-order derivatives of the performance measures
with respect to the parameters. Sensitivities provide
information on how small movements of parameters
affect performance measures. This information is impor-
tant in risk analysis and portfolio management. For
instance, delta hedging is one of the most fundamental
tools in portfolio risk management, where deltas are
the sensitivities of portfolio value with respect to the
underlying risk factors. In this paper, we consider the
estimation of sensitivities of portfolio credit risk with
respect to different parameters, either idiosyncratic or
macroeconomic. We focus on the three different credit
risk models mentioned earlier: latent variable, Bernoulli
mixture, and doubly stochastic models. The results
that we develop may be applicable to a broader set of
credit risk models. However, we illustrate the key ideas
through these three popular models. Fast and accu-
rate sensitivity estimators for wide classes of default
models can help analysts better measure and control
portfolio credit risk, which has become more and more
important in the wake of the current global financial
crisis.

Derivative estimation for expectations is a clas-
sic problem in Monte Carlo simulation. Besides
finite-difference approximations (see, for instance,
Glasserman 2004, §7.1), there are three main approaches
in the simulation literature: perturbation analysis (PA),
the likelihood ratio/score function (LR/SF) method,
and weak derivatives (WD). PA was first proposed by
Ho and Cao (1983) to study discrete-event systems.
It interchanges the order of differentiation and expec-
tation and estimates the expectation of the pathwise
derivative (see Glasserman 1991 for a comprehensive
introduction). To apply PA, however, the function inside

the expectation needs to be stochastically Lipschitz
continuous with respect to the parameter of interest.
This greatly limits the applicability of PA because many
functions (e.g., indicator functions) are not Lipschitz
continuous. Remedies have been proposed to solve
this problem. One approach is to apply the conditional
Monte Carlo method to smooth the discontinuous
function. This method is known as smoothed PA (SPA;
see, for instance, Fu and Hu 1997). Instead of differen-
tiating the function inside the Expectation, as in PA,
the LR method differentiates the probability measure
(see, for instance, Glynn 1987, Rubinstein 1989). It does
not require that the function inside the expectation be
continuous. Therefore, it is generally more applicable
than PA. However, LR estimators often have higher
variances compared with PA estimators when both are
applicable. The WD approach dates back to at least
Pflug (1988). It is similar to the LR method, except
that it represents the derivative of the measure as the
difference of two (new) measures. Then, the derivative
becomes the difference of two new expectations that
can be estimated using sample means. Recently, the WD
approach has been further extended to a more general
differentiation approach, known as a measure-valued
differentiation (see, for instance, Heidergott et al. 2010).
Like the LR method, the WD approach is generally
more applicable than PA, but it often yields estimators
with larger variance. Unlike PA and the LR method,
additional simulations may be necessary to implement
WD estimators. For more comprehensive reviews of the
different methods for estimating derivatives, readers
are referred to L’Ecuyer (1991) and Fu (2008).

Although most derivative estimation approaches
were proposed to analyze dynamic systems, such as
queuing systems, some were also applied to finan-
cial applications. Fu and Hu (1995) and Broadie and
Glasserman (1996) are among the early works that use
Monte Carlo methods to estimate the price sensitivities
of financial options. The same problem has also been
studied by combining Malliavin calculus and the Monte
Carlo method (see, for instance, Bernis et al. 2003).
Chen and Glasserman (2007) show that the Malliavin
calculus approach can be viewed as a combination
of PA and LR methods. Sensitivities of risk measures,
such as value-at-risk (VaR) and conditional VaR (CVaR),
have also been studied recently by Hong (2009), Hong
and Liu (2009), and Fu et al. (2009). Estimating price
sensitivities for portfolio credit derivatives, which is
closely related to our work, has also been studied.
Joshi and Kainth (2004) consider the nth-to-default
credit swaps under the Gaussian copula model of
Li (2000). Chan and Joshi (2013) derive finite proxy
schemes, which can be viewed as a combination of
the path-wise and LR methods, to study the Greeks
when the payoff function may be discontinuous. Chen
and Glasserman (2008) generalize the problem and
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considered different types of portfolio credit derivatives.
They use both the LR method and SPA. There is some
overlap between the problems we study in this paper
and those studied by Chen and Glasserman (2008).
First, if we consider only idiosyncratic parameters, their
LR method is applicable to our problem. Second, if we
consider only idiosyncratic parameters with Lipschitz
continuous functions, their SPA method is applicable
to our problem. In our paper, however, we consider
both idiosyncratic and macroeconomic factors and
performance functions with general forms, and we
focus on the use of path-wise derivatives in the estima-
tion and compare our method with the LR method
when applicable. In addition, it is important to note
that Chen and Glasserman (2008) also solve problems
that do not fit into our framework and thus cannot be
solved by our approach. For example, they consider
the default credit swaps where the payoffs depend on
the order of defaults, which cannot be written in the
portfolio loss function specified in this paper. In fact,
both Joshi and Kainth (2004) and Chen and Glasserman
(2008) arrive at the same pathwise estimator for the
default credit swaps, where the first one uses the delta
functions and the second uses the smoothing technique.
We discuss more about the difference between SPA
and our method in §3.4.

In this paper, we consider performance measures
that can be written as the expected value of a perfor-
mance function of the portfolio credit loss, and we
are interested in estimating sensitivities of the perfor-
mance measures with respect to parameters of default
models. We make the following contributions. First,
we derive a closed-form expression of the sensitivities,
which applies to both idiosyncratic and macroeconomic
parameters and to functions that may or may not be
continuous, and interestingly, we find that the dif-
ferentiability of the performance measure does not
depend on the continuity and differentiability of the
performance function. Second, we derive fast and effi-
cient sensitivity estimators for latent variable, Bernoulli
mixture, and doubly stochastic models based on the
closed-form expression, and we test them through a
number of numerical examples. Third, we show that,
to estimate a sensitivity, our method can be applied to
provide multiple unbiased estimators, although it is
difficult to conclude a priori which among them has
the smallest variance. This motivates an easy charac-
terization of the optimal linear combination of these
estimators. Empirically, the linear weights need to be
estimated, and as expected, we see that the resultant
estimator performs better than the individual estima-
tors. Last but not least, we can easily generalize our
results to estimate the sensitivities of VaR and CVaR
when each individual loss is a continuous random
variable and some regularity conditions hold (see the

supplemental material for more details available online
at http://dx.doi.org/10.1287/ijoc.2014.0602).

The rest of the paper is organized as follows. In §2,
we derive a closed-form expression of the sensitivities.
In §3 we show our method can often yield multi-
ple sample-mean estimators using the conditioning
techniques, which makes it attractive and natural to con-
sider a linear combination of the proposed estimators to
obtain further improvements with almost no additional
cost. We then discuss Monte Carlo estimation of sensi-
tivities under latent variable, Bernoulli mixture, and
doubly stochastic models in §4. The numerical results
for both our method and LR method are reported in §5,
followed by conclusions in §6. Some lengthy discus-
sions and extensions of related work are presented in
the supplemental material.

2. General Results
Suppose that there are m obligors in a loan portfolio.
We let Xi denote a random variable that determines
the default of obligor i. Specifically, obligor i defaults
if Xi < 0. Note that the dependence between any two
obligors, say i and j , can be modeled through the
dependence between Xi and Xj . In §4, we show that the
latent variable, Bernoulli mixture, and doubly stochastic
models of joint default can all be incorporated into this
framework. Let li denote the loss due to the default
of obligor i. Following the literature (e.g., Chen and
Glasserman 2008), we assume that li are constants
for all i = 1121 0 0 0 1m. However, our results can be
generalized easily to situations where li are mutually
independent and bounded random variables that are
also independent of Xj for all i1 j = 1121 0 0 0 1m. Then,
the portfolio credit loss L can be written as

L=

m
∑

i=1

li · 18Xi<091

where 18A9 is an indicator function that equals 1 when
A is true and 0 otherwise.

Let p = E6g4L57 denote the performance measure
that we are interested in, where g4 · 5 denotes the
performance function. Note that L is a discrete random
variable taking values in a finite set within 601

∑m
i=1 li7.

If g4x5 <� for every x ∈ 601
∑m

i=1 li7, then E6g4L57 <�.
Many performance measures of portfolio credit loss
can be written in this form. When g4L5 = L2, p is
the second moment of L. It can be used to compute
the variance of L, which is an important measure of
risk. When g4L5= 18L>y9, p is the probability of having
a large loss beyond a given threshold y. It is also
an important measure of risk, and can be used to
compute the portfolio VaR. When g4L5= L · 18L>y9, p is
the average loss beyond a given threshold y. It is again
an important measure of risk and is closely related
to the concept of tail conditional expectation. When
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g4L5= 4L−S`5 ·18L>S`9
− 4L−Su5 ·18L>Su9

, p is the expected
portfolio loss in the tranche from S` to Su. It is used
to price CDOs. When g4L5= L� · 18L>y9 for �≥ 1, p is
�th moment of truncated random variable, and it can
be used to model a utility-based shortfall risk. Note
that, in these examples, g4 · 5 may or may not be a
continuous function.

Let � be a parameter of the model of joint defaults—
i.e., Xi =Xi4�5 for all i = 11 0 0 0 1m. If � is an idiosyncratic
parameter, then it only affects one of the Xis. If � is
a macroeconomic factor, then it affects all Xi. In this
paper, we do not differentiate these two situations.
We consider the first situation a special case of the
second. Then, the loss L= L4�5 and p4�5= E6g4L4�557
are both functions of �. Our goal is to estimate p′4�5
through a Monte Carlo method. For the work on
estimating p itself, especially when p is a measure
of credit risk, readers are referred to Artzner et al.
(1999) and Glasserman (2004, §9) for a comprehensive
introduction to risk measures.

We suppose that �4A5= E6X3Y ∈A7 is absolutely
continuous with respect to the Lebesgue measure and
let E6X3Y = t] denote the associated density evaluated
at t. Then,

E6X3Y ∈A7= E6X · 18Y∈A97=
∫

A
E6X3Y = t7 dt (1)

for any A⊂ <, where < is the set of all real numbers.
If 4X1Y 5 has a joint density fX1Y 4 · 1 · 5, recall that

E6X3Y = t7=
∫ +�

−�

xfX1Y 4x1 t5 dx0

If Y has a density fY 4 · 5, we may write

E6X3Y = t7= fY 4t5 · E6X � Y = t70 (2)

Furthermore, if Y has a density fY 4 · 5 and Y is indepen-
dent of X, then E6X3Y = t7= fY 4t5 · E6X7. In this paper,
we need to use the following lemma of Hong and Liu
(2010) on the sensitivity of a probability function.

Lemma 1 (Hong and Liu 2010). Suppose that X4�5
is a continuous random variable at any � in N4�05, an
open neighborhood of �0, it is differentiable with probability
1 (w.p.1) at any � ∈ N4�05, and there exists a random
variable K with E6K7 <� such that �X4�0 +ã�5−X4�05� ≤
K · �ã�� for any ã� that is close enough to 0. Let �4�1 t5=

E6X ′4�53X4�5= t7. If �4�1 t5 is continuous at 4�0105, then

d

d�
Pr8X4�05 < 09= −E6X ′4�053X4�05= 070

Given Lemma 1, we can prove the following corollary,
which may be viewed as an extension or generalization
of the lemma.

Corollary 1. Suppose that, for any i = 11 0 0 0 1 k,
Xi4�5 is differentiable w.p.1 at any � ∈N4�05, and there
exists a random variable Ki with E6Ki7 < � such that
�Xi4�0 +ã�5−Xi4�05� ≤Ki · �ã�� for any ã� that is close
enough to 0. We further suppose that Xi4�5 are continuous
random variables such that Pr8Xi4�5=Xj4�59= 0 at any
fixed � ∈N4�05. Let �i4�1 t5= E6X ′

i4�5
∏k

j=11 j 6=i 18Xj 4�5<t93
Xi4�5= t7. If �i4�1 t51 i = 11 0 0 0 1 k, are continuous at 4�0105,
then

d

d�
E
[ k
∏

i=1

18Xi4�05<09

]

= −

k
∑

i=1

E
[

X ′

i4�05
k
∏

j=11 j 6=i

18Xj 4�05<093Xi4�05= 0
]

0

The proof of Corollary 1 is available in the supple-
mental material.

Theorem 1. Let p4�5= E6g4L57, where g4 · 5 is a general
<-valued function and L=

∑m
i=1 li · 18Xi<09 with constant

li and random variables Xi, i= 1121 0 0 0 1m. Let ä be an
open subset of <. Suppose that, for any � ∈ ä and any
i = 11 0 0 0 1m,

1. Xi4�5 is differentiable w.p.1 and there exists a random
variable Ki, which may depend on �, such that E6Ki7 <�

and �Xi4� +ã�5−Xi4�5� ≤Ki · �ã�� when �ã�� is close
enough to zero;

2. Xi4�5 is a continuous random variable and Pr8Xi4�5=

Xj4�59= 0 for all j 6= i; and
3. �i4�1y5 is continuous at 4�105 for any aj = 0 or 1,

where

�i4�1y5= E
[

X ′

i4�5
m
∏

j=11 j 6=i

184−15ajXj<y93Xi = y

]

0

Then, for any � ∈ä,

p′4�5= −

m
∑

i=1

E86g4L−i + li5− g4L−i57 ·X
′

i4�53Xi = 091 (3)

where L−i =
∑m

j=11 j 6=i lj · 18Xj<09.

Remark 1. Note that the conditions in Theorem 1
are essentially used to ensure that Corollary 1 can be
applied to derive Equation (6). In §§3 and 4, we show
that these conditions can be verified easily and are
typically satisfied by latent variable, Bernoulli mixture,
and doubly stochastic models.

The proof of Theorem 1 is deferred to the end of
this section. It is interesting to see that the conclusion
of Theorem 1 does not depend on the continuity and
differentiability of g4 · 5. This differs from most of the
PA literature, which often requires that the performance
function be differentiable almost surely and Lipschitz
continuous. Although the result is counterintuitive, it
can be explained by Equation (5) as later shown in the
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proof, which implies that the value of g4L5 is no longer
affected by � once the values of all indicator functions
are given.

Equation (3) provides a sample-mean estimator with
the n−1/2 rate of convergence. By analyzing the struc-
tures of different default models in §§3 and 4, we can
transform the conditional expectations in Equation (3)
to regular expectations, which yields multiple sample-
mean estimators. We show that, in §§3 and 4, this
task can be done easily based on the conclusion of
Theorem 1 for latent variable models, Bernoulli mixture
models, and doubly stochastic models.

From Equation (3), it is clear that the computational
complexity of p′4�5 for this general form depends on
whether the parameter � is idiosyncratic or macroeco-
nomic. If � is an idiosyncratic parameter with respect
to a particular obligor i, then p′4�5 in Equation (3) can
be simplified to

p′4�5= −E86g4L−i + li5− g4L−i57 ·X
′

i4�53Xi = 091

which may reduce the complexity. Moreover, the com-
putational complexity of p′4�5 also depends on that
of computing Xi and X ′

i4�5 in Equation (3), which has
model-dependent, closed-form expressions. Therefore,
we discuss more about this issue with respect to dif-
ferent models studied in §§3 and 4. Readers may be
referred to Homescu (2011) for a comprehensive survey
on computational complexity of sensitivity measures.

Given the closed form of Equation (3), we can use a
kernel estimator to estimate p′4�5 as in Hong and Liu
(2010). By Equation (1), we have

E6X3Y = 07≈
1

2�
E6X · 18−�<Y<�970

If we have an independent and identically dis-
tributed (i.i.d.) sample of 4Xi1X

′
i4�55, denoted as

84Xi111X
′
i1151 0 0 0 1 4Xi1n1X

′
i1n59, then by Equation (3), we

can estimate p′4�5 by

̂p′4�5 = −
1

2n�n

n
∑

j=1

m
∑

i=1

6g4L−i1 j + li5− g4L−i1 j57

·X ′

i1 j · 18−�n<Xi1 j<�n9
1 (4)

where L−i1 j =
∑m

s=11 s 6=i ls · 18Xs1 j<09. By Hong and Liu
(2010), we can easily show that, under some mild
conditions, ̂p′4�5 is a consistent estimator of p′4�5 if
�n → 0 and n�n → � as n→ �, and

√

2n�n6
̂p′4�5−p′4�57

converges in distribution to a normal distribution if
n�5

n → c for some constant c ≥ 0, and the optimal rate of
convergence of ̂p′4�5 is n−2/5. For instance, we can choose
�n = n−1/5 to achieve the optimal rate of convergence.
Interested readers may be referred to Hong and Liu
(2010) for more discussion on the kernel method.

The kernel estimator has two advantages. First, it is
applicable to a wide class of default models. As shown

in §4, the conclusion of Theorem 1 holds for latent
variable models, Bernoulli mixture models, and doubly
stochastic models, and therefore, the kernel estimator
can be applied to them. Even for models that are
not discussed in our paper, the kernel estimator may
still be applicable. Second, the kernel estimator is
generally easy to use. It requires only the samples of
4Xi1X

′
i4�551 i = 11 0 0 0 1m. It does not require the users

to analyze the structures of underlying default models
to derive different estimators.

However, the kernel estimator of Equation (4) has a
slower rate of convergence, 4n�n5

−1/2, than the n−1/2 of
typical Monte Carlo estimators because the expectations
in Equation (3) depend on the occurrence of probability
zero events 8Xi = 09, i = 11 0 0 0 1m.

In §5, we compare our method with the kernel
method as well as the LR method. For convenience,
we derive a general formula of the LR estimator for
the performance measure function considered in this
paper. Recall that p4�5= E6g4L4�557. Suppose � can be
written as a distributional parameter. Then,

p4�5=

∫

<n
g4L4y55 · f 4y1�5dy1

where f 4y1 �5 is the density function that also involves
the parameter �. Then,

p′4�5=

∫

<n
g4L4y55 ·

¡�f 4y1�5

f 4y1�5
· f 4y1�5dy = E6g4L5 · SF71

where SF = 4d/d�5 log4f 4·1 �55��=�0
.

One straightforward advantage of the LR estimator is
that it takes a simple closed-form expression and may
be easily obtained when the LR method is applicable
(e.g., � can be written into some density function
as a distributional parameter). However, when � is
a structural parameter rather than a distributional
parameter, we may need the assumption that g4L4�55 is
differentiable w.p.1, which may not hold in this paper.
Rubinstein (1992) developed the so-called “push-out”
method to handle this difficulty. Readers may refer to
Asmussen and Glynn (2007) for a detailed discussion
about the LR method.

We now prove Theorem 1.

Proof of Theorem 1. In the following analysis,
we suppress the dependence of Xi on � at places for
presentation convenience. To analyze p′4�5, we view
18Xi<09 as a Bernoulli random variable and consider
all combinations of 18Xi<09, i = 11 0 0 0 1m. Let Bi = 18Xi<09
and B = 4B11 0 0 0 1 Bm5. Because Bi ∈ 80119, B takes value
from ³4m5= 80119m with totally 2m elements. For each
element s ∈ ³4m5, we let s1 denote the set of obligors
where Bi = 1 and s0 denote the set of obligors where
Bi = 0. For instance, for s = 411011105 ∈ ³445, s1 = 81139,
and s0 = 82149. Note that

18B=s9 =
∏

i∈s1

18Xi<09

∏

i∈s0

18Xi≥090
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Then,

p4�5 = E6g4L57=
∑

s∈³4m5

E
[

g

( m
∑

i=1

li · 18Xi<09

)

· 18B=s9

]

=
∑

s∈³4m5

g

(

∑

i∈s1

li

)

· E
[

∏

i∈s1

18Xi<09

∏

i∈s0

18Xi≥09

]

0 (5)

Note that when li are random variables that are inde-
pendent of Xj for all i1 j = 1121 0 0 0 1m, Equation (5) can
be written as

p4�5=
∑

s∈³4m5

E
{

E
[

g

( m
∑

i=1

li ·18Xi<09

)

·18B=s9

∣

∣

∣

∣

li1i=11210001m
]}

=
∑

s∈³4m5

E
[

g

(

∑

i∈s1

li

)]

·E
[

∏

i∈s1

18Xi<09

∏

i∈s0

18Xi≥09

]

0

The conditional expectation techniques can be applied
throughout the following derivations. To simplify the
presentation, however, we assume that li are constants
for all i = 1121 0 0 0 1m throughout §§2–5. Under the
conditions in Theorem 1, we can apply Corollary 1 to
Equation (5) and have:

p′4�5 =
∑

s∈³4m5

g

(

∑

i∈s1

li

)

·
d

d�
E
[

∏

i∈s1

18Xi4�5<09

∏

i∈s0

18Xi4�5≥09

]

= −
∑

s∈³4m5

g

(

∑

i∈s1

li

)

·

{

∑

i∈s1

E
[

X ′

i4�5
∏

j∈s11 j 6=i

18Xj<09

∏

j∈s0

18Xj≥093Xi =0
]

−
∑

i∈s0

E
[

X ′

i4�5
∏

j∈s1

18Xj<09

∏

j∈s01 j 6=i

18Xj≥093Xi =0
]}

0 (6)

By Equation (6), it is clear that we can write p′4�5=
∑m

i=1 ëi, where ëi = E6Ai ·X
′
i4�53Xi = 07 for some Ai.

Without loss of generality, we consider ëm. Note that

³4m5= 6³4m− 15× 8197∪ 6³4m− 15× 80971

where Bm = 1 in the first set and Bm = 0 in the second
set. Then, by Equation (6), we have:

ëm = −
∑

s∈³4m−15×819

g

(

∑

i∈s1

li

)

· E
[

X ′

m4�5
∏

j∈s11 j 6=m

18Xj 4�5<09

·
∏

j∈s0

18Xj 4�5≥093Xm = 0
]

+
∑

s∈³4m−15×809

g

(

∑

i∈s1

li

)

· E
[

X ′

m4�5
∏

j∈s1

18Xj 4�5<09

∏

j∈s01 j 6=m

18Xj 4�5≥093Xm = 0
]

= −
∑

s∈³4m−15

[

g

(

∑

i∈s1

li + lm

)

− g

(

∑

i∈s1

li

)]

· E
[

X ′

m4�5
∏

j∈s1

18Xj 4�5<09

∏

j∈s0

18Xj 4�5≥093Xm = 0
]

1

where s has m elements in the first equation and s
has m− 1 elements in the second equation. Recall the
definitions of s1 and s0 for ³4m−15. Then, by an analog
to Equation (5), we have:

ëm = −
∑

s∈³4m−15

E
{[

g

(

∑

i∈s1

li+lm

)

−g

(

∑

i∈s1

li

)]

·X ′

m4�5·18B=s93Xm=0
}

= −E
{[

g

(m−1
∑

j=1

lj ·18Xj<09+lm

)

−g

(m−1
∑

j=1

lj ·18Xj<09

)]

·X ′

m4�53Xm=0
}

0

To simplify the notation, we let

L−i =

m
∑

j=11 j 6=i

lj · 18Xj<09

for all i = 11 0 0 0 1m, which is the portfolio loss without
obligor i. Then,

ëm = −E86g4L−m + lm5− g4L−m57 ·X
′

m4�53Xm = 090

By the symmetry of m and any i = 11 0 0 0 1m− 1 and by
Equation (6), we have:

p′4�5= −

m
∑

i=1

E86g4L−i + li5− g4L−i57 ·X
′

i4�53Xi = 090

Therefore, we conclude the proof of Theorem 1.

Remark 2. In the proof, we first transform the regu-
lar summation term into a combinatorial form, which
facilitates interchanging the order between the differ-
ential operator and summation. Moreover, the final
expression is written back in a regular summation form
rather than a combinatorial one, which can reduce the
computational complexity significantly.

3. Multiple Estimators and Optimal
Linear Combination

In this section, we demonstrate the advantages of Equa-
tion (3), which for many practically important models,
yields multiple sample-mean estimators. Among these
estimators, it may be difficult to identify the best one in
advance. This then motivates us to consider an optimal
linear combination of these estimators. The weights
of this estimator are empirically estimated, leading
to some estimation bias. However, we note that the
resultant estimator is often more efficient and always
at least as good as the best one. In this section, we also
compare and contrast the proposed method to the SPA
method.

We first provide a general framework of developing
estimators for p′4�5 by applying conditioning techniques
on both idiosyncratic and macroeconomic factors.
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3.1. Conditioning on Idiosyncratic Factors
Let �i be an idiosyncratic factor that affects only obligor
i and is not a function of �, and let éi denote a random
variable that characterizes all other random factors of
obligor i. Note that �i and éi are independent of each
other, and éi =éi4�5 is a function of �. The default
condition of obligor i is defined as 8�i < éi9. Sup-
pose we write Xi4�5= �i −éi4�5. Then, X ′

i4�5= −é ′
i 4�5,

and obligor i defaults if Xi < 0. Let f�i4 · 5 denote the
probability density function of �i. To ensure that condi-
tions 1–3 of Theorem 1 hold, we require the following
conditions on �i and éi.

(a1) éi4�5 is continuously differentiable w.p.1, and there
exists a random variable Ki, which may depend on �, such
that E6Ki7 <� and �éi4�+ã�5−éi4�5� ≤Ki�ã�� when
�ã�� is close enough to zero.

(a2) éi4�5 is a continuous random variable.
(a3) f�i 4 · 5 is continuous a.s., and there exists a constant

Bi > 0 such that f�i 4 · 5 is bounded from above by Bi.
Then by Theorem 1, Equation (3) can be further

derived as

p′4�5 = −

m
∑

i=1

E
{

6g4L−i + li5− g4L−i57 ·X
′

i4�53Xi = 0
}

=

m
∑

i=1

E
{

6g4L−i + li5− g4L−i57 ·é
′

i 4�53 �i =éi

}

=

m
∑

i=1

E
{

6g4L−i + li5− g4L−i57 ·é
′

i 4�5 · f�i 4éi5
}

0 (7)

Verification of conditions (a1)–(a3) is shown in the
supplemental material.

3.2. Conditioning on Macroeconomic Factors
Unless explicitly stated, � refers to a macroeconomic
parameter in this section. Let A be a common random
factor (e.g., a macroeconomic factor) that affects all
obligors and is not a function of �, and let B denote a
vector that includes all random variables in the system
other than A. Note that B = B4�5 is a function of �.
Suppose that we may write Xi4�5 = A − �i, where
�i = �i4B5 is a function of B and, thus, also a function
of �. For presentation convenience, we suppress the
dependence of Xi and � on � at places where there is
no ambiguity. Then, Xi =A−�i and X ′

i4�5= −�′
i4�5.

Note that A= �i when Xi = 0. Then, Xj = �i −�j and
the obligor j defaults if �i <�j . This motivates us to
define L−i =

∑m
j=11 j 6=i lj · 18�i<�j 9

. Then,

p′4�5 = −

m
∑

i=1

E
{

6g4L−i+li5−g4L−i57 ·X
′

i4�53Xi =0
}

=

m
∑

i=1

E
{

6g4L−i+li5−g4L−i57·�
′

i4�53A=�i

}

=

m
∑

i=1

E
{

E86g4L−i+li5−g4L−i57 ·�
′

i4�53A=�i �B9
}

=

m
∑

i=1

E
{

6g4L−i+li5−g4L−i57·�
′

i4�5·E613A=�i �B7
}

=

m
∑

i=1

E
{

6g4L−i+li5−g4L−i57·�
′

i4�5·fA �B4�i5
}

1 (8)

where fA �B4 · 5 is the conditional density of A condi-
tioned on B. Furthermore, if A and B are mutually
independent, then

p′4�5=

m
∑

i=1

E
{

6g4L−i + li5− g4L−i57 ·�
′

i4�5 · fA4�i5
}

0

The difference between L−i in Equation (7) and L−i

in Equation (8) may lead to different computational
complexities of p′4�5. For each i, computing L−i is in
the same order, O4m5, as computing L−i. Then, the
complexity of p′4�5 becomes O4m25. However, because
L−i = L− li18Xi<09, the complexity of computing L−i can
be reduced to O415 if L is computed in advance and
that of p′4�5 using Equation (7) can be reduced to O4m5.
On the other hand, we cannot apply this trick to L−i,
but we may first sort �11�21 0 0 0 1�m to achieve the order
of O4m log4m55 as computing p′4�5 using Equation (8).
This finding suggests that conditioning on idiosyncratic
factors (yielding L−i) may provide better estimators
compared with conditioning on macroeconomic factors
(yielding L−i) in terms of the computational complex-
ity. When estimating sensitivities with respect to an
idiosyncratic parameter, the computational complexities
of different estimators obtained by conditioning on
various random variables seems in the same order,
O4m5. In fact, it appears difficult to identify which
estimator is the best, which could be model-dependent,
and this motivates us to consider a linear combination
of all available estimators.

3.3. Optimal Combination of Multiple Estimators
As mentioned earlier, the proposed method can often
provide multiple sample-mean estimators, but we may
not be able to identify in advance which is the best in
terms of a low variance. This motivates developing an
optimal minimum variance linear combination of these
estimators.

Let 8Ã` = 4�1`1 0 0 0 1�k`5
′1 ` = 1121 0 0 0 1n9 denote an

i.i.d. sample of � = 4�11 0 0 0 1 �k5. For each `, �1`1 0 0 0 1 �k`

are computed from the same simulation run; thus they
are mutually dependent. Assuming �̄i = 41/n5

∑n
`=1 �i`,

then Ã̄ = 4�̄11 0 0 0 1 �̄k5
′ are k mutually dependent unbi-

ased sample-mean estimators of �. Let w = 4w11 0 0 0 1wk5
′

be a vector of weights and �̃ =w′Ã̄. For any constant
weight vector w, �̃ is an unbiased estimator of � if
w′1= 1, where 1 is a k-dimension vector with all ele-
ments being 1. Our goal is to select a w that minimizes
the variance of �̃.

Let è denote the covariance matrix of Ã̄. We assume
that è is positive-definite—i.e., none of the k estimator
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�̄11 0 0 0 1 �̄k can be written as a linear combination of the
other k− 1 estimators. Then Var4�̃5= Var4w′Ã̄5=w′èw.
Therefore, we want to find a w that solves the following
optimization problem:

minimize w′èw

subject to w′1= 10
(9)

By using the Lagrange relaxation approach, we can
find the optimal solution of problem (9) is

w∗
= 41′è−115−1è−110

In practice, however, è is unknown. Therefore, è
and w∗ can only be estimated. Because Ã` across `=

1121 0 0 0 1n are i.i.d., then an unbiased and strongly
consistent estimator of è is

è̂=
1

n4n− 15

n
∑

`=1

4Ã` − Ã̄54Ã` − Ã̄5′0

Then we may estimate w∗ by

ŵ∗
= 41′è̂−115−1è̂−110

Therefore, we may use �̂ = ŵ∗′Ã̄ as the estimator of �
and it is strongly consistent because of the continuous
mapping theorem (Durrett 2005). However, �̂ is no
longer unbiased because of the dependence between
ŵ∗ and Ã̄. If an unbiased estimator is necessary, one
may estimate w∗ using a pilot simulation, i.e., a small
number of additional simulation runs that are only used
to estimate w∗, so that ŵ∗ and Ã̄ can be independent.

It is worthwhile pointing out that, from the numerical
results in §5, the resultant estimator obtained above
(called the “combined estimator” in §5) does not always
perform significantly better than the best among all
multiple estimators. In that case, instead of the optimal
linear combination method, we also suggest a two-
phase simulation where one quickly finds the best
design using a pilot simulation and then generates
sample only from that design to get an unbiased
estimator. Nevertheless, the yield of multiple estimators
is a natural consequence of our proposed method, and
efficiently using these estimators is the motivation
behind applying either a linear combination or a two-
phase simulation.

3.4. Connections to SPA Method
As is apparent, the estimators we derive above are
based on conditioning techniques. We choose a par-
ticular random variable and condition on all others.
In this sense, our method can be viewed as a two-
step conditional Monte Carlo method for estimating
p′4�5. In the first step, it differentiates p4�5 and obtains
a closed-form expression as in Equation (3); and in
the second step, it evaluates the expression by using

p(�)

Condition

SPA

Differentiation

Our method

p�(�)

Differentiation

Condition

Figure 1 Comparison Between SPA and Our Method

conditioning techniques. Indeed, the second step of
this method can also be generalized to the work of
Hong and Liu (2010) and Liu and Hong (2011), which
derive the closed-form expressions (similar to the result
in Equation (3)) and then use kernel estimators to
estimate the sensitivities of probability functions and
option prices, to obtain estimators with faster rates of
convergence.

SPA is another two-step conditional Monte Carlo
method for estimating sensitivities of expected-value
functions (see, for instance, Fu and Hu 1997 for general
discussions and Chen and Glasserman 2008 for appli-
cations in credit risk management). However, unlike
our approach, it conditions in the first step to smooth
the function inside of the expectation and differentiates
the expectation in the second step. (See Figure 1 for an
illustration of the two approaches.) We believe that our
method has several advantages compared with SPA.
First, it gives a closed-form expression of the sensitivity
in the first step, e.g., Equation (3), which is independent
of specific models. This expression provides insights
on the problem itself regardless of the model, and it
can also be used to develop kernel estimators, e.g., the
one in Equation (4), which is model-independent and
can be applied easily. Second, our approach makes
conditioning on different random variables easier. Once
the closed-form expression of the sensitivity is given, it
is often straightforward to decide what to condition on
and to develop multiple estimators, as demonstrated
in §4 later. For SPA, however, one has to see through
both steps (conditioning and differentiation) to decide
what to condition on, and therefore, it is often more
difficult to apply and to develop multiple estimators.
Note that both our method and the SPA method can
be viewed as different approaches to achieving similar
(possibly the same) estimators under a two-step con-
ditional Monte Carlo framework. (See an example of
latent variable models in the supplemental material for
an illustration.)
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4. Applications to Three
Classes of Models

In this section, we apply the results of Theorem 1
to three classes of widely used credit models, latent
variable models, Bernoulli mixture models, and doubly
stochastic models to derive sensitivity estimators that
are in general more efficient than the kernel estimators.
Specifically, we directly apply both Equations (7) and (8)
to develop multiple estimators of p′4�5 for all three
models of joint defaults. Because the choices of A and
B depend on specific models, we illustrate our idea by
working on specific examples with respect to particular
parameters when applying Equation (8).

4.1. Latent Variable Models
We first consider latent variable models where obligor i
defaults if a latent variable Yi is below a threshold di.
Merton (1974) considered a one period model, where Yi

denotes the value of the obligor one period later, and
di denotes the promised debt at that time. The obligor
defaults if it fails to pay the coupon, i.e., Yi <di. By
introducing dependence among Yi, i= 11 0 0 0 1m, the
model can be used to model joint defaults. We now
introduce several examples of commonly used latent
variable models.

Example 1 (CreditMetrics and KMV Models). As
introduced in Frey and McNeil (2003), both CreditMet-
rics and KMV models assume that

Yi = aiâ +�i�i + �i1 i = 11 0 0 0 1m1 (10)

where ai = 4ai111 0 0 0 1 ai1 p5 with p <m, â = 4â11 0 0 0 1 âp5
T

follows a multivariate normal distribution with mean
vector 0 and covariance matrix ì, �11 0 0 0 1 �m are inde-
pendent standard normally distributed random vari-
ables, and �i is the mean value of Yi. In this model,
the random vector â represents the macroeconomic
factors and the random variable �i represents obligor i’s
idiosyncratic risk factor. Then, the dependence between
Yi and Yj are modeled by their dependence on the
common macroeconomic factors. Let A= 4a11 0 0 0 1am5T .
Therefore, the covariance matrix of 4Y11 0 0 0 1Ym5 is
AìA′ + diag4�2

1 1 0 0 0 1�
2
m5.

Example 2 (The Model of Li 2000). Let Ti denote
the default time of obligor i. We assume that the distri-
bution function of Ti is Fi, which is typically an exponen-
tial distribution with rate �i, i.e., Fi4t5= 1 − exp4−�it5.
Then, a loss will be incurred if the obligor defaults
before the predetermined time T , i.e., Ti < T . Let ê
denote the standard normal distribution function. Then,
8Ti <T 9 is equivalent to 8ê−14Fi4Ti55≤ê−14Fi4T 559. Let
Zi = ê−14Fi4Ti55. Note that Zi follows a standard nor-
mal distribution. In this model, Zi is often modeled as
Zi = 6Yi − E4Yi57/

√

Var4Yi5, where Yi is defined in Equa-
tion (10), E4Yi5=

∑p
j=1 aij�j +�i, and Var4Yi5= aiì a′

i+�2
i .

Let di =
√

Var4Yi5 ·ê
−14Fi4T 55+E4Yi5. Then, 8Ti <T 9 is

equivalent to 8Yi <di9.

Both Examples 1 and 2 are known as Gaussian
copula models because Y = 4Y11 0 0 0 1Ym5

T follows a
multivariate normal distribution. For Examples 1 and 2,
for instance, �i is a standard normal random variable
and éi = 4di − aiâ − �i5/�i. Equation (7) provides an
efficient approach to estimating p′4�5.

To illustrate how to apply Equation (8) to Gaussian
copula models, we consider the following specific
parameters. Suppose that di is a function of a parame-
ter �i, i.e., di = di4�i5, (as in Example 2), and we are
interested in estimating p′4�i5 for some i = 11 0 0 0 1m.
When p is the price of a CDO and �i is the default
intensity of obligor i, then p′4�i5 is known as delta
(Chen and Glasserman 2008). Without loss of generality,
we consider p′4�15.

Let A = âj for any j = 11 0 0 0 1 p. Without loss of
generality, we set A= â1. Then, 8Yi <di9 is equivalent
to 8A < �i9, where �i = 41/ai156di −

∑p

k=2 aikâk −�i�i −�i7.
Let Xi =A−�i. Then,

�′

i4�15=











d′
14�15

a11
1 i = 13

01 i = 21 0 0 0 1m0

Note that 4â11 0 0 0 1 âp5
′ follows a multivariate normal

distribution with mean u and covariance matrix ì.
We let Ì−1 and ì−1 denote the mean vector and covari-
ance matrix of â−1 = 4â21 0 0 0 1 âp5

′, and let �2
1 = Var4â15

and �1 = 4Cov4â11 â251 0 0 0 1Cov4â11 âp55
′. Then, by Bock

(1985), fâ1 �â−1
4 · 5 is the same as the density of a normal

random variable with mean �̄1 and variance �̄2
1 , where

�̄1 =�1 +�′
1ì−14â−1 −�−15 and �̄2

1 = �2
1 −�′

1ì−1�1.
By Equation (8), we have

p′4�15= E
{

6g4L−1 + l15− g4L−157 ·
d′

14�15

a11
· fâ1 �â−1

4�15

}

0

Similarly, by setting A= â21 0 0 0 1 âp, we can also develop
another p− 1 sample-mean estimators of p′4�15. Com-
bining with the one given by Equation (7), we now
have p+ 1 sample-mean estimators of p′4�15.

Example 3 (The Model of Bassamboo et al. 2008).
The Gaussian copula models cannot explain well the
extremal dependence among obligors that is observed
empirically (Mashal and Zeevi 2002), which means that
the obligors are more likely to default simultaneously
than what the Gaussian copula models predict.
Bassamboo et al. (2008) suggested the following single
factor model:

Yi =
�Z+

√

1 −�2�i
W

1 i = 1121 0 0 0 1m1

where Z denotes the common factor that affects all
obligors, �i denotes obligor i’s idiosyncratic risk, W is a
nonnegative random variable that captures a common
shock to all obligors, and Z, W , and �i are mutually
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independent. When Z and �i are independent normal
random variables and W = 1, the model becomes
the one-factor Gaussian copula model. When W is a
random variable, a small W value will create a common
shock to all obligors and cause many of them to default
simultaneously. Bassamboo et al. (2008) show that the
model can explain extremal credit risk when W or
W 2 follows a Gamma distribution. Specifically, when
W 2 follows a chi-square distribution, Yi follows a t
distribution and the model is also known as a t-copula
model (Embrechts et al. 2003).

Suppose that W = �E, where E is an exponential
random variable with the mean equal to 1 and � is
the mean of W . Suppose that we are interested in
estimating p′4�5, which is the sensitivity of the portfolio
credit risk to the average shock size.

By letting �i be a standard normal random variable
and éi = 4di�E− �Z5/

√

1 −�2, Equation (7) yields the
following estimator:

p′4�5=

m
∑

i=1

E
{

6g4L−i + li5− g4L−i57 ·é
′

i 4�5 · f�i 4éi5
}

0 (11)

Besides the estimator in Equation (11), we can also
apply Equation (8) to develop two other estimators.
Note that threshold di could be positive or negative,
depending on the parameter settings in Yi. To be
consistent with the numerical test in §5.1, we assume
di to be negative.

First, we let A=E and �i = 4�Z+
√

1 −�2�i5/4�di5.
Then, 8Yi < di9 is equivalent to 8A < �i9. Let Xi =A−�i.
Then,

�′

i4�5= −
�Z+

√

1 −�2�i
�2di

= −
�i

�
1

Let fE4x5= e−x, x ≥ 0, denote the density of E. Then,
fA �B4x5= fA4x5= fE4x5. By Equation (8), we have:

p′4�5= −

m
∑

i=1

E
{

6g4L−i + li5− g4L−i57 ·
�i

�
· fE4�i5

}

0 (12)

Second, we let A= Z. Similarly, we have �i = 4�diE−
√

1 −�2�i5/� and �′
i4�5= 4diE5/�. Let fZ4 · 5 denote the

density of Z. Then, by Equation (8), we have:

p′4�5=

m
∑

i=1

E
{

6g4L−i + li5− g4L−i57 ·
diE

�
· fZ4�i5

}

0 (13)

Given Equations (11)–(13), we can develop three
sample-mean estimators of p′4�5 if an i.i.d. sample of
8Z1E1 �11 0 0 0 1 �m9 is available. Suppose the i.i.d. sam-
ple of 8Z1E1 �11 0 0 0 1 �m9 is denoted as 84Z11E11 �1111 0 0 0 1
�m1151 0 0 0 1 4Zn1En1 �11n1 0 0 0 1 �m1n59, the three sample-
mean estimators of p′4�5 given Equations (11)–(13),
respectively, are:

p′
14�5 =

1
n

n
∑

j=1

m
∑

i=1

6g4L−i1 j + li5− g4L−i1 j57

·
diE

√

1 −�2
· f�i 4éi1 j51 (14)

where
éi1 j = 4di�Ej −�Zj5

/

√

1 −�2 and

L−i1 j =

m
∑

s=11 s 6=i

ls · 18�s1 j<és1 j 9
1 and

p′
24�5 =

1
n

n
∑

j=1

m
∑

i=1

6g4L−i1 j + li5− g4L−i1 j57

·
�i1 j

�
· fE4�i1 j51 (15)

where
�i1 j = 4�Zj +

√

1 −�2�i1 j5/4�di5 and L−i1 j =
∑m

s=11 s 6=i ls ·
18�i1 j<�s1 j 9

, and

p′
34�5 =

1
n

n
∑

j=1

m
∑

i=1

[

g4L−i1 j + li5− g4L−i1 j5
]

·
diEj

�
· fZ4�i1 j51 (16)

where
�i1 j =

(

�diEj −
√

1 −�2�i1 j
)/

� and

L−i1 j =

m
∑

s=11 s 6=i

ls · 18�i1 j<�s1 j 9
0

Because p′

k4�5, k = 11213, is a typical sample mean
estimator, it is strongly consistent by a strong law
of large numbers, and after normalization, it follows
a central limit theorem (Durrett 2005). Furthermore,
its rate of convergence is n−1/2, which is faster than
the rate of the kernel estimator ̂p′4�5 of Equation (4).
This conclusion holds for all of the models considered
throughout this paper. For the space limitation, we do
not repeat this conclusion for the rest of the models, and
we also do not provide the closed-form expressions of
the sample-mean estimators as in Equations (14)–(16).

4.2. Bernoulli Mixture Models
Let â = 4â11 0 0 0 1 âp5

′ denote a set of common economic
factors, where p <m. In Bernoulli mixture models, the
default event of obligor i follows a Bernoulli random
variable with a default probability Qi (0 < Qi < 1),
and Qi is modeled as a function of â , i.e., Qi =Qi4â5.
Furthermore, defaults of all obligors are independent
of each other once â is given. Therefore, in Bernoulli
mixture models, the dependence among all obligors
are modeled through their dependence on the common
economic factors â . The following are a few commonly
used Bernoulli mixture models.

Example 4 (CreditRisk+ Model). A Bernoulli mix-
ture model is used in CreditRisk+, a financial product
developed by Credit-Suisse-Financial-Products. As
introduced in Frey and McNeil (2003), CreditRisk+

uses Qi = 1 − e−w′
iâ , where â is a vector of indepen-

dent gamma distributed macroeconomics factors and
wi = 4wi111 0 0 0 1wi1 p5

′ is a vector of positive weights.
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Example 5 (Bernoulli Regression Models). In
Bernoulli regression models, the individual default
probability is modeled as Qi4â5= q4â1zi51 i = 11 0 0 0 1m
where zi is a deterministic vector. As introduced in
Frey and McNeil (2003), a particularly popular choice is

q4â1zi5= h4Ñ ′ziâ +Ì′zi51

where h2 < → 40115 is a strictly increasing function, Ì
and Ñ are vectors of regression parameters, and Ñ ′zi > 0.
As shown in Frey and McNeil (2003), under some
specific choices of â and h4 · 5, an individual obligor’s
default may follow a probit-normal or logit-normal
mixing-distribution.

We consider only the CreditRisk+ model introduced
in Example 4. Suppose that we are interested in esti-
mating p′4wij5 for some i= 11 0 0 0 1m and j = 11 0 0 0 1 p.
Without loss of generality, we consider p′4w115.

Let Ui1 i = 11 0 0 0 1m1 be independent uniform40115
random variables that are independent of â , and
Xi =Ui −Qi, where Qi = 1 − exp4−

∑p
j=1 wijâj5. Then,

obligor i defaults if Xi < 0. Here, Ui is equivalent to �i
and Qi is equivalent to éi in Equation (7). Then,

p′4w115= E86g4L−1 + l15− g4L−157 · â1e
w11â190 (17)

We next apply Equation (8) to develop other estima-
tors. Let fâi4 · 5 denote the density of âi. Note that, in
this model, â11 0 0 0 1 âp are mutually independent.

First, we let A = −â1. Then, we have �i =

41/wi156log41 −Ui5+
∑p

k=2 wikâk7 and

�′

i4w115=



















−
1
w2

11

[

log41−U15+
p
∑

k=2

w1kâk

]

=−
�1

w11
1

i=13

01 i=210001m0

By Equation (8) and similar analysis as in §4.1, we
have:

p′4w115 = −E
{

6g4L−1 + l15− g4L−157

·�1/w11 · fâ1
4−�15

}

0 (18)

Second, we let A = −â2 (which can be extended
easily to A = −âj for any j = 21 0 0 0 1 p). Then, �i =

41/wi256log41 −Ui5+
∑p

k=11 k 6=2 wikâk7 and

�′

i4w115=

{

â1/w121 i = 13
01 i = 21 0 0 0 1m0

By Equation (8) and similar analysis, we have:

p′4w115=E
{

6g4L−1 +l15−g4L−157·
â1

w12
·fâ2

4−�15

}

0 (19)

Given Equations (17)–(19), we can develop p + 1
sample-mean estimators of p′4w115 if an i.i.d. sample of
8â1U11 0 0 0 1Um9 is available.

4.3. Doubly Stochastic Models
Let 8Ni4t52 t ≥ 09 denote a nonhomogeneous Poisson
process with nonnegative stochastic intensity process
�i = 4�i4t52 t ≥ 05. In doubly stochastic models, the
default of obligor i occurs at the first jump time �i =
min8t ≥ 02 Ni4t5= 19. Then, conditioned on the intensi-
ties �i, i = 11 0 0 0 1m, the default time �i of obligor i are
mutually independent random variables with

Pr8�i > t � �i9= Pr8N 4t5= 0 � �i9= exp
{

−

∫ t

0
�i4u5du

}

0

Let åi =
∫ T

0 �i4u5du, and let Ei1 i = 11 0 0 0 1m be inde-
pendent exponential random variables with mean 1.
Then 8�i <T 9 is equivalent to 8Ei <åi9—i.e., obligor i
defaults before time T if Ei <åi.

To model the dependence among the obligors, the
intensity process is often modeled as

�i4t5= Sc4t5+ Si4t51 (20)

where 8Sc4t5≥ 02 t ≥ 09 models the common part of the
intensity processes of all obligors and 8Si4t5≥ 02 t ≥ 09
models the individual part of obligor i’s intensity
process. In this model, Sc4t5 and Si4t5, i = 11 0 0 0 1m, are
often modeled as diffusion processes, e.g.,

dSc4t5=�c4t1 Sc4t55 dt +�c4t1 Sc4t55 dBc4t51 (21)

dSi4t5=�i4t1 Si4t55 dt +�i4t1 Si4t55 dBi4t51 (22)

where Bc and Bi, i = 11 0 0 0 1m, are mutually independent
Brownian motion processes. To ensure the nonnegativ-
ity of Sc and Si, square-root diffusion processes (e.g.,
CIR processes) are often used.

Example 6 (The Model of Duffie and Gârleanu
2001). Duffie and Gârleanu (2001) model Sc and Si by
CIR processes with jumps, i.e.,

dSc4t5= �4�c − Sc4t55 dt +�
√

Sc4t5 dBc4t5+ dJc4t51

dSi4t5= �4�i − Sc4t55 dt +�
√

Si4t5 dBi4t5+ dJi4t51

where Bc and Bi are mutually independent Brown-
ian motions, and Jc and Ji are mutually independent
pure-jump processes and also independent of the
Brownian motions. Their jump sizes are independent
and exponentially distributed, and their jump times are
formulated as a series of Poisson processes (jump sizes
and jump times are also independent). To simulate
these processes, we may simulate the sets of jumps
first and add the jump times to the set of discretized
time steps and then apply the Euler scheme at the new
set of time steps.

To simulate �i4t5 and to evaluate åi in the doubly
stochastic models, we often use the Euler scheme to
discretize Sc4t5 and Si4t5, i = 11 0 0 0 1m (Glasserman 2004).
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Let k be the number of time steps in the discretization,
and ãt = T /k and tj = j ·ãt, j = 0111 0 0 0 1 k− 1. Further-
more, let Ŝc and Ŝi, i = 11 0 0 0 1m denote time-discretized
approximations to Sc and Si. Under the Euler scheme,

Ŝc4tj+15 = Ŝc4tj5+�c4tj1 Ŝc4tj55ãt

+�c4tj1 Ŝc4tj55
√
ãtZc1 j+11 (23)

Ŝi4tj+15 = Ŝi4tj5+�i4tj1 Ŝi4tj55ãt

+�i4tj1 Ŝi4tj55
√
ãtZi1 j+11 (24)

for j = 0111 0 0 0 1 k− 1 and i = 1121 0 0 0 1m, with Ŝc405=

Sc405 and Ŝi405 = Si405, where Zc1 j+11Zi1 j+1 are inde-
pendent standard normal random variables for j =

01 0 0 0 1 k−1 and i = 11 0 0 0 1m. Then, we can approximate
åi by

å̂i =

k−1
∑

j=0

�̂i4tj5ãt =

k−1
∑

j=0

6Ŝc4tj5+ Ŝi4tj57ãt0 (25)

Suppose we use the doubly stochastic model defined
in Equations (20)–(22) and use the discretization scheme
defined in Equation (25) to evaluate åi. Furthermore,
suppose we are interested in estimating p′4Si4055 for
i= 11 0 0 0 1m. Without loss of generality, we consider
p′4S14055.

Let Xi = Ei − å̂i. Here, Ei is equivalent to �i and å̂i is
equivalent to éi in Equation (7). Then, by Equation (7),
we have:

p′4S14055 = E
{

6g4L−1 + l15− g4L−157

· å̂′

14S14055 · fE1
4å̂15

}

1 (26)

where

å̂′

14S14055=

k−1
∑

j=0

dŜ14tj5

dS1405
·ãt

with pathwise derivative

dŜ14tj5

dS1405
=

dŜ14tj5

dŜ14tj−15
·
dŜ14tj−15

dŜ14tj−25
· 0 0 0 ·

dŜ14t15

dS1405
1

and
dŜ14tj5

dŜ14tj−15
= 1 +

d�14tj1 Ŝ14tj−155

dŜ14tj−15
ãt

+
d�14tj1 Ŝ14tj−155

dŜ14tj−15

√
ãtZi1 j 0

We may also use other individual random factors,
Zi1 k−1 (defined in Equation (24)), to derive another set
of estimators. Let Xi = −Zi1 k−1 − �i, where

�i =

(k−2
∑

j=0

�̂i4tj5ãt + Ŝc4tk−15ãt + Ŝi4tk−25ãt

+�i4tk−21 Ŝi4tk−2554ãt5
2
−Ei

)

·
[

�i4tk−21 Ŝi4tk−2554ãt5
3/2
]−1

0

Here, −Zi1 k−1 is equivalent to �i and �i is equivalent to
éi in Equation (7), and X ′

i4S14055= −� ′
i4S14055, where

� ′

i4S14055

=



























































1

�14tk−21Ŝ14tk−2554ãt5
1/2

·

[k−2
∑

j=0

dŜ14tj5

dS1405

+
dŜ14tk−25

dS1405
+
d�14tk−21Ŝ14tk−255

dS1405
ãt

]

−
�1

�14tk−21Ŝ14tk−255
·
d�14tk−21Ŝ14tk−255

dS1405
1 i=13

01 i 6=10

Then, by Equation (7), we have

p′4S14055 = E
{

6g4L−1 + l15− g4L−157

· � ′

14S14055 ·�4−�15
}

1 (27)

where �4 · 5 is the density of a standard normal
distribution.

To apply Equation (8) to derive other estimators,
we let A= −Zc1 k−1, where Zc1 k−1 is a standard normal
random variable in Equation (23). The default event of
obligor i, 8Ei < å̂i9 is equivalent to 8A<�i9, where

�i =

(k−2
∑

j=0

�̂i4tj5ãt + Ŝi4tk−15ãt + Ŝc4tk−25ãt

+�c4tk−21 Ŝc4tk−2554ãt5
2
−Ei

)

·
[

�c4tk−21 Ŝc4tk−2554ãt5
3/2
]−1

0

Then,

�′

i4S14055=















∑k−1
j=0 4dŜ14tj5/dS14055

�c4tk−21 Ŝc4tk−2554ãt5
1/2

1 i = 13

01 i 6= 10

By Equation (8), we have:

p′4S14055 = E
{

6g4L−1 + l15− g4L−157

·

∑k−1
j=0 4dŜ14tj5/dS14055

�c4tk−21 Ŝc4tk−2554ãt5
1/2

·�4−�15

}

0 (28)

Given Equations (26)–(28), we can develop three
sample-mean estimators of p′4S14055 if an i.i.d. sam-
ple of 8E11 0 0 0 1 Em1Zc111 0 0 0 1Zc1 k1Zi1 j1 i = 11 0 0 0 1m1 j =

11 0 0 0 1 k9 is available.
Under the Euler scheme, the computational

complexity of å̂i is O4k5, but the complexity of com-
puting å̂′

i4�5 depends on the exact form of parameter
�, as it does for p′4�5. If � is an idiosyncratic parameter,
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e.g., � = S1405, then it takes O4km5 to compute p′4�5
by Equations (26), (27), or (28). If � is a macroeco-
nomic parameter, e.g., � = Sc405, then it takes O4km25 to
compute p′4�5 using L−i and O4km5 to compute p′4�5
using L−i, which is caused by the difference between
computing L−i and L−i.

5. Numerical Experiments
In this section, we test the performances of our estima-
tors through three examples, including one for latent
variable models, one for Bernoulli mixture models, and
one for doubly stochastic models. In each example, we
consider two performance functions, g4L5= 18L>y9 and
g4L5= L ·18L>y9 (denoted as Cases A and B, respectively),
and estimate the dE6g4L57/d� for some parameter �
that is in the model of the joint defaults. For each
example and each performance function, we consider
three types of estimators, the LR estimator when it
is applicable (we will derive the LR estimator later),
the kernel estimator given by Equation (4), and the
various sample-mean estimators developed in §4, and
we compare their performances. It is worth noting
that there are multiple sample-mean estimators that
can be used to estimate p′4�5 by the results in §4.
Furthermore, these estimators can all be computed
by using the sample generated in the same simula-
tion. Therefore, this motivates us to use linear com-
binations of these estimators to obtain more efficient
estimators.

In all three examples, without additional specifi-
cations, there are 100 obligors in the loan portfolio
(i.e., m= 100) and the loss due to default of obligor i
equals 100 (i.e., li = 100 for all i = 11 0 0 0 1100). In both
performance functions, we set y = 21000—i.e., we are
interested in the cases where at least 20 obligors default.
Other parameters of examples will be introduced
according to their models.

To use the kernel estimator of Equation (4), we need
to choose the bandwidth parameter �n. As shown
in Hong and Liu (2010), to achieve the optimal rate
of convergence, �n should be in the order of n−1/5.
Then, we set �n = cn−1/5 for some positive constant c.
We test the kernel estimators with different values of c
for all three examples and find that c = 1 is always
a good choice. Therefore, we set c = 1 for all three
examples.

5.1. A Latent Variable Model
We consider the model of Bassamboo et al. (2008)
introduced in Example 3. We suppose that both the
common factor Z and idiosyncratic factor �i follow
a standard normal distribution, �= 006, di = −2, for
all i, and the common shock factor W = �E where
� = 1 and E follows an exponential distribution with

mean 1. We are interested in estimating the sensitivities
of the expected performances of the two performance
functions with respect to the average shock size �.

To obtain the LR estimator, we consider � as the
mean parameter of W (i.e., we transfer the structural
parameter into a distributional parameter). Then, � will
not appear in other random variables, which allows
us to obtain the score function (SF). The density func-
tion of W , fW 4x5= 41/�5fE4x/�5= 41/�5e−x/� for x ≥ 0.
Then,

p′4�5= E8g4L5 · SF9= E8g4L5 · 4−1 +E5/�91 (29)

where SF = 4d/d�5 log441/�5e−W/�5= −41/�5+W/�2 =

4−1 +E5/�. Given Equation (29), we obtain the LR
estimator of p′4�5 if an i.i.d. sample of 4Z1E1 �11 0 0 0 1 �m5
is available.

To simulate the joint defaults, we can generate
an i.i.d. sample of 4Z1E1 �11 0 0 0 1 �m5, denoted by
84Z`1E`1 �11 `1 0 0 0 1 �m1`52 `= 1121 0 0 0 1n9. Based on the
sample, we may compute the kernel estimator of Equa-
tion (4), the LR estimator of Equation (29), the three
sample-mean estimators of Equations (14)–(16) (which
we denote as Estimators 1–3, respectively), and the
combined estimator calculated from the three sample-
mean estimators (see §3.3 for derivation). We report
the estimates (denoted by M̄) and the standard errors
of these estimators (denoted by s.e.) in Table 1 with
different sample sizes.

From Table 1, we have several findings for both
performance functions. First, the kernel estimator can
appropriately estimate the sensitivities. This finding
demonstrates the correctness of Theorem 1 and the
usefulness of the kernel estimator. Second, the sample-
mean estimators and the combined estimator appear
to have a rate of convergence of n−1/2 and the kernel
estimator appears to have a rate of convergence nearly
n−1/2. This finding supports our motivation of deriving
sample-mean estimators. Third, the combined estimator
has a smaller standard error than the three sample-
mean estimators. Fourth, conditioning on a common
risk factor, e.g., Estimators 2 and 3, may yield estimators
that have smaller standard error than conditioning
solely on an idiosyncratic risk factor (as in Chen and
Glasserman 2008). Fifth, the LR estimator achieves the
same rate of convergence of n−1/2 as the sample-mean
estimators, but it has larger standard errors than the
best sample-mean estimator (and also the combined
estimator).

We next consider the time taken to compute each esti-
mate. Unlike the previous experiment only using one
i.i.d. sample to obtain all of the estimates, the numerical
test for timing is carried out by using different i.i.d.
samples for different estimates. We run the MATLAB
code on a 3.40 GHz Intel Quad-Core PC with 4 GB of
RAM for our numerical tests. Even though there are
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Table 1 The Estimates and Their Standard Errors (s.e.) for the Model of Bassamboo et al. (2008)

Sample size n 104 105 106

Case A M̄ s.e. (×10−2) M̄ s.e. (×10−3) M̄ s.e. (×10−3)

Estimator 1 −002052 202 −002111 701 −002048 202
Estimator 2 −002041 0012 −002072 0039 −002068 0012
Estimator 3 −002061 0021 −002081 0066 −002064 0021
Combined −002046 0011 −002074 0034 −002067 0011
Kernel −002260 204 −002091 705 −002019 206
LR −002144 0036 −002069 101 −002069 0035

Case B M̄ s.e. M̄ s.e. M̄ s.e.

Estimator 1 −98308 4705 −1100307 1504 −98302 4075
Estimator 2 −97101 801 −98909 206 −98805 0081
Estimator 3 −99104 906 −99400 300 −98604 0096
Combined −97905 602 −99104 200 −98707 0062
Kernel −1102901 5203 −1100401 1605 −97708 506
LR −1102101 1905 −98907 601 −99001 109

Note. Estimators 1–3 are specified by Equations (14)–(16), respectively.

four cores, the MATLAB code is always executed using
a single core. The computational times for computing
the Estimator 1, combined estimator, kernel estimator,
and LR estimator with 100 independent replications
are reported in Table 2. Note that we fix the number of
obligors m= 100 on the left panel of Table 2, and we
fix the sample size n= 104 on the right panel.1

We find that the times for computing Estimator 1 and
the kernel estimator are almost the same, and they are
higher than that of computing the LR estimator. From
the left panel in Table 2, the time of computing the
combined estimator is about one-order larger than other
estimators (≈ 15 times greater than that of computing
Estimator 1), which is reasonable based on the analysis
of the computational complexities of different estima-
tors as shown in §3. Recall that the computational
complexity of either Estimators 2 or 3 is O4m25 and that
of Estimator 1 is O4m5. Therefore, the computational
complexity of the combined estimator, calculated based
on the three sample-mean estimators, is also O4m25.
This is also consistent with the result in the right panel.
The times for computing Estimator 1, the kernel esti-
mator, and the LR estimator increases linearly as m
increases while that of computing the combined estima-
tor grows faster than O4m5. In this case, the benefit of
the combined estimators (as well as Estimators 2 and 3)
may be canceled out as a result of a higher computa-
tional complexity. Thus, we suggest deriving estimators
by conditioning only on idiosyncratic factors for macro-
economic parameters when the number of obligors
is large.

1 The threshold y also increases in proportion to the number of
obligors m.

Table 2 Time (in Seconds) Taken to Compute Each Estimator with
100 Replications

Sample size n 104 105 106

Estimator 1 0009 0079 8010
Combined 1021 11090 122088
Kernel 0008 0069 7002
LR 0005 0043 4031

Number of obligors m 10 100 11000

Estimator 1 0002 0009 0086
Combined 0005 1021 69088
Kernel 0003 0008 0081
LR 0002 0005 0050

5.2. A Bernoulli Mixture Model
We consider the CreditRisk+ model introduced in Exam-
ple 4. We suppose that â is a 5-dimensional vector
of independent gamma distributed macroeconomics
factors all with shape parameter 3 and scale parame-
ter 0.1 (i.e., âj ∼Gamma4310015 for j = 11 0 0 0 15), and all
weights are equal to 001 (i.e., wij = 001 for i = 11 0 0 0 1100
and j = 11 0 0 0 15). We are interested in estimating the
sensitivities of the expected performances of the two
performance functions with respect to w11.

For this example, it is unclear to us how the LR
method may be applied directly because we are not
able to write the parameter w11 as a distributional
parameter of a single random variable. Push-out tech-
niques may be helpful when the structural parameter
w11 cannot be easily converted to a distributional
parameter (Rubinstein 1992). However, this technique is
model-dependent and may not be suitable for general
models. Thus, we do not consider the LR method for
this example.

In this example we have six sample-mean estimators
(denoted as Estimators 1–6). Estimator 1 is the one
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Table 3 The Estimates and Their Standard Errors for the CreditRisk+ Model

Sample size n 104 105 106

Case A M̄ s.e. (×10−3) M̄ s.e. (×10−4) M̄ s.e. (×10−4)

Estimator 1 000100 0060 000099 109 000099 0061
Estimator 2 000091 109 000099 604 000095 200
Estimator 3 000071 203 000104 904 000093 208
Estimator 4 000071 201 000098 805 000096 209
Estimator 5 000094 207 000097 806 000093 208
Estimator 6 000075 200 000099 901 000095 209
Combined 000095 0058 000099 109 000098 0059
Kernel 000090 100 000100 404 000095 107

Case B M̄ s.e. M̄ s.e. M̄ s.e.

Estimator 1 23085 103 23065 0041 23052 0013
Estimator 2 21097 309 23049 1035 22074 0042
Estimator 3 16095 409 24048 1098 22038 0059
Estimator 4 17079 404 23004 1079 23000 0060
Estimator 5 22002 506 22099 1082 22044 0059
Estimator 6 17078 401 23056 1093 22084 0061
Combined 22087 102 22086 0040 22084 0012
Kernel 21059 202 23046 0092 22086 0036

Note. Estimators 1–6 are specified by Equations (17)–(19), respectively.

given by Equation (17), Estimator 2 is the one given
by Equation (18), and Estimators 3–6 are the ones
given by Equation (19) applied to â2–â5, respectively.
The combined estimator is calculated by combining
Estimators 1–6.

We report the performances of the kernel estimators,
the six sample-mean estimators, and the combined
estimators for different sample sizes in Table 3. From
the table we see that the findings of §5.1 also hold in this
example, except that the estimator conditioning on the
idiosyncratic risk factor (i.e., Estimator 1) has a lower
standard error than the estimators conditioning on the
common risk factors (i.e., Estimators 2–6). This implies
that it is hard to identify which one is better in advance
among the estimators derived by conditioning on either
idiosyncratic factors or macroeconomic factors.

We also report the computation times of different
estimators in Table 4. It is interesting to find that the
computational time of computing Estimator 1 and that
of computing the kernel estimator are almost the same
and in the same order of computing other estimators.
This is because the computational complexities of all

Table 4 Time (in Seconds) Taken to Compute Each Estimator with
100 Replications

Sample size n 104 105 106

Estimator 1 0005 0040 3047
Estimator 2 0010 0065 5051
Estimators 3–6 0020 1068 14079
Combined 0026 2009 18043
Kernel 0006 0040 3048

estimators are O4m5 when the parameter w11 is an
idiosyncratic parameter. The time for computing the
combined estimator, which is calculated based on the
six sample-mean estimators, is less than the total time
of computing each of them. This finding suggests the
advantage of using a linear combination of multiple
estimators for idiosyncratic parameters.

5.3. A Doubly Stochastic Model
We consider a doubly stochastic model where both Sc4t5
and Si4t51 i= 11 0 0 0 1m1 follow CIR processes. Specifi-
cally, suppose that

�c4t1 Sc4t55= �c4�c − Sc4t55 and

�c4t1 Sc4t55= �c

√

Sc4t51

�i4t1 Si4t55= �i4�i − Si4t55 and

�i4t1 Si4t55= �i

√

Si4t51 i = 11 0 0 0 1m1

(30)

where �c = 00002, �c = 001, �c = 0002, and �i = 00001,
�i = 0007, �i = 0001 for all i = 11 0 0 0 1m. The initial values
Sc405= 001 and Si405= 0008 for all i = 11 0 0 0 1m, and the
time horizon T = 1. We are interested in estimating
the sensitivities of the expected performances of the
two performance functions with respect to S1405. In the
numerical study, we use the discretization scheme
introduced in §4.3 to evaluate åi, the integral of the
default intensity of obligor i for all i = 11 0 0 0 1m.

The LR method cannot be directly applied to doubly
stochastic models if we use Equation (25) under the
Euler scheme because the structural parameter S1405
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Table 5 The Estimates and Their Standard Errors for the Doubly Stochastic Model with å̂i Given by Equation (25)

Time steps k 2 4 12

Case A M̄ s.e. (×10−3) M̄ s.e. (×10−3) M̄ s.e. (×10−3)

Estimator 1 000516 0020 000519 0020 000518 0020
Estimator 2 000491 307 000587 609 000412 1207
Estimator 3 000573 207 000499 402 000447 901
Combined 000516 0020 000519 0020 000518 0020
Kernel 000518 0064 000523 0064 000528 0064

Case B M̄ s.e. M̄ s.e. M̄ s.e.

Estimator 1 119022 0042 119090 0042 119053 0042
Estimator 2 113030 7074 133013 14060 99030 2607
Estimator 3 130089 5067 114051 8093 106002 1902
Combined 119024 0042 119089 0042 119053 0042
Kernel 119067 1034 120068 1035 121078 1036

Note. Estimators 1–3 are specified by Equations (26)–(28), respectively.

cannot be fully converted to a distributional parameter.
To make the LR method work, we approximate åi by

å̂i =

k
∑

j=1

�̂i4tj5ãt =

k
∑

j=1

6Ŝc4tj5+ Ŝi4tj57ãt1 (31)

and use the conditional technique of Hong and Liu
(2010). After some derivation (see the supplemental
material for the detailed derivation), we have the LR
estimator

p′4S14055 = E
{

g4L5 · 44Ŝ14t15−�1�1ãt5
2
−�2

1S1405ãt

− 41 −�1ãt5
2S2

14055 · 42�
2
1S

2
1405ãt5

−1
}

0 (32)

Besides the LR estimator, we have three other sample-
mean estimators. Estimator 1 is given by Equation (26),
and Estimators 2 and 3 are given by Equations (27) and

Table 6 The Estimates and Their Standard Errors for the Doubly Stochastic Model with å̂i Given by Equation (31)

Time steps k 2 4 12

Case A M̄ s.e. (×10−3) M̄ s.e. (×10−3) M̄ s.e. (×10−3)

Estimator 1 000514 0020 000516 0020 000520 0020
Estimator 2 000534 309 000462 601 000479 1309
Estimator 3 000537 206 000448 400 000496 907
Combined 000514 0020 000516 0020 000520 0020
Kernel 000513 0064 000516 0064 000523 0064
LR 000680 18702 001864 26503 −004638 46000

Case B M̄ s.e. M̄ s.e. M̄ s.e.

Estimator 1 118080 0042 119022 0042 120013 0042
Estimator 2 122047 8014 106054 12084 109085 2903
Estimator 3 123059 5053 103099 8042 115023 2005
Combined 118080 0042 119021 0042 120013 0042
Kernel 118046 1034 119008 1034 120090 1035
LR 183057 424031 414097 601039 −1118606 1104205

Note. Estimators 1–3 are specified by Equations (26)–(28), respectively.

(28), respectively. The combined estimator is calculated
by combining Estimators 1–3.

In this example, we fix the sample size n= 106 and
investigate how the number of time steps affects the
accuracy of the estimators. We report the estimates (M̄ )
and their standard errors (s.e.) for different numbers of
time steps in Table 5 with å̂i given by Equation (25)
and Table 6 with å̂i given by Equation (31). From both
tables, we see that the performances of Estimators 2,
3, and the LR estimator deteriorate as the number
of time steps increases. This deterioration is typical
for estimators that condition on the last time step
(see, for instance, Hong and Liu 2010 for some more
examples). However, in our example, both Estimator 1
(and thus the combined estimator) and the kernel
estimator are not affected by the numbers of time steps.
In this example, the LR estimator performs poorly
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when the sample size is n = 106. To make sure the
LR estimator is correct, we run the experiment with
time step k = 4, sample size n = 1010, and the other
parameters remaining the same. It takes approximately
84 hours to obtain the estimate 000537 with a standard
error 000024.

6. Conclusions
In this paper, we derive a closed-form expression for
the sensitivities of the expected value of a performance
function of a portfolio credit loss with respect to a
parameter in the model of joint defaults. We show
that the differentiability does not depend on the dif-
ferentiability of the performance function. Based on
the closed-form expression, which is in the form of a
conditional expectation, we propose two methods to
estimate the sensitivities. First, we propose a kernel
estimator that is typically easy to use and applicable to
many models of joint default but that has a rate of con-
vergence slower than n−1/2. Second, we propose using
model information to further convert the conditional
expectation to unconditioned expectations and using
sample-mean estimators to estimate the sensitivities.
We demonstrate the second method on three commonly
used models of joint defaults: latent variable, Bernoulli
mixture, and doubly stochastic models. We show that
multiple sensitivities can be derived based on the second
method. This suggests that all sample-mean estimators
should be combined to further improve the estimation
performance. We test the kernel estimator, various
sample-mean estimators, and the combined estimator
through three examples and compare them with the
estimators derived by the LR method. The numerical
results show that various sample-mean estimators by
our method often work well.

We report the computational times of computing Esti-
mator 1, the combined estimator, the kernel estimator,
and the LR estimator when sample size n = 106 in
Table 7. From Table 7, we find that it almost takes
the same amount of time to compute Estimator 1,
the kernel estimator, and the LR estimator. Moreover,
the time for the combined estimator increases slightly
compared with other estimators even though the com-
bined estimator is obtained after computing the three
sample-mean estimates.

For future work, we will study how to estimate
sensitivities when the joint defaults are modeled using

Table 7 Time (in Seconds) Taken to Compute Each Estimator with
100 Replications

Time steps k 2 4 12

Estimator 1 18060 28094 68013
Combined 30068 35072 84081
Kernel 18067 24096 68048
LR 17038 23054 67028

frailty models or self excited models, which are closely
related to doubly stochastic models but are capable of
capturing default clustering effects (see, for instance
Giesecke et al. 2010 for a thorough introduction of
these models). In these models, the intensity function
may not be continuous with respect to the parameter
that we want to consider. Therefore, the conditions of
Theorem 1 may not hold, and the sensitivities may be
more difficult to estimate than under doubly stochastic
models.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/ijoc.2014.0602.

Acknowledgments
The authors thank the associate editor and two anonymous
referees for their insightful and detailed comments that
have significantly improved this paper. This research was
supported in part by the Hong Kong Research Grants Council
[GRF613410, GRF613011, and N-HKUST 626/10].

References
Artzner P, Delbaen F, Eber J-M, Heath D (1999) Coherent measures

of risk. Math. Finance 9(3):203–228.
Asmussen S, Glynn PW (2007) Stochastic Simulation: Algorithms and

Analysis (Springer, New York).
Bassamboo A, Juneja S, Zeevi A (2008) Portfolio credit risk with

extremal dependence: Asymptotic analysis and efficient simula-
tion. Oper. Res. 56(3):593–606.

Bernis G, Gobet E, Kohatsu-Higa A (2003) Monte Carlo evaluation of
Greeks for multidimensional barrier and lookback options. Math.
Finance 13(1):99–113.

Bock RD (1985) Multivariate Statistical Methods in Behavioral Research,
2nd ed. (Scientific Software International, Chicago).

Broadie M, Glasserman P (1996) Estimating security price derivatives
using simulation. Management Sci. 42(2):269–285.

Chan JH, Joshi MS (2013) Fast Monte Carlo Greeks for financial
products with discontinuous pay-offs. Math. Finance 23(3):
459–495.

Chen N, Glasserman P (2007) Malliavin Greeks without Malliavin
calculus. Stochastic Processes Their Appl. 117(11):1689–1723.

Chen Z, Glasserman P (2008) Sensitivity estimates for portfolio credit
derivatives using Monte Carlo. Finance Stochastics 12(4):507–540.

Credit-Suisse-Finanical-Products (1997) CreditRisk+: A credit risk
management framework. Technical report, http://www.csfb
.com/institutional/research/assets/creditrisk.pdf.

Duffie D, Gârleanu N (2001) Risk and valuation of collateralized
debt obligations. Financial Analysts J. 57(1):41–59.

Duffie D, Singleton KJ (1999) Modeling term structures of defaultable
bonds 1999. Rev. Financial Stud. 12(4):687–720.

Durrett R (2005) Probability: Theory and Examples, 3rd ed. (Duxbury
Press, Pacific Grove, CA).

Embrechts P, Lindskog F, McNeil A (2003) Modeling dependence with
copulas and applications to risk management. Rachev ST, ed.
Handbook of Heavy Tailed Distribution in Finance (Elsevier/North-
Holland, Amsterdam), 329–384.

Frey R, McNeil A (2003) Dependent defaults in models of portfolio
credit risk. J. Risk 6(1):59–92.

Fu MC (2008) What you should know about simulation and deriva-
tives. Naval Res. Logist. 55(8):723–736.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
22

 N
ov

em
be

r 
20

14
, a

t 2
2:

55
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Hong, Juneja, and Luo: Estimating Sensitivities of Portfolio Credit Risk
INFORMS Journal on Computing 26(4), pp. 848–865, © 2014 INFORMS 865

Fu MC, Hu JQ (1995) Sensitivity analysis for Monte Carlo simulation
of option pricing. Probab. Engrg. Inform. Sci. 9(3):417–446.

Fu MC, Hu JQ (1997) Conditional Monte Carlo: Gradient Estimation and
Optimization Applications (Kluwer, Norwell, MA).

Fu MC, Hong LJ, Hu J-Q (2009) Conditional Monte Carlo estimation
of quantile sensitivities. Management Sci. 55(12):2019–2027.

Giesecke K, Kakavand H, Mousavi M, Takada H (2010) Exact and
efficient simulation of correlated defaults. SIAM J. Financial
Math. 1(1):868–896.

Glasserman P (1991) Gradient Estimation via Perturbation Analysis
(Kluwer, Norwell, MA).

Glasserman P (2004) Monte Carlo Methods in Financial Engineering
(Springer, New York).

Glynn PW (1987) Likelihood ratio gradient estimation: An overview.
Thesen A, Grant H, Kelton WD, eds. Proc. 19th Conf. Winter
Simulation (WSC’87) (ACM, New York), 366–375.

Gupton GM, Finger CC, Bhatia M (1997) CreditMetrics®—Technical
Document (J. P. Morgan & Co. New York).

Heidergott B, Vázquez–Abad FJ, Pflug G, Yuan TF (2010) Gradient
estimation for discrete-event systems by measure-valued differ-
entiation. ACM Trans. Modeling Comput. Simulation 20(1):Article 5.

Ho YC, Cao XR (1983) Perturbation analysis and optimization of
queueing networks. J. Optim. Theory Appl. 40(4):559–582.

Homescu C (2011) Adjoints and automatic (algorithmic) differentia-
tion in computational finance. Working paper, http://ssrn.com/
abstract=1828503.

Hong LJ (2009) Estimating quantile sensitivities. Oper. Res. 57(1):
118–130.

Hong LJ, Liu G (2009) Simulating sensitivities of conditional value at
risk. Management Sci. 55(2):281–293.

Hong LJ, Liu G (2010) Pathwise estimation of probability sensitivities
through terminating or steady-state simulations. Oper. Res.
58(2):357–370.

Joshi MS, Kainth DS (2004) Rapid computation of prices and deltas of
nth to default swaps in the Li model. Quant. Finance 4(3):266–275.

Kealhofer S, Bohn JR (2001) Portfolio Management of Default Risk
(KMV, San Francisco).

L’Ecuyer P (1991) An overview of derivative estimation. Proc. 23rd
Conf. Winter Simulation (IEEE Computer Society, Washington,
DC), 207–217.

Li D (2000) On default correlation: A copula function approach.
J. Fixed Income 9(4):43–54.

Liu G, Hong LJ (2011) Kernel estimation of the Greeks for options
with discontinuous payoffs. Oper. Res. 59(1):96–108.

Mashal R, Zeevi A (2002) Beyond correlation: Extreme co-movements
between financial assets. Working paper, Columbia University,
New York.

Merton R (1974) On the pricing of corporate debt: The risk structure
of interest rates. J. Finance 29(2):449–470.

Pflug G (1988) Derivatives of probability measures-concepts and
applications to the optimization of stochastic systems. Varaiya P,
Kurzhanski AB, eds. Discrete Event Systems: Models and Applica-
tions, Lecture Notes Control Inform. Sci., Vol. 103 (Springer, Berlin,
Heidelberg), 252–274.

Rubinstein RY (1989) Sensitivity analysis and performance extrapola-
tion for computer simulation models. Oper. Res. 37(1):72–81.

Rubinstein RY (1992) Sensitivity analysis of discrete event systems
by the “push-out” method. Ann. Oper. Res. 39(1):229–250.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
22

 N
ov

em
be

r 
20

14
, a

t 2
2:

55
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 


