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Selecting the solution with the largest or smallest mean of a primary performance measure from a finite set of
solutions while requiring secondary performance measures to satisfy certain constraints is called constrained

selection of the best (CSB) in the simulation ranking and selection literature. In this paper, we consider CSB
problems with secondary performance measures that must satisfy probabilistic constraints, and we call such
problems chance constrained selection of the best (CCSB). We design procedures that first check the feasibility
of all solutions and then select the best among all the sample feasible solutions. We prove the statistical validity
of these procedures for variations of the CCSB problem under the indifference-zone formulation. Numerical
results show that the proposed procedures can efficiently handle CCSB problems with up to 100 solutions, each
with five chance constraints.
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1. Introduction
Ranking and selection (R&S) procedures are often
used to solve simulation optimization problems with
a finite and small number of solutions (i.e., no more
than 1,000 solutions). In these problems, the (random)
performance of a solution may be observed by run-
ning a computer simulation experiment. The objec-
tive is often to find the solution with the best mean
performance. Assuming we can allow the computa-
tional effort to simulate all solutions, then the search
is exhaustive and the central problem is controlling
statistical selection error (see, for instance, the review
of Kim and Nelson 2006). The more efficiently we can
control selection error, the larger the problem that can
be handled in this way.

Most of the R&S procedures in the literature focus
on only one performance measure and select the
best solution based solely on it. In many practical
situations, however, decision makers are interested
in multiple performance measures. For instance, in
inventory management, managers are concerned with
expected cost but also the chance of a stock out, and
in clinic scheduling, doctors are interested in their
profits as well as the waiting times of their patients.
A natural approach to handling multiple performance
measures is to identify a primary one (e.g., cost and

profit, respectively, in the examples) and maybe sev-
eral secondary ones (e.g., probability of stock out and
waiting times, respectively, in the examples) and then
to optimize the expected value of the primary per-
formance measure while requiring the secondary per-
formance measures to satisfy one or more quality-
of-service (QoS) constraint. This approach has been
widely adopted in the stochastic programming liter-
ature (see, for instance, Birge and Louveaux 1997).
In the context of R&S, we call this formulation con-
strained selection of the best (CSB), which has been
studied only recently by Andradóttir and Kim (2010)
and Healey et al. (2013). They formulate the prob-
lem as maximizing the expected value of the primary
performance measure while requiring the expected
values (means) of secondary performance measures
to satisfy certain constraints. We call their formula-
tion expectation constrained selection of best (ECSB). To
solve the problem they assume that the primary and
secondary outputs are jointly normally distributed
with an unknown mean vector and covariance matrix.
Recently, Hunter and Pasupathy (2013), Pasupathy
et al. (2014), and Lee et al. (2012) also consider the
ECSB problem. The goal of the first three papers is to
allocate a simulation budget to all solutions to max-
imize the asymptotic rate of identifying the optimal
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feasible solution, whereas the last paper designs an
easy-to-implement budget allocation rule under the
optimal computing budget allocation (OCBA) formu-
lation (see, for instance, Chen 1996 and Chen et al.
2000 for seminal work on the OCBA approach).

In this paper, we consider a special case of the
ECSB problem that we call chance constrained selec-
tion of the best (CCSB): maximize (or minimize) the
expected value of the primary performance measure
while requiring the secondary performance measures
to satisfy constraints with at least a given probability.
For instance, in the inventory example, managers may
choose to minimize the expected cost while requiring
the probability of a stock out to be below 5%; and
in the clinic scheduling example, doctors may choose
to maximize the expected profit while requiring the
probability of a patient waiting for more than 30 min-
utes to be below 10%. Because a probability can be
written as the expectation of an indicator function, a
CCSB is a form of ECSB. However, we know that the
distribution of an indicator function is Bernoulli, so
we can use this fact to solve a CCSB problem more
efficiently than a generic ECSB problem and with-
out any assumption as to the distribution of the sec-
ondary output measures that makes our procedure
more robust. Exploiting this insight is a central con-
tribution of the paper.

A CCSB representation of constraints is some-
times more reasonable than an ECSB formulation. For
instance, in many problems in the service industry,
the primary performance measures are financial out-
comes, such as profit and cost; hence it makes sense
to analyze their mean values. The secondary per-
formance measures, contrarily, typically reflect QoS;
therefore it makes more sense to analyze the probabil-
ity of achieving a certain service standard, where the
standard may be imposed internally by service com-
mitments or externally by rules or regulations. In the
stochastic programming literature, chance constrained
programming was first formulated and considered by
Charnes et al. (1958) and since then has been adopted
as one of the most natural ways to handle stochastic
constraints. For a recent review of the topic, refer to
Prékopa (2003).

To design statistically valid procedures for CCSB
problems, we take an indifference-zone approach ini-
tially proposed by Bechhofer (1954). We first consider
the case where there is only one secondary perfor-
mance measure and thus only a single chance con-
straint. We design a two-stage procedure: In the first
stage, we check the feasibility of all solutions and
calculate the sample variances of the primary per-
formance measures of all sample feasible solutions
using the available observations at the end of the
stage. In the second stage, we select the best solu-
tion from all sample feasible solutions. A similar two-
stage approach called procedure AK was proposed by

Andradóttir and Kim (2010). The statistical validity
of procedure AK cannot be proved, mainly because
the sample sizes of all sample feasible solutions may
be correlated with their second-stage sample means
and the correlations are difficult to quantify in general
(Andradóttir and Kim 2010). We solve this problem
by designing feasibility tests that allocate a constant
and fixed number of observations to all sample feasi-
ble solutions,1 thus preserving the statistical validity
of the second stage. This is possible because we take
advantage of the structure of the chance constraint
and formulate the feasibility checking as a hypothe-
sis test on a probability with explicit control on both
Type I and II errors. Once the feasibility tests are
designed, we can use the fully sequential procedure
KN of Kim and Nelson (2001) in the second stage to
select the best feasible solution.

We next consider the case of multiple secondary
performance measures. For instance, a hospital may
care about the waiting times of various classes of
patients (e.g., regular patients and critical patients),
and a call center may care about waiting times of
callers as well as the work loads of agents. One of
the major difficulties in handling multiple secondary
performance measures is the inefficiency caused by
use of Bonferroni’s inequality to ensure joint satisfac-
tion of all constraints. When the constraints are on the
expected values of the secondary performance mea-
sures, Batur and Kim (2010) allocate �/4mk5 of the
total error � to the Type I and II errors for feasibility
checking, where m is the number of constraints and
k is the number of solutions. We call this a multiplica-
tive rule because it divides the total error � by m× k.
This makes feasibility checking terribly conservative
even for problems of moderate size; e.g., k = 100 and
m= 10.

In this paper, we develop two formulations to
handle multiple secondary performance measures.
In the first formulation, we group all secondary
performance measures together into a joint chance
constraint that requires all secondary performance
measures to be above their corresponding stan-
dards simultaneously with a given probability. If the
secondary performance measures reflect QoS of the
solution, using a joint chance constraint is often a
reasonable formulation of the problem. In the hospi-
tal example, for instance, the hospital authority may
require that the probability that regular patients wait
less than 60 minutes and critical patients wait less
than 10 minutes to simultaneously be above 95%.
Thus, the multiple secondary performance measures

1 However, the numbers of observations for sample infeasible solu-
tions may be constant or random, depending on whether a fixed-
sample procedure or a sequential procedure is used for feasibility
checking.
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form only one chance constraint (avoiding the use
of Bonferroni’s inequality on the constraint), and the
problem can be solved as a single secondary perfor-
mance measure. In the stochastic programming litera-
ture, this formulation is also known as a joint chance
constrained program; it was first proposed by Miller
and Wagner (1965) and has been studied extensively
since then (see, for instance, Hong et al. 2011, and ref-
erences therein).

We also consider a formulation where there are
multiple chance constraints for the secondary perfor-
mance measures. Under this formulation, we care-
fully examine the multiplicative rule of Batur and Kim
(2010) and find it unnecessary. Indeed, an additive rule
that allocates an error of �/4m + k − 15 to checking
each constraint is sufficient, where � is the total error
that includes both the feasibility checking and selec-
tion steps. When m > 1, the savings of simulation
effort due to switching from the multiplicative rule to
the additive rule is often significant. It is worthwhile
observing that this additive rule can also be applied to
the procedures of Andradóttir and Kim (2010) as well
as Batur and Kim (2010) to make them more efficient.

Our procedures are related to Bernoulli selection
problems because we exploit properties of Bernoulli
random variables in the feasibility checking. In a
Bernoulli selection problem, the goal is to choose
the solution with the largest probability of success
(see, for instance, Bechhofer et al. 1995, Chap. 7, for
the related literature). The hypothesis-test formula-
tion used in our feasibility checking is equivalent to
the comparison-with-a-standard problem, as pointed
out by Xu et al. (2010). Therefore, feasibility checking
is also related to the literature on comparison with
a standard (see, for instance, Nelson and Goldsman
2001 and Kim 2005).

Kim and Nelson (2001) proposed a fully sequential
selection-of-the-best procedure known as procedure
KN that allows unknown and unequal variances and
the use of common random numbers (CRN). Proce-
dure KN is particularly suitable for computer sim-
ulation experiments because simulation observations
are often obtained sequentially on computers. In our
chance constrained procedures, we use KN in the sec-
ond stage to select the best solution from a group of
sample feasible solutions. Although we focus only on
two-stage procedures with a feasibility test followed
by selection of the best in this paper, other types of
procedures exist in the literature as well. For instance,
procedure AK+ in Andradóttir and Kim (2010) per-
forms feasibility and optimality checking simultane-
ously to achieve higher efficiency. However, the statis-
tical validity of procedure AK+ cannot be guaranteed
even under the normality assumption on both pri-
mary and secondary performance measures. Simulta-
neously running AK+ was shown to be more efficient

than two-stage AK, but it is not always more effi-
cient than our two-stage procedure when applied to
CCSB problems, as shown in the numerical experi-
ments in §6.1 and the online supplement EC.1 (avail-
able as supplemental material at http://dx.doi.org/
10.1287/ijoc.2014.0628). In addition, there are practical
problems for which it is useful to identify all feasi-
ble solutions. A byproduct of our procedure is a set
of sample feasible solutions with a statistical guar-
antee. Simultaneously checking feasibility and opti-
mality means that feasible solutions are likely to be
eliminated.

Even though we consider only indifference-zone
selection procedures in this paper, we believe that the
CCSB problem is also an interesting and important
problem for Bayesian R&S (see, for instance, Frazier
2010, §1 for a good overview). In addition to the CSB
formulation for R&S problems with multiple perfor-
mance measures, Butler et al. (2001) applied multiple
attribute utility theory to address multiobjective prob-
lems, and Lee et al. (2010) incorporated the Pareto
optimality concept into a R&S scheme to deliver a
nondominated set of solutions.

The remainder of the paper is organized as fol-
lows. We formulate the CCSB problem in §2. In §3, we
develop two feasibility checking procedures, one of
fixed sample size and the other sequential. We com-
bine the sequential feasibility checking procedure
with procedure KN into a new two-stage sequential
procedure for CCSB and discuss its error allocation
and statistical validity in §4. In §5, we propose two
formulations and procedures to handle multiple sec-
ondary performance measures, followed by numerical
studies in §6. We conclude the paper in §7.

2. Problem Formulation and
Solution Overview

Suppose that there are k solutions from which we
need to select the best feasible solution. Let Xi and Yi

denote the primary and secondary performance mea-
sures, respectively, observed from running a simula-
tion experiment at solution i, i = 1121 0 0 0 1 k. Initially,
we consider only one secondary performance mea-
sure, deferring the case of multiple secondary perfor-
mance measures to §5. We formulate the CCSB prob-
lem as follows:

max
i=11210001k

E4Xi5

s.t. Pr8Yi ≥ 09≥ 1 −�1
(1)

where 0 <� < 1/2 is the upper bound of the violation
probability and is often set as 0001, 0005, or 001. If one
is interested in Yi ≥ b or Yi ≤ b instead of Yi ≥ 0, then
Yi can be redefined to fit into our formulation.

Suppose that we may run simulation experiments
at solution i to observe independent observations
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of 4Xi1Yi5, denoted as 4Xij1Yij5, j = 1121 0 0 0 for all
i = 1121 0 0 0 1 k. However, Xij and Yij may be depen-
dent because they are the outputs of a single simu-
lation run. Moreover, we do not need 4Xij1Yij5, i =

1121 0 0 0 1 k, to be independent. Therefore, CRN may be
used to induce positive correlations among 4Xij1Yij5,
i = 1121 0 0 0 1 k, to make the comparisons sharper. Fur-
thermore, for any i = 1121 0 0 0 1 k and j = 1121 0 0 0 we
assume that Xij ∼ N4�i1�

2
i 5 with unknown �i and �2

i ,
but we do not impose any specific distributional
assumptions on Yij .

Andradóttir and Kim (2010) formulate the ECSB
problem as follows:

max
i=11210001k

E4Xi5

s.t. E4Yi5≥ 01

and they assume that 4Xi1Yi5 follows a bivariate
normal distribution. Although Pr8Yi ≥ 09 = E618Yi≥097,
where 18 · 9 is an indicator function, the formulation
of CCSB is different from the formulation of ECSB
because 18Yi≥09 is a Bernoulli random variable instead
of a normal random variable and it has many nice
properties that facilitate feasibility checking.

Both ECSB and CCSB are reasonable formula-
tions of constrained selection problems. Depending
on practical considerations, one may be more suit-
able than the other. When Yi is a performance mea-
sure related to quality of service, for instance, it may
make more sense to use the CCSB formulation, where
Yi ≥ 0 and Yi < 0 define the events of satisfactory and
unsatisfactory service, respectively. Then the chance
constraint requires customer satisfaction with a prob-
ability at least 1 −�, which is a common approach to
defining QoS requirements.

A high-level overview of our CCSB procedure fol-
lows, with the key contributions of our approach
highlighted:

Initialization: Initialization includes selecting an
overall statistical error allowance, a feasibility tol-
erance parameter for constraint checking, and an
indifference-zone parameter for selection of the best.
How the overall error is allocated between feasibility check-
ing and selection of the best is central to the validity and
efficiency of the procedure.

Feasibility Test: Each solution is simulated and
declared either feasible or infeasible with a statisti-
cal guarantee of correctness up to the feasibility tol-
erance. A key to our procedure is that the feasibility test
simulates all solutions that are declared feasible for a fixed,
prespecified number of observations; this is possible because
of the Bernoulli distribution of chance constraints. The fea-
sibility test is introduced in §3.

Selecting the Best: An indifference-zone procedure
is applied to select the best from among the solu-
tions that are declared feasible, using the data from

the feasibility test as the first stage of the procedure.
The fixed, prespecified feasibility-stage sample size avoids
dependence between the first and subsequent stages that
would invalidate the correct-selection guarantee. Our pro-
cedures are described in §§4 and 5.

3. Feasibility Tests
The constraint in problem (1) is equivalent to
Pr8Yi < 09≤ �. Let pi = Pr8Yi < 09 for all i = 1121 0 0 0 1 k.
Checking the feasibility of solution i is essentially a
hypothesis test on a probability, which may be formu-
lated as

H02 pi >� vs. H12 pi ≤ �0 (2)

Therefore, rejecting H0 indicates that solution i is feasi-
ble. Note that the presumption of any hypothesis test
is that H0 is true, and the goal of the hypothesis test is
to collect enough evidence to reject H0. Therefore, in
our hypothesis, the presumption is that solution i is
infeasible, and our goal is to use observations of Yi to
claim that solution i is feasible. This represents a con-
servative viewpoint toward feasibility, and it implies
that claiming an infeasible solution feasible is more
harmful than claiming a feasible solution infeasible. If
one takes the opposite view, the hypothesis test may
be formulated as H02 pi ≤ � vs. H12 pi >�.

Because Type I and II errors are both relevant, we
want to determine an appropriate sample size n such
that we achieve the following requirements on Type I
and II errors:

I2 Pr8reject H0 � pi >� + ��1
9≤ �11 (3)

II2 Pr8do not reject H0 � pi ≤ � − ��2
9≤ �21 (4)

where ��1
1��2

≥ 0 may be viewed as tolerance levels
on the constraints. Note that as long as �1 +�2 < 1 we
cannot set ��1

= 0 and ��2
= 0 simultaneously and still

control both Type I and II errors as desired. In fact, it
is impossible to statistically guarantee identifying fea-
sible solutions, even asymptotically, when stochastic
constraints are tight (see Nelson 2013, Chap. 8). Objec-
tives (3) and (4) solve this problem by employing an
indifference-zone formulation.

Because we take a conservative point of view
toward feasibility in this paper, hereafter we set
��1

= 0 and ��2
= �� > 0. Therefore, if solution i is

infeasible (i.e., pi > �), it is declared a feasible solu-
tion with a probability less than �1; if solution i is
clearly feasible (i.e., pi ≤ �−��), it is declared an infea-
sible solution with a probability less than �2; and if a
solution is too close to the feasibility boundary (i.e.,
� − �� < pi ≤ �), then we do not have an explicit con-
trol of its Type II error, as shown in Figure 1. Note
that the feasibility requirement is similar to that of
Andradóttir and Kim (2010), except that we take a
more restricted view on infeasibility. Once a solution
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Figure 1 The Power Function �4�5= Pr8reject H0 � pi = �9. Point A
Is Used in §6.3

is infeasible, no matter how little it violates the con-
straint, we want to declare it infeasible with a con-
trolled error. However, if a solution is feasible but
with � − �� < pi ≤ �, we may declare it infeasible
with a probability that is larger than �2, and this may
cause the test to reject feasible solutions. To alleviate
this problem, one can reduce the tolerance level �� .
However, reducing �� may lead to an increase of the
required sample size to make a decision.

As pointed out by Xu et al. (2010), if �1 = �2 in
Equations (3) and (4), the hypothesis test (2) becomes
a special case of comparisons with a standard (see, for
instance, Nelson and Goldsman 2001 and Kim 2005).
Indeed, Andradóttir and Kim (2010) also treat feasi-
bility checking as a comparison with a standard and
use the procedure of Kim (2005) to conduct the com-
parison. To follow this convention, we also set �1 =

�2 = �, but the results can easily be extended to cases
where �1 6= �2.

3.1. Fixed-Sample-Size and Sequential
Feasibility Tests

Suppose that we have 8Yi11Yi21 0 0 0 1Yin9 for solution i.
Let Zn =

∑n
j=1 18Yij<09. (We do not make Zn a func-

tion of solution i because the discussion that follows
applies to any fixed solution.) An approach to testing
the Hypothesis (2) is to determine an integer m�4n5 ∈

80111 0 0 0 1n9 such that we reject H0 if Zn ≤ m�4n5. To
ensure Equation (3), we want

m�4n5=max8m∈801110001n92 Pr8Zn≤m �pi =�9≤�90

It is easy to show that there will be such an m�4n5
for all n large enough. To ensure Equation (4), we
determine the sample size n, denoted as n∗4�5, such
that

n∗4�5 = min8n ∈ 80111 0 0 092

Pr8Zn ≥m�4n5+ 1 � pi = � − ��9≤ �90

We can show that a solution 4m�4n51n
∗4�55 exists pro-

vided �< 1/2 and �� > 0.
Note that Zn is distributed according to a binomial

distribution with parameters pi and n. Let F 4x3n1p5
denote the cumulative distribution function of a bino-
mial distribution with parameters p and n. Then, for
any x ∈ <,

F 4x3n1p5=

�x�
∑

i=0

(

n

i

)

pi41 − p5n−i1

where � · � is the floor function that rounds a number
down to its nearest integer. We want the simultaneous
solution to

m�4n5= max8m ∈ 80111 0 0 0 1n92 F 4m3n1�5≤ �91 (5)

n∗4�5= min8n ∈ 80111 0 0 092

F 4m�4n53n1� − ��5≥ 1 −�90 (6)

Therefore, we can design the following procedure to
test the feasibility of solution i:

Procedure 1 (Fixed-Sample-Size Feasibility Test)

Step 1. Given �, calculate n= n∗4�5 and m�4n5.
Step 2. Run simulation experiments to observe

Yi11Yi21 0 0 0 1Yin for solution i.
Step 3. Let Zn =

∑n
j=1 18Yij<09. If Zn ≥m�4n5+ 1,

declare solution i infeasible; otherwise, declare
it feasible.

Remark 1. When Procedure 1 is applied to all solu-
tions i = 1121 0 0 0 1 k, all solutions have the same fixed
sample size n∗4�5 at the end of the test. Therefore,
we call it a fixed-sample-size feasibility test. Further-
more, the fixed sample size n∗4�5 is a predetermined
constant and it does not depend on the observa-
tions of Yij , i = 1121 0 0 0 1 k. This property makes Proce-
dure 1 different from the feasibility test procedures of
Andradóttir and Kim (2010) and Batur and Kim (2010)
where the sample sizes of all solutions are dependent
on the observations of Yij , i = 1121 0 0 0 1 k. In §4, we
find this property particularly useful in designing sta-
tistically valid CCSB procedures.

We have the following theorem on the statistical
validity of Procedure 1. The proof of the theorem is
omitted as it is straightforward.

Theorem 1. Suppose that Procedure 1 is used to test
Hypothesis (2). Then, Pr8reject H09≤ � if Pr8Yi < 09≥ �
and Pr8do not reject H09≤ � if Pr8Yi < 09≤ � − �� .

Because a simulation model typically generates
observations sequentially (a replication at a time), a
minor modification may make the feasibility test more
efficient. Let Z� =

∑�
j=1 18Yij<09 for all � ∈ 80111 0 0 0 1n9.

Clearly, Z� ≤ Zn for any � ∈ 80111 0 0 0 1n9. Then
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Z� ≥m�4n5+ 1 implies Zn ≥ m�4n5 + 1. Therefore, in
Procedure 1 we can stop the simulation of solution i
and declare it infeasible at the sample size � if Z� ≥

m�4n5+ 1. This type of sequential test is known as a
curtailed test, and the curtailed test on a probability
(such as the one we use) is one of the few sequen-
tial tests that never take more samples, and may take
fewer samples, than a fixed-sample-size version, thus
“delivering positive benefit at no cost” (Siegmund
1985, p. 2). We call this the sequential feasibility test.

Procedure 2 (Sequential Feasibility Test)

Step 1. Given �, calculate n= n∗4�5 and m�4n5.
Let � = 0 and Z� = 0.

Step 2. Let � = � + 1. Run a simulation experiment to
observe Yi� and let Z� =Z�−1 + 18Yi�<09.

Step 3. If Z� ≥m�4n5+ 1, declare solution i infeasible
and end the procedure.

Step 4. If � = n, declare solution i feasible; otherwise,
go to Step 2.

Remark 2. When Procedure 2 is applied to all solu-
tions i = 1121 0 0 0 1 k, all sample feasible solutions (i.e.,
the solutions that are claimed feasible by the test)
have the same fixed sample size n∗4�5 at the end
of the test. As noted in Remark 1, this is a use-
ful property for designing statistically valid CCSB
procedures.

It is interesting to see that both Procedures 1 and 2
can be done in a single stage under our formulation,
thus leading to a constant and fixed sample size for
all sample feasible solutions, while the feasibility test
procedures of Andradóttir and Kim (2010) and Batur
and Kim (2010) require two stages. This is because
we use a chance constraint to handle the secondary
performance measure. Thus, under Equations (3)–(4),
the distribution of the Bernoulli random variable is
known, and we may design a single-stage procedure
to check the feasibility. Andradóttir and Kim (2010)
and Batur and Kim (2010), however, use an expecta-
tion constraint to handle the secondary performance
measure as in the formulation of ECSB. Under their
indifference-zone formulation the means of the per-
formance measures are known but the variances are
not, so their procedures need a first stage to esti-
mate the unknown variances of the secondary per-
formance measure. Even though these sample vari-
ances are independent of the sample means of the
secondary performance measures under the normal-
ity assumption, they may be dependent on the sam-
ple means of the primary performance measures. This
makes it difficult to design statistically valid proce-
dures to select the best solution from the set of sample
feasible solutions (Andradóttir and Kim 2010).

3.2. Calculation of m�4n5 and n∗4�5
Both Procedures 1 and 2 need to calculate the values
of m�4n5 and n∗4�5. Even though their values may be
calculated using Equations (5) and (6), these calcula-
tions cannot be done efficiently because n is typically
large when � and �� are small. One solution is to use
the normal approximation of a binomial distribution,
which works well when n is large and � is not too
small (Casella and Berger 2002). Note that the nor-
mal approximation is also a common approach used
in hypothesis tests on a probability (see, for instance,
Tamhane and Dunlop 1999).

Under the normal approximation,

F 4x3n1p5≈ê

(

x−np
√

np41 − p5

)

1

where ê4 · 5 is the cumulative distribution function
of the standard normal distribution. Let m̃�4n5 and
ñ∗4�5 denote the continuous approximation of m�4n5
and n∗4�5. Let z� = ê−14�5 for any 0 < � < 1. Note
that z� = −z1−�. Then, replacing F 4m3n1 ·5 in Equa-
tions (5) and (6) by the normal approximation above,
we obtain two inequalities with two variables, m
and n. After some algebra, we have

ñ∗4�5=
z2

1−�

�2
�

(√
4� − ��541 −� + ��5+

√
�41 −�5

)2
1

m̃�4n5= n� − z1−�

√

n�41 −�51

(7)

and we may set m�4n5= �m̃�4n5� and n∗4�5= �ñ∗4�5�.
The normal approximation is accurate. We plot both

the actual and approximated values in Figure 2 as
functions of � and �. If the exact values of m�4n5
and n∗4�5 are required, one can search near the
approximate solution to find the exact solutions m�4n5
and n∗4�5.

4. Procedure CCSB
In this section, we propose a two-stage procedure. In
the first stage, we test the feasibility of all solutions,
and in the second stage, we conduct procedure KN
to select the best from the sample feasible solutions.
We first present the procedure in §4.1 and then dis-
cuss its error allocation and statistical validity in §4.2.

4.1. The Procedure
We propose a two-stage procedure for the CCSB prob-
lem. In the first stage, feasibility of all solutions are
tested and sample infeasible solutions are eliminated.
As the sequential procedure guarantees to reduce
the total sample size in the feasibility test, we use
it instead of the fixed-sample-size procedure in the
first stage. In the second stage, procedure KN is con-
ducted to select the best solution from the set of sam-
ple feasible solutions (with some changes in error allo-
cation that are discussed in §4.2). Let �1 be the error
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� = 0.1, ��  and � ∈

�

n* �

m� n

n* �

m� n

(b) � = 0.01, �� � ∈

�

Figure 2 The Actual Values and Normal Approximations of m�4n5 and n∗4�5

allocated to the feasibility test of each solution, and
let �2 be the error allocated to each pairwise elimina-
tion for selection of the best. The choices of �1 and �2
are important and will be described later.

Procedure 3 (Procedure CCSB)

Initialization. Select total error allowance
0 <�< 1 − 1/k, indifference-zone parameter �,
and feasibility tolerance parameter �� . Choose �1
and �2. Solve for n0 = n∗4�15 and m�1

4n05. Let

h2
= 4n0 − 15642�25

−42/4n0−155
− 170

We discuss the choices of �1 and �2 in §4.2.
Feasibility Test. Let ¦ denote the set of sample

feasible solutions and set ¦= �. Let i = 1.
Step 0. If i > k, where k is the number of

solutions, terminate Feasibility Test; otherwise,
let � = 0, Z� = 0.

Step 1. Let � = � + 1 and ¦old =¦. Take an
additional sample 4Xi�1Yi�5 from solution i
and let Z� =Z�−1 + 18Yi�<09.

Step 2. If Z� ≥m�1
4n05+ 1, declare solution i

infeasible and go to Step 3; else if � = n0,
declare solution i feasible, let ¦=¦old ∪ 8i9
and go to Step 3; otherwise, go to Step 1.

Step 3. Let i = i+ 1 and go to Step 0.
Selecting the Best. Let © denote the set of solutions

still in contention and let ©=¦. For all i ∈ ©,
calculate

X̄i4n05=
1
n0

n0
∑

l=1

Xil

and for all i1 j ∈ © and i 6= j , calculate

S2
ij =

1
n0 − 1

n0
∑

l=1

4Xil −Xjl − 6X̄i4n05− X̄j4n0575
20 (8)

Note that X̄i4n05 is the first-stage sample mean of
the primary performance measure of solution i and
S2
ij is the first-stage sample variance of the difference

between the primary performance measures of solu-
tions i and j .

Step 0. Set r = n0.
Step 1. Set ©old = © and let

© = 8i ∈ ©old2 X̄i4r5≥ X̄j4r5−Wij4r51

for all j ∈ ©old and j 6= i91

where

Wij4r5= max
{

01
�

2r

(

h2S2
ij

�2
− r

)}

0

Step 2. If �©� = 1, then stop and let the solution
with an index that is in © be the best; otherwise,
let r = r + 1, take an additional sample 4Xir1Yir 5
from solution i for all i ∈ ©, and go to Step 1.

Note that we estimate the variance of the difference
between the primary performance measures of any
pair of sample feasible solutions using Equation (8).
Therefore, our procedure allows the use of CRN to
make comparisons between E4Xi5 and E4Xj5 sharper
(Kim and Nelson 2001). The use of CRN may also
introduce dependence between Yi and Yj . However,
because the feasibility test in §3 is a marginal test for
each solution individually, the statistical validity of
the feasibility test is not affected when CRN are used.
However, CRN was not considered by Andradóttir
and Kim (2010) because they assume that all solutions
are simulated independently to achieve a statistical
guarantee for their proposed procedures.

4.2. Error Allocation and Statistical Validity
Let F and F̄ denote the sets of feasible and infeasible
solutions, respectively. We do not know which solu-
tions are included in F and F̄ , but F ∪ F̄ = 81121 0 0 0 1 k9
and F ∩ F̄ = �. Without loss of generality, assume that
solution 1 (the identity of which is unknown) is the
best feasible solution. Taking the typical indifference-
zone approach in the literature (e.g., Kim and Nelson
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2001 and Andradóttir and Kim 2010), we formulate
the problem as follows:

E4X15≥ max
i∈821310001k9∩F

E4Xi5+ �1 (9)

Pr8Y1 ≥ 09≥ 1 −� + �� 0 (10)

Therefore, the best solution has an expected primary
performance measure that is at least � better than
all other feasible solutions and has a secondary per-
formance measure that is positive with a probability
at least 1 −� + �� .

Let E4i1 j5 denote the event that solution i elimi-
nates solution j by the end of the second stage of
Procedure CCSB if only those two solutions were con-
sidered in isolation. Note that the event of correct
selection (CS) requires that solution 1 survives the fea-
sibility test (i.e., 1 ∈ ¦) and solution 1 survives the
comparisons from all other solutions in ¦. Then,

Pr8CS9 ≥ Pr81 ∈¦ and E411 i51 ∀ i ∈¦1 i 6= 19

≥ Pr81 ∈¦ and F̄ ∩¦= � and E411 i51

∀ i ∈¦1 i 6= 19 (11)

≥ Pr81 ∈¦ and F̄ ∩¦= � and E411 i51

∀ i ∈ F 1 i 6= 19 (12)

≥ 1 − Pr81 y¦9− Pr8∃ i ∈ F̄ 2 i ∈¦9

− Pr8∃ i ∈ F 1 i 6= 12 E4i1159 (13)

≥ 1 − Pr81 y¦9−
∑

i∈F̄

Pr8i ∈¦9

−
∑

i∈F 1 i 6=1

Pr8E4i1159 (14)

≥ 1 −�1 − �F̄ ��1 − 4�F � − 15�20 (15)

In this analysis, the critical step is Inequality (11),
where we add the additional requirement F̄ ∩¦= �.
Then, the event inside of Pr8 · 9 implies that

819⊆¦⊆ F 0 (16)

Because ¦ ⊆ F , we may enlarge ¦ to F in Inequal-
ity (12). Inequalities (13) and (14) are the conse-
quences of direct applications of Bonferroni’s inequal-
ity, and Inequality (15) follows from Theorem 1 and
Kim and Nelson (2001) under the assumption that
Inequalities (9) and (10) are satisfied. Even though
�F̄ � and �F � are unknown, we know that �F̄ � + �F � = k.
Therefore, it is natural to choose �1 = �2 = �/k. Then,
Pr8CS9 ≥ 1 − �. We summarize the statistical validity
of Procedure CCSB in the following theorem.

Theorem 2. Suppose that Procedure CCSB is used to
solve Problem (1), Equations (9) and (10) are satisfied, and
�1 = �2 = �/k for any 0 <�< 1. Then, Pr8CS9≥ 1 −�.

As pointed out by Remark 2, all sample feasible
solutions have the same deterministic sample size n0
at the end of the first stage. Therefore, we may use
these samples to calculate the sample variances S2

ij

without creating any unnecessary dependence that
affects the statistical validity of procedure KN. This
is the major difference between Procedure CCSB and
procedure AK of Andradóttir and Kim (2010) in terms
of statistical validity.

Another difference between Procedures CCSB and
AK is the error allocation scheme. Let

F�� = 8i ∈ 81121 0 0 0 1 k92 Pr8Yi ≥ 09≥ 1 −� + ��90 (17)

Note that F�� denotes the set of solutions that are
clearly feasible (i.e., Pr8Yi ≥ 09 is at least �� larger
than �) and 819 ⊆ F�� . When applying their error-
allocation strategy to our formulation, Andradóttir
and Kim (2010) and Batur and Kim (2010) essentially
require

F�� ⊆¦⊆ F 1 (18)

which is a stronger requirement than ours (Equa-
tion (16)) and thus leads to more conservative alloca-
tions of the total error �.

In many practical situations, however, the indiffer-
ence-zone assumptions, Equations (9) and (10), may
not be satisfied. To allow for those situations, we
follow the convention of the indifference-zone for-
mulation and define the set of acceptable solutions.
Without loss of generality, we now define solu-
tion 1 as the best clearly feasible solution—i.e., E4X15=

maxi∈F��
E4Xi5. Then, we define the set of acceptable

solutions as

A =
{

i ∈ 81121 0 0 0 1 k92 E4Xi5 > E4X15− � and

Pr8Yi ≥ 09≥ 1 −�
}

1

and call an event a good selection (GS) if the selected
solution is in the set A. That is, the solutions in set A
are feasible and within � of the best clearly feasible
solution. Figure 3 presents an example to illustrate the
set A. In this example, while solution 1 is the best
clearly feasible solution, solution 2 is the best feasible
solution.

Corollary 1. Suppose that Procedure CCSB is used
to solve Problem (1), solution 1 is the best clearly feasible
solution, and �1 = �2 = �/k for any 0 < � < 1. Then,
Pr8GS9≥ 1 −�.

Proof. The probability of a good selection can be
bounded as follows:

Pr8GS9

≥Pr81∈¦ and E411i51∀ i∈¦\A9

≥Pr81∈¦ and F̄ ∩¦=� and E411i51∀ i∈¦\A9
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0 1 – � 1 – � + �� 1

E(X1) – �

E(X1)
1

2

Figure 3 In This Example, the x-Axis Is Pr8Yi ≥ 09 and y -Axis
Is E4Xi5.

Note. × Represents Infeasible Solutions, + Represents Feasible But Not
Clearly Feasible Solutions, ∗ Represents Clearly Feasible Solutions, and
© Represents Acceptable Solutions

≥Pr81∈¦ and F̄ ∩¦=� and E411i51∀ i∈F \A9

≥1−Pr81y¦9−Pr8∃ i∈ F̄ 2 i∈¦9

−Pr8∃ i∈F \A2 E4i11590 (19)

Following the arguments in Kim and Nelson (2001),
819⊂A, so �A� ≥ 1. Then,

Pr8∃ i ∈ F \A2 E4i1159 ≤
∑

i∈F /A

Pr8E4i1159

≤ 4�F � − �A�5�2 ≤ 4�F � − 15�20

Plugging this into Inequality (19), we have

Pr8GS9 ≥ 1 −�1 − �F̄ ��1 − 4�F � − 15�2 = 1 −�1

when �1 = �2 = �/k.

5. Multiple Secondary Performance
Measures

The formulation (1) is for a single secondary per-
formance measure. In many practical situations,
there will exist multiple secondary performance mea-
sures that the decision maker cares about. Let Yi =

4Y
415
i 1 0 0 0 1Y

4m5
i 5′ denote the vector of m secondary per-

formance measures of solution i, i = 1121 0 0 0 1 k. When
simulating solution i at the jth replication, we observe
4Xij1Y

415
ij 1 0 0 0 1Y

4m5
ij 5, i = 1121 0 0 0 1 k and j = 1121 0 0 0 0

We consider two formulations to handle multiple
secondary performance measures. In both formula-
tions, for any solution i, i = 1121 0 0 0 1 k, we consider
m constraints corresponding to m secondary perfor-
mance measures and treat 8Y

4s5
i ≥ 09 as the event of

satisfying the sth constraint, s = 1121 0 0 0 1m. However,
the two formulations differ in how the probabilities
of these events are considered.

5.1. Joint Chance Constraint
In the first formulation, the secondary performance
measures are considered satisfactory if all of them
satisfy their corresponding constraints simultaneously,

i.e., only the event 8Y 415
i ≥ 01 0 0 0 1Y 4m5

i ≥ 09 is considered
satisfactory, and a solution is feasible if its probabil-
ity of being satisfactory is above a certain threshold.
Therefore, we may formulate the CCSB problem with
multiple secondary performance measures as

max
i=11210001k

E4Xi5

s.t. Pr8Y 415
i ≥ 01 0 0 0 1Y 4m5

i ≥ 09≥ 1 −�0
(20)

In the stochastic programming literature, Problem (20)
is also known as a joint chance constrained program.

Define

Yi = min8Y 415
i 1 0 0 0 1Y

4m5
i 90 (21)

Then, the constraint in Problem (20) becomes

Pr8Yi ≥ 09≥ 1 −�1

which is the same as the constraint in Problem (1).
Therefore, we convert a joint chance constraint into a
single chance constraint. Note that this technique is
also used by Hong et al. (2011). Procedure CCSB can
be applied directly to Problem (20) to select the best
feasible solution. We can define Yi as in Equation (21)
because our approach does not need a distributional
assumption on Yi.

An important benefit of formulation (20) is that
we do not need to handle multiple constraints, thus
avoiding the extra conservativeness introduced by
using Bonferroni’s inequality in error allocation (see,
for instance, Batur and Kim 2010, and also §5.2 of this
paper).

5.2. Multiple Individual Chance Constraints
In the alternative formulation, the secondary perfor-
mance measures are considered satisfactory if each
of them satisfies a separate chance constraint, and a
solution is feasible if all chance constraints are satis-
fied simultaneously. Therefore, we may formulate the
CCSB problem with multiple secondary performance
measures as

max
i=11210001k

E4Xi5

s.t. Pr8Y 4s5
i ≥ 09≥ 1 −�s1 s = 1121 0 0 0 1m1

(22)

and the tolerance level for each of the constraints is
set as ��s

> 0 for all s = 1121 0 0 0 1m. Without loss of
generality, we denote solution 1 as the best feasible
solution, and similar to Equations (9) and (10), we
assume that

E4X15≥ max
i∈821310001k9∩F

E4Xi5+ �1 (23)

Pr8Y 4s5
1 ≥ 09≥ 1 −�s + ��s

1 s = 1121 0 0 0 1m0 (24)

Problem (22) has m constraints. So the Feasibility
Test step of Procedure CCSB cannot be applied di-
rectly, but the Selecting the Best step remains the same.
We present the new feasibility test in §5.2.1 and dis-
cuss error allocation in §5.2.2.
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5.2.1. Feasibility Test Procedure. Let Fs = 8i ∈

81121 0 0 0 1 k92 Pr8Y 4s5
i ≥ 09 ≥ 1 − �s9 denote the set of

solutions that satisfy the sth constraint. Then it is clear
that the set of feasible solutions is F =

⋂m
s=1 Fs . There-

fore, we may check the feasibility of each constraint of
each solution. If any of the constraints appears to be
violated, we claim the solution infeasible; otherwise,
we claim it feasible.

Let

m
4s5
� 4n5=sup8m∈801110001n92 F 4m3n1�s5≤�91

n∗

s 4�5= inf8n∈8011100092 F 4m4s5
� 4n53n1�s−��s

5≥1−�90

Let �1s denote the Type I and II errors allocated to the
sth constraint, s = 1121 0 0 0 1m. Note that, to test the
sth constraint for solution i, we need n∗

s 4�1s5 obser-
vations of Y

4s5
i . However, Y 415

i 1 0 0 0 1Y
4m5
i are observed

simultaneously. Therefore, to test all constraints for
solutions i, we need

n0 = max
s∈811210001m9

n∗

s 4�1s5

observations of 4Y
415
i 1 0 0 0 1Y

4m5
i 5. One way to choose

�111 0 0 0 1�1m is to have them satisfy that

n0 = n∗

14�115= · · · = n∗

m4�1m50 (25)

By doing so, we can ensure that the feasibility tests
of all individual constraints finish at the same sample
size. Because we cannot start selection of the best until
all constraint checking is complete, there is no ben-
efit to having unequal sample sizes unless doing so
would permit us to make the sample sizes for all con-
straints smaller; there is no reason to think we could
achieve this. In §5.2.2 we discuss how to determine
�111 0 0 0 1�1m to satisfy Equation (25).

We replace the Feasibility Test step of Procedure
CCSB by the following procedure, which tests all m
constraints simultaneously.

Procedure 4 (Feasibility Test for Multiple Chance
Constraints)

Feasibility Test. Let ¦ denote the set of sample
feasible solutions and set ¦= �. Let i = 1.
Step 0. If i > k, where k is the number of solutions,

terminate the Feasibility Test; otherwise, let � = 0
and Z�1 s = 0.

Step 1. Let � = � + 1 and ¦old =¦. Take an
additional sample 4Xi�1Y

415
i� 1 0 0 0 1Y

4m5
i� 5 from

solution i and let Z�1 s =Z�−11 s + 1
8Y

4s5
i� <09

for all s = 1121 0 0 0 1m.
Step 2. If Z�1 s ≥m

4s5
�1s
4n05+ 1 for any s = 1121 0 0 0 1m,

declare solution i infeasible and go to Step 3;
else if � = ns , declare solution i feasible and let
¦=¦old ∪ 8i9 and go to Step 3; otherwise, go
to Step 1.

Step 3. Let i = i+ 1 and go to Step 0.

5.2.2. Error Allocation. Now we discuss how to
choose �111 0 0 0 1�1m and �2 so that the statistical valid-
ity of Theorem 2 can be extended to the case of mul-
tiple chance constraints. By Inequality (14), we have

Pr8CS9 ≥ 1 − Pr81 y¦9−
∑

i∈F̄

Pr8i ∈¦9

−
∑

i∈F 1 i 6=1

Pr8E4i11590 (26)

We analyze the three probability terms on the right-
hand side of Inequality (26) one by one.

To analyze the first term, let ¦s denote the set of
solutions that are sample feasible for constraint s, s =

1121 0 0 0 1m. Note that ¦s , s = 1121 0 0 0 1m, are not avail-
able to us at the end of the feasibility-checking stage
because if a solution violates a constraint the proce-
dure stops and we do not know whether it satisfies
other constraints. Nevertheless, we can conceptually
define the sets assuming we use a fixed-sample-size
feasibility test similar to Procedure 1, and it is clear
that ¦ ⊆ ¦s for all s = 1121 0 0 0 1m and

⋂m
s=1 ¦s = ¦.

Then,

Pr81 y¦9 = Pr81 y¦s1 for some s = 1121 0 0 0 1m9

≤

m
∑

s=1

Pr81 y¦s9≤

m
∑

s=1

�1s1

where the last inequality follows from Theorem 1 if
Equation (24) is satisfied.

To analyze the second term on the right-hand side
of Inequality (26), we notice that
∑

i∈F̄

Pr8i ∈¦9 =
∑

i∈F̄

Pr8i ∈¦s1 for all s = 1121 0 0 0 1m9

≤
∑

i∈F̄

Pr8i ∈¦s1 for all s = 1121 0 0 0 1m

such that i y Fs9

≤
∑

i∈F̄

max
s∈8t2 iyFt9

�1s ≤ �F̄ � max
s∈811210001m9

�1s1 (27)

where Inequality (27) holds because, if i ∈ F̄ , then
there exists at least one s ∈ 81121 0 0 0 1m9 such that
i y Fs , i.e., an infeasible solution violates at least one
of the m constraints.

The third term on the right-hand side of Inequal-
ity (26) is clearly upper bounded by 4�F �−15�2 by the
property of procedure KN. Let �̄1 = maxs=11210001m�1s .
Combining all three terms, we have

Pr8CS9≥ 1 −

m
∑

s=1

�1s − �F̄ ��̄1 − 4�F � − 15�20

To ensure that Pr8CS9 ≥ 1 − �, we let �2 = �̄1 and
require that

m
∑

s=1

�1s + 4k− 15�̄1 = �0 (28)
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To better understand the implications of Equa-
tion (28), we first consider a special case where �1 =

· · · = �m and ��1
= · · · = ��m

. Then, by Equations (25)
and (28), we have

�̄1 = �11 = · · · = �1m =
�

m+ k− 1
0

Therefore, the error allocated to the feasibility test of
each individual constraint and the error allocated to
the comparisons between each pair of solutions are
�/4m+ k− 15, which we call an additive rule because
we divide the total error � by the addition of the num-
ber of constraints m and the number of solutions k.
Batur and Kim (2010) consider only the feasibility test
(without the selection of the best) and the error allo-
cated to the feasibility test of each individual con-
straint is �/4mk5, which we call a multiplicative rule.
The multiplicative rule is significantly more conserva-
tive than the additive rule when m is not equal to one.
The difference between the two rules is because we
use Equation (16) to define correct feasibility checking
while Batur and Kim (2010) use Equation (18). If one’s
goal is to select the best feasible solution instead of
identifying all feasible solutions, then Equation (16) is
sufficient.

Now we consider how to determine �111 0 0 0 1�1m
based on Equations (25) and (28) for more general
cases of �s and ��s

, s = 1121 0 0 0 1m. We use the normal
approximation approach of §3.2. Let

as =
1
��s

(√
4�s − ��s

541 −�s + ��s
5+

√
�s41 −�s5

)

for all s = 1121 0 0 0 1m. To ensure Equation (25), we
need

a1z1−�11
= · · · = amz1−�1m

= �

for some � > 0. Then, we have

�1s =ê−1

(

−
�

as

)

1 s = 1121 0 0 0 1m0 (29)

Therefore, we only need to find � > 0 such that Equa-
tion (28) is satisfied.

Let ā= maxs∈811210001m9 as . Then, by Equation (28) and
(29), � satisfies

m
∑

s=1

ê−1

(

−
�

as

)

+ 4k− 15ê−1

(

−
�

ā

)

= �0 (30)

Note that the left-hand side of Equation (30) is a
decreasing function of � and � is in the range of the
function. Therefore, Equation (30) has a unique root
�∗ > 0, which is

�1s =ê−1

(

−
�∗

as

)

1 s = 1121 0 0 0 1m0

6. Numerical Examples
In this section, we use several numerical examples to
examine the performance of the proposed procedures
in handling various CCSB problems.

6.1. Efficiency
We first illustrate the efficiency of Procedure CCSB
proposed in §4.1 for a single-constraint problem by
different numerical examples. These examples have
also been formulated as ECSB problems to be solved
by procedures AK and AK+ in Andradóttir and Kim
(2010). Section 6.1.1 describes the experimental con-
figurations and §6.1.2 presents the main results, fol-
lowed by a comparison with both AK and AK+

in §6.1.3.

6.1.1. Configurations of Test Examples with a
Single Constraint. We consider only one secondary
performance measure for the set of test problems.
Suppose that Xi ∼ N4�i1�

2
i 5 and Yi ∼ N4�i115 for all

i = 1121 0 0 0 1 k. We consider the following slippage
configuration of means for the primary performance
measure:

�i =











�1 i = 13
01 i = 2131 0 0 0 1 b3
i�1 i = b+ 11 b+ 21 0 0 0 1 k1

and various configurations of means for the sec-
ondary performance measure:

�i =











−ê−14� − ��51 i = 13
−ê−14� − c1��51 i = 2131 0 0 0 1 b3
−ê−14� + c2��51 i = b+ 11 b+ 21 0 0 0 1 k1

(31)

where b = �41 + k5/2�, � = 1
/

√
10 is the indifference-

zone parameter and ê−14 · 5 denotes the inverse of the
standard normal distribution function. Setting c1 ≥ 1
and c2 ≥ 0 implies that solutions 1121 0 0 0 1 b are feasible
and the rest are infeasible. Note that, in this slippage
configuration of means (where c1 = 1 and c2 = 0), we
set �i = i� for all infeasible solutions i = b+11 0 0 0 1 k to
make infeasible solutions particularly difficult to elim-
inate in the second stage if they are declared feasible.

Under the slippage configuration of means, we con-
sider three variance configurations: all �2

i = 102 in
the equal-variance configuration, �2

i = 10261+ 4i−15�7
in the increasing-variance configuration, and �2

i =

102/61 + 4i − 15�7 in the decreasing-variance config-
uration, respectively. For simplicity, we assume that
4Xi1Yi5, i = 1121 0 0 0 1 k, are mutually independent and
Xi is also independent of Yi for all i = 1121 0 0 0 1 k.

Other parameters are specified as follows. Let the
upper bound of the violation probability be � = 001
and the tolerance level be �� = 0002. Let the total
error allowance be � = 0005 and the Type I and II
errors defined in Equations (3) and (4) are chosen as
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Table 1 Optimal 4m�4n51 n
∗4�55 with a Single Constraint

k = 5 k = 25 k = 101

m�4n5 397 607 794
n∗4�5 41434 61776 81862

�1 = �2 = �/k. We set the number of solutions as k =

51251101. Using Equations (5) and (6), we compute
the optimal m�4n5 and n∗4�5 shown in Table 1, where
�= �1 throughout this section.

6.1.2. Main Results for CCSB Formulation with
a Single Constraint. In Table 2, we report detailed
results for all solutions for the case where k = 5,
including the average first-stage sample size (FSS),
the observed feasibility probability (FP) and surviving
probability2 (SP) at the end of the first stage, the aver-
age total sample size (TSS), and the probability of the
selection (PS) for each solution, over 1,000 indepen-
dent macroreplications. In addition, the average total
sample sizes for all solutions by the end of the first
and second stages are reported in the last column of
Table 2.

We have several findings from the results in Table 2.
First, the sequential feasibility test can save about
401% of sampling effort even in the slippage con-
figuration, where 401% is calculated by 41 − Total of
FSS/4kn055× 100%. Second, because feasibility check-
ing in the first stage may require a significant amount
of computational effort, it makes sense to use the first-
stage samples for elimination rather than abandoning
them, as in the restarting procedure in Andradóttir
and Kim (2010). In fact, based on the information from
the first-stage samples, there is a significant chance to
make an elimination decision for feasible but inferior
solutions (solutions 2 and 3 in this case) according to
the difference between FP and SP. Third, in the con-
figuration that we consider, it is often difficult to elim-
inate an infeasible solution once it passes the feasibil-
ity test because it has a larger primary performance
measure than all feasible ones. Fourth, it is often
harder (easier) to select the best for the increasing-
variance (decreasing-variance) configuration than for
the equal-variance configuration, which is consistent
with the intuition that it is often difficult to eliminate
inferior solutions with large variances.

Due to the space limitation, we summarize the
numerical results with similar conclusions for k = 25
and k = 101 in Table EC.1 of the online supplement.
In §6.1.3, we investigate the efficiency of Procedure
CCSB compared with two existing procedures: AK
and AK+.

2 Surviving probability of solution i denotes the probability that
solution i has not been eliminated by KN procedure with just the
first-stage n0 samples.

6.1.3. Comparisons with Procedures AK and
AK+. Because CCSB problems can be formulated
as ECSB problems, we also applied two competi-
tors to Procedure CCSB, a two-stage procedure, AK,
and a simultaneously running procedure AK+ from
Andradóttir and Kim (2010).

To make a fair comparison, we set �1 = �2 = �/2 =

00025 for AK and � = 0005 for AK+, q = � − ��/2 =

0009 and � = ��/2 = 0001, and the initial-stage sam-
ple size n0 = 20. All other parameters are the same as
in §6.1.1. We only report detailed results for k = 5 with
equal-variance configuration in Table 3. The numer-
ical results for k = 25 and k = 101 are presented in
the online supplement (EC.1.1). Note that AK+ is a
simultaneously running procedure that performs both
feasibility checking and optimality checking at the
same time, so it is not clear how to define a proper
first stage for AK+. In this paper, we only report the
estimates (i.e., TSS and PS) when procedure AK+ is
completed.

From Table 3 we find that, without batching, pro-
cedure AK (and also AK+, the results of which have
been omitted here) may not be able to deliver the
desired PCS (i.e., PS of solution 1) when constraints
involve probabilities. Even though the probabilistic
constraints can be written as expectations of Bernoulli
random variables, the normality assumption for pro-
cedure AK and AK+ fails. This has been observed
in Andradóttir and Kim (2010, §6.3), and they sug-
gest using batching to overcome this problem. We also
report results for both AK and AK+ when batch-
ing is used with a batch size of 10 replications. With
batching, the desired PCS is nearly achieved by both
procedures, which is consistent with the conclusion
of Andradóttir and Kim (2010, §6.3). It is interesting
to point out that, from the results in Table EC.2 in
the online supplement, procedure AK achieves the
desired PCS while AK+ slightly fails, which implies
the importance of selecting a proper batch size.

Comparing the other results for the equal-variance
case with Table 2, we have additional observations:
The total number of samples required for feasibility
checking by procedure AK is less than that of Proce-
dure CCSB (approximately 27%), but the total number
of replications needed to select the best for procedure
AK (and AK+) is slightly more than that for Pro-
cedure CCSB (approximately 9% for AK and 3% for
AK+). Even though CCSB requires more samples for
feasibility checking, these samples provide an accu-
rate estimation of the sample variance of the primary
performance measures (recall that CCSB uses n0 =

n∗4�/k5 while AK and AK+ use n0 = 20 to estimate
the sample variances), and they are still used at the
second stage for selection of the best. It is also inter-
esting to note that procedure AK allocates more repli-
cations to infeasible solutions (i.e., solutions 4 and 5)
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Table 2 Summary of Single-Constraint CCSB Formulation When k = 5

Solution 1 2 3 4 5 Total

Equal variance
FSS 4043 × 103 4043 × 103 4043 × 103 3098 × 103 3098 × 103 2013 × 104

FP 0.992 0.992 0.988 0.015 0.008 —
SP 0.969 0.666 0.627 0.015 0.008 —
TSS 6009 × 103 5058 × 103 5053 × 103 3098 × 103 3097 × 103 2052 × 104

PS 00950 0.013 0.014 0.015 0.008 —
Increasing variance

FSS 4043 × 103 4043 × 103 4043 × 103 3097 × 103 3098 × 103 2013 × 104

FP 0.985 0.989 0.989 0.011 0.009 —
SP 0.964 0.729 0.815 0.011 0.009 —
TSS 7039 × 103 6029 × 103 6091 × 103 3097 × 103 3097 × 103 2090 × 104

PS 00948 0.020 0.012 0.011 0.009 —
Decreasing variance

FSS 4043 × 103 4043 × 103 4043 × 103 3097 × 103 3098 × 103 2013 × 104

FP 0.995 0.985 0.988 0.008 0.011 —
SP 0.973 0.523 0.443 0.008 0.011 —
TSS 5053 × 103 5025 × 103 4098 × 103 3097 × 103 3098 × 103 2037 × 104

PS 00956 0.015 0.010 0.008 0.011 —

Table 3 Summary of Single-Constraint ECSB Formulation Using AK and AK+ When k = 5

Solution 1 2 3 4 5 Total

Procedure AK, without batching
FSS 2083 × 103 2088 × 103 2083 × 103 3050 × 103 3054 × 103 1056 × 104

FP 0.999 0.995 0.996 0.128 0.129 —
SP 0.998 0.977 0.985 0.128 0.129 —
TSS 7022 × 103 6007 × 103 6023 × 103 4000 × 103 3096 × 103 2075 × 104

PS 0.746 0.004 0.006 0.116 0.128 —
Procedure AK, with batching, batch size = 10

FSS 2096 × 103 2083 × 103 2087 × 103 3051 × 103 3060 × 103 1058 × 104

FP 0.997 0.997 0.993 0.009 0.010 —
SP 0.996 0.972 0.973 0.009 0.010 —
TSS 8022 × 103 6077 × 103 6089 × 103 3053 × 103 3061 × 103 2090 × 104

PS 0.963 0.012 0.006 0.009 0.010 —
Procedure AK+, with batching, batch size = 10

TSS 7053 × 103 6042 × 103 6021 × 103 2084 × 103 2092 × 103 2059 × 104

PS 0.946 0.014 0.011 0.012 0.017 —

Table 4 Optimal 4m�4n51 n
∗4�55 with Multiple Constraints

k = 5 k = 25 k = 101

m�4n5 472 626 799
n∗4�5 51271 61989 81918

and requires more replications to select the best from
surviving solutions.

The slippage configuration of means for the sec-
ondary performance measure (i.e., setting c1 = 1 and
c2 = 0 in Equation (31)) indicates that the feasibil-
ity checking is difficult in general. However, in the
nonslippage configuration, the probabilistic condi-
tion pi may be far away from the violation proba-
bility bound �. Therefore, we should expect AK to
require fewer samples to complete feasibility check-
ing because it estimates the sample variance of the

secondary performance measure. However, as de-
monstrated by numerical examples in the online sup-
plement (EC.1.3), we find that this benefit is usually
offset by the inefficiency of AK for selection of the
best because of its poor estimation of sample variance
of the primary performance measure, unless the con-
figuration is such that optimality checking is much
easier than feasibility checking.

6.2. Examples with Multiple Secondary
Performance Measures

We next consider the situation where there are
multiple secondary performance measures in CCSB
problems, which may be formulated as a joint
chance-constrained problem or a multiple individual
chance-constrained problem.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
4.

21
4.

22
.1

71
] 

on
 2

3 
A

ug
us

t 2
01

5,
 a

t 2
0:

13
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Hong, Luo, and Nelson: Chance Constrained Selection of the Best
330 INFORMS Journal on Computing 27(2), pp. 317–334, © 2015 INFORMS

6.2.1. Configurations of Test Examples with Mul-
tiple Constraints and Main Results. For conve-
nience, we assume that Y

4s5
i ∼ N4�

4s5
i 115 are mutu-

ally independent and also independent of Xi, for s =

1121 0 0 0 1m and i = 1121 0 0 0 1 k. For the joint-constraint
formulation in Equation (20), we set

�
4s5
i =

{

−ê−141−41−�+��5
1/m51 i=11210001b3

−ê−141−41−�51/m51 i=b+11b+210001k1

for all s = 1121 0 0 0 1m. For the multiple constraints for-
mulation in Equation (22), we set �s = � = 001, ��s

=

�� = 0002 and

�
4s5
i =



















































−ê−14�−��51 i=11210001b
and s=11210001m3

−ê−14�−��51 i=b+11b+210001�4b+k5/2�

and s=11210001m−13
−ê−14�51 i=b+11b+210001�4b+k5/2�

and s=m3

−ê−14�51 i=�4b+k5/2�+11�4b+k5/2�

+210001k and s=11210001m0

Under this setting, solutions 1121 0 0 0 1 b are feasible,
solutions b + 11 b + 21 0 0 0 1 �4b+ k5/2� violate only one
constraint, and solutions �4b+ k5/2� + 11 �4b+ k5/2� +

21 0 0 0 1 k violate all constraints. For both formulations,
we let m= 5, and all other parameter settings are the
same as the problems reported in §6.1.1.

For the joint-constraint formulation, the optimal
4m�4n51n

∗4�55 is the same as in Table 1. For the mul-
tiple constraints formulation, we choose �1 = �2 =

�/4m+k−15 and provide the optimal m�4n5 and n∗4�5
in Table 4.

The results for the joint-constraint and multiple-
constraints formulations when k = 5 are reported in
Tables 5 and 6, respectively. From Tables 5 and 6, we
can draw similar conclusions as from Table 2. The
procedures deliver the required probability of cor-
rect selection and the sequential feasibility test deliv-
ers a positive benefit at no cost: about 4.1% and
5.0% of savings for the joint-constraint and multiple-
constraints formulations, respectively. We report the
results of both formulations for the cases, where k =

25 and k = 101 in Table EC.3 in the online supple-
ment, from which we find that the conclusions hold
for these cases.

6.2.2. Comparison with Procedures FI
B and FI

A .
To deal with problems having multiple secondary
performance measures (i.e., the formulation in Equa-
tion (22)), we compare against procedure AK with
feasibility-checking being replaced by either proce-
dures FI

B or FI
A in Batur and Kim (2010) (for simplic-

ity, we call procedures AK+FI
B and AK+FI

A as FI
B

and FI
A , respectively, in this paper).

We now consider the example in §6.2.1 with m= 5
multiple secondary performance measures. We set
�1 = �2 = �/2 = 00025, qs = q = � − ��/2 = 0009, and
�s = � = ��/2 = 0001 for s = 1121 0 0 0 1m, and the initial-
stage sample size n0 = 20. Because all solutions are
simulated independently, we let �= 41−41−�15

1/k5/m
in procedure FI

B and � be the solution to 41 − �5k +

41 −m�5k = 2 −�1 in procedure FI
A . (Note that here �

and � are the notations used in describing the proce-
dures in Batur and Kim 2010.) All other parameters
are set the same as in §6.2.1. To make FI

B and FI
A

yield the desired PCS, we only used batched output
data with batch size equal to 10. Table 7 reports the
detailed results for the case, where k = 5 under the
equal-variance configuration.

Comparing these results with Table 6, we have the
following findings: First, procedures FI

B and FI
A tend

to be more conservative in terms of PCS than Proce-
dure CCSB. This is because the “multiplicative rule”
in FI

B and FI
A makes the feasibility checking more

conservative than the “additive rule” in Procedure
CCSB. Second, procedure FI

A is more efficient than
FI

B, which is consistent with the conclusion in Batur
and Kim (2010). Third, the total number of samples
needed both for feasibility checking and selection of
the best by FI

B and FI
A are more than those needed

by Procedure CCSB (approximately 17% for FI
B and

8% for FI
A).

6.3. An Example Where the Best Solution Is Not
Clearly Feasible

As mentioned in §3, our feasibility test does not have
an explicit control of its power when the solution is
feasible but not clearly feasible. In this section, we
consider an example where the best feasible solution
is not clearly feasible. Specifically, we consider the
example for a single-constraint CCSB formulation and
set the parameters the same as in §6.1.1 except that

�i =



















2�1 i = 13
�1 i = 23
01 i = 3141 0 0 0 1 b3
i�1 i = b+ 11 b+ 21 0 0 0 1 k1

and

�i =











−ê−14� − 005��51 i = 13
−ê−14� − ��51 i = 2131 0 0 0 1 b3
−ê−14�51 i = b+ 11 b+ 21 0 0 0 1 k0

In this example, solution 1 is the best feasible solution
but is not clearly feasible, solution 2 is the best solu-
tion among all clearly feasible solutions, and both are
acceptable. We report the results for the case where
k = 5 in Table 8, where PS in the last column repre-
sents the probability of good selection (PGS, i.e., the
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Table 5 Summary of Joint-Constraint Formulation When k = 5

Solution 1 2 3 4 5 Total

Equal variance
FSS 4043 × 103 4043 × 103 4043 × 103 3098 × 103 3099 × 103 2013 × 104

FP 0.991 0.991 0.986 0.006 0.009 —
SP 0.975 0.635 0.625 0.006 0.009 —
TSS 6011 × 103 5056 × 103 5056 × 103 3098 × 103 3099 × 103 2052 × 104

PS 00961 0.010 0.014 0.006 0.009 —
Increasing variance

FSS 4043 × 103 4043 × 103 4043 × 103 3098 × 103 3098 × 103 2013 × 104

FP 0.991 0.990 0.995 0.012 0.004 —
SP 0.977 0.759 0.848 0.012 0.004 —
TSS 7057 × 103 6030 × 103 7012 × 103 3098 × 103 3098 × 103 2090 × 104

PS 00954 0.015 0.015 0.012 0.004 —
Decreasing variance

FSS 4043 × 103 4043 × 103 4043 × 103 3098 × 103 3098 × 103 2013 × 104

FP 0.988 0.992 0.982 0.008 0.009 —
SP 0.969 0.517 0.413 0.008 0.009 —
TSS 5041 × 103 5018 × 103 4090 × 103 3097 × 103 3097 × 103 2034 × 104

PS 00954 0.011 0.018 0.008 0.009 —

Table 6 Summary of Multiple-Constraint Formulation When k = 5

Solution 1 2 3 4 5 Total

Equal variance
FSS 5027 × 103 5027 × 103 5027 × 103 4073 × 103 4049 × 103 2050 × 104

FP 0.970 0.972 0.971 0.008 0.000 —
SP 0.961 0.620 0.594 0.008 0.000 —
TSS 7000 × 103 6051 × 103 6050 × 103 4072 × 103 4048 × 103 2092 × 104

PS 00953 0.017 0.022 0.008 0.000 —
Increasing variance

FSS 5027 × 103 5027 × 103 5027 × 103 4072 × 103 4049 × 103 2050 × 104

FP 0.976 0.965 0.985 0.003 0.000 —
SP 0.973 0.753 0.838 0.003 0.000 —
TSS 8058 × 103 7040 × 103 8009 × 103 4072 × 103 4049 × 103 3033 × 104

PS 00963 0.019 0.015 0.003 0.000 —
Decreasing variance

FSS 5027 × 103 5027 × 103 5027 × 103 4074 × 103 4049 × 103 2050 × 104

FP 0.980 0.986 0.964 0.005 0.000 —
SP 0.976 0.473 0.392 0.005 0.000 —
TSS 6028 × 103 6003 × 103 5085 × 103 4074 × 103 4049 × 103 2074 × 104

PS 00968 0.010 0.01 0.005 0.000 —

Table 7 Summary of Multiple-Constraint ECSB Formulation Using FI
B and FI

A When k = 5

Solution 1 2 3 4 5 Total

Procedure FI
B, with batching, batch size = 10

FSS 7000 × 103 6097 × 103 6092 × 103 5027 × 103 3000 × 103 2092 × 104

FP 0.997 0.993 0.995 0.001 0.000 —
SP 0.995 0.649 0.654 0.001 0.000 —
TSS 9021 × 103 8048 × 103 8036 × 103 5027 × 103 3000 × 103 3043 × 104

PS 0.986 0.007 0.006 0.001 0.000 —
Procedure FI

A , with batching, batch size = 10
FSS 7030 × 103 7024 × 103 7024 × 103 5043 × 103 1014 × 103 2083 × 104

FP 0.998 0.997 0.996 0.000 0.000 —
SP 0.997 0.536 0.555 0.000 0.000 —
TSS 8067 × 103 8011 × 103 8022 × 103 5043 × 103 1014 × 103 3016 × 104

PS 0.983 0.009 0.008 0.000 0.000 —
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Table 8 Summary of CCSB Formulation When k = 5 with Multiple Acceptable Solutions

Solution 1 2 3 4 5 Total

Equal variance
FSS 4034 × 103 4043 × 103 4043 × 103 3098 × 103 3098 × 103 2012 × 104

FP 00466 00993 00992 00010 00008 —
SP 00456 00813 00397 00010 00008 —
TSS 4080 × 103 5054 × 103 5009 × 103 3096 × 103 3095 × 103 2033 × 104

PS 00449 00526 00007 00010 00008 00975
Increasing variance

FSS 4034 × 103 4043 × 103 4043 × 103 3098 × 103 3098 × 103 2012 × 104

FP 00467 00990 00993 00004 00009 —
SP 00459 00820 00388 00004 00009 —
TSS 4086 × 103 5055 × 103 5005 × 103 3095 × 103 3095 × 103 2034 × 104

PS 00456 00524 00007 00004 00009 00980
Decreasing variance

FSS 4034 × 103 4043 × 103 4043 × 103 3098 × 103 3098 × 103 2012 × 104

FP 00440 00989 00988 00005 00012 —
SP 00436 00812 00412 00005 00012 —
TSS 4083 × 103 5057 × 103 5006 × 103 3092 × 103 3092 × 103 2033 × 104

PS 00431 00542 00010 00005 00012 00973

probability of selecting either solution 1 or 2). In con-
trast to the results in Table 2, our procedure declares
solution 1 infeasible with a probability that is larger
than �2 (which is illustrated as point A in Figure 1).
However, the procedure selects an acceptable solution
with a probability that is at least 1 −�.

6.4. The Newsvendor Problem
The last example tested in this paper is a multiple-
product newsvendor problem with correlated log-
normal demands subject to some service level con-
straints. Suppose that there are three products with
random demand D = 4D11D21D35

T , where log4D5 ∼

N4�1è5. The order quantity of the products is x =

4x11x21x35
T ∈ �3

+
. Let csi and coi denote the per unit

shortage and overage costs for product i, i = 11213.
Then the expected total cost can be written as

�4x5= E
{ 3
∑

i=1

6csi4Di − xi5
+

+ coi4xi −Di5
+7

}

1

where y+ = max8y109. By Equations (20) and (22), we
can formulate this problem as

max
x

{

−�4x5
}

=−

3
∑

i=1

6csiE4Di−xi5
+
+coiE4xi−Di5

+7

s.t. Pr8Di ≤xi1 i=112139≥1−�1
(32)

as a joint CCSB problem, and

max
x

{

−�4x5
}

=−

3
∑

i=1

6csiE4Di−xi5
+
+coiE4xi−Di5

+7

s.t. Pr8Di ≤xi9≥1−�1 for i=112131
(33)

as a multiconstraint CCSB problem.

Let �= 4200120513005T and

è=





�1 0 0
0 �2 0
0 0 �3









1 005 005
005 1 005
005 005 1









�1 0 0
0 �2 0
0 0 �3



 1

where 4�11�21�35 = 4100110111025, csi = 3, and coi = 1
for i = 11213. Suppose the order quantities for prod-
ucts 11213 take values from the following sets:
x1 ∈ 8151301501559, x2 ∈ 82517519511009, and x3 ∈

8451115118012109 under the joint-constraint formu-
lation while x1 ∈ 8151251301409, x2 ∈ 8251551601759,
and x3 ∈ 845190111011459 under the multiple con-
straints formulation. Then there are k = 64 solutions
for each formulation.

We set the violation probability � = 001, the tol-
erance level �� = 0002, indifference-zone parameter
�= 1, and total error allowance �= 0005. The optimal
m�4n5 and n∗4�5 are shown in Table 9.

Given the values of parameters and distribution
of D, we can compute exact values of the objec-
tive functions and probability constraints in Formu-
lations (32) and (33). For the joint constraint for-
mulation, there are 12 feasible solutions, eight of
which are clearly feasible, and the best feasible solu-
tion is xb1 = 45017511805 with the expected cost 26300
and the benchmark solution (i.e., the best among all
clearly feasible solutions) is xg1 = 45019511805 with
the expected cost 27909. For the multiple constraints
case, there are 12 feasible solutions, four of which
are clearly feasible, and the best feasible solution is
xb2 = 43015511105 with the expected cost 17606 and
the benchmark solution is xg2 = 44016011105 with the
expected cost 18706. In both formulations, there are
multiple acceptable solutions. In Tables EC.8 and EC.9
in the online supplement, we list the information for
all solutions for both formulations.
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Table 9 Optimal 4m�4n51 n
∗4�55 for the Newsvendor Problem

Joint constraint Multiple constraints

�1 = �2 �/k �/4k +m− 15
m�4n5 732 737
n∗4�5 81171 81226

Table 10 Summary for the Newsvendor Problem

Configurations Joint constraint Multiple constraints

FSAS 2081 × 105 3009 × 105

Savings (%) 4607 4103
TSAS 3088 × 105 6058 × 105

PGS 00999 00999

In Table 10, we report the average first-stage sam-
ple size (FSS), the percentage of savings by using a
sequential feasibility test (Saving%), the average total
sample size (TSS), and the PGS, over 1,000 indepen-
dent macroreplications. From the results we conclude
that the procedures we propose can correctly select an
acceptable solution. Furthermore, as the example is
not in the slippage configuration, the sequential feasi-
bility test demonstrates a substantial amount of sav-
ings (over 40% in both formulations) compared with
the fixed-sample test.

7. Conclusions
In this paper we study CCSB problems where we
select the best solution with the maximum or min-
imum expected value of the primary performance
measure under the requirement that the secondary
performance measures satisfy certain probabilistic
constraints. We propose various two-stage procedures
for CCSB problems. Specifically, in the first stage of
the procedures, we design a fixed-sample feasibility
test and a sequential feasibility test by transform-
ing the probabilistic constraints to hypothesis tests
on Bernoulli random variables. These tests not only
select feasible solutions with the required Type I and
II errors but also allow us to use the first-stage sam-
ples for selection in the second stage. In the second
stage of the procedures, we use the KN procedure
to sequentially select the best solution from the sam-
ple feasible solutions. We prove that our procedures
can deliver the required PCS under the indifference-
zone framework. To handle CCSB problems with mul-
tiple secondary performance measures, we propose
two formulations: joint constraint and multiple con-
straints. We design two-stage procedures for both for-
mulations and prove their statistical validities under
the indifference-zone framework. We test our proce-
dures using a number of examples, and the proce-
dures can deliver the desired performances.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/ijoc.2014.0628.
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