
OPERATIONS RESEARCH
Vol. 62, No. 6, November–December 2014, pp. 1416–1438
ISSN 0030-364X (print) � ISSN 1526-5463 (online) http://dx.doi.org/10.1287/opre.2014.1315

© 2014 INFORMS

Balancing Exploitation and Exploration in Discrete
Optimization via Simulation Through a Gaussian

Process-Based Search

Lihua Sun
School of Economics and Management, Tongji University, 200092 Shanghai, China, sunlihua@tongji.edu.cn

L. Jeff Hong
Department of Economics and Finance; and Department of Management Sciences, College of Business, City University of Hong Kong,

Kowloon, Hong Kong, jeffhong@cityu.edu.hk

Zhaolin Hu
School of Economics and Management, Tongji University, 200092 Shanghai, China, huzhaolin@gmail.com

Random search algorithms are often used to solve discrete optimization-via-simulation (DOvS) problems. The most critical
component of a random search algorithm is the sampling distribution that is used to guide the allocation of the search
effort. A good sampling distribution can balance the trade-off between the effort used in searching around the current
best solution (which is called exploitation) and the effort used in searching largely unknown regions (which is called
exploration). However, most of the random search algorithms for DOvS problems have difficulties in balancing this trade-off
in a seamless way. In this paper we propose a new scheme that derives a sampling distribution from a fast fitted Gaussian
process based on previously evaluated solutions. We show that the sampling distribution has the desired properties and
can automatically balance the exploitation and exploration trade-off. Furthermore, we integrate this sampling distribution
into a random research algorithm, called a Gaussian process-based search (GPS) and show that the GPS algorithm has the
desired global convergence as the simulation effort goes to infinity. We illustrate the properties of the algorithm through a
number of numerical experiments.

Subject classifications : optimization-via-simulation; exploitation and exploration; Gaussian process-based search.
Area of review : Simulation.
History : Received September 2012; revisions received September 2013, May 2014, July 2014; accepted July 2014.

Published online in Articles in Advance October 15, 2014.

1. Introduction
Simulation is one of the most widely used operations
research tools in practice. When it is used, the goal is often
to find the best combination of parameters that optimizes
a system performance measure. This is what we call opti-
mization via simulation (OvS). For instance, to design a
manufacturing line we need to decide the buffer size of
each station to maximize the overall throughput, to man-
age an inventory system we need to determine the inven-
tory level of all products to maximize the expected profit,
and to design an air-cargo terminal we need to choose the
number of truck docks for different types of cargos to min-
imize the average truck waiting time. In the above three
examples, the decision variables take integer values. This
is called discrete OvS (DOvS). DOvS problems are gen-
erally difficult to solve because the objective function is
embedded in a stochastic simulation model with no closed-
form expressions and can only be estimated through run-
ning often time-consuming simulation experiments.

To solve DOvS problems, random search algorithms
are often used. Depending on what type of solutions the

algorithms converge to, these algorithms can be divided
into locally convergent algorithms and globally convergent
algorithms. Locally convergent random search algorithms,
e.g., the random search of Andradóttir (1995), the COM-
PASS algorithms of Hong and Nelson (2006) and Hong
et al. (2010), the adaptive hyperbox algorithm of Xu et al.
(2013), and the R-SPLINE algorithm of Wang et al. (2012),
often focus on a local neighborhood to find better solutions.
Hong and Nelson (2007) studied this type of algorithm and
gave a general framework for local convergence. Although
these algorithms often have fast convergence, they can only
find local optima. Because the objective functions of DOvS
problems are embedded in a black-box simulation model,
their convexities are often unknown. Therefore, these algo-
rithms may miss solutions that have significantly better per-
formance than the found local optimum. To partly over-
come this drawback, Xu et al. (2010) added a global search
phase to identify several good starting points for the COM-
PASS algorithm to search in the second phase.

There are also many globally convergent random search
algorithms, e.g., the stochastic rulerof Yan and Mukai (1992),

1416

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS 1417

the simulated annealing of Alrefaei and Andradóttir (1999),
the nested partitions of Shi and Ólafsson (2000), and the
SMRAS of Hu et al. (2008). To achieve fast global conver-
gence, these algorithms need to balance the search effort in
the current local neighborhood and in the unknown regions.
This is known as the exploitation and exploration trade-
off. Exploitation refers to the search around the current
sample-best solution. Because there are often better solu-
tions near the current sample-best solution, the exploitative
search often has a high chance of finding better solutions.
Exploration refers to the search in the entire feasible region,
especially the regions that are not sufficiently searched.
Because there may be regions that are significantly better
than the regions that have been searched so far, explorative
search may identify those regions and save the search effort
that the algorithm may otherwise waste on searching the
suboptimal regions. Therefore, how to balance exploitation
and exploration is a critical issue in designing globally con-
vergent random search algorithms.

Globally convergent random search algorithms in the
literature can be divided into four classes—exploitation-
based, exploration-based, combined, and integrated—based
on their approaches to handling the exploitation and explo-
ration trade-off. Exploitation-based algorithms, e.g., the
stochastic ruler of Yan and Mukai (1992), the stochas-
tic comparison of Gong et al. (1999), and the simulated
annealing of Alrefaei and Andradóttir (1999), only search
the local neighborhood of the current sample-best solution,
but they may move to an inferior solution with certain
probabilities to achieve global convergence. Exploration-
based algorithms, e.g., the random search algorithm of
Andradóttir (1996), search in the entire region randomly to
avoid being trapped in a suboptimal region, but they may
miss easy opportunity of finding a better solution in the
neighborhood of the current sample-best solution.

Many random search algorithms in the literature take into
consideration the trade-off between exploitation and explo-
ration and determine a sampling distribution that allows all
solutions to be sampled but allocate higher probabilities to
solutions in promising regions. In these kinds of algorithms,
the sampling points can “jump” to a better region rather
than “move” to a better region in an exploitation-based
algorithm. We divide these algorithms into combined and
integrated algorithms based on how they handle the trade-
off. Combined algorithms use a predetermined scheme to
balance the trade-off, while integrated algorithms balance
the trade-off adaptively based on the available informa-
tion in the optimization process. Combined algorithms typ-
ically focus on exploitative search while either adding a
fixed amount of effort in each iteration or assigning a fixed
sequence of iterations to conduct explorative search. For
instance, the nested partitions algorithm of Pichitlamken
and Nelson (2003) uses the first method, and the BEESE
framework of Andradóttir and Prudius (2009) considers
both. The integrated algorithms typically have an integrated
sampling distribution governing the search effort in each

iteration instead of separating the exploitation and explo-
ration as in the combined algorithms. They update the sam-
pling distribution in each iteration based on the available
information. For instance, the SMRAS algorithm of Hu
et al. (2008) uses a parameterized sampling distribution and
updates the parameters of the distribution by minimizing
the Kullback-Leibler divergence based on the elite solutions
in each iteration. When the distribution is chosen properly,
the algorithm can balance exploitation and exploration and
converge to the global optimum.

In this paper, we propose another integrated random
search algorithm called the Gaussian process-based search
(GPS) algorithm. In each iteration of the algorithm, we
construct a Gaussian process whose mean function passes
through the sample means of all previously evaluated solu-
tions. Based on the constructed Gaussian process, the prob-
ability that a solution is better than the current sample-best
solution may be calculated. The GPS algorithm then builds
a sampling distribution based on these probabilities (with-
out calculating them explicitly), and samples some new
solutions from this distribution. Similar to the SMRAS,
the GPS algorithm automatically balances the trade-off
between exploitation and exploration. Different from the
SMRAS, it does not use a parameterized sampling distribu-
tion family, and it updates the sampling distribution based
on the performance and locations of all previously sim-
ulated solutions instead of only the elite solutions as in
SMRAS.

Surface fitting using Gaussian process is also known as
kriging. It was first proposed in the field of geostatistics
and has been studied extensively since then. The readers
may refer to Biles et al. (2007) and Ankenman et al. (2010)
for more details on kriging metamodeling for stochastic
simulation experiments. In typical kriging techniques, the
goal is to fit the surface given a set of observations on the
surface, either with or without estimation errors. Therefore,
these techniques often try to minimize the integrated mean
square error (IMSE) of the fitted surface. To achieve the
minimal IMSE, these techniques need to invert a n × n
covariance matrix where n is the number of simulated solu-
tions, or take a Cholesky decomposition of this matrix and
solve a system of linear equations. These operations may
require a significant amount of computation if the number
of solutions is large and may encounter numerical prob-
lems if there are solutions that are very close to each other
(which makes the matrix ill-conditioned). In kriging exam-
ples, this matrix inversion rarely causes serious problems
because the number of solutions is often small and these
solutions are typically well spread. In the GPS algorithm,
however, the number of solutions that the algorithm visits
grows fast as the number of iterations increases, and the
solutions tend to cluster around some good ones. Hence, the
covariance matrix is often of large size and ill-conditioned.
Furthermore, a Gaussian-process fitting needs to be done
in each iteration of the random search algorithm and,

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
1418 Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS

thus, cannot be computationally expensive. Therefore, krig-
ing techniques requiring matrix inversions are generally
computationally not applicable to our algorithm. Chap-
ter 8 of Rasmussen and Williams (2006) provides a thor-
ough discussion on the various approximation techniques
to conduct matrix inversion. However, these techniques are
themselves quite complicated and computationally inten-
sive. Therefore, they are also not suitable for kriging-based
search,which requires surface fitting in each iteration and
requires hundreds, even thousands, of iterations to find the
global optimum.

In this paper we carefully analyze the necessary proper-
ties that allow a Gaussian process to yield a good sampling
distribution for search algorithms. We find that the minimal
IMSE is not one of them, because our goal is not to fit an
accurate surface but to construct an appropriate sampling
distribution. Then, we design a new technique to construct
a Gaussian process that maintains all the necessary prop-
erties but requires no matrix inversion for surface fitting.
It is computationally very efficient even when the number
of evaluated solutions is very large and the evaluated solu-
tions are clustered, yet it yields a sampling distribution that
nicely balances the exploitation and exploration trade-off.

Gaussian processes have also been used in other types
of black-box optimizations. An important class is the opti-
mization problems where the function evaluations are very
expensive (often more expensive than the type of problems
we are interested in). In this area, the two most famous
algorithms are the P -algorithm (Kushner 1964 and Calvin
and Z̆ilinskas 1999), which is originally designed for one-
dimensional problems, and the efficient global optimiza-
tion (EGO) algorithm (Jones et al. 1998), which could be
applied for solving multidimensional problems. Both algo-
rithms use standard kriging techniques to fit the surface,
and they solve an often-difficult global optimization prob-
lem to find the next solution for simulation by maximizing
either the probability of being delta-better than the current
best solution or the expected improvement from the current
best solution. These algorithms work well for black-box
optimization problems where only a small number of func-
tion evaluations can be done. Similar ideas and algorithms
have also been suggested to handle general multidimen-
sional stochastic optimization problems as well; see, for
instance, Sasena (2002) (a nice review of the P -algorithm
and how researchers have extended it to multidimensional
settings can be found in §§2.3.1 and 2.3.2 therein), Huang
et al. (2006), and Quan et al. (2013). Nevertheless, these
algorithms also have some limitations. First, they cannot
efficiently handle (in fact, are not designed to handle) the
type of problems that we are interested in, where the simu-
lation outputs are stochastic and we may afford thousands
to millions of simulation observations. Second, it is often
difficult to find the next solution to simulate especially
when the number of visited solutions is large, because a
multidimensional nonconvex global optimization problem
needs to be solved in each iteration. One can refer to Jones

et al. (1998) for details about the difficulties. Our algorithm
shares the similarity with the P -algorithm in that we also
consider the probability of being better than the current best
solution. But starting from the probability quantities, our
approach becomes different, and we think it is much more
suitable for typical DOvS problems. In §5 of this paper,
we compare our algorithm with the sequential kriging opti-
mization (SKO) algorithm proposed by Huang et al. (2006)
and demonstrate the advantages of our algorithm in solving
DOvS problems.

The rest of this paper is organized as follows. In §2,
we discuss the desired properties of a sampling distribution
and illustrate our idea using a one-dimensional determinis-
tic example. In §3, we propose a fast scheme to fit a Gaus-
sian process for multidimensional cases and discuss how to
sample from the derived sampling distribution. In §4, we
give a detailed description of the GPS algorithm, prove its
global convergence, and propose stopping criteria that may
be used in the algorithm. Numerical results are reported
in §5, followed by the conclusions in §6.

2. Desired Properties of Sampling
Distribution

We are interested in solving DOvS problems with the fol-
lowing form:

max
x∈ä

g4x5 2= E6G4x57 (1)

where the random variable G4x5 typically has no closed-
form expression, but can be observed through running a
simulation experiment at x, and the solution set ä is a finite
discrete set. In particular, we assume that ä = ì ∩ Zd,
where ì ⊂ <d is a convex compact set and Zd is the set
of d-dimensional integer vectors. Therefore, ä contains all
integer solutions in a convex compact set ì. Throughout
the paper we assume that E6G24x57 < � for all x ∈ ä,
which also implies that E6G4x57 <� for all x ∈ä. Let g∗

denote the maximal value of g on ä. Because ä is a finite
discrete set, g∗ is finite and there exists at least one point
x∗ ∈ä such that g4x∗5= g∗.

Random search algorithms are often used to solve Prob-
lem (1). In each iteration of a random search algorithm,
a sampling distribution needs to be constructed, and new
solutions are sampled based on this distribution. Selection
of a proper sampling distribution is central to the trade-off
between exploitation and exploration and is critical to the
performance of the algorithm. In this section, we discuss
the desired properties of sampling distributions and illus-
trate our idea of constructing a proper sampling distribution
using a simple one-dimensional deterministic example.

2.1. Desired Properties of a Sampling Distribution

Suppose that we want to solve a one-dimensional global
maximization problem whose objective function g4x5 has
no closed-form expression but can be evaluated without

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS 1419

Figure 1. Function values of g at some points.

0 4 8 12 16 20
0

1

2

3

4

g (x )

R1 R2 R3 R4 R5

noise through a deterministic simulation experiment at x
for any x ∈ 601207. Through the current iteration of a
random search algorithm, we have evaluated six solutions
x11 0 0 0 1 x6, as shown in Figure 1. Based on the given infor-
mation, how should the sampling probabilities be allocated
to all feasible solutions?

For clear illustration, we divide the feasible region into
five subregions, denoted as R11 0 0 0 1R5. We believe that a
reasonable sampling distribution for this example should
have at least the following properties:

• allocating higher probabilities to solutions in R2

because it is likely to find better solutions around the cur-
rent best one;

• allocating higher probabilities to R1 than to R3, even
though the evaluated solutions in these two regions have
the same objective value, because R1 is less explored;

• allocating higher probabilities to R5 than R4 because
R4 contains the current worst solution and R5 has not been
explored yet.

Although all these properties make sense, to the best of
our knowledge none of the existing random search algo-
rithms can construct a sampling distribution that satisfies
all these properties. In the remainder of this section we
show how to construct such a sampling distribution.

2.2. The Idea of Building a Sampling Distribution

Suppose that g4x5 is a sample path of a Brownian motion
process B4x + a5, where a > 0 is a very large num-
ber, e.g., we may set a = 109 in this example. We let
Y 4x5= B4x+ a5. Notice that, when there is no observa-
tions of g4x5, Y 4x5 has a very large variance around its
mean E6Y 4x57= 0 for any x ∈ 601207. The large variance is
used to illustrate that we have no information on where the
function g4x5 is located. After we have collected six obser-
vations, i.e., 4x11 g4x1551 0 0 0 1 4x61 g4x655, we know that the
Brownian motion process passes through these points. This
restricts what the sample path may possibly look like in
the feasible region (Figure 2). Conditioning on this restric-
tion, we may derive the conditional means and variances of
all feasible solutions based on the properties of the Brow-
nian motion process (see Figure 3). Then, we can further
calculate the conditional probability that each solution has

Figure 2. Two sample paths of a Brownian motion pro-
cess passing through x11 0 0 0 1 x6.

0 4 8 12 16 20
–2

-–1

0

1

2

3

4

5
g (x )

R1 R2 R3 R4 R5

a value that is greater than the value of the current best
solution, i.e., Pr∗8Y 4x5 > 49 in this example (see Figure 4),
where the “∗” notation denotes it is a conditional state-
ment conditioned on all available information. We propose
to normalize these conditional probabilities, i.e.,

f 4x5=
Pr∗8Y 4x5 > 49

∑

z∈ä Pr∗8Y 4z5 > 49
1 (2)

and use f 4 · 5 as a sampling distribution. From Figure 4,
it is clear that this sampling distribution satisfies all the
desired properties listed in §2.1.

To explain the reason why the proposed approach can
generate a sampling distribution that satisfies the desired
properties, we note that the approach takes a somewhat
informal Bayesian viewpoint. Our prior belief (as well as
the prior beliefs of many others) is that the objective func-
tion g4x5 displays a certain level of continuity, suggest-
ing that the solutions around good solutions tend to be
good, while the solutions around bad solutions tend to be
bad. In our approach the Brownian motion process, as a
continuous random process, is used to capture such con-
tinuity. The Brownian motion process also automatically
updates its shape to match the true surface by incorporating
the information provided by the evaluated solutions (i.e.,
x11 0 0 0 1 x6 and their function values in our example). Such
a Bayesian approach has a deep root in the learning litera-
ture. In the learning context, a prior model, e.g., a Gaussian
process, is first assumed. After collecting some observa-
tions of the function values, a posterior model is derived
using a Bayesian approach to incorporate the new informa-
tion, and predictions are then made based on the posterior
model. For a thorough discussion on the Bayesian approach
in the learning context, readers are referred to Rasmussen
and Williams (2006).

Notice that, under our Brownian motion model, solu-
tions around the current best solution typically have high
conditional mean values, thus, may offer high conditional
probabilities of being better than the current best solu-
tions; and solutions in largely unexplored regions typically
have high conditional variances, thus, may offer high con-
ditional probabilities as well. These probabilities naturally

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
1420 Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS

Figure 3. Conditional mean and variance of the Brownian motion process.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
E*[Y (X )]

g (x )

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6
Var*[Y(X )]

balance the trade-off between exploitation and exploration,
and their normalized distribution is a good candidate of a
sampling distribution. Therefore, in our approach, the con-
ditional mean and variance of a new solution reflect the
solution’s potential for exploitative search and explorative
search, respectively, and the conditional probability that the
solution is better than the current best solution balances
naturally the exploitation and exploration trade-off.1

It is also worthwhile to note that the nondifferentiabil-
ity of the Brownian motion process does not impose any
restriction on our approach. In our approach, the Brownian
motion process is only used to generate a sampling distribu-
tion that can balance the exploitation and exploration trade-
off, and it does not have to match the smoothness of g4x5.
Indeed, one may also consider other one-dimensional Gaus-
sian processes for this example. For instance, the Ornstein-
Uhlenbeck process may also be applied to derive the condi-
tional means and variances for all the feasible solutions, and
the resulting sampling distribution often has a similar shape
as the one constructed using the Brownian motion process.

However, the (one-dimensional) Brownian motion pro-
cess that we use in this section can only be applied to one-
dimensional deterministic optimization problems. To apply
this approach to multidimensional DOvS problems, we
need to consider the following issues:

• how to extend the idea from one-dimensional prob-
lems to multidimensional ones?

• how to handle the noise in the estimates of objective
values?

• how to sample efficiently from the sampling distribu-
tion without calculating the normalizing constant, i.e., the
denominator in Equation (2)?

We discuss all these issues in §3 and discuss how to
design DOvS algorithms based on the sampling distribution
in §4.

3. Gaussian Process-Based Sampling
Distribution

In the previous section we use a one-dimensional deter-
ministic example to illustrate our idea of constructing a

sampling distribution that balances the exploitation and
exploration trade-off. In this section we extend the idea to
higher dimensional surfaces with estimation errors. We first
discuss how to fit response surfaces and construct sam-
pling distributions based on traditional kriging metamod-
eling techniques and discuss their limitations in solving
DOvS problems. We then propose a novel approach to sur-
face fitting and discuss its advantages.

3.1. Kriging-Based Search

The traditional kriging method models the simulation out-
put at a point x as

G4x5=M4x5+ �4x51 (3)

where M4x5 is a stationary Gaussian process with mean 0
and covariance function �2�4 · 1 · 5, and �4x5 is a normal
random variable with mean 0 and variance �2

� 4x5.
In Equation (3), the stationary Gaussian process M4x5

models the unknown objective function g4x5, and its cor-
relation function �4x11x25 = Corr4M4x151M4x255 is typ-
ically a function of �x1 − x2�, where � · � denotes the
Euclidean distance. Let

�4x11x25= h4�x1 − x2�50 (4)

Depending on the functional forms of h4 · 5, the sample path
of M4x5 may display different levels of differentiability
(Santner et al. 2003). For instance, when h4t5= exp4−at25
for some positive constant a, the sample path generated by
M4x5 is infinitely differentiable.2 Throughout this paper we
require the correlation function h4 · 5 to satisfy the follow-
ing condition.

Condition 1. The correlation function 0 ¶ h4t5 ¶ 1 is a
decreasing function of t when t ¾ 0 and, for any x01x11x2 ∈

ä, h4�x1 − x2�5¾ h4�x0 − x1�5 ·h4�x0 − x2�5.

Many correlation functions satisfy Condition 1. For
instance, the exponential correlation function h4t5 =

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS 1421

Figure 4. Pr∗8Y 4x5 > 49 under the Brownian motion
process.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5
Pr*{Y (x ) > 4}

exp4−at5 with a > 0 and the Gaussian correlation func-
tion h4t5 = exp4−at25 with a > 0 both satisfy the condi-
tion. In these two examples, Condition 1 becomes a triangle
inequality in the solution space.

In Equation (3), the error term �4x5 models the noise in
the simulation output, and it can handle the heteroscedas-
ticity of simulation outputs at different x values. Notice
that M4x5 and �4x5 capture completely different sources of
randomness; it is reasonable to assume that they are inde-
pendent of each other. Furthermore, as we only consider
independent simulation experiments at different x values in
this paper, we have Cov4�4x51 �4x′55= 0 for any x 6= x′.

Suppose that, through the current iteration, a ran-
dom search algorithm has visited m points, denoted as
x11 0 0 0 1xm, and have taken ni simulation replications for
xi, i = 11 0 0 0 1m. Let Ḡ4xi5 denote the sample mean calcu-
lated from ni observations of G4xi5 for all i = 11 0 0 0 1m, let
�̄ = 4Ḡ4x151 0 0 0 1 Ḡ4xm55

T, and let è� be an m×m matrix
whose 4i1 i5th element is �2

� 4xi5/ni whereas all other ele-
ments are 0. Notice that è� is the covariance matrix implied
by the intrinsic noise (Ankenman et al. 2010). Furthermore,
we let â be an m × m matrix whose 4i1 j5th element is
�4xi1xj5, and �4x05 be an m-dimensional vector whose ith
element is �4x01xi5. Then, Ankenman et al. (2010) show
that for any x0, the MSE-optimal linear predictor of g4x05
conditioned on the observed data is

ĝ4x05= �4x05
T�̄ (5)

with

�4x05
T
= �4x05

T

(

â +
1
�2

è�

)−1

1 (6)

and the corresponding optimal MSE is

MSE4x05= �261 −�4x05
T�4x0570 (7)

Remark 1. The MSE-optimal predictor is also called the
stochastic kriging model. If there is no noise in the sim-
ulation outputs, we may set �2

� 4x5 ≡ 0. Then, the model
degenerates to a deterministic kriging model (Stein 1999).

The results generated from stochastic kriging via MSE-
optimal prediction may also be derived or interpreted
from a Bayesian perspective. In particular, Rasmussen and
Williams (2006) assume that è� = �2

mI where I is an iden-
tity matrix, and they show that if the prior is a Gaussian
process, then the posterior distribution given the acquired
information turns out to be a normal distribution with mean
and variance exactly given by (5) and (7), respectively
(with, of course, è� = �2

mI); readers may refer to Chap-
ter 2 of Rasmussen and Williams (2006) for the detailed
derivations and discussions.

For every x ∈ ä, let Y ′4x5 denote the metamodel of
g4x5 in the stochastic kriging model. The above analy-
sis shows that, conditioned on all available information
(i.e., all the observations of all the visited solutions),
Y ′4x54= M4x55 is normally distributed with E∗6Y ′4x57 =

ĝ4x5 and Var∗6Y ′4x57 = MSE4x5, where we use the nota-
tion E∗4 · 5, Var∗4 · 5 and Pr∗4 · 5 to denote they are con-
ditioned on all available information. Similar to the one-
dimensional deterministic example reported in §2, the mean
function ĝ4x5 measures the need for exploitation and the
variance function MSE4x5 measures the need for explo-
ration. Let c denote the current sample-best value, i.e., c =

max8Ḡ4x151 0 0 0 1 Ḡ4xm59. Then, the conditional probability
Pr∗8Y ′4x5 > c9 may be calculated, and we may define the
sampling distribution as

f 4x5=
Pr∗8Y ′4x5 > c9

∑

z∈ä Pr∗8Y ′4z5 > c9
1 x ∈ä0 (8)

Notice that, for any x ∈ ä, Pr∗8Y ′4x5 > c9 represents the
conditional probability that x has a value that is better than
the current sample-best value c and f 4x5 represents the
relative importance of x among all solutions in ä in its
probability of being a better solution. Based on the discus-
sions in §2, f 4x5 automatically balances the exploitation
and exploration trade-off.

3.2. Fast Construction of Gaussian Process

Although the sampling distribution defined by Equation (8)
is appealing, its implementation in random search algo-
rithms may be problematic because of the matrix inversion
operation needed in Equation (6). Notice that kriging tech-
niques are originally designed for surface fitting instead of
optimization. When fitting a surface, the parameters of the
Gaussian process are often estimated using the maximum
likelihood estimation method, and the prediction of the
value at a given solution is determined through minimizing
its MSE. In such cases, the number of observed solutions is
typically not large, and the points are typically well spread
in the solution space. Then, the matrix â + 4�25−1è� is
poorly conditioned, and inverting it is often not a difficult
numerical problem; even if it is, the inversion is only con-
ducted once. When Gaussian processes are used in random
search algorithms, however, we are in a different situa-
tion. In random search algorithms, Gaussian processes need

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
1422 Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS

to be constructed repeatedly, the numbers of solutions are
often quite large, and some of the solutions are close to
each other (because random search algorithms often simu-
late solutions that are clustered around some good ones).
Our numerical experiments show that the matrix inversion
may become prohibitive when the matrix becomes large.
This leads to serious implementation issues when kriging
techniques of Equations (5) to (8) are used to construct
sampling distributions.3

The problem of matrix inversion in Gaussian process
prediction has been studied in the machine learning liter-
ature. When the dimension of the matrix is large and the
matrix is poorly conditioned, methods have been proposed
to avoid a direct matrix inversion. For instance, one may
compute the weights defined in Equation (6) by conduct-
ing a Cholesky decomposition and then solving a system
of linear equations (see, e.g., Algorithm 2.1 in Rasmussen
and Williams 2006). However, the Cholesky decomposition
approach does not resolve the difficulty of singular or near-
singular matrices. To tackle the issues of large dimension
and possible singularity caused by a large data set, many
techniques have been proposed for Gaussian process pre-
diction (see, Chapter 8 of Rasmussen and Williams 2006
for a thorough discussion on the various techniques). Nev-
ertheless, these techniques only provide approximate solu-
tions by, for instance, approximating the eigenvalues or
using only a part of the data points. Furthermore, these
techniques are themselves quite complicated and computa-
tionally intensive. For random search algorithms, the accu-
racy of the approximation is often not a major concern, but
the computational efficiency is. Therefore, these approxi-
mations are not suitable to be used repeatedly in an opti-
mization algorithm. Because of these issues, we choose to
develop a new method of fitting Gaussian processes that is
fast yet maintains the desired properties of the sampling
distributions.

To develop a new method of fitting Gaussian processes
used in random search algorithms, we only need to develop
a model of Y ′4x5 such that E∗6Y ′4x57 and Var∗6Y ′4x57 rep-
resent the necessities of exploitation and exploration, while
the quality of surface fitting is not critical. This is because
of two reasons. First, good E∗6Y ′4x57 and Var∗6Y ′4x57 func-
tions are all that we need to derive good sampling distri-
butions that balance the exploitation and exploration trade-
off. Second, solutions sampled from the derived sampling
distributions still contain a significant amount of random-
ness (due to random sampling); it becomes unnecessary to
minimize the MSE of the prediction. Notice that the tech-
niques of kriging and stochastic kriging have deep roots
in Bayesian analysis and often follow a rigorous Bayesian
framework. In our case, however, we take a more prag-
matic viewpoint and use the Gaussian process models only
to derive good E∗6Y ′4x57 and Var∗6Y ′4x57 functions.

Suppose that M4x5 and �̄ are defined as in §3.1. In con-
trast to the MSE-optimal metamodel Y ′4x5, we propose the
following model to model g4x5:

Y 4x5=M4x5+�4x5T4�̄−
5+�4x5TE1 (9)

where �4x5 = 4�14x51 0 0 0 1 �m4x55
T is a vector of weight

functions, 
 = 4M4x151 0 0 0 1M4xm55
T is a vector of M4x5

evaluated at x11 0 0 0 1xm, and E = 4�11 0 0 0 1 �m5
T is an m-

dimensional random vector following a multivariate normal
distribution with mean 0 and covariance matrix

èE = diag
{

�24x15

n1

1 0 0 0 1
�24xm5
nm

}

0 (10)

Furthermore, M4x5, �̄ and E are mutually independent of
each other. The model in Equation (9) uses three parts to
model the different aspects of g4x5. It uses a stationary
Gaussian process M4x5 to capture the continuity and the
uncertainty of g4x5 when there is no additional information,
it incorporates the information from past observations at
x11 0 0 0 1xm in the term �4x5T4�̄ − 
5, and it captures the
randomness in Ḡ4xi5, i = 11 0 0 0 1m, by term �4x5TE.

To ensure that the model produces a desired sampling
distribution, we require the following condition on the
weight functions �4x5.

Condition 2. For any x ∈ä, �4x5 is continuous in x and
satisfies

i. �i4x5¾ 0 for any i = 11 0 0 0 1m;
ii.
∑m

i=1 �i4x5= 1;
iii. �i4xj5 = 18xi = xj9 for all i1 j = 11 0 0 0 1m, where

18 · 9 is the indicator function.

Notice that in DOvS problems, x can take only a finite
number of values. By requiring �4x5 be continuous in Con-
dition 2 we interpret �4x5 as a function defined on the
real Euclidean space. Indeed, many choices of �4x5 satisfy
Condition 2. For instance, we may define

�i4x5=















�1 −�4x1xi5�
−b

∑m
j=1 �1 −�4x1xj5�−b

x 6= xi

1 x = xi

for some b > 0, or

�i4x5=















�x− xi�
−b

∑m
j=1 �x− xj�−b

x 6= xi

1 x = xi

for some b > 0, and they both satisfy Condition 2.
Based on the model proposed in Equation (9), we have

the following proposition on the mean and variance of Y 4x5
conditioned on all available information.

Proposition 1. For any x ∈ä, if Condition 2 is satisfied,

E∗6Y 4x57= �4x5T�̄1

Var∗6Y 4x57= �261 − 2�4x5T�4x5+�4x5Tâ�4x57

+�4x5TèE�4x50

Furthermore, E∗6Y 4xi57 = Ḡ4xi5 and Var∗6Y 4xi57 =

�24xi5/ni for all i = 11 0 0 0 1m.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS 1423

Proposition 1 provides an approach to calculating the
E∗6Y 4x57 and Var∗6Y 4x57 functions without conducting
matrix inversion. Therefore, they can be calculated accu-
rately and efficiently even when â and èE are ill con-
ditioned. Proposition 1 also shows that the E∗6Y 4x57 and
Var∗6Y 4x57 values at any evaluated solution xi are its sam-
ple mean and the variance of the sample mean. Therefore,
we rely solely on the simulation information to predict g4x5
if x has been simulated. Furthermore, when ni → � or
�24xi5 = 0, E∗6Y 4xi57 → g4xi5 and Var∗6Y 4xi57 → 0, for
any i = 11 0 0 0 1m.

Proposition 1 shows that, for any solution x that has not
been simulated, the E∗6Y 4x57 is a linear combination of
Ḡ4xi5, i = 11 0 0 0 1m, which are the sample means of the
evaluated solutions. Notice that the commonly used weight
function �4x5, such as those introduced above, depends
only on the distances of x to x11 0 0 0 1xm, and closer solu-
tions often have higher weights. Then, solutions that are
close to the current sample-best point tend to have a high
E∗6Y 4x57 value, and solutions that are close to the cur-
rent sample-worst point tend to have a low E∗6Y 4x57 value.
Therefore, the E∗6Y 4x57 function can successfully reflect
the necessity of exploitation.

Proposition 1 also shows that, for any solution x that has
not been simulated, the Var∗6Y 4x57 consists of two parts.
The first part represents the uncertainty caused by the allo-
cation of the simulated solutions (i.e., x11 0 0 0 1xm) and the
second part represents the uncertainty caused by the esti-
mation error at the simulated solutions. To see how the
Var∗6Y 4x57 function reflects the necessity of exploration,
we consider the first part of the function. We let

�̃24x5= �261 − 2�4x5T�4x5+�4x5Tâ�4x571

which is the first part of Var∗6Y 4x57. A direct analysis of
�̃24x5 is difficult. However, we can analyze its lower bound
provided in the following proposition.

Proposition 2. Let d4x5 = min8�x − x1�1 0 0 0 1�x − xm�9.
Suppose that Condition 1 is satisfied by the correla-
tion function h4 · 5. Then, �̃24x5 ¾ �261 − h4d4x5572 and
�̃24x5= 0 if d4x5= 0.

By Proposition 2, the lower bound of �̃24x5 increases
as x moves away from the set of evaluated solutions and
decreases as x moves closer to one of the evaluated solu-
tions. Therefore, we conclude that the Var∗6Y 4x57 function
reflects the necessity of exploration.

From the above analysis we see the model proposed in
Equation (9) has the appealing properties and is appro-
priate in deriving sampling distributions. Then, given the
values of E∗6Y 4x57 and Var∗6Y 4x57, we may calculate
the Pr∗8Y 4x5 > c9 where c = max8Ḡ4x151 0 0 0 1 Ḡ4xm59 and
derive the sampling distribution according to Equation (8).

3.3. Sampling from the Sampling Distribution

To use the sampling distribution of Equation (8) in each
iteration of a random search algorithm, a natural question
is how to sample from it effectively and efficiently. Notice
that the denominator on the right-hand side of Equation (8)
involves all solutions in ä. When ä is a large set, as in
most practical DOvS problems, calculating the denominator
is often impossible. Therefore, our goal is to sample from
f 4x5 without calculating the denominator. In this subsec-
tion we propose two sampling algorithms that may achieve
this goal.

Notice that E∗6Y 4x57 = �4x5T�̄ =
∑m

i=1 �i4x5Ḡ4xi5 for
any x ∈ä. Because �i4x5¾ 0 and

∑m
i=1 �i4x5= 1, we have

E∗6Y 4x57 ¶ max8Ḡ4x151 0 0 0 1 Ḡ4xm59 = c. Because Y 4x5 is
normally distributed, Pr∗8Y 4x5 > c9 ¶ 1

2 for all x ∈ ä.
Then,

f 4x5=
Pr∗8Y 4x5 > c9

∑

z∈ä Pr∗8Y 4z5 > c9
¶ 41/25�ä�
∑

z∈ä Pr∗8Y 4z5 > c9
·

1
�ä�

where �ä� denotes the number of points in ä. Let u4x5 =

1/�ä� for all x ∈ä. Notice that u4x5 is the probability mass
function of a uniform distribution defined on the set ä. Let
K =

1
2 6
∑

z∈ä Pr∗8Y 4z5 > c97−1�ä�. Then, K is a constant
and f 4x5 ¶ K · u4x5 for all x ∈ ä. This motivates us to
use an acceptance-rejection algorithm to sample from f 4x5
(see, for instance, Law and Kelton 2000). The following is
the detailed algorithm.

Acceptance-Rejection Sampling (ARS) Algorithm
Step 1. Generate a sample y uniformly in ä and U uni-

formly in 40115.
Step 2. If U ¶ 2 Pr∗8Y 4y5 > c9, accept y and set x = y;

otherwise, go to Step 1.

The following proposition shows the validity of the ARS
algorithm.

Proposition 3. Suppose x is generated by the ARS algo-
rithm. Then for any A⊆ä, Pr∗8x ∈A9=

∑

y∈A f 4y5.

By applying the ARS algorithm, we avoid computing
the closed-form expression of f 4x5 and, thus, significantly
improve the efficiency of sampling from f 4x5. When the
probability mass of f 4x5 is mainly concentrated on small
subsets of ä, however, the acceptance-rejection scheme
used in the ARS algorithm may no longer be efficient
because the probability of acceptance may be very low.
Therefore, we develop an approximate sampling algorithm
by using a Markov chain sampling approach (see, for
instance, Baumert et al. 2009). The algorithm is as follows.

Markov Chain Coordinate Sampling (MCCS)
Algorithm

Step 0. Let t = 0, y= x0.
Step 1. Let t = t + 1. Sample uniformly an integer I

from 1 to d. Let l4y1 I5 be the line that passes through y and
parallel to the yI coordinate axis. Then l4y1 I5 intersects
with the boundary of ì (notice that ä ⊂ ì and ì ⊂ <d

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
1424 Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS

is a convex set) at two points c1, c2. Sample an integer j
uniformly from 6c11y4I5−17∪ 6y4I5+11 c27. Set z= y and
then set z4I5= j .

Step 2. If U ¶ f 4z5/f 4y5 = Pr∗8Y 4z5 > c9/Pr∗8Y 4y5
> c9, set y= z.

Step 3. If t = T , return y; otherwise go to Step 1.

Similar to the proof of Baumert et al. (2009), we can
show, as T → �, the distribution of y converges to the
sampling distribution f 4 · 5. The starting solution x0 of the
MCCS algorithm may be the current optimal solution, or
any solution in ä. The MCCS algorithm guarantees to sam-
ple (approximately) a solution every T steps. Therefore, it
may become more efficient than the ARS algorithm when
the acceptance rate in the ARS becomes very low (i.e.,
lower than 1/T ). Therefore, we may use the MCCS algo-
rithm when the ARS algorithm becomes slow.

4. Gaussian Process-Based Search
Algorithm

In this section we introduce a new random search algo-
rithm that incorporates the sampling distribution introduced
in §3.2 in each of its iterations. Because the algorithm is
guided by a fitted Gaussian process in each iteration, we
name it the Gaussian process-based search (GPS) algo-
rithm. In this section we provide the detailed GPS algo-
rithm, prove its global convergence, and discuss its stop-
ping criteria.

4.1. GPS Algorithm for DOvS Problems

In the GPS algorithm we let Sk and �k denote the sets of
simulated solutions in iteration k and through iteration k,
respectively, let nk4x5 denote the number of simulation
observations through iteration k for all x ∈ �k, and let x̂∗

k

and ĝ∗
k denote the sample-best solution and its sample mean

through iteration k. In each iteration, say iteration k, we
use the solutions in �k−1 and the current sample-best func-
tion value ĝ∗

k−1 to construct a sampling distribution fk4x5
and use it to guide the search effort.

We let �̂2
k 4x5 denote the sample variance through itera-

tion k for all x ∈�k. To construct the sampling distribution
fk4x5 based on the approach of §3.2, the true variances
of G4x5, denoted as �24x5, for all x ∈ �k−1 are required
in Equation (10). In DOvS problems, however, �24x5 are
typically unknown. In our algorithm we substitute �24x5
by �̂2

k 4x5. However, to prevent the sample variance being
zero, we let �̂2

k 4x5= �2
0 if �̂2

k 4x5 < �2
0 , where �2

0 is a pre-
determined small positive constant.4 We let Ḡk4x5 denote
the sample mean through iteration k for all x ∈ �k. To
avoid the theoretically possible extreme case where Ḡk4x5
deviates too much from its true mean g4x5 so that x is
not allocated enough sampling effort, we set Ḡk4x5 = M
if Ḡk4x5 < M , where M is a small constant. If G4x5 has
a natural lower bound B (e.g., G4x5¾ 0), we can just set
M = B; otherwise, we set M as an extremely small con-
stant, e.g., M = −1010.

We also let s denote the number of solutions simulated
in each iteration, and r denote the number of simulation
observations allocated to each newly simulated solution in
each iteration. In the algorithm, both s and r are positive
integers specified by the users. The following is the detailed
GPS algorithm.

Gaussian Process-Based Search (GPS) Algorithm
Step 0. Let k = 0. Sample x0111 0 0 0 1x01s independently

and uniformly from ä and let S0 = 8x0111 0 0 0 1x01s9. For
every x ∈ S0, obtain r independent simulation obser-
vations, denoted as G0114x51 0 0 0 1G01r4x5. Let �0 = S0.
For all x ∈ �0, let n04x5 = r and calculate Ḡ04x5 and
�̂2

0 4x5 based on all n04x5 observations. If Ḡ04x5 < M , let
Ḡ04x5 = M ; and if �̂2

0 4x5 < �2
0 , let �̂2

0 4x5 = �2
0 . Let x̂∗

0 =

arg maxx∈�0
8Ḡ04x59 and break the tie arbitrarily if it exists,

and let ĝ∗
0 = Ḡ04x̂

∗
05.

Step 1. Let k = k+1. Based on x, nk−14x5, Ḡk−14x5 and
�̂2
k−14x5 for all x ∈�k−1, construct a sampling distribution

fk4x5=
Pr∗8Yk−14x5 > ĝ∗

k−19
∑

z∈ä Pr∗8Yk−14z5 > ĝ∗
k−19

0

Step 2. Sample xk111 0 0 0 1xk1 s independently based on
fk4x5. Let Sk = 8xk111 0 0 0 1xk1 s9. For every x ∈ Sk,
obtain r independent simulation observations, denoted as
Gk114x51 0 0 0 1Gk1 r4x5.

Step 3. Let �k = �k−1 ∪ Sk. Let nk4x5 = nk−14x5 for all
x ∈ �k \ Sk, nk4x5 = nk−14x5 + r for all x ∈ �k ∩ Sk, and
nk4x5 = r for all x ∈ Sk \ �k−1. For all x ∈ �k, calculate
(or update) Ḡk4x5 and �̂2

k 4x5 based on all nk4x5 observa-
tions. If Ḡk4x5 < M , let Ḡk4x5 = M ; and if �̂2

k 4x5 < �2
0 ,

let �̂2
k 4x5= �2

0 .
Step 4. Let x̂∗

k = arg maxx∈�k
8Ḡk4x59 and break the tie

arbitrarily if it exists, and let ĝ∗
k = Ḡk4x̂

∗
k5. Go to Step 1.

As pointed out by Hong and Nelson (2007), random
search algorithms typically include two schemes in each
iteration: a sampling scheme that determines where to sam-
ple next solutions and an estimation scheme that determines
how to allocate simulation effort to the simulated solutions.
In this paper we focus mainly on the sampling scheme by
showing how to construct a sampling distribution that bal-
ances the exploitation and exploration trade-off. Therefore,
to illustrate the usefulness of our idea, we use a very sim-
ple estimation scheme in the GPS algorithm, i.e., allocating
a fixed number of simulation observations to each of the
newly simulated solutions. To make the algorithm practi-
cally competent, however, one may consider using other
more sophisticated and more efficient estimation schemes.

4.2. Convergence of GPS Algorithm

To prove the global convergence of the GPS algorithm, we
first prove the following lemmas.

Lemma 1. Suppose that the GPS algorithm is used to solve
Problem (1). For any x ∈ ä, if fk4x5 ¾ c infinitely often
(i.o.) for some constant c > 0, nk4x5 → � with probabil-
ity 1 (w.p.1) as k → �.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS 1425

Proof. It suffices to prove that Pr8limk→� nk4x5 < N9= 0
for any N > 0 and for any x such that fk4x5¾ c i.o. Notice
that, if fk4x5¾ c,

Pr8x ∈ Sk9= 1 − Pr8x y Sk9= 1 − 61 − fk4x57
s

¾ 1 − 41 − c5s > 00

Then,

Pr
{

lim
k→�

nk4x5 < N

}

= Pr
{

lim
k→�

r
k
∑

i=1

18x∈Si9
<N

}

¶ Pr
{

lim
k→�

r
∑

i¶k1 fi4x5¾c

18x∈Si9
<N

}

0

Let nk =
∑k

i=1 18fi4x5¾c9 and Bi, i = 1121 0 0 0 1 be independent
Bernoulli random variables with parameter 1 − 41 − c5s .
Then,

Pr
{

lim
k→�

nk4x5 < N

}

¶ Pr
{

lim
k→�

r
nk
∑

j=1

Bj <N

}

= Pr
{

lim
k→�

1
nk

nk
∑

j=1

Bj <
N

nkr

}

0 (11)

Because fk4x5¾ c i.o., we have nk → � as k → �. Then,
by the strong law of large numbers,

1
nk

nk
∑

j=1

Bj → 1 − 41 − c5s w0p01

as k → �. Furthermore, notice that N/4nkr5 → 0 w.p.1.
Then, we have that the right-hand side of Equation (11)
equals to zero. Therefore, nk4x5→ � w.p.1 as k → �. �
Lemma 2. Suppose that the GPS algorithm is used to solve
Problem (1). Then, nk4x̂

∗
k5→ � w.p.1 as k → �.

Proof. Because ä is a finite set, the sequence x̂∗
k has a

finite set of cluster points C ⊂ ä such that x̂∗
k = x i.o. for

all x ∈C and

Pr8x̂∗

k yC i0o09= 00 (12)

Notice that, where x̂∗
k−1 = x,

fk4x5=
1/2

∑

x∈ä Pr∗8Yk−14z5 > ĝ∗
k−19

¾ 1
�ä�

0

Then, by Lemma 1,

Pr8nk4x5→ � as k → � for all x ∈C9= 10 (13)

Combining Equations (12) and (13), it is easy to see that
nk4x̂

∗
k5→ � w.p.1 as k → �. �

Lemma 3. Suppose that the GPS algorithm is used to solve
Problem (1). Then, for any � > 0, lim supk→� ĝ∗

k < g∗ + �
w.p.1.

Proof. Notice that it is equivalent to prove that Pr8ĝ∗
k >

g∗ + � i0o09= 0, where g∗ = maxx∈ä g4x5.
To facilitate the proof, suppose at the end of each iter-

ation, for any x ∈ ä, we add additional observations to x
such that the number of observations at x is at least nk4x̂

∗
k5.

Let Nk4x5= max8nk4x̂
∗
k51 nk4x59 and let

G̃k4x5=
1

Nk4x5

Nk4x5
∑

i=1

Gi4x50

By Lemma 2, Nk4x5 → � w.p.1 as k → �. Then, by the
strong law of large numbers, G̃k4x5 → g4x5 w.p.1 as k →

�. Then,

Pr8ĝ∗

k > g∗
+ � i0o09¶ Pr

{

max
x∈ä

G̃k4x5 > g∗
+ � i0o0

}

¶
∑

x∈ä

Pr8G̃k4x5 > g∗
+ � i0o09= 01

where the last equality holds because g∗ = maxx∈ä g4x5¾
g4x5 for all x ∈ ä and G̃k4x5 → g4x5 w.p.1 as k → � for
all x ∈ä. �
Lemma 4. Suppose that the GPS algorithm is used to solve
Problem (1) and Conditions 1 and 2 are satisfied. Then,
nk4x5→ � w.p.1 for all x ∈ä.

Proof. It suffices to prove that Pr8limk→� nk4x5 < N9= 0
for any x ∈ä and any N > 0. By Lemma 3, for all x ∈ä,

Pr
{

lim
k→�

nk4x5<N
}

=Pr
{

lim
k→�

nk4x5<N1 limsup
k→�

ĝ∗

k <g∗
+�
}

for any � > 0. Let ì4x5 = 8limk→� nk4x5 < N1
lim supk→� ĝ∗

k < g∗ + �9. It suffices to show that
Pr8ì4x59= 0 for all x ∈ä.

For any x ∈ä and � ∈ì4x5, there exists K4�5 such that
for any k > K4�5, ĝ∗

k4�5 < g∗ + �. For any k > K4�5, if
no observation has been allocated to x by iteration k, i.e.,
nk4x5= 0, by Proposition 2, we have

Var∗6Yk4x57¾ �̃24x5¾ �241 −h4d4x5552 ¾ �21

where �2 = �241 − h4d55 with d = min8�x − y�1x 6= y1
x1 y ∈ä9> 0. If by iteration k there have been some obser-
vations allocated to x, i.e., nk4x5 > 0, Proposition 1 sug-
gests that

Var∗6Yk4x57=
max8�̂4x521�2

0 9

nk4x5
¾ �2

0

N
0

Let �̃2 = min8�21�2
0 /N9. By the above analysis, we have

Var∗6Yk4x57¾ �̃2.
Furthermore, we have E∗6Yk4x57¾ M for any x ∈ä and

k > 0. Then, for any k >K4�5,

Pr∗8Yk4x5 > ĝ∗

k9¾ê

(

g∗ + �− M

�̃

)

> 01

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
1426 Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS

where ê4 · 5 is the cumulative distribution function of a
standard normal random variable. Then, we have

fk4x5¾
1

�ä�
ê

(

g∗ + �− M

�̃

)

1

where the right-hand side of the inequality is a positive
constant. Then, by Lemma 1, we have Pr8ì4x59= 0 for all
x ∈ä. �

Now we can present the main result on the convergence
of the GPS algorithm.

Theorem 1. Suppose that the GPS algorithm is used to
solve Problem (1) and Conditions 1 and 2 are satisfied.
Then, ĝ∗

k → g∗ w.p.1 as k → �.

Proof. Notice that

�ĝ∗

k − g∗
� =

∣

∣

∣

max
x∈ä

Ḡk4x5− max
x∈ä

g4x5
∣

∣

∣

¶ max
x∈ä

�Ḡk4x5− g4x5�0

Therefore, for any � > 0,

Pr8�ĝ∗

k −g∗
�>� i0o09¶Pr

{

max
x∈ä

�Ḡk4x5−g4x5�>� i0o0
}

¶
∑

x∈ä

Pr8�Ḡk4x5−g4x5�>� i0o09=01

where the last equation follows from Lemma 4, the strong
law of large numbers, and the fact that ä is a finite set.
Therefore, we conclude that ĝ∗

k → g∗ w.p.1 as k → �. �

4.3. Stopping Criteria

Theorem 1 shows that the sequence of sample-best solu-
tions generated by the GPS algorithm converges to the
global optimum as the simulation effort goes to infinity.
In practice, however, the simulation effort is limited and
the algorithm has to stop short of infinity. Then, one natural
question is when to stop. A related problem is the infinite-
time inference problem, which infers the optimality gap
of a DOvS problem based on the finite-time information.
This problem was first proposed by Andradóttir and Nelson
(2002), but since then there has been very little progress in
solving it.

A few stopping criteria have been proposed in the lit-
erature and used in practice. The most widely used stop-
ping criterion for DOvS algorithms is to stop the algorithm
when the available computation time is exhausted. How-
ever, this stopping criterion is often too passive because
the users may not know exactly how much computation
time is available to them and the criterion does not pro-
vide any information on the quality of the solution at the
stopping. Xu et al. (2010) proposed a hypothesis test based
stopping criteria for locally convergent DOvS algorithms,
which tests whether the current solution is the best in
its local neighborhood after all solutions in the neighbor-
hood being simulated. However, this stopping criterion can-
not be extended to globally convergent DOvS algorithms,

because the global optimality requires the solution be the
best among all feasible solutions and the algorithms often
do not have the computation budget available to simulate
all feasible solutions.

Indeed, proposing stopping criteria for a globally con-
vergent DOvS algorithm is in general very difficult. When
there is no structural information on the objective function
g4x5, the global optimality of a solution cannot be estab-
lished without simulating all feasible solutions. In practice,
however, we typically cannot afford to simulate all solu-
tions before stopping. Therefore, we have to impose certain
structures on the objective function g4x5 to develop reason-
able stopping criteria.

In this subsection we propose to use the Gaussian pro-
cess model of §3 to describe the structure of g4x5 and use
the derived distribution of Y 4x5 to design meaningful stop-
ping criteria. From an informal Bayesian viewpoint, Y 4x5
is our posterior model of g4x5 and, therefore, we may use
it to infer the optimality gap in a probabilistic sense. For
instance, we may consider the following four statistics at
the end of iteration k,

ãk11 =
1

�ä�

∑

x∈ä

Pr∗8Yk4x5¾ ĝ∗

k91

ãk12 =
1

�ä�

∑

x∈ä

E∗64Yk4x5− ĝ∗

k5
+71

ãk13 =
∑

x∈ä

Pr∗8Yk4x5¾ ĝ∗

k9fk+14x51

ãk14 =
∑

x∈ä

E∗64Yk4x5− ĝ∗

k5
+7fk+14x50

Notice that ãk11 = Pr∗8Yk4U5 ¾ ĝ∗
k9 and ãk12 =

E∗64Yk4U5 − ĝ∗
k5

+7, where U is a random vector that is
uniformly distributed on ä and independent of other ran-
domness. Then, ãk11 is the expected conditional probability
that a uniformly generated solution on ä has a value that is
greater than the current sample best solution and ãk12 is the
expected conditional improvement. Therefore, we may stop
the algorithm when the values of ãk11 and ãk12 are small
enough, meaning that the chance of finding a better solu-
tion is small enough so that we may not have a significant
loss if we stop the algorithm at iteration k.

Similarly, ãk13 = Pr∗8Yk4X5 ¾ ĝ∗
k9 and ãk14 =

E∗64Yk4X5 − ĝ∗
k5

+7, where X is a random vector that is
distributed according to fk+14x5 and independent of other
randomness. Then, ãk13 is the expected conditional proba-
bility that a better solution can be found in iteration k+ 1
and ãk14 is the expected conditional improvement in itera-
tion k+ 1. Therefore, we may stop the algorithm when the
values of ãk13 and ãk14 are small enough, indicating that
the gain from an additional iteration is small enough.

Although the exact calculations of ãk11 to ãk14 may not
be possible as they require evaluations of all x ∈ ä, these
quantities can be estimated using a finite sample of U and
X. Furthermore, if the stopping criteria are not satisfied at

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS 1427

iteration k, the samples are not wasted as they can be used
in Step 2 of the GPS algorithm in iteration k+ 1.

The discussions on the stopping criteria in this subsec-
tion are quite conceptual. Nevertheless, we believe that they
provide a direction to solve this important yet significantly
understudied problem. In §5 we conduct some numerical
evaluations of these stopping criteria.

It is worthwhile to notice that there are other types of
stopping criteria for global optimization in the context of
Bayesian methods that are similar to our stopping crite-
ria. For instance, Betrò (1991) proposed the k-sla stopping
rules, which call for stopping the sampling process as soon
as the current cost is not greater than the cost expected if
at most k further observations are taken. Readers may refer
to Betrò (1991) for a more detailed discussion on the rule
and Sasena (2002) for the literature review of some other
related ideas.

5. Numerical Examples
In this section we study the performance of the GPS algo-
rithm and the stopping criteria, analyze the effect of param-
eter settings on the performance of the GPS algorithm, and
compare the GPS algorithm with other competing algo-
rithms, through two numerical examples.

5.1. A Problem with Multiple Local Optima

The first problem that we want to test is as follows:

max
0¶x11 x2¶100

g4x11 x25= 10 ·
sin640005�x15

2244x1−905/5052

+ 10 ·
sin640005�x25

2244x2−905/5052 0 (14)

A similar example is used by Xu et al. (2010). Notice that
g has 25 local optima with the global optimum g4901905=

20 and the second best local optimum g4901705 =

g4701905 = 18095 (see Figure 5). Without knowing the
closed-form expression of g, this problem is difficult to
solve because it has many local optima and the difference
between the largest and the second largest function values
is quite small.

To make this problem a DOvS problem, we discretize
the solution set to ä = 84x11 x25 � x1 = 0001z11 x2 = 0001z21
z11 z2 = 11 0 0 0 11010009 and add a noise term that is nor-
mally distributed with mean 0 and variance 1 to all solu-
tions in ä. For the GPS algorithm, we set � = 4, �i4x5 =

exp8−�x − xi�
0059, �i4x5 = �x− xi�

−4/4
∑n

i=1 �x− xi�
−45,

s = 5 and r = 10, and apply the ARS algorithm to sample
solutions in each iteration.

The left panel of the Figure 6 shows the 30 sample
paths of the GPS algorithm with a total sample size of 104

(approximately 1,000 evaluated solutions). It shows that,
in all 30 runs, the GPS algorithm can find sample-best
solutions that are very close to the true optimal solution.
With less than 500 evaluated points, the GPS algorithm is

Figure 5. (Color online) The g4x11 x25 function defined
in Equation (14).

20
18
16
14
12
10
8
6
4
2
0

100
80

60
40

20
0 0

20
40

60
80

100

able to identify the optimal region. To compare the GPS
algorithm with other algorithms, we also apply a simulated
annealing algorithm and a global random search (GRS)
algorithm to solve this problem. In particular, we use the
simulated annealing algorithm of Alrefaei and Andradóttir
(1999) with the constant temperature being 0.1, the local
neighborhood being a hypercube with length 5 centered at
the current solution, and the number of observations being
5 for each visit of a solution, and the GRS algorithm of
Andradóttir (1996) with the number of observations being
5 for each visit of a solution. The right panel of Figure 6
shows the average performances of all three algorithms
over 30 sample paths, from which we see that the perfor-
mance of the GPS algorithm is significantly better than the
performances of the other two algorithms with the same
total sample size. To further illustrate the performance of
the GPS algorithm, in Figure 7 we plot the evaluated points,
the mean surface (i.e., E∗6Yk4x57), the variance surface (i.e.,
Var∗6Yk4x57) and the probability surface (i.e., Pr∗8Yk4x5 >
ĝ∗
k9) through different iterations in a typical run. From these

figures we see that the GPS algorithm at the beginning
mainly conducts explorative search to find regions with
good performance and then switches to exploitative search.
As the number of iterations increases, the fitted surface
gets closer to the true surface, and the sampling distribution
focuses more on the optimal region. This demonstrates the
strength of the GPS algorithm in balancing the exploitation
and exploration trade-off.

Notice that the simulated annealing algorithm is an
example of exploitation-based algorithms while the GRS
algorithm is an example of exploration-based algorithms.
Exploitation-based algorithms are not suitable for solving
problems with many local optima, because they are easy
to be trapped to a local optimum. Exploration-based algo-
rithms are more suitable because they can “jump” out of a
locally optimal region. To further show the strength of the
GPS algorithm, based on 1,000 runs of each algorithm, we
plot the distributions of current sample-best solutions of the

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
1428 Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS

Figure 6. Estimated optimal value for function g.

0 2,000 4,000 6,000 8,000 10,000
2

4

6

8

10

12

14

16

18

20
Estimated optimal value for g (x1, x2)

E
st

im
at

ed
 o

pt
im

al
 v

al
ue

Total sample size

Simulated annealing
Global random search
GPS

0 2,000 4,000 6,000 8,000 10,000
8

10

12

14

16

18

20

Estimated optimal value for g (x1, x2) (� = 4)
E

st
im

at
ed

 o
pt

im
al

 v
al

ue

Total sample size

Figure 7. (Color online) The evaluated points, mean surface, variance surface, and probability surface by 20, 100, 200
iterations (approximately 100, 500, and 1,000 evaluated points) when solving Problem (14).

0 50 100 0 50 1000 50 100

Iteration 20
100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

20

10

0

30

20

0
100

0.4

0.2

0
100

0.4

0.2

0
100

50
0 0 00

50 50 50
100 100

100

50
0 0

50
100

0

0.2

0.4

V
ar

ia
nc

e
su

rf
ac

e
P

ro
ba

bi
lit

y
su

rf
ac

e

50

0 0
50

100
50

0 0
50

100
100

0

10

20

30

10

30

20

0
100

10

50
0 0

50
100

100
50

0 0
50

100

20

10

0
100

50
0 0

50
100

20

10

0
100

50
0 0

50
100

M
ea

n
su

rf
ac

e
E

va
lu

at
ed

 p
oi

nt
s

Iteration 100 Iteration 200

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS 1429

GPS and GRS algorithms after 1,000, 2,500, 5,000 obser-
vations in Figure 8. From the figure we can see that the
GPS algorithm identifies good regions faster than the GRS
algorithm does and is capable of conducting exploitative
search while the GRS algorithm is not.

5.2. An Inventory Problem

The second problem we want to test is an inventory man-
agement problem for an assemble-to-order system. We use
the same parameter settings and simulation scheme as in
Hong and Nelson (2006). This problem is a DOvS prob-
lem with eight decision variables and 2056 × 1010 feasi-
ble solutions. Based on the results reported by Hong and
Nelson (2006), the problem appears to have multiple local
optima that are close to each other and have similar per-
formances, and thus it is particularly suitable for locally
convergent random search algorithms like the COMPASS
algorithm and exploitation-based algorithms like the simu-
lated annealing algorithms.

The settings of the GPS algorithm for this problem are
the same as those for the problem in §5.1, except that we
set � = 15. (We discuss more on the setting of � in §5.3.)
To speed up the sampling process, we use the MCCS algo-
rithm with T = 11000 and the current sample-best solution
as the starting point to generate points from the sampling
distribution in each iteration of the GPS algorithm. The left
panel of Figure 9 shows the 30 sample paths of the GPS
algorithm with a total sample size of 105 × 104. It shows
that, in all 30 runs, the GPS algorithm can find sample-
best solutions with very good performances very quickly.
We also compare the GPS algorithm with the simulated
annealing algorithm, the GRS algorithm and the COM-
PASS algorithm on this problem. The settings of the GRS
algorithm and the simulated annealing algorithm are the
same as those in §5.1 except that, for the simulated anneal-
ing algorithm, the temperature is set to 1 and the neigh-
borhood is set to be a hypercube with length 3, and the
setting of the COMPASS algorithm is the same as those
of Hong and Nelson (2006). The right panel of Figure 9
shows the average performances of all four algorithms over
30 sample paths. From this figure, we can see that the per-
formance of the GPS algorithm is only slightly worse than
that of the COMPASS algorithm, similar to that of the sim-
ulated annealing algorithm, and clearly better than that of
the GRS algorithm. Because the number of observations
allocated to the current optimal solutions is much smaller
in the COMPASS algorithm than in the GPS algorithm,
the estimated sample-best objective values of the COM-
PASS algorithm have often higher biases than those of the
GPS algorithm. By adding more observations to the current
sample-best solutions to remove the random noise, we find
that the actual performances of the GPS and the COMPASS
algorithm are nearly the same. Considering that this inven-
tory problem itself is particularly suitable for the COM-
PASS algorithm that does not have global convergence, the
performance of the GPS algorithm is quite satisfactory.

5.3. The Effect of � 2 on the Performance of GPS

In the GPS algorithm the variance (i.e., �2) of the uncon-
ditional Gaussian process M4x5, is an important parameter.
It plays an important role in balancing the exploitation and
exploration trade-off. When �2 is large, the variance of the
Gaussian process is high and the GPS algorithm spends
more effort in exploration. When �2 is small, the vari-
ance of the Gaussian process is low and the GPS algorithm
spends more effort in exploitation. To test the impact of
�2 on the performance of the GPS algorithm, we run the
algorithm 30 times with � = 31415 for Problem (14) and
with � = 10115120 for the inventory problem.

In Figure 10, we plot the 30 sample paths as well as
the evaluated points through different iterations in a typ-
ical run of the GPS algorithm with different values of �
for Problem (14). In Figure 11, we plot the 30 sample
paths with different values of � for the inventory problem.
From these figures, we can see that when � is small (e.g.,
� = 3 and � = 10), the algorithm tends to spend more
effort in exploitation; and when � is large (e.g., � = 5
and � = 20), the algorithm tends to spend more effort in
exploration. Therefore, based on the information about the
problem in hand, the users of the GPS algorithm may adjust
the exploitation and exploration trade-off by adjusting the
value of � .

In practical applications, if the computation budget is
limited compared to the size of the solution set, a small �
may be applied in the GPS algorithm to achieve satisfactory
finite time performance with a high probability of finding a
local optimum. If the computation budget is high, a large �
may be appropriate to increase the probability of finding the
global optimum. If the computation budget is not a critical
concern, the value of � may change with the search process
of the algorithm. For instance, if after some iterations of
search, the function seems to have multiple local optima
with similar function values, it is more appropriate to set �
as a relatively large value to avoid being trapped to a local
optimum. If solutions with good function values seem to
cluster in a small region, then it is more appropriate to set
� as a relatively small value to focus on exploitative search.
How to design a scheme that can change �2 adaptively is
certainly an interesting topic for future study.

For the GPS algorithm, we also need to set some other
parameters such as �4 · 5, �4 · 5, and so on. We find that the
performance of the GPS algorithm is not sensitive to these
parameters.

5.4. Computational Overhead and Efficiency of
Random Search Algorithms

Random search algorithms are often compared based on
the quality of the solutions when the algorithms use the
same number of observations, as we have done in §§5.1
and 5.2. The basic rationales for this type of comparison
should be twofold. First, simulation observations typically
take a significantly larger amount of computation time than

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
1430 Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS

Figure 8. Distributions of current sample-best solutions after 1,000, 2,500, and 5,000 observations of the GPS and GRS
algorithms when solving Problem (14) based on 2,000 runs of each algorithm.

0 50 100
0

50

100
1,000 observations

G
P

S

0 50 100
0

50

100

G
lo

ba
l r

an
do

m
 s

ea
rc

h

0 50 100
0

50

100
2,500 observations

0 50 100
0

50

100

0 50 100
0

50

100
5,000 observations

0 50 100
0

50

100

Figure 9. Estimated optimal profit for the assemble-to-order system.

0 5,000 10,000 15,000
40

60

80

100

120

140

160

Total sample size

E
st

im
at

ed
op

tim
al

va
lu

e

0 5,000 10,000 15,000
40

60

80

100

120

140

160

Total sample size

E
st

im
at

ed
op

tim
al

va
lu

e

Simulated annealing
GPS
Global random search
COMPASS

Estimated optimal profit for an assemble-to-order system

the overhead of the algorithms (e.g., the computation time
used in sampling). Therefore, the computational overhead
may be ignored in the comparisons. Second, test problems
such as Problem (14) often involve only the evaluation
of a closed-form expression and require significantly less
computation time than a practical simulation experiment.
Therefore, actual computation time of algorithms may not
be fairly compared. In this subsection we argue that the
computational overhead is an important factor to consider
when selecting a random search algorithm. If the simulation
experiments are fast, algorithms that need more observations
but significantly less overhead may outperform algorithms
that need less observations but significantly more overhead.

To illustrate our ideas we consider three algorithms: the
GRS algorithm that has very little computational overhead,

the sequential kriging optimization (SKO) algorithm of
Huang et al. (2006) that requires a significant amount
of overhead, and the GPS algorithm that is in between.
The SKO algorithm is an extension of the EGO algorithm
to stochastic problem with a key ingredient called “aug-
mented expected improvement” (AEI) in the method. In
each iteration, the algorithm fits a Gaussian process and
chooses the solution with the largest AEI value as the next
solution for evaluation by solving a global optimization
problem, therefore requiring a significantly large amount of
computational overhead.5 We again consider Problem (14)
and the inventory problem. The first problem requires very
little computation time to evaluate a solution, while the
second problem requires some time but not too signifi-
cant an amount. We compare the performances of the three

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS 1431

Figure 10. Performance and simulated points allocation of the GPS algorithm with � = 31415 for solving Problem (14).

Estimated optimal value for g (x1, x2) (� = 3, 4, 5)

Distribution of evaluated points in a typical run by 1,000 observations

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

Distribution of evaluated points in a typical run by 10,000 observations

0 2,000 4,000 6,000 8,000 10,000
8

10

12

14

16

18

20

0 2,000 4,000 6,000 8,000 10,000
8

10

12

14

16

18

20

0 2,000 4,000 6,000 8,000 10,000
8

10

12

14

16

18

20

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

Figure 11. Performance of the GPS algorithm with � = 10115120 for the inventory problem.

Estimated optimal profit for an assemble-to-order system (� = 10, 15, 20)

0 5,000 10,000 15,000
40

60

80

100

120

140

160

Total sample size

E
st

im
at

ed
 o

pt
im

al
 v

al
ue

0 5,000 10,000 15,000
40

60

80

100

120

140

160

Total sample size

0 5,000 10,000 15,000
40

60

80

100

120

140

160

Total sample size

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
1432 Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS

algorithms for the two test problems in terms of both the
total number of observations and total computation time,
and plot 30 sample paths in Figures 12 and 13.

From the upper four plots of Figure 12 we find that,
when solving Problem (14), the GPS algorithm has a better
performance than the GRS algorithm in terms of the total
sample size (with a maximum of 8,000 observations), but a
worse performance in terms of the total computation time
(with a maximum of 10 seconds). From the bottom four
plots of Figure 12 (note that the scales of the bottom four
plots are different from those of the upper four) we find
that, when solving the same problem, the SKO algorithm
has a better performance than the GPS algorithm in terms
of the total sample size (with a maximum of 1,000 observa-
tions because the SKO algorithm cannot afford to run 8,000
observations), but a much worse performance in terms of
the total computation time (with a maximum of 200 sec-
onds). Because Problem (14) requires very little simulation
time, nearly all computation time is spent on the algorithm
overhead for all three algorithms. From these results we
find that the SKO algorithm has a much more significant
overhead than the GPS algorithm, and the GPS algorithm
has a much more significant overhead than the GRS algo-
rithm. For problems like Problem (14), the GRS is clearly
the most efficient of the three even though it requires the
largest number of observations to solve the problem.

However, Problem (14) is not a good representative of
practical DOvS problems that we are interested in because
it requires too little time for simulation. Instead, the inven-
tory problem is a better representative. From the eight plots
of Figure 13 we find that, when solving the problem, the
GPS algorithm has a better performance than the GRS
algorithm in terms of both the total sample size and the
total computation time, and a better performance than the
SKO algorithm in terms of the total computation time but
a worse performance in terms of the total sample size.
Therefore, for problems like the inventory problem, the
GPS algorithm is clearly the most efficient of the three and
should be used in practice. It is worthwhile noting that the
SKO algorithm, as well as the P -algorithm and the EGO
algorithm, are not designed to solve the type of problems
that we are interested in, where we may afford thousands to
even millions of simulation observations. They are designed
to solve problems where function evaluations are very time
consuming. For those problems, the overhead of these algo-
rithms may be negligible when compared to the time of
functional evaluations, and they should be preferred to the
GPS and GRS algorithms.

Remark 2. Although the computational cost for generat-
ing a sample point is much lower in the GPS algorithm
than in kriging-based algorithms such as the SKO, the com-
putational cost in GPS for generating one sample point
from the sampling distribution increases with the number
of simulated points. For high-dimensional problems with a
large solution set, though in theory we can prove that it is

guaranteed to find the global optimum as the computation
budget goes to infinity if one applies the GPS algorithm,
the finite-time performance of the GPS algorithm may be
unsatisfactory. Suppose we want to find the global opti-
mum of a function with several local optima and with a
solution set which is a 20-dimensional hyper cubic with a
length of 10 in each dimension. The number of solutions in
the solution set is approximately 1020. Within 104 points,
it is understandable that the GPS algorithm cannot find the
global optimum. However, when the number of simulated
points is larger than 104, the computational time for calcu-
lating the means and variance at one point in the solution
set will be long. Therefore, the speed of the GPS algo-
rithm will be slow. Therefore, in practice we recommend
that users apply GPS algorithm in solving problems with
a dimensionality less than 20. Finding an efficient way to
simplify the calculation of mean and variance is one direc-
tion of our future research.

5.5. Stopping Criteria

In this subsection we combine the stopping criteria pro-
posed in §4.3 with the GPS algorithm. Figure 14 shows the
objective values and the values of all four stopping crite-
ria with respect to the sample size in a typical run of the
algorithm for Problem (14) in the left panel and the inven-
tory problem in the right panel, respectively. From these
figures, we find that the performances of the first two cri-
teria are similar, and the performances of the other two are
also similar.

For Problem (14), the values of all stopping criteria
become stable after 104 observations and slowly decrease
as the sample size further increases. We can let the algo-
rithm stop after the stopping criteria are lower than some
prespecified value. For the inventory problem, however, the
values of the four stopping criteria fluctuate significantly
even after 2 × 104 observations. Notice that the problem
has 2056 × 1010 feasible solutions and, even with 2 × 104

observations, we only simulate at most 2,000 solutions,
which may be too small for any stopping criteria to claim
global convergence in a reasonable way. Because judging
whether a solution is globally optimal requires informa-
tion about the entire solution set, stopping criteria for this
type of problem tend to be very conservative. Therefore,
for high-dimensional problems, our stopping criteria may
require significantly more observations to stop than to find
a near-optimal solution.

5.6. Impact of Dimensionality

To understand how dimensionality affects the performance
of the GPS algorithm, we consider the following problem
where the objective function is

min
x∈ä

g4x5 2=
200

√

4x1 − 552 + · · · + 4xk − 552 + 1

+
50

√

4x1 − 752 + · · · + 4xk − 752 + 1
1 (15)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS 1433

Figure 12. (Color online) Sample paths of the GRS, SKO, and GPS algorithms for Problem (14).

0 2,000 4,000 6,000 8,000
8

10

12

14

16

18

20

Total sample size
0 2 4 6 8 10

8

10

12

14

16

18

20

CPU time (seconds)

GRS algorithm

0 2,000 4,000 6,000 8,000
8

10

12

14

16

18

20

Total sample size

0 2 4 6 8 10
8

10

12

14

16

18

20

CPU time (seconds)

GPS algorithm

0 200 400 600 800 1,000

12

14

16

18

20

Total sample size
0 50 100 150 200

8

10

12

14

16

18

20

CPU time (seconds)

GPS algorithm

0 200 400 600 800 1,000
Total sample size

0 50 100 150 200
5

10

15

20

CPU time (seconds)

E
st

im
at

ed
 m

ea
n 

at
cu

rr
en

t o
pt

im
al

E
st

im
at

ed
 m

ea
n 

at
cu

rr
en

t o
pt

im
al

E
st

im
at

ed
 m

ea
n 

at
cu

rr
en

t o
pt

im
al

E
st

im
at

ed
 m

ea
n 

at
cu

rr
en

t o
pt

im
al

E
st

im
at

ed
 m

ea
n 

at
cu

rr
en

t o
pt

im
al

E
st

im
at

ed
 m

ea
n 

at
cu

rr
en

t o
pt

im
al

E
st

im
at

ed
 m

ea
n 

at
cu

rr
en

t o
pt

im
al

E
st

im
at

ed
 m

ea
n 

at
cu

rr
en

t o
pt

im
al

SKO algorithm

10

8

12

14

16

18

20

10

8

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
1434 Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS

Figure 13. (Color online) Sample paths of the GRS, SKO, and GPS algorithms for the inventory problem.

0 0.5 1.0 1.5 2.0
× 104

40

60

80

100

120

140

160

Total sample size

0 0.5 1.0 1.5 2.0
× 104Total sample size

E
st

im
at

ed
 o

pt
im

al
 v

al
ue

40

60

80

100

120

140

160

E
st

im
at

ed
 o

pt
im

al
 v

al
ue

0 500 1,000 1,500 2,000

CPU time (seconds)

GRS algorithm

GPS algorithm

40

60

80

100

120

140

160

GPS algorithm

0 200 400 600 800 1,000
40

60

80

100

120

140

160

Total sample size

0 200 400 600 800 1,000

Total sample size

E
st

im
at

ed
 o

pt
im

al
 v

al
ue

40

60

80

100

120

140

160

E
st

im
at

ed
 o

pt
im

al
 v

al
ue

40

60

80

100

120

140

160

E
st

im
at

ed
 o

pt
im

al
 v

al
ue

40

60

80

100

120

140

160

E
st

im
at

ed
 o

pt
im

al
 v

al
ue

E
st

im
at

ed
 o

pt
im

al
 v

al
ue

0 500 1,000 1,500 2,000
40

60

80

100

120

140

160

CPU time (seconds)

0 500 1,000 1,500 2,000

CPU time (seconds)

0 500 1,000 1,500 2,000

CPU time (seconds)

E
st

im
at

ed
 o

pt
im

al
 v

al
ue

SKO algorithm

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS 1435

Figure 14. Performance of the GPS algorithm and the stopping criteria for Problem (14) and the inventory problem.

10

15

20

E
st

im
at

ed
op

tim
al

 v
al

ue

E
st

im
at

ed
op

tim
al

 v
al

ue

0

0.02

0.04

∆ k
, 1

∆ k
, 1

∆ k
, 2

∆ k
, 3

∆ k
, 4

∆ k
, 2

∆ k
, 3

∆ k
, 4

0
0.1
0.2
0.3
0.4

0

0.1

0.2

0.3

0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

Total sample size

0 0.5 1.0 1.5 2.0 2.5 3.0
50

100

150

0

1

2

0

0.005

0.010

0.015

0.020

0

0.05

0.10

0

5

10

Total sample size× 104

0 0.5 1.0 1.5 2.0 2.5 3.0

× 104

0 0.5 1.0 1.5 2.0 2.5 3.0

× 104

0 0.5 1.0 1.5 2.0 2.5 3.0

× 104

0 0.5 1.0 1.5 2.0 2.5 3.0

× 104 ×104

0 0.5 1.0 1.5 2.0 2.5 3.0

×104

0 0.5 1.0 1.5 2.0 2.5 3.0

×104

0 0.5 1.0 1.5 2.0 2.5 3.0

×104

0 0.5 1.0 1.5 2.0 2.5 3.0

×104

×10–4

where ä = 84x11 0 0 0 1 xk5 � xi = 001zi1 zi = 11 0 0 0 11009. To
make it into a DOvS problem, we assume that the closed-
form expression of g4x5 is not available and can only be
evaluated with noise that is normally distributed with mean
0 and variance 1 for every x ∈ ä. The global optimum of
this problem is 451 0 0 0 155, the second largest local optimum
is 471 0 0 0 175, and there are also some other local optima.

For the GPS algorithm, we set � = 5 with the other
settings the same as in Problem (14) and let the algo-
rithm stop when the current sample-best solution locates in
640515057× · · · × 640515057. We run the algorithm 30 repli-
cations for each dimension from 1 to 15, and plot the total
sample sizes and CPU times needed for the algorithm to
stop in Figure 15.

Notice that the time to generate an observation from the
objective function is negligible. Therefore, the CPU times
reported in Figure 15 reflect the computational overhead of
the algorithm. From Figure 15 we can see that the compu-
tational overhead of the GPS algorithm appears to increase

exponentially as the dimension of the problem increases.
When the dimension is 10, it takes on average only 20 sec-
onds to solve the problem. But when the dimension is 15,
it takes on average over 2,000 seconds (i.e., over 30 min-
utes). This example suggests that the GPS problem may be
suitable for problems with moderate dimensions (e.g., no
more than 10–15 dimensions).

The GPS algorithm determines the sampling distribu-
tion in each iteration based on a global metamodel of the
objective function. Notice that, when the dimension of the
problem increases, previously visited solutions tend to be
more sparsely allocated in the feasible region, resulting in
poorer global metamodels. Therefore, it is not surprising
that the performances of the GPS algorithm deteriorate as
the dimension of the problem increases. However, we want
to emphasize that there are many interesting and important
DOvS problems that fall into the range of problems that
may be solvable by the GPS algorithm.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
1436 Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS

Figure 15. (Color online) The total sample sizes and CPU times needed for the algorithm to stop for Problem (15).

2 4 6 8 10 12 14 16
101

102

103

104

105

Dimension

T
ot

al
 s

am
pl

e 
si

ze

2 4 6 8 10 12 14 16
10–2

10–1

100

101

102

103

104

Dimension

C
P

U
 ti

m
e 

(s
ec

on
ds

)

Average total sample size Average CPU time

6. Conclusions
In this paper we propose a Gaussian process-based ap-
proach to constructing sampling distributions that balance
the exploitation and exploration trade-off in a seamless
way. We then develop the GPS algorithm that implements
the sampling distributions, analyze its global convergence,
and study its practical performances on two numerical
examples. We also propose several stopping criteria that
may be used in the GPS algorithm and study their numer-
ical performances.

In the future we plan to extend our work in several direc-
tions. First, the sampling distribution can be extended easily
to continuous OvS problems. However, the global conver-
gence of the resulted algorithm may be difficult to prove,
and we want to study this problem in the future. Second,
based on the numerical results, we feel that it may be ben-
eficial to adopt a dynamic estimation scheme in the algo-
rithm to improve the finite time performance. In this paper,
we mainly consider the trade-off between the exploitation
and exploration and assign a finite number of observations
in each iteration to the simulated points. Obviously, esti-
mation is also an important component of stochastic ran-
dom search algorithms. Third, we believe that the issue
of designing stopping criteria for globally convergent ran-
dom search algorithms is both interesting and important
and deserves more study.

Acknowledgments

The authors thank the associate editor and three anonymous refer-
ees for their valuable comments and suggestions that significantly
improved the paper. A preliminary version of this paper (Sun
et al. 2011) was published in the Proceedings of the 2011 Winter
Simulation Conference. This research was partially sponsored by
the Hong Kong Research Grants Council [Grant GRF 613011],
the Natural Science Foundation of China [Grants 71101111,
71201117, 71371140, 71173153, and 71090404], the Shanghai
Pujiang Program, and the Fundamental Research Funds for the
Central Universities [2013KJ028].

Appendix A. Proof of Proposition 2

Proof. We first prove the case where d4x5 > 0. Note that

�̃24x5= �241 − 2�4x5T�4x5+�4x5Tâ�4x55

= �2

(

1 − 2
n
∑

i=1

�i4x5h4�x− xi�5

+

n
∑

i=1

n
∑

j=1

�i4x5�j4x5h4�xi − xj�5
)

¾ �2

(

1 − 2
n
∑

i=1

�i4x5h4�x− xi�5

+

n
∑

i=1

n
∑

j=1

�i4x5�j4x5h4�xi − x�5h4�x− xj�5
)

¾ �2

(

1 −

n
∑

i=1

�i4x5h4�x− xi�5
)2

¾ �261 −h4d4x5572

where the first inequality follows from Condition 1 and the fact that
�i4x5 ¾ 0 for any i. If d4x5 = 0, x = xi for some i. Then, �i4x5 =

1 and �4xj5 = 0 for j 6= i. Then by some simple algebra, we have
�̃4x5= 0. This completes the proof of the proposition. �

Appendix B. Proof of Proposition 3

Proof. For any A⊆ä,

Pr∗8x ∈A9= Pr∗8y ∈A � U ¶ 2Pr∗8Y 4y5 > c99

=
Pr∗8y ∈A1U ¶ 2Pr∗8Y 4y5 > c99

Pr∗8U ¶ 2Pr∗8Y 4y5 > c99
0

Notice that U and y are independent. Then, we have

Pr∗8U ¶ 2Pr∗8Y 4y5 > c99

=
∑

z∈ä

Pr∗8U ¶ 2Pr∗8Y 4y5 > c9 � y= z9�ä�
−1

=
∑

z∈ä

2Pr∗8Y 4z5 > c9�ä�
−1

= 1/K0

It follows that

Pr∗8x ∈A9=K · Pr∗8y ∈A1U ¶ 2Pr∗8Y 4y5 > c99

=K
∑

y∈A

2Pr∗8Y 4y5 > c9�ä�
−1

=
∑

y∈A

fk4y51

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS 1437

where the last equality is due to K = �ä� · 6
∑

z∈ä 2Pr∗8Y 4y5
> c97−1. Since A is arbitrary, this verifies that the acceptance
rejection method is workable. �

Endnotes

1. Similar ideas have also been used in the deterministic black-
box optimization literature. For instance, the P -algorithm of
Calvin and Z̆ilinskas (1999) maximizes the conditional probabil-
ity of being at least � better than the current best solution to find
the next candidate solution in each iteration, and the EGO algo-
rithm of Jones et al. (1998) maximizes the (conditional) expected
improvement over the current best solution to find the next candi-
date solution in each iteration. In our approach, however, we use
the information to build a sampling distribution that guides the
random search.
2. As we point out in §2.2, the Gaussian process model is used
only to generate an appropriate sampling distribution, and its dif-
ferentiability has no effect on the convergence of our algorithm.
3. The same problem was also encountered in deterministic
black-box optimization algorithms (see, for instance, Jones et al.
1998). However, it is less a problem in those algorithms than in
ours because those algorithms often execute a smaller number of
iterations and evaluate a much smaller number of solutions.
4. In some cases, for instance, when G4x5 is a Bernoulli random
variable, it is possible that that the sample variance calculated
from a finite sample is zero while the true variance is not. If the
zero sample variance is used directly to substitute the true variance
in Equation (10), the resulting sampling distribution assigns a zero
sampling probability to the solution, thus avoiding the sample
mean of the solution being updated, and this may jeopardize the
convergence of the algorithm.
5. We implement the SKO algorithm with a R-package called
DiceOptim to calculate the AEI of each solution and a R-package
called rgenound to find the solution with the largest AEI value.
To compare the three algorithms fairly, we sample 10 solutions
using the Latin hypercube sampling from the solution set at the
beginning and then sample only one solution in each iteration for
all algorithms, because the SKO algorithm only selects the one
solution that has the largest AEI value. All other settings of the
GRS and GPS algorithms are the same as those used in §§5.1
and 5.2 for Problem (14) and the inventory problem, respectively.
Readers may refer to Roustant et al. (2012) for a more detailed
description of the DiceOptim package.

References
Alrefaei MH, Andradóttir S (1999) A simulated annealing algorithm with

constant temperature for discrete stochastic optimization. Manage-
ment Sci. 45(5):748–764.

Andradóttir S (1995) A method for discrete stochastic optimization. Man-
agement Sci. 41(12):1946–1961.

Andradóttir S (1996) A global search method for discrete stochastic opti-
mization. SIAM J. Optim. 6(2):513–530.

Andradóttir S, Nelson BL (2002) A framework for efficient optimization
via simulation. National Science Foundation Grant Proposal, Grant
No. DMI-0217690.

Andradóttir S, Prudius AA (2009) Balanced explorative and exploita-
tive search with estimation for simulation optimization. INFORMS J.
Comput. 21(2):193–208.

Ankenman B, Nelson BL, Staum J (2010) Stochastic kriging for simula-
tion metamodeling. Oper. Res. 58(2):371–382.

Baumert S, Ghate A, Kiatsupaibul S, Shen Y, Smith RL, Zabinsky ZB
(2009) Discrete hit-and-run for sampling points from arbitrary dis-
tributions over subsets of integer hyperrectangles. Oper. Res. 57(3):
727–739.

Betrò B (1991) Bayesian methods in global optimization. J. Global Optim.
1(1):1–14.

Biles WE, Kleijnen JPC, van Beers WCM, van Nieuwenhuyse I (2007)
Kriging metamodeling in constrained simulation optimization: An
explorative study. Henderson SG, Biller B, Hsieh M-H, Shortle J,
Tew JD, Barton RR, eds. Proc. 2007 Winter Simulation Conf. (IEEE,
Piscataway, NJ), 355–362.

Calvin J, Z̆ilinskas A (1999) On the convergence of the P -Algorithm for
one-dimensional global optimization of smooth functions. J. Optim.
Theory Appl. 102(3):479–495.

Gong W, Ho Y, Zhai W (1999) Stochastic comparison algorithm for dis-
crete optimization with estimation. SIAM J. Optim. 10(2):384–404.

Hong LJ, Nelson BL (2006) Discrete optimization via simulation using
COMPASS. Oper. Res. 54(1):115–129.

Hong LJ, Nelson BL (2007) A framework of locally convergent ran-
dom search algorithms for discrete optimization via simulation. ACM
Trans. Modeling Comput. Simulation 17(4):Article 19, 1–22.

Hong LJ, Nelson BL, Xu J (2010) Speeding up COMPASS for high-
dimensional discrete optimization via simulation. Oper. Res. Lett.
38:550–555.

Hu J, Fu MC, Marcus SI (2008) A model reference adaptive search
method for stochastic global optimization. Comm. Inform. Systems
8(3):245–276.

Huang D, Allen T, Notz W, Miller R (2006) Sequential kriging opti-
mization using multiple-fidelity evaluations. Structural and Multidis-
ciplinary Optim. 32(5):369–382.

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of
expensive black-box functions. J. Global Optim. 13:455–492.

Kushner HJ (1964) A new method of locating the maximum of an arbitrary
multi-peak curve in the presence of noise. J. Basic Engrg. 86:97–106.

Law AM, Kelton WD (2000) Simulation Modeling and Analysis, 3rd ed.
(McGraw-Hill, New York).

Pichitlamken J, Nelson BL (2003) A combined procedure for optimiza-
tion via simulation. ACM Trans. Modeling Comput. Simulation 13(2):
155–179.

Quan N, Yin J, Ng SH, Lee LH (2013) Simulation optimization via krig-
ing: A sequential search using expected improvement with computing
budget constraints. IIE Trans. 45(7):763–780.

Rasmussen C, Williams C (2006) Gaussian Processes for Machine Learn-
ing (MIT Press, Cambridge, MA).

Roustant O, Ginsbourger D, Deville Y (2012) Dicekriging, DiceOptim:
Two R packages for the analysis of computer experiments by kriging-
based metamodeling and optimization. J. Statist. Software 51(1):
1–55.

Santner TJ, Williams BJ, Notz WI (2003) The Design and Analysis of
Computer Experiments (Springer, New York).

Sasena M (2002) Flexibility and efficiency enhancements for constrained
global design optimization with kriging approximations. Ph.D. thesis,
University of Michigan, Ann Arbor.

Shi L, Ólafsson S (2000) Nested partitions method for global optimization.
Oper. Res. 48(3):390–407.

Stein ML (1999) Interpolation of Spatial Data: Some Theory for Kriging
(Springer, New York).

Sun L, Hong LJ, Hu Z (2011) Optimization via simulation using Gaussian
process-based search. Jain S, Creasey RR, Himmelspach J, White KP,
Fu M, eds. Proc. 2011 Winter Simulation Conf. (IEEE, Piscataway,
NJ), 4134–4145.

Wang H, Pasupathy R, Schmeiser BW (2012) Integer-ordered simulation
optimization using R-SPLINE: Retrospective search with piecewise-
linear interpolation and neighborhood enumeration. ACM Trans.
Modeling Comput. Simulation 23(3):Article 17, 1–24.

Xu J, Nelson BL, Hong LJ (2010) Industrial strength COMPASS: A com-
prehensive algorithm and software for optimization via simulation.
ACM Trans. Modeling Comput. Simulation 20(1):Article 3, 1–29.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sun, Hong, and Hu: Balancing Exploitation and Exploration in Discrete Optimization via Simulation
1438 Operations Research 62(6), pp. 1416–1438, © 2014 INFORMS

Xu J, Nelson BL, Hong LJ (2013) An adaptive hyperbox algorithm
for high-dimensional discrete optimization via simulation problems.
INFORMS J. Comput. 25(1):133–146.

Yan D, Mukai H (1992) Stochastic discrete optimization. SIAM J. Control
Optim. 30(3):594–612.

Lihua Sun is an assistant professor in the Department of Eco-
nomics and Finance at the School of Economics and Management
of Tongji University. Her research interests include simulation
methodologies, financial engineering, and simulation optimization.

L. Jeff Hong is a Chair Professor of Management Sciences in
the College of Business at the City University of Hong Kong. His
research interests include stochastic simulation, stochastic opti-
mization, and financial engineering and risk management.

Zhaolin Hu is an associate professor in the Department of
Management Science and Engineering at the School of Economics
and Management of Tongji University. His current research inter-
ests include stochastic optimization, Monte Carlo methods, and
risk management.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

42
.2

6]
 o

n 
01

 J
ul

y 
20

15
, a

t 0
7:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 


