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a b s t r a c t

This paper analyzes a capacity management problem in which two service providers utilize a common facility

to serve two separate markets with time-sensitive demands. The facility provider has a fixed capacity and

all parties maximize demand rates. When the service providers share the facility, they play a frequency

competition game with a unique Nash equilibrium. When the service providers have dedicated facilities,

the facility provider leads two separate Stackelberg games. A centralized system with the first-best outcome

is also examined. Based on closed-form solutions under all three scenarios, we find that facility capacity

competition is a prerequisite condition for not pooling the service providers. Moreover, we establish the

rankings of preferred strategies for all parties with respect to the ratio of the service providers’ demand loss

rates, which are proportional to the time sensitivity of demand and the potential market size. Interestingly

a triple-agreement situation for the pooling strategy exists if the rates are close, and the facility provider

permits a request for dedicated facilities only if the service provider has an overwhelming dominance at the

demand loss rate. We connect these managerial insights with strategic seaport capacity management.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Many service systems involve with multiple parties and increas-

ing the service capacity of one service provider may not help improv-

ing the overall service system performance. For instance, a maritime

system includes carriers and port authorities. Since a seaport has a

limited capacity in processing vessels, a carrier may not be able to

shorten the cargo delivery time when pushing the vessel frequency

close to the port’s handling capacity. Moreover, the bottleneck of pub-

lic logistic facilities becomes severe when multiple service providers

compete on a fixed amount of facility capacity. It is well known that

a user of a public resource often ignores the negative externality that

she/he imposes on other users (Hardin, 1968). This ignorance can

cause congestion and massive losses in many logistic systems. For

example, Ball, Barnhart, Dresner, Hansen, Neels, et al. (2010) esti-

mate that the total cost of US domestic air traffic delays is around

$31.2 billion for calendar year 2007. One way to solve this issue is to

use incentive-compatible pricing schemes (see Ha, 1998; Mendelson
∗ Corresponding author. Tel.: +86 15829361566.
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Whang, 1990), which have been widely adopted by public trans-

ortation authorities. Another way is to allocate dedicated facilities

o certain types of users, which is commonly practiced by port au-

horities and is the focus of this paper.

A strategic problem for a port authority is to decide whether to

ool all carriers together to share the port facilities or to allocate ded-

cated facilities to individual carriers. When a port pools the vessels

rom all carriers together and fully utilizes its facilities, this pooling

ffect generally leads to more efficient usage of the facilities. How-

ver, the pooling strategy is not perfect for the port. When carriers are

ut together, they may compete for the port facilities by increasing

he vessel frequency in order to provide better service for their cus-

omers. This competition effect may result in congestion and offset

he benefit of the pooling effect. Since using dedicated facilities sep-

rates the operations of different carriers, this reservation strategy

liminates the competition effect as well as the pooling effect. From

arriers’ perspective, a busy port may cause long and unpredictable

ime delays, which often cause a loss to carriers as their customers

re usually sensitive to the time spent on the transportation route.

o reduce the time delay and avoid competition with other carriers

or port facilities, carriers are inclined to having dedicated port facil-

ties. Hence, it is important for both a port authority and carriers to
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nderstand the tradeoff between pooling and reservation strategies

nd the interactions among their capacity decisions.

This paper studies a three-tier model, where a facility provider (a

estination seaport) offers its facility to two service providers (carri-

rs), who ship customers’ cargos from two different origin ports to the

ame destination port. We assume that customer demand rate on each

oute decreases linearly in the total transportation time spent at the

rigin and destination ports and all parties maximize their cargo vol-

mes. Three scenarios are considered. In the first scenario, the facility

rovider adopts the pooling strategy. The service providers determine

heir service capacity levels and compete for facility usage. We find a

nique Nash equilibrium for this scenario. In the second scenario, the

acility provider allocates facility capacity to each service provider,

ho determines the service capacity given its dedicated facility ca-

acity. Finally, in the third scenario, we study the first-best outcome

f a centralized system, in which a central planner jointly chooses the

acility capacity management strategy and the service capacity levels.

ased on closed-form solutions under all three scenarios, our study

dentifies conditions under which the facility provider and service

roviders should adopt the pooling or reservation strategy.

Our work contributes to the literature on capacity pooling and

eservation strategies, which will be reviewed in the next section, in

he following aspects.

First, we assume that both the facility provider and service

roviders maximize their demand rates, as cargo volume is one of

he most important performance measures in the maritime industry

see Stopford, 2009; World Bank, 2007, p. 85). A port authority run by

local government weights much more on the economic contribu-

ion of cargo traffic to the local economy than its own profitability. A

ong-distance oversea shipper needs to defense its market share when

ts clients have an expensive alternative of air shipping. This distin-

uishes our model from many works on time-sensitive demands, in

hich pricing is often the central concern. Moreover, we pay attention

o the case where two service providers face separate markets. Hence

ur model avoids the complexity introduced by market competition

etween two service providers, which is often the main theme of lit-

rature on time-based competition. By focusing on capacity manage-

ent from an operational perspective, we find that pooling is always

ptimal under the centralized system, which suggests that facility

apacity competition is a prerequisite condition for not pooling the

ervice providers.

Second, our three-tier model allows time-sensitive customer de-

ands depending on the transportation time spent at both the origin

nd destination ports. Notice that increasing the shipping frequency

n a route decreases the time that cargo spends at the origin port

ut increases the time that vessels spend at the destination port of

he route. When sharing the common facility capacity, self-interested

ervice providers ignore the negative externality of their frequency

ecisions on others and cause facility over-utilization. Essentially our

odel under the pooling strategy examines a frequency competition

etween two service providers on the common facility capacity and

ence contributes to the literature on frequency competition.

Third, we find that the facility provider’s optimal choice between

he pooling and reservation strategies critically depends on the ratio

f the demand loss rates of two service providers. The demand loss

ate is proportional to the potential cargo volume and the time sensi-

ivity of demand on a route. Our result complements observations in

he queueing literature that pooling is not optimal if customer char-

cteristics, such as service time distributions and time sensitivity, are

ignificantly different. Furthermore, we show that dedicated facili-

ies are not always preferred by service providers and their optimal

hoices are also determined by the ratio of the demand loss rates of

wo service providers. This view is missing in the queueing literature,

hich only concern about the optimal choice of the facility provider.

Finally, in reality, the allocation of the facility provider’s capac-

ty is often done with service providers through tough negotiation
rocesses, which may involve many other economy factors, for ex-

mple, port charges, long-term relationship, etc. No matter how

omplex these processes are, all players have to understand the trade-

ff between pooling and reservation strategies from an operational

erspective, which is exactly the focus of our work. The managerial

nsights developed in this paper, e.g. the rankings of their preferred

trategies and the existence of the triple-agreement situation, help all

layers to understand the interactions among their capacity decisions

nd lay down a sound foundation upon which to incorporate other

actors in the tradeoff between pooling and reservation strategies.

The rest of the paper is organized as follows. In Section 2, we pro-

ide a brief review of related literature. The model is introduced in

ection 3. Then, we study the pooling strategy, the reservation strat-

gy and the centralized system in Section 4. We make comparisons

etween the pooling and reservation strategies in Section 5 and draw

onclusions in Section 6. All proofs are relegated to the online sup-

lements of the Appendix.

. Literature review

The tradeoffs between capacity pooling and reservation strate-

ies have been studied from many different perspectives. We briefly

eview the literature from four aspects below.

.1. Queueing systems

It is well know that combining separate subsystems into one

ystem may improve the overall system efficiency, since the com-

ination reduces the chance of idleness of subsystems and generates

conomies of scale. However, if customers have heterogenous charac-

eristics, then merging queues may be counterproductive. Smith and

hitt (1981) and Whitt (1999) show that if customers fall into classes

ith different service time distributions, then keeping different types

f customers into separate queues may be optimal. Yu, Benjaafar, and

erchak (2015) study a capacity sharing problem among a set of inde-

endent queues. They find that capacity pooling may not be optimal

f the workloads of queues are significantly different. Rothkopf and

ech (1987) provide other reasons of not merging queues. van Dijk

nd van der Sluis (2009) propose rules to further reduce average wait-

ng time under both pooled and unpooled scenarios for two customer

roups with different service time distributions.

The preferred choice between pooling and reservation strategies

ighly depends on the congestion caused by negative externalities

hat a user imposes on other users in queueing systems. Haviv and

itov (1998) derive measures of such negative externalities under dif-

erent queue disciplines. Osorio and Bierlaire (2009) explain the prop-

gation of congestion. Mendelson and Whang (1990) and Ha (1998)

evelop incentive-compatible pricing schemes to regulate the neg-

tive externality effects. Our model demonstrates under what mar-

et conditions the pooling benefit dominates (is dominated by) the

egative impact of facility capacity competition for both the facility

rovider and service providers.

.2. Time-sensitive demands

When customer utility or demand is time sensitive, capacity pool-

ng and reservation strategies can serve as market segmentation tools.

or instance, Pangburn and Stavrulaki (2008) study a joint pricing

nd capacity management problem and find that capacity pooling is

uboptimal if customers are heterogenous in their time sensitivity.

ur model reveals that another customer characteristic, the potential

arket size, also affects the pooling decision.

However, most studies consider profit-maximizing problems with

ooled service capacity under various settings. Since we focus on ca-

acity management from an operational perspective, we only review

few studies and refer to them for a more comprehensive review.
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Boyaci and Ray (2003) study a product differentiation problem in

which a firm determines the prices of a regular and an express prod-

uct and the delivery time of the express product. They examine the

relationship among capacity cost, time differentiation and price dif-

ferentiation by assuming a linear demand model on price and guaran-

teed delivery time. Ray and Jewkes (2004) consider a linear demand

model on price and lead time. They derive the profit maximizing opti-

mal policy and present the conditions under which overlooking price

and lead time dependence will lead to a sub-optimal decision. Sinha,

Rangaraj, and Hemachandra (2010) study a surplus capacity pricing

problem with two classes of customers, where secondary class cus-

tomers’s demand rate depends linearly on unit price and service level

offered. They optimize unit admission price and quality of service

(QoS) offered to secondary class customers while maintaining a pre-

specified QoS to primary class customers. Our model also assumes

a linear demand function on the transportation time but maximizes

customer demand rates instead.

2.3. Time-based competition

When managers’ attention shifts from internal operations to out-

side competition, speed is also an important weapon for firms to gain

market share (Stalk & Hout, 1990). Again most studies do not con-

sider the option of splitting capacity. For example, Kalai, Kamien, and

Rubinovitch (1992) consider a duopoly game in which two firms com-

pete for market shares by choosing individual server capacity levels

in a queueing system. Armony and Haviv (2003) investigate a game

with two firms and two classes of customers, where firms decide

their service capacity and price and customers’ utility depends on

price charged and expected queueing delays. They characterize prop-

erties of the equilibrium. So (2000) studies a price and delivery time

competitive game in which firms satisfy customer demand within a

guaranteed delivery period at a prefixed probability level. He finds

that high capacity firms offer better time guarantees than do low ca-

pacity firms and an increase of time sensitivity in customer demand

strengthens this differentiation. Hassin and Haviv (2003) present a

detailed review on time-based competition models and Allon and

Federgruen (2008) provide more updated references.

There are only a few papers on capacity pooling and split-

ting strategies. Motivated by Internet access service, Mandjes and

Timmer (2007) consider a game similar to Armony and Haviv (2003).

But they allow firms to split their service capacity and customers’

utility depends on utilization of the service resources, rather than

queueing delay. They find that it may pay off for both firms to split

their service capacities, even if the firms can only choose between

offering either a single network or two networks of equal capacity.

Unlike the previous literature, we study a three-tier model, where two

service providers compete on the fixed facility capacity and customer

demands are sensitive to the total transportation time. We find that

the pooling decision of the facility provider depends on not only cus-

tomer characteristics but also whether or not the service providers

compete for facility usage. We also derive the preferred choice be-

tween two strategies from the service providers’ perspective.

2.4. Frequency competition

In transportation industries, expanding capacity by providing

more frequency on a route not only shortens the waiting time but

also offers more departure options for customers. The importance of

service frequency has long been recognized by airline companies in

gaining market share. Adler (2001) adopts a logit model to quantify

the impact of frequencies on market share and studies airline compe-

tition on fares, frequencies, and aircraft sizes. He derives equilibrium

results for a network comprising four airports and two airlines. Vaze

and Barnhart (2012) model the connection between the market share
nd the frequency share by the so-called S-curve or sigmoidal rela-

ionship and propose a game-theoretic model for airline frequency

ompetition under slot constraints. They demonstrate that a small

eduction in the total number of allocated slots translates into a sub-

tantial reduction in flight and passenger delays and also a consid-

rable improvement in airlines’ profits. Surprisingly few researchers

onsider how to optimize the service frequency in maritime indus-

ry. Meng and Wang (2011) comment that “With regard to the service

requency, researchers either consider no requirement on the frequency,

r impose a minimum number of services within a planning horizon,

r require a fixed weekly service frequency. In other words, they have

ot sought to optimize the service frequency.” Meng and Wang (2011)

ptimize service frequency, containership fleet deployment plan, and

ailing speed for a long-haul liner service route. Apparently, frequency

ompetition is beyond the scope of their study.

Because the focus of our paper is on the tradeoff between capacity

ooling and reservation strategies, we do not model service providers’

ompetition in the transportation market but study the impact of their

ompetition on utilizing a common facility. A feature of our model is

hat providing more frequency by a service provider will shorten the

argo waiting time at the origin port but lengthen the vessel waiting

nd docking time at the destination port. We investigate the impact of

oth service and public facility capacity levels on the total transporta-

ion time and specify the preference over the pooling and reservation

trategies for both service providers and the facility authority.

. The model

We consider a facility provider that offers its facilities to service

roviders. For instance, a port provides berths to carriers, who ship

argos to and from the port. The facility provider has a total facility

apacity of K, which is measured as the number of vessels that the

acility can handle per unit time and is mainly determined by the

acility infrastructure (e.g. the number of berths). Throughout the

aper, we assume that the total facility capacity is fixed, since it is

ften very time-consuming and/or expensive to change the facility

nfrastructure.

For simplicity, we consider only two service providers. This is suf-

cient to demonstrate the tradeoff between the capacity pooling and

eservation strategies. We assume that the service providers face sep-

rate markets that do not interact with each other. For instance, carri-

rs may serve different routes, which have different origins but share

he same destination port (see Fig. 1). In this case, the demands for

he carrier’s services rarely affect each other. We denote the capacity

evel of service provider i as μi, where i = 1, 2, which is measured

s the frequency of vessels traveling on the route. We let λi be the

emand rate for service provider i, which is measured as the cargo

olume per unit time (or equivalently, the number of vessels needed

o ship the cargo per unit time), and assume that the demand rate

trictly decreases in the total transportation time of service i, where

= 1, 2.

Since the capacity allocation strategy of the facility provider is a

ong-term decision, we assume the sequence of events as follows.

he facility provider first announces its choice between pooling two

ervice providers together to share the total facility capacity K and

eserving dedicated facility capacity Ki to service provider i, where

= 1, 2. In the latter option, K1 + K2 = K holds obviously. Next, service

roviders determine their capacity levels.

The total transportation time ti of cargos on route i can be decom-

osed into three phases: the dwell time td, i that the cargos spend at

he origin port, the shipping time ts, i on the ocean, and the facility

ime tf, i that a vessel spends on waiting for and using port facilities at

he destination port. Notice that the shipping phase is independent

f the service and facility capacity levels.

In the dwell phase, only when both the facility and vessels of

ervice providers are available at the origin port, cargos can be loaded
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Fig. 1. The maritime system.
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nd shipped out. Therefore, the major part of the dwell time is the

ime that cargos spend on waiting for the next available vessels. To

ocus on the interaction between the destination port and carriers’

apacity decisions, we assume that the vessel and cargo processing

ime at the origin port is negligible compared to the cargo waiting

ime. This is likely to occur if the origin port is not a busy one. In

aritime industry, arrivals and departures of vessels seldom follow

he shipping schedule punctually. Our investigation on the vessel

rrival and departure pattern at Kwai Tsing Container Terminals of

ong Kong (please refer to the Appendix for details) indicates that

essel arrivals should be modeled via a stochastic process. Hence we

odel the cargo waiting process as an M/M/1 queue and the dwell

ime as td,i = 1
μi−λi

on route i.

In the facility phase, the vessel first waits on the sea out of the

ort and then is permitted to dock and handle cargos until a berth is

vailable in the port. For a busy port, waiting and docking typically

ake much longer than handling cargos at the berth. For instance, the

verage containership waiting time at the Port of Cartagena in Colom-

ia is about 2 hours when the berth occupancy rate is 50 percent, but

he time jumps to 10 days when the berth occupancy rate increases

o 90 percent (World Bank, 2007, p. 2). Hence we assume that the

argo processing time is negligible at the destination port and model

he vessel waiting and docking process as an M/M/1 queue. If service

roviders share the facility, the facility time is tf,1 = tf,2 = 1
K−μ1−μ2

. If

ervice provider i has dedicated facility capacity Ki, the facility time

s tf,i = 1
Ki−μi

. Our investigation at Kwai Tsing Container Terminals of

ong Kong also provides some empirical evidence to support such

ormulation.

We assume a linear time-dependent demand function λi(ti) = ai

ηiti, where i = 1, 2. The linear demand form is widely adopted in

he literature (see Kalai et al., 1992; So, 2000). Since ti = td, i + tf, i

ts, i, we can rewrite λi(ti) = Ai[1 − θ i(td, i + tf, i)], where Ai = ai −
its, i and θi = ηi

ai−ηits,i
. Because ts, i is independent of the service and

acility capacity levels, Ai and θ i are constant. We interpret Ai as the

otential market size (after adjusting the shipping time) and θ i as the

ime sensitivity of demand.

Due to the large capital investment needed to build ports, the to-

al cargo volume is a primary concern of ports. Moreover, to a port

uthority, the overall contribution of the port operations to the local

conomy, which is correlated with the cargo volume, is often more im-

ortant than its own profitability. Hence, we assume that the facility

rovider maximizes its demand rate. To skip the carrier’s marketing

ecisions but concentrate on its operations side, we assume that the

bjective of each service provider is also maximizing cargo volume,

hich is equivalent to maximizing its profit with a constant mar-
in. Cost-plus pricing is a common pricing procedure and has widely

dopted in many industries (Nagle, Hogan, & Zale, 2011).

With slight abuse of notation, we let Ki = K − μ3 − i if the facility

rovider adopts the pooling strategy. This enables us to write the

acility time as tf,i = 1
Ki−μi

and unify many derivations under both

trategies. The demand rate λi, as a function of Ki and μi, is

i(Ki,μi) = 1

2

[
Ai − Aiθi

Ki − μi

+ μi −
√

δ2
i

+ 4Aiθi

]
, (1)

here δi = Ai − Aiθi
Ki−μi

− μi, if 1
2 (Ki −

√
K2

i
− 4Kiθi) < μi < 1

2 (Ki +
K2

i
− 4Kiθi) and Ki > 4θ i; otherwise, λi(Ki, μi) = 0. (See derivation

etails in the Appendix.)

We solve the service provider’s demand maximization problem as

hown below.

roposition 1. Assume that Ki > 4θ i. (1) The optimal service capacity is
∗
i
(Ki) = 3Ki+Ai

4 − 1
4

√
(Ki − Ai)2 + 16Aiθi. (2) The optimal demand rate

s λ∗
i
(Ki) = λi(Ki,μ

∗
i
(Ki)) = Ki+Ai

2 − 1
2

√
(Ki − Ai)2 + 16Aiθi. (3)μ∗

i
(Ki) >

∗
i
(Ki) > 0. (4) The optimal service capacity μ∗

i
(Ki)and the demand rate

∗
i
(Ki) are increasing in Ki and Ai, but decreasing in θ i.

By Proposition 1, as the facility capacity Ki and/or the market size

i increase, service provider i increases its service capacity to at-

ract customer demand. But as customers become more time sensi-

ive (i.e. an increase of θ i), the demand for the service drops, which

educes the required service capacity. The condition of Ki > 4θ i in

roposition 1 implies that customers are not extremely time sensi-

ive and/or the facility capacity is moderately large. An invalidation

f this condition shuts down the operations of service provider i (i.e.
∗
i
(Ki) = λ∗

i
(Ki) = 0). Since this is a trivial case, we will avoid it in the

est of this paper.

. Three scenarios

In this section, we solve the optimal capacity decisions of involved

arties under three scenarios: the pooling strategy, the reservation

trategy and the centralized system.

.1. The pooling strategy

When the facility provider adopts the pooling strategy, the ser-

ice providers determine their individual service capacity levels and

ompete on the facility capacity. Since Ki = K − μ3 − i depends on the

ervice capacity of the other service provider (i.e. μ3 − i), each service

rovider’s capacity decision affects the other’s capacity decision. We
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model this as a simultaneous game and study the pure strategy Nash

equilibrium of the game. Notice that μ1 + μ2 < K at a Nash equi-

librium since overloading the facility implies infinity processing time

and kills the demand for each service provider.

Let μPOOL∗
i

and λPOOL∗
i

denote the equilibrium service capacity level

and demand rate of service provider i, respectively, and �POOL∗ =
λPOOL∗

1 + λPOOL∗
2 denote the total demand rate of the facility provider

under the equilibrium. To ensure that both service providers use the

facility, we make the following assumption.

Assumption 1. K � max (A1, A2) + 8 max (θ1, θ2).

By Claim 1 of Proposition 1 and Assumption 1,

K − μ∗
3−i(K) = K − A3−i

4
+ 1

4

√
(K − A3−i)2 + 16A3−iθ3−i

> (K − A3−i)/2 > 4θi

for i = 1, 2. By Claim 4 of Proposition 1, μ∗
i
(Ki) ≤ μ∗

i
(K) for any Ki �

K, where Ki = K − μ3 − i. Therefore, we have K − μ∗
3−i

(K3−i) > 4θi for

any K3 − i � K and the condition of Proposition 1 always holds at any

equilibrium. By Claim 3 of Proposition 1, μPOOL∗
i

> λPOOL∗
i

> 0 for i =
1, 2. Hence, Assumption 1 implies that both service providers use the

facility under the pooling strategy.

By Claims 1 and 2 of Proposition 1, the equilibrium service ca-

pacity μPOOL∗
i

and the demand rate λPOOL∗
i

must satisfy the following

equations:

μPOOL∗
i = 3

(
K − μPOOL∗

3−i

) + Ai

4
− 1

4

√
(K − μPOOL∗

3−i
− Ai)2 + 16Aiθi,

λPOOL∗
i =

(
K − μPOOL∗

3−i

) + Ai

2
− 1

2

√
(K − μPOOL∗

3−i
− Ai)2 + 16Aiθi,

for both i = 1, 2. By solving the equations through various trans-

formations, we obtain a unique pure strategy Nash equilibrium in

Theorem 1.

Theorem 1. There exists a unique pure strategy Nash equilibrium such

that both service providers use the facility. At the equilibrium, the service

capacity and demand rate of service provider i are

μPOOL∗
i = Ai − Aiθi

2(A1θ1 + A2θ2)

(√
M2 + �2

POOL + M
)

+ 1

6

(√
M2 + �2

POOL − M
)

> 0,

λPOOL∗
i = Ai − Aiθi

2(A1θ1 + A2θ2)

(√
M2 + �2

POOL + M
)

> 0,

respectively, and the total demand rate of the facility provider is

�POOL∗ = 1

2

[
A1 + A2 + K −

√
M2 + �2

POOL

]
,

where M = A1 + A2 − K and �POOL =
√

24(A1θ1 + A2θ2).

With the closed-form equilibrium in Theorem 1, we derive the

comparative statics of service capacity levels and demand rates as the

market conditions and facility capacity change.

Proposition 2. (1) Service provider i’s equilibrium service capacity

μPOOL∗
i

and demand rate λPOOL∗
i

are increasing in K, Ai and θ3 − i, but

decreasing in A3 − i and θ i. (2) The facility provider’s equilibrium total

demand rate �POOL∗ is increasing in K, A1 and A2, but decreasing in θ1

and θ2.

Proposition 2 shows that an increase of facility capacity allows the

service providers to increase their service capacity levels. As a result,

the demand rate of each service provider and the total demand rate

increase. A service provider increases its service capacity to attract

customers as its potential market size increases. This causes a drop in
he facility capacity index for the other service provider and hence a

eduction in its capacity and demand rate. However, the total demand

ate increases. An increase of customers’ time sensitivity drives down

he customer demand rate and hence the required service capacity

f service i. This increases the facility capacity index for the other

ervice provider, who then increases its service capacity to attract

ore customers.

.2. The reservation strategy

Applying reservation strategy eliminates not only the gaming

ehavior of the service providers but also the pooling effect. By

roposition 1, if Ki > 4θ i, then service provider i chooses service ca-

acity μ∗
i
(Ki), which brings in demand λ∗

i
(Ki) for the facility provider;

f Ki � 4θ i, which implies that the dedicated facility capacity for ser-

ice provider i is too small, then service provider i chooses to drop

ut of its market and not to use the facility. In the latter case, the

edicated facility generates no demand and is wasted. Hence, it is not

ptimal for the facility provider to allocate any dedicated capacity Ki

(0, 4θ i]. Let �RES denote the total demand rate for the facility under

his scenario, we have

RES(K1, K2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∑
i=1

1

2
(Ki + Ai)− 1

2

√
(Ki − Ai)2 + 16Aiθi,

if Ki > 4θi and K1 + K2 = K;

1

2
(K + Ai)− 1

2

√
(K − Ai)2 + 16Aiθi,

if Ki = K and K3−i = 0.

Let KRES∗
i

denote the optimal dedicated facility capacity for ser-

ice provider i. With the dedicated capacity KRES∗
i

, we let μRES∗
i

and
RES∗
i

denote the optimal service capacity and demand rate of ser-

ice provider i, respectively. The optimal total demand rate of the

acility provider is �RES∗ = �RES(KRES∗
1 , KRES∗

2 ). We make the following

ssumption to avoid the trivial case that the facility provider causes

ne service provider to drop out.

ssumption 2. Ai � 16θ i, where i = 1, 2.

This assumption implies that customers are not extremely time

ensitive and/or the potential market size is large.

heorem 2. The optimal dedicated facility capacity, the service capacity

nd the demand rate of service provider i are

KRES∗
i = Ai −

√
Aiθi√

A1θ1 +
√

A2θ2

(A1 + A2 − K) > 0,

RES∗
i = Ai −

√
Aiθi

4(
√

A1θ1 +
√

A2θ2)

(√
M2 + �2

RES + 3M
)

> 0,

λRES∗
i = Ai −

√
Aiθi

2(
√

A1θ1 +
√

A2θ2)

(√
M2 + �2

RES + M
)

> 0,

espectively, and the total demand rate of the facility provider is

RES∗ = 1

2
[A1 + A2 + K −

√
M2 + �2

RES],

here �RES = 4(
√

A1θ1 +
√

A2θ2).

With the closed-form solutions in Theorem 2, we derive the com-

arative statics of the service capacity levels and demand rates as the

arket conditions and facility capacity change.

roposition 3. (1) The optimal dedicated facility capacity KRES∗
i

for ser-

ice provider i, its service capacity μRES∗
i

and demand rate λRES∗
i

are

ncreasing in K and Ai, but decreasing in A3 − i. (2) If A1 + A2 � K, then

he optimal dedicated facility capacity KRES∗
i

for service provider i, its
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ervice capacity μRES∗
i

and demand rate λRES∗
i

are increasing in θ3 − i, but

ecreasing in θ i. (3) If A1 + A2 < K, then the optimal service capacity
RES∗
i

of service provider i and its demand rate λRES∗
i

are decreasing in θ i

nd θ3 − i, but the optimal dedicated facility capacity KRES∗
i

is increasing

decreasing) in θ i (θ3 − i). (4) The facility provider’s total demand rate
RES∗ is increasing in K, A1 and A2, but decreasing in θ1 and θ2.

Most comparative statics in Proposition 3 are parallel to the ones in

roposition 2, except those with respect to the time sensitivity param-

ters. Notice that A1 + A2 represents the overall potential market size,

nd A1 + A2 > K (A1 + A2 < K) indicates that the total facility capacity

s (not) tight. When the facility capacity is tight, as the time sensitivity

3 − i increases, service provider i’s market becomes relatively more

ttractive. Hence, the facility provider should allocate more capacity

o service provider i and decrease the capacity for the other one. As

ore facility capacity becomes available, service provider i increases

ts service capacity to attract more customer demand. In contrast, the

ther one cuts its service capacity and loses demand, as its dedicated

acility capacity is reduced.

When the facility capacity is not tight, as the time sensitivity θ3 − i

ncreases, the facility provider adopts a very different strategy. That

s, she moves facility capacity from service provider i to the other

nd tries to keep the time-sensitive customers of the latter one, even

hough this causes service provider i to cut its service capacity and

ose demand.

.3. The centralized system

We consider a centralized system in which a central planner de-

ermines not only the facility operations strategy but also the capacity

evels of two service providers to maximize the total demand rate. The

entral planner can operate the facility with two strategies: (1) By the

ooling strategy, the central planner allows both service providers to

hare the entire facility. (2) By the reservation strategy, the central

lanner allocates facility capacity Ki to serve only service provider i,

here K1 + K2 = K.

Because the central planner determines the service capacity lev-

ls, this eliminates the competition effect and the negative exter-

ality of the service providers’ gaming behavior demonstrated in

ubsection 4.1. Hence, the pooling strategy is expected to dominate

he reservation strategy. We establish this result in the following

heorem.

heorem 3. It is always optimal to adopt the pooling strategy under the

entralized system.

By Theorem 3, we focus on the pooling strategy. Similarly, let μCEN∗
i

nd λCEN∗
i

denote the optimal service capacity level and demand rate
Fig. 2. (a)Optimal service capacity levels μCEN∗
1 and μCEN∗

2 ; (b) optimal de
f service provider i, respectively, and �CEN∗ = λCEN∗
1 + λCEN∗

2 denote

he optimal total demand rate under the centralized system.

heorem 4. The optimal service capacity and demand rate for service
rovider i under the centralized system are

CEN∗
i = Ai − 1

�CEN

[
Aiθi√

A1θ1 + A2θ2

(
M +

√
M2 + �2

CEN

)
+ 2

√
Aiθi M

]
> 0,

λCEN∗
i = Ai − 1

�CEN

(
Aiθi√

A1θ1 + A2θ2

+
√

Aiθi

)(
M +

√
M2 + �2

CEN

)
> 0,

espectively, and the optimal total demand rate of the facility provider is

CEN∗ = 1

2

[
A1 + A2 + K −

√
M2 + �2

CEN

]
,

here �CEN = 2(
√

A1θ1 + A2θ2 +
√

A1θ1 +
√

A2θ2).

With the closed-form solutions in Theorem 4, we derive the com-

arative statics of the service capacity levels and demand rates as the

arket conditions and facility capacity change.

roposition 4. (1) Service provider i’s service capacity μCEN∗
i

and de-

and rate λCEN∗
i

are increasing in K. (2) The facility provider’s total de-

and rate �CEN∗ is increasing in K, A1 and A2, but decreasing in θ1 and

2.

By Proposition 4, an increase in the facility capacity allows the

entral planner to increase the service capacity levels and demand

ates. Although the comparative statics of the total demand rate �CEN∗

ith respect to the market conditions (Ai and θ i) are parallel to the

nes in Propositions 2 and 3, the optimal service capacity μCEN∗
i

and

ndividual demand rate λCEN∗
i

may not be monotonic as the market

onditions change. This is demonstrated in Example 1.

xample 1. We let K = 650, A1 = A2 = 300 and θ1 = 5 and vary θ2 �
0, 5]. Fig. 2 shows the optimal service capacity μCEN∗

i
, the individual

emand rate λCEN∗
i

and the total demand rate �CEN∗.

As illustrated in Fig. 2, when customers on the route 2 become

ore time-sensitive, the central planner initially cuts the dwell time

t the origin port by increasing service capacity μCEN∗
2 , and short-

ns the facility time at the destination port by decreasing service

apacity μCEN∗
1 , which reduces the demand on the route 1 slightly.

ut the eventual demand decrease on the route 2 lowers required

ervice capacity μCEN∗
2 , and drives up service capacity μCEN∗

1 and de-

and rate λCEN∗
1 . The total demand rate �CEN∗ is decreasing as the

arket conditions of service 2 deteriorate, which is consistent with

roposition 4.
mand rates λCEN∗
1 and λCEN∗

2 ; (c) optimal total demand rate �CEN∗ .
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5. Comparisons and managerial insights

In this section, we compare the three scenarios studied in

Section 4. We let β i = Aiθ i, which represents the demand loss of

service provider i if the total transportation time of service i increases

by one unit. In the example of port operations, a carrier with a large

market size often has a large value of β i. Furthermore, we define

γ i = β i/β3 − i as the ratio of the two demand loss rates. Notice that

γ 1 = 1/γ 2.

5.1. The facility provider’s preference

First, we study the facility provider’s preference for the pooling

and reservation strategies.

Theorem 5. There are two thresholds for γ 1 such that �POOL∗ > �RES∗ if

7 − 4
√

3 < γ1 < 7 + 4
√

3 and �POOL∗ < �RES∗ if γ1 < 7 − 4
√

3 or γ1 >

7 + 4
√

3.

From the facility provider’s viewpoint, using capacity reservation

eliminates the competition effect between the service providers, but

it also erases the pooling effect. If the negative externality of the

service providers’ gaming behavior offsets the pooling benefit, the

facility provider should adopt the reservation strategy. Theorem 5

gives a clear criterion on this tradeoff, which solely depends on the

demand loss ratio γ 1. It is better for the facility provider to adopt the

reservation strategy if and only if the demand loss rates of the two

service providers are significantly different, i.e. γ1 < 7 − 4
√

3 ≈ 1/14

or γ1 > 7 + 4
√

3 ≈ 14.

Notice that the demand loss rate is proportional to the potential

cargo volume and the time sensitivity of demand on a route. When the

potential market sizes on two routes are close, the reservation strat-

egy outperforms the pooling strategy if the service providers have

significantly different time sensitivities of demand. As mentioned in

Section 2, many works on when to pool separate subsystems together

have found that pooling is not optimal if customer characteristics, e.g.

service time distributions and time sensitivity, are significantly dif-

ferent. This observation is confirmed in our model.

When the time sensitivities of demand on two routes are sim-

ilar, one service provider has to be dominant so that the facility

provider adopts the reservation strategy. This explains the real prac-

tice in port operations: as reported by the Port Reform Toolkit (World

Bank, 2007), ports dominated by one carrier often provide dedicated

facilities to the dominant carrier, but ports that serve equally sized

carriers are unwilling to provide dedicated facilities. For instance, the

Maersk Line accounts for almost 80–90 percent of the traffic at the

Port of Salalah, and it is much larger than other carriers using the

port. Hence, it is not surprising that the port provides the Maersk

Line with dedicated facilities. However, at the ports of Shanghai,

Singapore and Shenzhen, which are the three largest ports in the

world now (Hong Kong Marine Department, 2014), none of the car-

riers has such a clear size dominance over other carriers. Therefore,

these ports do not provide dedicated facilities (World Bank, 2007,

p. 86). Our model reveals a new customer characteristic, i.e. potential
Fig. 3. The preferences for the capacity r
arket size, to pay attention to in the tradeoff between capacity pool-

ng and reservation strategies.

To generate more managerial insights, we compare the pooling

nd reservation strategies with the centralized system below.

heorem 6. (1) �CEN∗ > �POOL∗ and �CEN∗ > �RES∗. (2) μPOOL∗ >
CEN∗ > μRES∗, where μPOOL∗ = μPOOL∗

1 + μPOOL∗
2 , μRES∗ = μRES∗

1 + μRES∗
2

nd μCEN∗ = μCEN∗
1 + μCEN∗

2 .

Claim 1 of Theorem 6 confirms that the centralized system in-

eed achieves the first-best outcome for the overall cargo volume as

t takes advantage of the pooling effect while eliminates the com-

etition effect between the service providers. Recall that pooling is

lways optimal under the centralized system. Hence, facility capacity

ompetition is a prerequisite condition for not pooling the service

roviders together.
Claim 2 of Theorem 6 suggests that the facility utilization rate is

owest under the reservation strategy. Pooling the service providers

ogether leads to a more efficient usage of the facility capacity,

hich stimulates the total traffic amount, i.e. μPOOL∗ > μRES∗ and
CEN∗ > μRES∗. However, when there is no authority which regu-

ates the negative externality of the service providers’ gaming be-

avior, pooling self-interested service providers also introduces fa-

ility capacity competition, which ends with an overused facility,

.e. μPOOL∗ > μCEN∗. In other words, the pooling effect can be mea-

ured by performance differences between the centralized system

nd the reservation strategy, i.e. �CEN∗ − �RES∗ and μCEN∗ − μRES∗;

hile the competition effect can be measured by performance dif-

erences between the centralized system and the pooling strategy,

.e. �CEN∗ − �POOL∗ and μPOOL∗ > μCEN∗.

.2. The service providers’ preference

Next we examine the service providers’ preference for the pooling

nd reservation strategies.

heorem 7. There is a threshold γ i ∈ (1, 4) such that λPOOL∗
i

> λRES∗
i

if

i < γ i and λPOOL∗
i

< λRES∗
i

if γi > γ i.

Theorem 7 points out that the demand loss ratio is also the sole

eterminant of the service providers’ preferred choice between two

trategies. From the service providers’ perspective, sharing the fa-

ility capacity with the other one gains the benefit of accessing the

hole facility but suffers the loss of an overused facility. For a service

rovider with a large demand loss rate, it is vulnerable to a long fa-

ility time and usually allocated a large share of the facility capacity

nder the reservation strategy. Hence choosing the pooling strategy

ends to bring in less benefits due to the pooling effect but more losses

ue to the competition effect, and becomes an inferior choice if and

nly if its relative loss index is beyond a certain threshold, i.e. γi > γ i.

his explains why large carriers often ask for dedicated facilities.

We summarize in Fig. 3 the strategy preference with respect to

n (γ 1) for the facility provider and two service providers, respec-

ively. For example, if the condition ln(γ1) ∈ (7 + 4
√

3,∞) holds,

oth the facility provider and service provider 1 choose the reser-

ation strategy, while service provider 2 prefers the pooling strategy.
eservation and pooling strategies.
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Fig. 4. (a) Optimal total demand rate �I∗; (b)optimal total service capacity μI∗; (c) optimal demand rate of service provider 1 λI∗
1 ; (d) optimal service capacity of service

provider 1 μI∗
1 ; (e)optimal demand rate of service provider 2 λI∗

2 ; (f)optimal service capacity of service provider 2 μI∗
2 , where I ∈ {POOL, RES, CEN}.
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Obviously, the optimal choice is dependent on the view of the con-

cerned party.

Interestingly, in the region where the condition ln(γ1) ∈
(− ln(γ 2), ln(γ 1)) is satisfied, a triple-agreement situation exists. That

is, when the facility provider chooses pooling two carriers together

to maximize the total cargo volume, both service providers maximize

their individual demand rates as well. The condition for the triple-

agreement situation means that the demand loss rates of the two

service providers are similar. When their demand loss rates become

different, i.e. ln(γ1) ∈ (−∞, − ln(γ 2))or ln(γ1) ∈ (ln(γ 1), ∞), the ser-

vice provider with the larger demand loss rate appeals to the facility

provider for dedicated facilities. However, its request may be denied

by the facility authority if its demand loss rate is not sufficiently dom-

inant, i.e. ln(γ1) ∈ (7 − 4
√

3, − ln(γ 2)) or ln(γ1) ∈ (ln(γ 1), 7 + 4
√

3).

5.3. Numerical example

Finally, we consider a numerical example to have a better visual

representation of the interactions among the facility provider and two

service providers’ capacity decisions.

Example 2. We let K = 125, A1 = 100, θ1 = 1 and θ2 = 0.25 and

vary A2 � [20, 100]. Fig. 4 shows the optimal demand rates �I∗,
λI∗

1 and λI∗
2 , and service capacity levels μI∗, μI∗

1 and μI∗
2 , where

I ∈ {POOL, RES, CEN}.

As shown in Fig. 4(a), if the potential market size of service

provider 2 is very small (i.e. A2 < 30), the optimal total demand rate

�RES∗ is higher than �POOL∗, which implies that the facility provider

prefers the reservation strategy. Otherwise, �RES∗ < �POOL∗, which

implies that the facility provider prefers the pooling strategy. This is

consistent with Theorem 5.

Fig. 4 (a) also demonstrates that the total demand rate �CEN∗ un-

der the centralized system is the highest among the three scenar-

ios (i.e. pooling, reservation and centralization). Moreover, Fig. 4(b)

shows that the total traffic amount μPOOL∗ under the facility competi-

tion is the highest among the three scenarios. This is consistent with

Theorem 6.

Notice that service provider 1 has a larger market size and is more

time-sensitive than service provider 2, which implies that service

provider 1 has a larger demand loss rate than service provider 2. As

shown in Fig. 4(c) and (e), service provider 1 prefers the reservation

strategy since λRES∗
1 > λPOOL∗

1 , but service provider 2 prefers the pool-

ing strategy since λRES∗
2 < λPOOL∗

2 . This is consistent with Theorem 7.

Since service provider 2 is less time-sensitive than service

provider 1, the facility competition and its congestion consequence

has less negative effect on service provider 2 than on service provider

1. Hence, service provider 2 behaves more aggressively under the fa-

cility competition than service provider 1. This causes that service

provider 2’s optimal service capacity μPOOL∗
2 is the highest among the

three scenarios as shown in Fig. 4(f), but service provider 1’s optimal

service capacity μPOOL∗
1 is the lowest among the three scenarios as

shown in Fig. 4(d). Hence, the monotonic ranking of the total traffic

rate in Theorem 6 may be reversed at the individual service provider

level.

Finally, as shown in Fig. 4, the optimal demand rates and ser-

vice capacity levels are monotonic in A2, which is consistent with

Propositions 2–4.

6. Concluding remarks

In this paper, we consider the interactions among a facility

provider and two service providers’ capacity decisions. The facility

provider has a fixed amount of capacity and offers its facilities to two

service providers, who determine their vessel frequencies to serve

two separate transportation markets. We assume that the demand

rate in each market is linearly decreasing in the total transporta-

tion time and all parties maximize demand rates. When the service
roviders share the facility capacity, they play a simultaneous game to

ompete for facility usage. We prove that a unique Nash equilibrium

xists. When the service providers have their dedicated facilities, the

acility provider leads two separate Stackelberg games with the ser-

ice providers. We also examine a centralized system, where a central

lanner makes all capacity decisions to achieve the first-best outcome

or the overall system performance. By proving that pooling is always

ptimal under the centralized system, we find that facility capacity

ompetition is a prerequisite condition for not pooling the service

roviders.

We prove that the choice between the pooling and reservation

trategies critically depends on the service providers’ demand loss

ates, which are proportional to two customer characteristics: the

ime sensitivity of demand and the potential market size. When the

emand loss rates are close, we identify a triple-agreement situation

n which the pooling benefit offsets the negative impact of facility

apacity competition for both the facility provider and two service

roviders. When the demand loss rates are different, the competition

ffect may dominate the pooling effect for both the facility provider

nd the service provider with the larger demand loss rate. However,

ecause the threshold of the facility provider is much larger than

hat of the service provider, the former permits a request for ded-

cated facilities only if the latter’s demand loss rate is sufficiently

ominant.

Our research provides important guidelines for strategic seaport

apacity management. Our results highlight that facility capacity

ompetition is a prerequisite condition for not pooling the service

roviders and the potential market size is a new customer charac-

eristic to pay attention to in the tradeoff between capacity pool-

ng and reservation strategies. We provide quantitative criteria on

ow the facility provider and service providers should determine

heir capacity decisions given the market conditions. Our finding, that

he facility provider allocates dedicated facilities only to the service

rovider with an overwhelming dominance at the demand loss rate,

s consistent with the observations in practice. It also provides an in-

ight into when a service provider appeals to the facility provider for

edicated facilities and why this is often denied by such seaports as

hanghai, Singapore and Shenzhen. This as well as the existence of

he triple-agreement situation are important qualitative insights for

ractitioners.

There are several directions to extend this research. First, we fo-

us on capacity management from an operational perspective. From

pricing perspective, the facility provider can price the facility ca-

acity usage to penalize a profit-maximizing service provider who

veruses the facility system. It is an interesting research question

o design a joint optimal pricing policy and a capacity management

trategy for a port authority who deals with profit-maximizing car-

iers. Second, we consider two service providers to demonstrate the

radeoff between the capacity reservation and pooling strategies. But,

n practice, a port often serves multiple carriers, who may benefit

rom forming alliances to share dedicated port facilities. This can be

tudied under a cooperative game framework. Finally, seaports face

eavy competition from local competitors. Capacity reservation can

e used as a strategic weapon to attract carriers. A game-theoretic

odel may help understand competition among seaports.
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