
OPERATIONS RESEARCH
Vol. 63, No. 5, September–October 2015, pp. 1177–1194
ISSN 0030-364X (print) � ISSN 1526-5463 (online) http://dx.doi.org/10.1287/opre.2015.1413

© 2015 INFORMS

Fully Sequential Procedures for Large-Scale
Ranking-and-Selection Problems in
Parallel Computing Environments

Jun Luo
Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China 200052, jluo_ms@sjtu.edu.cn

L. Jeff Hong
Department of Economics and Finance and Department of Management Sciences, College of Business, City University of Hong Kong,

Kowloon, Hong Kong, jeffhong@cityu.edu.hk

Barry L. Nelson
Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208,

nelsonb@northwestern.edu

Yang Wu
Tmall Company, the Alibaba Group, Hangzhou, Zhejiang, China 310000, wuyangnju@gmail.com

Fully sequential ranking-and-selection (R&S) procedures to find the best from a finite set of simulated alternatives are
often designed to be implemented on a single processor. However, parallel computing environments, such as multi-core
personal computers and many-core servers, are becoming ubiquitous and easily accessible for ordinary users. In this paper,
we propose two types of fully sequential procedures that can be used in parallel computing environments. We call them
vector-filling procedures and asymptotic parallel selection procedures, respectively. Extensive numerical experiments show
that the proposed procedures can take advantage of multiple parallel processors and solve large-scale R&S problems.

Keywords : fully sequential procedures; parallel computing; statistical issues; asymptotic validity.
Subject classifications : simulation: design of experiments, statistical analysis.
Area of review : Simulation.
History : Received June 2013; revisions received March 2014, January 2015; accepted June 2015. Published online in

Articles in Advance September 18, 2015.

1. Introduction
Selecting the alternative with the largest or smallest mean
performance from a finite number of alternatives is a com-
mon problem in many areas of operations research and
management science. For instance, in designing a multi-
stage manufacturing line, one may need to determine the
best allocation of the buffer space to maximize the aver-
age throughput; in controlling an inventory system, one
may need to identify the best reorder point to minimize
the average cost; and in managing an ambulance service,
one may need to select the optimal vehicle dispatching pol-
icy to minimize the average response time. In all of these
examples the mean performances of the alternatives may be
evaluated by running simulation experiments. This type of
optimization problem is known as a ranking-and-selection
(R&S) problem in the simulation literature.

Many R&S procedures have been developed (see, for
instance, Kim and Nelson (2006b) for an introduction to
the topic). These procedures typically allocate the simu-
lation effort to all alternatives such that the best can be
selected with certain statistical guarantees, e.g., a prespeci-
fied probability of correct selection (PCS). However, these

procedures are often designed to handle a relatively small
number of alternatives. As pointed out by Kim and Nelson
(2006b), the two-stage procedure of Rinott (1978), here-
inafter called Rinott’s procedure, is typically applied to
fewer than 20 alternatives, and the fully sequential proce-
dure of Kim and Nelson (2001), hereinafter called KN,
is considered useful for fewer than 500 alternatives. The
NSGS procedure of Nelson et al. (2001) is designed specif-
ically to solve large-scale R&S problems. However, the
largest test problem reported in their paper has only 500
alternatives.

In practice, however, there are many R&S problems that
have thousands to tens of thousands of alternatives. Tradi-
tionally, these problems are solved using optimization-via-
simulation (OvS) algorithms (see, for instance, Hong and
Nelson 2009 for a recent review of OvS). Many of the OvS
algorithms for this type of problem guarantee global con-
vergence, i.e., they guarantee selecting the best alternative
as the simulation effort goes to infinity. To achieve global
convergence, however, these algorithms evaluate all alterna-
tives as the simulation effort goes to infinity, and therefore
become essentially R&S procedures. When they stop short

1177

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

mailto:jluo_ms@sjtu.edu.cn
mailto:jeffhong@cityu.edu.hk
mailto:nelsonb@northwestern.edu
mailto:wuyangnju@gmail.com

Luo et al.: Sequential R&S Procedures using Parallel Computing
1178 Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS

of infinity, as they always do, there is often no statistical
guarantee on the quality of the selected solution, and the
solution may be significantly inferior to the optimal one.
The goal of this paper is to provide R&S procedures, where
the objective is to select the system with the largest mean
response, that are valid and effective in parallel computing
environments.

In the past few years there has been rapid adoption of
parallel computing. Multiple-core processors are ubiqui-
tous today; they are used not only in servers and personal
computers but also in tablet computers and smart phones.
Moreover, large quantities of computing (e.g., parallel pro-
cessors) delivered as a service through the Internet, often
called cloud computing, is becoming readily available and
affordable to ordinary users. This motivates us to con-
sider how to solve large-scale R&S problems in parallel
computing environments. In particular, we are interested in
whether current R&S procedures are statistically valid and
efficient in parallel computing environments, and if they
are not, how to design new procedures that are.

R&S problems can fit easily into parallel computing envi-
ronments. If most of the computing time is used to generate
independent simulation observations from various alter-
natives, then this can be done by executing the simu-
lation programs in a parallel scheme without requiring
any synchronization among different processors. This level
of parallelization is called “embarrassingly parallel” (see,
for instance, Foster 1995), and it makes parallel comput-
ing very attractive to solve R&S problems. This advan-
tage of using parallel simulation technology for R&S
problems has also been discussed by Chen (2005) and
Yücesan et al. (2001).

The total computing effort required to solve an R&S
problem typically increases only moderately as the prob-
lem size increases. Taking Rinott’s procedure (which sam-
ples from each alternative in two stages and only compares
results after all sampling is completed) as an example, we
plot the expected total number of samples as a function of
the number of alternatives k in the solid line in Figure 1
(see Rinott 1978 for the procedure and Nelson et al. 2001
for a similar figure). To make this result more intuitive,
suppose that we have 100 parallel processors and each pro-
cessor can handle an R&S problem with 500 alternatives
on its own as a single processor in the allowable amount of
time using Rinott’s procedure. In the same amount of time,
Rinott’s procedure on all processors can handle a similar
problem with at least 30,000 alternatives, which signifi-
cantly enlarges the size of R&S problems that may be solv-
able. In Figure 1, we also plot the maximum (or worst case)
and the average expected total numbers of samples for the
�� procedure (see Kim and Nelson 2001 for the details).
Notice that when the number of alternatives increases, the
proportion of clearly inferior alternatives often increases
much faster than that of good alternatives. Therefore, fully
sequential procedures, e.g., �� , that allow early elimina-
tion often require a much smaller expected sample size

Figure 1. The expected total number of observations
vs. the number of alternatives for both
Rinott and �� when the initial sample size
n0 = 16, variances across all alternatives
� 2
i = 1, and the indifference-zone parameter

�= �i/
√
n0 in the slippage configuration

where the difference between the means of
the best and all other alternatives equals
to �.

0 2,000 4,000 6,000 8,000 10,000
0

0.5

1.0

1.5

2.0
×107

Number of alternatives

E
xp

ec
te

d
to

ta
l s

am
pl

e
si

ze KN maximum
Rinott
KN average

than the worst case, which makes fully sequential proce-
dures more attractive for large-scale R&S problems than
two-stage procedures such as Rinott’s.

From an implementation point of view, two-stage proce-
dures are easier to parallelize than sequential procedures.
For instance, a naive approach to implementing Rinott’s
procedure is as follows: In the first stage, we distribute kn0

replications equally among all processors and compute the
first-stage sample variances and second-stage sample sizes
of all alternatives after all processors finish their jobs. In
the second stage, we again distribute all additional sam-
ples equally among all processors and select the alternative
with best sample mean after all processors finish their jobs.
Notice that the total time required to complete the proce-
dure is determined by the processor that finishes its job last.
When replication times of different alternatives are differ-
ent or they are random, the total time of this approach may
be quite long and cause many processors to be idle. To
improve efficiency, one may estimate the replication time
for each alternative after the first stage, formulate the sam-
ple allocation problem in the second stage as a stochas-
tic parallel machine scheduling problem and minimize its
makespan (i.e., total time to completion). Interested readers
may refer to Pinedo (2008, Chapter 12) for more back-
ground on scheduling.

If the number of alternatives is less than or equal to
the number of processors, then it makes sense to use mul-
tistage procedures, such as Rinott’s procedure, to reduce
communication among processors. If the number of alter-
natives is much larger than the number of processors, how-
ever, it makes more sense to use fully sequential procedures
with eliminations, such as �� , to save simulation effort

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS 1179

by eliminating inferior alternatives early. Since large-scale
R&S problems typically have a number of alternatives that
is a few orders of magnitude larger than the number of
available processors, in this paper we focus on designing
fully sequential procedures to solve such problems.

There are many different configurations of parallel com-
puting environments, ranging from multi-core personal
computers to many-core servers to local computer farms
to clouds on the Internet. We focus mainly on designing
statistically valid fully sequential procedures for multi-core
personal computers and many-core servers. Without com-
munications via the Internet, the time for loading simula-
tion programs to different processors and transmitting data
among processors is almost negligible. When implementing
these procedures in clouds on the Internet, however, there
may be packet delays or even losses, which may affect the
validity of the procedures. Therefore, we leave the design
of fully sequential procedures for cloud implementations as
a topic for future research.

When designing fully sequential procedures for a par-
allel computing environment, a critical question is what
makes fully sequential procedures on multiple processors
different from their counterparts on a single processor?
A succinct answer to this question is that the input and
output sequences of observations are different on multiple
processors, whereas they are the same on a single proces-
sor. A single processor system works like a single-server
queue, the departure (i.e., output) sequence is the same
as the arrival (i.e., input) sequence. A multiple processor
system works like a multiple-server queue; the departure
sequence is in general different from the arrival sequence
when the service time (i.e., replication time of an obser-
vation in our situation) is random. In a simulation study
we may control the input sequence deterministically. For
instance, in KN we simulate all alternatives one at a time
according to a predetermined order. Therefore, the output
sequence of a single processor system is also the same
deterministic sequence. However, the same deterministic
input sequence on a multiple-processor system may result
in a random output sequence.

The randomness in the output sequence creates imple-
mentation issues as well as statistical issues when designing
fully sequential R&S procedures. From an implementation
point of view, randomness in the output sequence makes
sample size synchronization difficult. For instance, when
alternative 1 has 30 observations, alternative 2 may have
40 and alternative 3 may have only 20. Thus, procedures
that require perfect synchronization of sample sizes from
all alternatives are either difficult to implement or ineffi-
cient (i.e., using only a portion of the observations, such
as setting the sample size to 20 in our three-alternative
example). However, implementation issues may be easy to
handle because there exist fully sequential procedures that
allow unequal sample sizes from different alternatives (e.g.,
Hong 2006). The statistical issues caused by randomness

in output sequence are more critical. First, when the per-
formance of an alternative is correlated with its replication
time, observations with shorter replication times tend to be
available earlier and the sequence of output observations
may not be independent even though they use indepen-
dent random numbers. This problem also exists when sim-
ulating a single alternative using multiple processors; see
Heidelberger (1988). Second, even when the performance
of the alternatives is independent of their replication times
(even when the replication times are constant), sample sizes
of surviving alternatives depend on elimination decisions
that in turn depend on sample-mean information of the
alternatives. This type of dependence destroys the indepen-
dence between sample means and sample sizes that are
exploited in R&S procedures using a famous result from
Stein (1945). More details on the statistical issues caused
by random output sequences are discussed in §2.

In this paper we propose two solutions to deal with these
issues. If one insists on making existing fully sequential
R&S procedures suitable for parallel simulation schemes,
implying that we may only perform comparisons based on
the input sequence of samples, then we suggest creating a
vector to record the observations exactly in the order of the
input sequence and make comparisons based on a prede-
termined comparison rule. For instance, to implement KN,
one may perform a comparison after all surviving alter-
natives have their first r observations available for any
r = n01 n0 + 11 0 0 0 0 Therefore, the procedure will have the
same statistical validity as KN. We call this type of proce-
dure vector-filling 4VF5 as it fills the vector of observations
based on the input sequence. Although the VF procedures
have finite-sample statistical validity, they may not use all
available observations at the time of comparison and may
also add complexity in implementation as one needs to
track the input order. Another issue with the VF procedures
is that they may consume a large amount of memory to
store the vector for R&S problems having a large num-
ber of alternatives. Even though the problem can be partly
relieved by using a more effective memory management
scheme, we may still encounter out-of-memory errors in
some implementations. If one is content with asymptotic
validity, we also design an asymptotic parallel selection
(APS) procedure that allows unequal sample sizes for all
alternatives and makes elimination decisions based on all
available observations. The APS procedure can be shown
to be asymptotically valid as the indifference-zone param-
eter goes to zero, an asymptotic regime also used by Kim
and Nelson (2006b).

Our work is related to three streams of simulation liter-
ature. The first is the literature on R&S. In this paper we
take a frequentist’s view and consider the indifference-zone
(IZ) formulation of the problem. The IZ formulation was
first proposed by Bechhofer (1954) and related procedures
are summarized in Bechhofer et al. (1995) and Kim and
Nelson (2006b). There are also many Bayesian formula-
tions and procedures for R&S problems. For instance, Chen
et al. (2000) and Chick and Inoue (2001a, b) allocate a

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
1180 Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS

finite number of samples to different alternatives to maxi-
mize the posterior probability of correct selection. Instead
of considering only the statistical measure of probability of
correct selection, Chick and Gans (2009) and Chick and
Frazier (2012) take sampling cost into account and formu-
late the R&S problems using dynamic programming tech-
niques. A comprehensive comparison of the performance
among different R&S procedures (designed under either a
frequentist or a Bayesian formulation) has been conducted
by Branke et al. (2007) in which they conclude that no
R&S procedure can dominate in all situations.

The second stream of literature is on parallel and dis-
tributed simulation (PADS). According to Heidelberger
(1988), PADS has two different approaches to parallelizing
the simulation experiments: the first one is that each pro-
cessor simulates multiple independent replications and the
other one is that multiple processors cooperate on a single
realization or replication. There is a vast literature on PADS
from the 1980s and 1990s, where the focus was on the
synchronization issues related to correct ordering of events
in discrete-event simulations (see, for instance, Misra 1986
and Fujimoto 1990). Recently, cloud computing has also
been applied to handle PADS (Fujimoto et al. 2010).

The third stream of literature is on simulation output
analysis in a parallel and distributed simulation environ-
ment. Heidelberger (1988) discusses a variety of statisti-
cal properties for sample mean estimators calculated by
observations from terminating simulations in a parallel sim-
ulation environment under three different stopping rules.
Glynn and Heidelberger (1991) further study mean per-
formance estimators for both terminating simulations and
steady-state regenerative simulations under a completion-
time constraint. Recently, Hsieh and Glynn (2009) pro-
posed two new estimators for steady state simulations by
weighting the sample average across replications on mul-
tiple processors according to some model selection crite-
rion. To the best of our knowledge, there are only three
papers using parallel and distributed simulation to solve
R&S problems. The first is by Yücesan et al. (2001),
who implement an optimal computing budget allocation
(OCBA) algorithm in a web-based parallel environment to
select the best alternative based on a Bayesian approach.
The second is by Chen (2005), who applied a multistage
R&S procedure with the simulation tasks of each stage dis-
tributed to multiple processors. Both papers test their pro-
cedures using only small-scale problems (both with only
10 alternatives), so it is not clear whether their procedures
are capable of handling large-scale R&S problems. The
third is by Ni et al. (2013), who proposed a “zipping”
method to solve large-scale R&S problems in a high per-
formance computing environment. The basic idea of their
“zipping” method is to retrieve the independent and iden-
tically distributed (i.i.d.) sequence by controlling the seeds
of the random number generator for each alternative, which
is similar to the idea of our VF procedures.

In developing one of the pioneering works in handling
R&S problems in parallel computing environments, we
would like to highlight three main contributions of this
paper. First, we demonstrate that large-scale R&S problems
can be solved efficiently in parallel computing environ-
ments. Therefore, using parallel computing environments
is a viable solution when there are a large number of
alternatives. Second, we show that naive implementations
of existing sequential R&S procedures in parallel comput-
ing environments may cause unexpected statistical issues
that make these procedures inefficient or even invalid. To
circumvent these issues, we propose the VF procedures
that preserve the original statistical guarantees by care-
fully managing the output sequence of the simulation repli-
cations. Third, we propose the APS procedure that does
not require active managing of the output sequence but
is asymptotically valid. The APS procedure is simple to
implement and the numerical study shows that it works
well for the test problems.

The remainder of this paper is organized as follows:
In §2, we use a queueing analogy to illustrate differences
between using a single processor and using multiple pro-
cessors to solve R&S problems. Based on the properties we
identify in §2, we then propose two general approaches to
designing R&S procedures, namely, the VF procedures and
the APS procedures, in §§3 and 4. In §4, we also show the
statistical validity of the APS procedure in a meaningful
asymptotic regime. Numerical implementation of these two
procedures as well as the numerical results are shown in
§5, followed by some concluding remarks in §6.

2. The Randomness of Output Sequence
Suppose there are k alternatives whose mean performance
can be evaluated by simulation on m processors. Let Xil

denote the lth observation from alternative i, and we
assume that Xil, l = 1121 0 0 0 1 are i.i.d. random variables
with a finite mean �i for all i = 1121 0 0 0 1 k and that Xil

and Xjd are mutually independent for all l1 d, and i 6= j .
Under the IZ formulation, we further assume that �1 −�¾
�2 ¾ · · · ¾ �k, where � is the IZ parameter; our goal is
to design fully sequential procedures that are statistically
valid, can select alternative 1 as the best with a probabil-
ity at least 1 − �, and can be implemented on multi-core
personal computers or many-core servers (with a total of
m> 1 processors). For mathematical simplification, in this
paper we assume that the m processors are identical in their
processing speeds and that the time for loading simulation
programs into processors and the time for transmitting data
among the processors is negligible.

2.1. Queueing Analogy

To better understand the difference between implementa-
tion of fully sequential procedures on a single processor
(i.e., m = 1) and on multiple processors (i.e., m > 1), we
describe the simulation process using a queueing model

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS 1181

analogy. In this analogy, observations from alternative i are
represented by class i customers, and m identical proces-
sors are represented by a server pool with m homogeneous
servers. There is no arrival process in this queueing model;
instead, all customers are waiting in the queue with a pre-
determined order at the beginning of the simulation pro-
cess, and this predetermined order of customers is called
the input sequence. When the simulation starts, the first
m customers are assigned to the m servers. Once a server
finishes the service of its current customer (i.e., generat-
ing the observation), the first customer waiting in queue
will be immediately routed to that server. The departure
process captures the order of customers who have finished
service (i.e., the observations), and the order of departing
customers is called the output sequence. When implement-
ing fully sequential selection procedures, we perform com-
parisons and eliminations among the surviving alternatives
based on the observations in the output sequence. When an
alternative i is to be eliminated, the class i customers in the
input sequence will abandon the queue and therefore will
not be simulated.

For a fully sequential procedure implemented on a single
processor, it is worthwhile noting that its input and output
sequences are always the same. However, when the pro-
cedure is implemented on multiple processors, the output
sequence may be different from the input sequence because
the simulation times of different alternatives may be dif-
ferent, and the output sequence may even be nondetermin-
istic because the simulation times of alternatives may be
stochastic. See Figure 2 for an illustration. Because the out-
put sequence may be different from the input sequence, we
define Yij as the jth observation of alternative i in the out-
put sequence, in addition to Xil, which represents the lth
observation of alternative i in the input sequence. Notice
that when simulation is conducted on a single processor,
Xil = Yil. When simulation is conducted on multiple pro-
cessors, however, it is possible that Xil �= Yil.

Let �il denote the (random) amount of time it takes to
run Xil, the lth replication of alternative i in the input

Figure 2. An illustration using queueing models.

m = 1

12k12k 12k12k

Input sequence Server pool Output sequence

m > 1

12k12k 25213i

sequence. In the queueing analogy, �il is the service time
of the lth customer of class i in the queue. We assume
that �il > 0 almost surely (a.s.) and it has a finite mean
�i > 0. Thus, ��Xil� �il�� l= 1�2� � is a sequence of i.i.d.
bivariate random vectors. However, as the comparisons and
elimination decisions for a sequential procedure are made
based on the output sequence �Yil� l= 1�2� �, it is critical
to understand the statistical properties of �Yil� l= 1�2� �.
In the remainder of this section, we show that �Yil� l =
1�2� � may not be an i.i.d. sequence and it may com-
promise the statistical validity of existing fully sequential
selection procedures.

2.2. Random Sample Sizes

When implementing a fully sequential selection procedure,
one needs to specify the input sequence, which we call the
sample allocation rule (SAR). SARs describe how obser-
vations from different alternatives are repeated in the input
sequence. The most straightforward SAR is the round-robin
rule that takes one observation from each surviving alterna-
tive in a predetermined order (say, alternatives 1�2� � k);
it is used in the �� procedures of Kim and Nelson (2001,
2006a). For simplicity of presentation, we only consider the
round-robin SAR in this paper.

Let t � 0 denote the run time from the start of the pro-
cedure and Ni�t� denote the number of completed obser-
vations of alternative i by time t for all i = 1�2� � k;
then �Ni�t�� t � 0� are continuous-time stochastic processes
for all i= 1�2� � k and �Ni�t�� t � 0�, and �Nj�t�� t � 0�
are typically dependent. To better understand �Ni�t�� t � 0�
and its characteristics under single processor and multi-
ple processors, we create a new phantom alternative and
call it alternative p. In the input sequence, alternative p is
queued at the end of each round-robin cycle. For instance,
when the alternatives are simulated in the order of alterna-
tive 1 to k, alternative p is queued right after every alterna-
tive k. Furthermore, alternative p has a simulation time of 0
and its observations are not compared to other alternatives.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
1182 Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS

Therefore, it is clear that alternative p does not affect the
implementation of the procedure, and this is why it is called
a phantom alternative.

Let Np�t� denote the number of observations of the phan-
tom alternative in the output sequence by time t. Let tr =
inf�t � 0� Np�t�= r� for all r = 1�2� � which is the time
that the r th observation from the phantom alternative is
obtained, and let Nir = Ni�tr � be the number of completed
observations of alternative i at time tr for all i= 1�2� � k
and r = 1�2� . Next, we convert the continuous-time pro-
cess �Ni�t�� t � 0� into a discrete-time process �Nir � r =

1�2� � for all i = 1�2� � k. Notice that when �� is
conducted on a single processor, tr � r = 1�2� are the
time points at which the alternatives are compared and
eliminated and Nir = Npr = r ; i.e., Nir/Npr = 1 for all r =
1�2� and for any surviving alternative i. Therefore, the
discrete-time processes �Nir � r = 1�2� � are deterministic
for all surviving alternatives, which makes the statistical
validity of �� easier to analyze.

When there are multiple processors, however, the discrete-
time process �Nir � r = 1�2� � becomes a stochastic
process and Nir is typically different from Njr when both
alternatives i and j are surviving; i.e., Nir/Npr �= Njr/Npr .
To illustrate this, we simulate four alternatives with eight
processors using a round-robin rule, where the time to gen-
erate an observation of alternatives i follows an exponential
distribution with mean i units of time, and we plot Nir/Npr

for all i= 1�2�3�4 and r = 1�2� �100 in Figure 3. From
the figure, we see clearly that Nir/Npr are random and typ-
ically different from 1, but they appear to converge to 1 as
r increases.

2.3. Loss of I.I.D. Property

For each alternative i, even though �Xil� l = 1�2� � is
an input sequence of i.i.d. random variables, the output
sequence �Yil� l = 1�2� � may no longer be i.i.d. when
Xil and �il are correlated. As a result, the sample mean

Figure 3. Ratio of the sample sizes of alternative i,
i= 1�2�3�4, and phantom alternative p
when the number of processors is m= 8
and the number of alternatives is k= 4.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1.0

Sample size of the phantom alternative

R
at

io

Alternative 1
Alternative 2
Alternative 3
Alternative 4

estimator Ȳi�n�= n−1 ∑n
l=1 Yil� calculated using the first n

observations of alternative i in the output sequence, is often
biased and is in general difficult to analyze.

We use a simple example from Heidelberger (1988) as an
illustration. Suppose there is only one alternative, alterna-
tive 1, to be simulated and X1l = �1l follows an exponential
distribution with mean �1. Then Heidelberger (1988) shows
that the first observation from the output sequence, Y11, is
the shortest of m i.i.d. exponential random variables, that is,
Y11 = min�X11�X12� �X1m�, which is exponentially dis-
tributed with mean � = �1/m. In the e-companion (avail-
able as supplemental material at http://dx.doi.org/10.1287/
opre.2015.1413, EC.1.1), we derive closed-form expres-
sions for Y1l, l= 1�2� Based on these closed-form ex-
pressions, we can easily verify that Y1l, l= 1�2� � are not
i.i.d. The mean of Y1l is

Ɛ�Y1l�=�1

[

1−
(

1−
1
m

)l]

�

and the expectation of the sample mean estimator is

Ɛ�Ȳ1�n��=�1

{

1−
m− 1
n

[

1−
(

1−
1
m

)n]}

�

which means Ȳ1�n� has a downward bias. However, the bias
goes to zero as the sample size n→�. Furthermore, the
moment generating function (MGF) of Y1i is

MY1l
�t�=

1
1−m�t

−
m�t

1−m�t

(

m− 1
m

·
1

1−�t

)l

�

where t is in a sufficiently small neighborhood of 0. Notice
that liml→�MY1l

�t� = 1/�1 − m�t�, which is exactly the
MGF of an exponential random variable with mean m�=

�1 (see the e-companion EC.1.1 for detailed derivations).
Furthermore, let MY1� l+n

�t� and MY1l+Y1� l+n
�t� denote the

MGFs of Y1� l+n and Y1l + Y1� l+n, respectively, for any l =
1�2� and n= 1�2� In EC.1.1., we also show that

lim
n→�

{

MY1l
�t� ·MY1� l+n

�t�−MY1l+Y1� l+n
�t�

}

= 0

Therefore, the dependence between Y1l and Y1�l+n also van-
ishes as n → �. In this sense, as n → �, the output
sequence may be viewed as i.i.d. and statistically equivalent
to the input sequence.

When there are multiple alternatives, however, the sys-
tem dynamics are much more complicated, and we are not
able to derive closed-form expressions for the distribution
of Yil. Nevertheless, it is still quite clear that Yil� l= 1�2�
are no longer i.i.d. observations and that �Yil� l= 1�2� �
and �Yjl� l = 1�2� � are likely dependent on each other.
As an example, we simulate four alternatives on eight pro-
cessors where Xil = �il follows an exponential distribution
with mean i time units. In Figure 4, we plot Ɛ�Ȳi�n��, i=
1�2�3�4, with the sample size n varying from 1 to 100,
estimated from 1�000 macroreplications.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

http://dx.doi.org/10.1287/opre.2015.1413
http://dx.doi.org/10.1287/opre.2015.1413

Luo et al.: Sequential R&S Procedures using Parallel Computing
Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS 1183

Figure 4. The sample mean estimators with 1,000
sample paths when the number of
processors is m= 8 and the number of
alternatives is k= 4.

0 20 40 60 80 100
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sample size per each alternative

M
ea

n

Estimator with 1,000 replications

�1
�2

�4

�3

2.4. Dependence Caused by Eliminations

If Xil is independent of �il (or even if �il is constant) for all
i= 1�2� � k, Ȳi�n� becomes an unbiased estimator of �i.
However, the elimination decisions inherent to sequential
selection procedures may still introduce dependence among
the sample sizes of surviving alternatives and thus intro-
duce dependence among their sample means. To illustrate
this type of dependence, suppose there are three alternatives
to be simulated on two processors and the replication times
of alternatives 1�2�3 are fixed as 2�1�1 time units, respec-
tively. Furthermore, suppose that the input sequence is in a
round-robin order of 1, 2, and 3. Then the simulation pro-
cess can be described as in Figure 5. At each time point tr
(which corresponds to the completion time of the r th phan-
tom alternative), we conduct comparisons among all sur-
viving alternatives. Notice that when all three alternatives
are surviving, they all have an equal sample size N1�tr �=
N2�tr � = N3�tr � = r at tr for all r = 1�2� Suppose at
some time point tn, alternative 2 is eliminated; then at the
next time point, tn+1, N1�tn+1� = n but N3�tn+1� = n+ 1.
Therefore, sample sizes of surviving alternatives depend
on elimination decisions, which depend on sample means
of all alternatives. This type of dependence may cause the
sample means of the surviving alternatives to be dependent
on each other.

When there is a large number of alternatives with ran-
dom replication times simulated on many processors, the

Figure 5. Three alternatives on two processors with constant replication times.

Alt. 1Processor 1 Alt. 1 Alt. 1 Alt. 1 Alt. 3

Alt. 2Processor 2 Alt. 3

t1

Alt. 2 Alt. 3

t2

Alt. 2 Alt. 3

tn

Alt. 3

tn + 1

Alt. 1

tn + 2

dynamics of elimination decisions can be more compli-
cated, leading to more complicated dependence among the
sample sizes and sample means of surviving alternatives.
It is worthwhile noting that this problem is caused by the
use of multiple processors. When a fully sequential pro-
cedure is implemented on a single processor, eliminations
do not cause dependence because the output sequence of
surviving alternatives remains the same as that without
elimination.

In §§2.2–2.4, we have shown that the use of multiple
processors may create various statistical issues when the
observations in the output sequence are used to imple-
ment sequential selection procedures. To solve the prob-
lem, we take two different approaches and discuss them in
the next two sections. In the first approach, we implement
sequential procedures using the observations in the output
sequence based on their order in the input sequence. There-
fore, the finite-time statistical validity of these procedures
may be guaranteed. However, this approach requires sig-
nificant accounting and often a large amount of memory
for storing the observations, and it may use only a portion
of the observations in the output sequence (thus may not
be efficient). Therefore, we propose another approach that
designs sequential selection procedures that are asymptoti-
cally valid. This is possible because, as shown in §§2.2–2.4,
the statistical properties of the sample-mean estimators
Ȳi�n� tend to behave nicely as the sample sizes go to
infinity.

3. Vector Filling Procedures
As mentioned above, if we restrict our attention to the
use of observations exactly according to the predetermined
order in the input sequence, then all existing fully sequen-
tial selection procedures are statistically valid when imple-
mented in a parallel computing environment. To achieve
this goal, we may create a vector to record the observations
in the same order of the input sequence and place phan-
tom alternative p in the positions where elimination deci-
sions are scheduled. Then we can conduct comparison and
elimination decisions when all observations from surviving
alternatives ahead of every position for the phantom alter-
native have been collected in the vector. We call this type
of procedures a vector-filling procedure. In this section, we
provide a simple vector-filling procedure that extends the
well-known �� to a parallel computing environment.

To simplify the presentation, we suppose there are m+ 1
parallel processors (or threads), which we call processors

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
1184 Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS

0111 0 0 0 1m. Processor 0 is used to manage the input
sequence and to conduct comparisons and eliminations,
while processors 1121 0 0 0 1m are used to simulate the
alternatives.

Procedure 1 (Vector-Filling KN Procedure).

Step 0. Setup. Select confidence level 1/k < 1 − � < 1,
IZ parameter �> 0, and first-stage sample size n0 ¾ 2. Let
h2 = 4n0 − 15642�/4k− 155−2/4n0−15 − 17.

Step 1. Initialization: Let I = 81121 0 0 0 1 k9 be the set of
alternatives still in contention. Processor 0 manages the
input sequence in which all alternatives are stored in a
round-robin order from 1 to k. Processor 0 also performs
the tasks listed in the following steps 2 through 4, includ-
ing conducting pairwise comparisons and eliminations. The
first m replications in the input sequence are assigned to
the remaining m processors, processors 1121 0 0 0 1m, to be
simulated. Processors 1121 0 0 0 1m work as follows: take the
first alternative queued in the input sequence, generate an
observation, and submit the result to processor 0.

The lth replication from alternative i in the input
sequence is denoted as Xil. These available observations
are stored in a vector in the same order as the input
sequence. Let na = max8n ¾ 02 Xil is available for all l ¶
n and for i ∈ I9. Notice that na = 0 at the beginning of
simulation. Start the simulation.

Step 2. Variance Estimation. When na ¾ n0, compute
the sample variance of the difference between alternatives
i 6= j ,

S2
ij =

1
n0 − 1

n0
∑

l=1

4Xil −Xjl − 6X̄i4n05− X̄j4n0575
21

where X̄l4n05 is the first-stage sample mean of alternative
l with n0 observations. Set r = n0.

Step 3. Elimination. Set I old = I . Let

I = I old
\
{

i ∈ I old2 X̄i4r5− X̄j4r5

< min801−h2S2
ij/42r�5+ �/29

for some j ∈ I old1 j 6= i
}

1

where A\B = 8x2 x ∈A and x y B9, and remove alternative
i from the input sequence for all i ∈ I old\I .

Step 4. Stopping Rule. If �I � = 1, then stop all processors
and select the alternative whose index is in I as the best.
Otherwise, processor 0 checks whether it is ready for the
next elimination. Let r = r + 1.

(a) If r ¶ na, go to step 3.
(b) Otherwise, wait for a new observation from any

alternative j in I , say Xjl; record Xjl in the vector;
update na; and go to (a).

Remark 1. The statistical validity of the vector-filling KN
(VKN) procedure is the same as that of KN because, sta-
tistically, the two procedures are identical in conducting
comparisons and making elimination decisions.

Remark 2. The VKN procedure may require a large
amount of memory to store simulation outputs exactly fol-
lowing the order in the input sequence, especially when
the R&S problem has a large number of alternatives and
the variances of replication times are high. For instance,
when we apply the VKN procedure to solve a test problem
with 104 alternatives on a personal computer with 4000 GB
RAM (see §5 for detailed settings), we encountered situa-
tions where the procedure has to be terminated after using
up all of the memory. One may design careful account-
ing schemes that would dramatically reduce the memory
requirements, e.g., by storing cumulative sums up to the
point where all replications in the input sequence have
returned.

4. Asymptotic Parallel Selection
Procedures

The nice asymptotic properties of the sample-mean esti-
mators Ȳi4n5 in §2 motivate us to design fully sequential
selection procedures that are asymptotically valid and are
computationally more efficient than VF procedures. Our
goal is to design a simple and easily executable, fully
sequential procedure that uses all simulation observations
in the output sequence, allows different surviving alterna-
tives to have different sample sizes, and has a provable
asymptotic validity in a meaningful asymptotic regime.

To design such a procedure the key is to decide when
to compare surviving alternatives and make elimination
decisions. For that we introduce the concept of a phan-
tom alternative, which is an alternative that does not need
to be simulated (i.e., simulation time is zero) and com-
pared and is used only for counting purposes. We add
the phantom alternative after each round-robin cycle in the
input sequence and then start the simulation. Whenever
the phantom alternative completes (i.e., appears in the out-
put sequence), we compare all surviving alternatives using
all their available observations (in the output sequence)
and make elimination decisions. Notice that when there
is only a single processor, the phantom alternative com-
pletes at the moment that the last surviving alternative in
the round-robin cycle completes; then comparing and elim-
inating according to the phantom alternative are exactly the
same as what the KN procedure does. When there are mul-
tiple processors, different surviving alternatives may have
different sample sizes at the moment that a phantom alter-
native completes. However, the difference between the sam-
ple size of a surviving alternative and that of the phantom
alternative is always bounded by the number of processors.
Therefore, the difference between the sample means of a
surviving alternative computed based on input and output
sequences may vanish as the sample size of the alternative
goes to infinity. This provides a key to insuring the asymp-
totic validity of the procedure. Therefore, the completion
times of the phantom alternative serves as a drumbeat pro-
cess that synchronizes the comparisons and eliminations
and insures the asymptotic validity.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS 1185

Procedure 2 (Asymptotic Parallel Selection (APS)
Procedure).

Step 0. Setup. Select confidence level 1/k < 1 −� < 1,
IZ parameter �> 0, and first-stage sample size n0 ¾ 2. Let
a= − log62�/4k− 157.

Step 1. Initialization. Let I = 81121 0 0 0 1 k9 be the set of
alternatives still in contention. Processor 0 manages the
input sequence in which all alternatives are stored in a
round-robin order from 1 to k. Processor 0 also performs
the tasks listed in the following steps 2 through 4, includ-
ing conducting pairwise comparisons and eliminations. The
first m replications in the input sequence are assigned to
the remaining m processors, processors 1121 0 0 0 1m, to be
simulated. Processors 1121 0 0 0 1m work as follows: take the
first alternative queued in the input sequence, generate an
observation, and submit the result to processor 0.

Add a phantom alternative p after each round-robin cycle
in the input sequence (but not the set I). Let r denote the
stage that is the current sample size of the phantom alterna-
tive in the output sequence. Let Yil denote the lth completed
observation from alternative i in the output sequence, and
let Nir denote the number of completed observations from
alternative i in the output sequence at the time when the
r th observation of the phantom alternative is added to the
output sequence. Record the triple 4Nir 1

∑Nir

l=1 Yil1
∑Nir

l=1 Y
2
il 5

for all i ∈ I .
Step 2. Collecting Initial Observations. Start simulations

on processors 1121 0 0 0 1m and wait until r = n0.
Step 3. Elimination. For all i ∈ I , let

Ȳi4Nir5=
1
Nir

Nir
∑

l=1

Yil1

S2
i 4Nir5=

1
Nir − 1

[Nir
∑

l=1

Y 2
il −

1
Nir

(Nir
∑

l=1

Yil

)2]

0

For all i1 j ∈ I and i 6= j , if Nir ¾ n0 and Njr ¾ n0, let

�ij1 r =

[

S2
i 4Nir5

Nir

+
S2
j 4Njr5

Njr

]−1

3

otherwise, let �ij1 r = 0. This ensures that the comparisons
are done between alternatives that have at least n0 observa-
tions. Let I old = I and let

I = I\
{

i∈ I old2 �ij1 r 6Ȳi4Nir5− Ȳj4Njr57

<min
{

01−a/�+�/2�ij1 r
}

for some j ∈ I old and j 6= i
}

0

Remove alternative i from the input sequence for all
i ∈ I old\I .

Step 4. Stopping Rule. If �I � = 1, then stop all proces-
sors and select the alternative whose index is in I as
the best. Otherwise, wait for a new observation. If the
new observation is from any alternative i ∈ I , then update
4Nir ,

∑Nir

l=1 Yil,
∑Nir

l=1 Y
2
il 5 and wait for the next observation; if

the observation is from alternative p, then update r = r +1
and go to step 3.

Remark 3. In the APS procedure, we keep updating the
sample variances for the surviving alternatives, which is
similar to KN++ of Kim and Nelson (2006a) designed
for R&S problems in steady-state simulations. In order to
show the asymptotic validity of sample-variance updating,
we need some technical condition on the first-stage sam-
ple size n0, which is stated in Theorem 1. Although the
technical condition facilitates the asymptotic proof, it does
not prescribe a specific choice of first-stage sample size in
practice.

Notice that in the APS procedure, we only make elimi-
nation decisions when a phantom alternative completes, but
we use all available observations at that time. Therefore,
the APS procedure has several advantages when compared
to the VKN procedure. First, it makes use of all available
observations, which leads to a higher efficiency, especially
when the simulation effort for generating each observation
is substantial (e.g., the replication time is relatively long).
Second, it requires significantly less memory to store the
observations, which makes it feasible to solve large-scale
R&S problems.

The following theorem establishes the asymptotic valid-
ity of the APS procedure.

Theorem 1. Let Xil denote the lth replication from alter-
native i in the input sequence and âil denote the replica-
tion time to generate the observation Xil, with unknown
means �i = Ɛ6Xil7 and unknown (but finite) variance �2

i =

Var6Xil7, for all i = 1121 0 0 0 1 k and l = 1121 0 0 0 0 Assume
that Xil and Xjn are independent of each other when i 6= j
or l 6= n; that âil > 0 a.s. for all i and l; and that �1 − �¾
�2 ¾ · · · ¾ �k, where � is the IZ parameter. Moreover, let
the first-stage sample size n0 = n04�5 be a function of �
such that n0 → � and �2n0 → 0 as �→ 0. Then, as �→ 0,
the APS procedure selects alternative 1 as the best with a
probability at least 1 −�.

Notice that the asymptotic regime of � → 0 (as well
as the true difference between the best and the second-
best alternatives �1 − �2 → 0) is also used by Kim and
Nelson (2006a) in analyzing the KN++ procedure, where
the observations are taken from steady-state simulations
that are stationary but not independent. In Theorem 1, how-
ever, we assume that the observations ordered by the input
sequence 8Xil1 l = 1121 0 0 09 are i.i.d. but, as shown in §2.3,
the observations ordered based on the output sequence
8Yil1 l = 1121 0 0 09 may not be.

We prove Theorem 1 in the next two subsections.

4.1. Brownian Motion Construction

For a clear presentation, in the remainder of this section we
consider only the situation where the difference between
the mean of the best and all other alternatives equals the
IZ parameter �, i.e., �2 =�3 = · · · =�k =�1 −�, which is
called the slippage configuration (SC) in the R&S literature.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
1186 Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS

Consider any pair of alternatives, i and j . Let N �
ij =

�2a4�2
i +�2

j 5/�
2�, where a= − log62�/4k−157 is defined

in step 0 of the APS procedure and �x� denotes the small-
est integer not less than x. In §4.2, it will be clear that
N �

ij is the maximum number of observations needed from
either alternative i or j when comparing alternatives i and j .
Let s be any number in 60117 and let r = �sN �

ij �, where �x�
denotes the largest integer not greater than x. Define

Zij4s5=

�2
i /r +�2

j /r

S2
i 4Nir5/Nir + S2

j 4Njr5/Njr

s

√

N �
ij

�2
i +�2

j

·6Ȳi4Nir5− Ȳj4Njr571 s ∈ 6n0/N
�
ij 1173

01 s ∈ 601 n0/N
�
ij 53

(1)

where Nlr is the sample size of alternative l, l = 11 0 0 0 1 k,
when the sample size of the phantom alternative p is
Npr = r . To make Zij4 · 5 well defined, we set Zij4 · 5 =

0 when either Nir = 0 or Njr = 0. In fact, we are only
interested in the case that r ¾ n0, i.e., s ∈ 6n0/N

�
ij 117,

because the APS procedure starts eliminating systems after
at least n0 observations. For mathematical completeness in
the neighborhood of s = 0, we can artificially set Nlr = r ,
S2
l 4Nlr5 = �2

l and Ȳl4Nlr5 = 0, l = i or j , in order to make
sure that Zij4s5= 0 for s ∈ 601 n0/N

�
ij 5. However, without

additional specifications, all statements about Zij4s5 will
refer to the process for s ∈ 6n0/N

�
ij 117.

Hong (2006) shows that Zij4s5 with the random sam-
ple size Nlr replaced by the deterministic nl, the sample
variance S2

l 4Nlr5 replaced by �2
l , and Ȳl4Nlr5 replaced by

X̄l4nl5, l = i or j , has the same distribution as a Brownian
motion when the Xln’s are normally distributed. This result
motivates the definition of Zij4s5 in Equation (1). The fol-
lowing lemma shows that Z1j4 · 5 converges to a Brownian
motion process for all j = 2131 0 0 0 1 k.

Lemma 1 (Convergence to a Brownian Motion
Process). Let �60117 be the Skorohod space of all right-
continuous real-valued functions on 60117 with limits from
the left everywhere, endowed with the Skorohod J1 topol-
ogy (see the e-companion EC.1.3 for the definition of the
standard J1 metric and Section 3.3 in Whitt 2002 for more
background on the space �). Thus, Z1j4 · 5 defined by
Equation (1) with j = 2131 0 0 0 1 k is an element of the Sko-
rohod space �60117. Suppose that the conditions in Theo-
rem 1 are all satisfied. Then, under the SC, i.e., �2 =�3 =

· · · =�k =�1 − �, we have

Z1j4 · 5 ⇒ Bã4 · 51 as �→ 01

where Bã4t5 = B4t5 + ãt, a standard Brownian motion
process with a constant drift ã=

√
2a.

Proof of Lemma 1. Let �� = n0/N
�
1j , where N �

1j =

�2a4�2
1 +�2

j 5/�
2�. Recall that n0 → � and �2n0 → 0 as

� → 0. Then, N �
1j → � and �� → 0 as � → 0. Notice that

Z1j4s5= 0 for 0 ¶ s < ��, which implies that

Z1j405=Bã405= 0 and

Z1j4 · 5 is right-continuous at s = 0 for all �0
(2)

We next focus only on s ∈ 6��117, that is, r ∈ 6n01N
�
1j 7.

We start by analyzing the first term on the right-hand
side (RHS) of Equation (1). Recall that, at stage r , for
alternative l (l = 1 or j), totally r replications have been
sent to the m processors with Nlr replications completed
and r−Nlr still in simulation. Then, we have r−m¶Nlr ¶
r for all n0 ¶ r ¶N �

1j , which implies that, w.p.1,

sup
s∈6��117

∣

∣

∣

∣

Nlr

r
− 1

∣

∣

∣

∣

= sup
r∈6n01N

�
1j 7

∣

∣

∣

∣

Nlr − r

r

∣

∣

∣

∣

¶ m

n0

→ 01

as � → 0. In other words, as � → 0, n0 → �, so that
r → � and Nlr/r → 1 w.p.1 as functions of s on 40117.
Notice that this result can be easily extended to the closed
space 60117 given the definition that Nlr = r for s ∈ 601 ��5.
In fact, the pointwise convergence guarantees the uniform
convergence on 60117 under the definition that Nlr = r on
601 ��5 and the condition that �� → 0 and ��N �

1j → � as
� → 0. Similar arguments can also be applied to S2

l 4Nlr5
and Ȳl4Nlr5, l = 1 or j . Therefore, we will establish uni-
form convergence by showing pointwise convergence in the
following proof.

Let ìlr ⊂ 81121 0 0 0 1 r9 be the set of the indices of incom-
plete replications from alternative l; i.e., if n ∈ ìlr , Xln is
still in simulation at stage r . Thus, �ìlr � = r −Nlr . Notice
that, for l = 1 or j ,

S2
l 4Nlr5=

1
Nlr − 1

[Nlr
∑

n=1

Y 2
ln −

1
Nlr

(Nlr
∑

n=1

Yln

)2]

1

which can be further written as

S2
l 4Nlr5=

1
Nlr −1

[r
∑

n=1

X2
ln−

∑

n∈ìlr

X2
ln

−
1
Nlr

(r
∑

n=1

Xln−
∑

n∈ìlr

Xln

)2]

=
r

Nlr −1

[

1
r

r
∑

n=1

X2
ln−

(

1
r

r
∑

n=1

Xln

)2]

+
1

Nlr −1

[

−
∑

n∈ìlr

X2
ln+

4Nlr −r5r

Nlr

X̄l4r5
2

+
2r
Nlr

X̄l4r5
∑

n∈ìlr

Xln−
1
Nlr

(

∑

n∈ìlr

Xln

)2]

0 (3)

Similarly, as � → 0 (which implies that n0 → � and
r → �; for simplicity, we may state only one of them
hereafter), then r/4Nlr − 15 → 1 w.p.1. By the strong law
of large numbers, we know that r−1∑r

n=1 X
2
ln → Ɛ6X2

ln7 =

�2
l + �2

l , and X̄l4r5 = r−1∑r
n=1 Xln → �l w.p.1. By the

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS 1187

continuous mapping theorem (Durrett 2004), the first term
of S2

l 4Nlr5 in Equation (3) converges to �2
l w.p.1 as r → �.

Notice that, for both l = 1 and j and all n= 1121 0 0 0 1 r ,

�Xln�¶ max
b=110001r

�Xlb�0

Furthermore, we have Nlr ¾ r − m and �ìlr � ¶ m. Then,
when n0 >m+1, implying that r >m+1, the second term
of S2

l 4Nlr5 in Equation (3) can be bounded as follows,

1
Nlr − 1

[

−
∑

n∈ìlr

X2
ln +

4Nlr − r5r

Nlr

X̄l4r5
2

+
2r
Nlr

X̄l4r5
∑

n∈ìlr

Xln −
1
Nlr

(

∑

n∈ìlr

Xln

)2]

¶ mr

r −m− 1

[

1
r

max
n=110001r

X2
ln +

1
r
X̄l4r5

2
+

r

r −m
X̄l4r5

·
1
r

max
n=110001r

Xln +
mr

r −m

(

1
r

max
n=110001r

Xln

)2]

Recall that r−1∑r
n=1 X

2
ln → �2

l +�2
l and r−1∑r

n=1 Xln →�l

w.p.1. Then, by Lemma EC.1 in the e-companion, we have

1
r

max
n=110001r

X2
ln → 0 and

1
r

max
n=110001r

�Xln� → 0 w.p.10

By the continuous mapping theorem, the second term of
S2
l 4Nlr5 converges to 0 w.p.1 as r → �. Therefore, as

�→ 0, S2
l 4Nlr5→ �2

l w.p.1. By continuous mapping theo-
rem again, we obtain that

�2
1 /r +�2

j /r

S2
14N1r5/N1r + S2

j 4Njr5/Njr

→ 1 w.p.1 as �→ 00 (4)

We next analyze the second term on the RHS of Equa-
tion (1). Similarly to what we did above, we can write
Ȳl4Nlr5, l = 1 or j , in the following way,

Ȳl4Nlr5=
1
Nlr

Nlr
∑

n=1

Yln =
1
Nlr

[r
∑

n=1

Xln −
∑

n∈ìlr

Xln

]

=
1
Nlr

r
∑

n=1

4Xln −�l5+
r

Nlr

�l −
1
Nlr

∑

n∈ìlr

Xln

=

�l

√

N �
1j

Nlr

·Hl4s5+
r

Nlr

�l −
1
Nlr

∑

n∈ìlr

Xln1

where

Hl4s5=

∑r
n=14Xln−�l5

�l

√

N �
1j

=

∑�N �
1j s�

n=1 4Xln−�l5

�l

√

N �
1j

1 s∈ 6��1171

and the last equality holds because r = �N �
1js�. Then we have

s

√

N �
1j

�2
1 +�2

j

6Ȳ14N1r5− Ȳj4Njr57

=

(

N �
1js

N1r

·
�1

√
�2

1 +�2
j

·H14s5−
N �

1js

Njr

·
�j

√
�2

1 +�2
j

·Hj4s5

)

+s

√

N �
1j

�2
1 +�2

j

·

(

r

N1r

�1 −
r

Njr

�j

)

−s

√

N �
1j

�2
1 +�2

j

·

(

1
N1r

∑

n∈ì1r

X1n−
1
Njr

∑

n∈ìjr

Xjn

)

0 (5)

By Donsker’s Theorem (Whitt 2002, Theorem 4.3.2), as
�→ 0,

Hl4 · 5 ⇒ Bl4 · 51

where Bl4 · 5 is a standard Brownian motion process. Fur-
thermore, because H14 · 5 and Hj4 · 5 are independent of
each other, we have B14 · 5 and Bj4 · 5 are also independent
of each other. Recall that r = �N �

1js� and r/Nlr → 1 w.p.1
as � → 0. Then N �

1js/Nlr , as a function of s, converges to
the function that is identically equal to 1 w.p.1, for l = 1
or j . By Whitt (2002, Theorem 11.4.5), we have
(

N �
1js

N1r

·
�1

√
�2

1 +�2
j

·H14s5−
N �

1js

Njr

·
�j

√
�2

1 +�2
j

·Hj4s52 0 < s ¶ 1
)

⇒

(

�1
√
�2

1 +�2
j

B14s5+
�j

√
�2

1 +�2
j

Bj4s52 0 < s ¶ 1
)

D
= 4B4s52 0 < s ¶ 15 (6)

where the last equation follows from the independence of
B14 · 5 and Bj4 · 5 and D

= means “equal in distribution.”
Because r/N1r → 1 and r/Njr → 1 w.p.1 as �→ 0, �1 −

�j = � and N �
1j = �2a4�2

1 +�2
j 5/�

2�, we have as �→ 0,

s

√

N �
1j

�2
1 +�2

j

·

(

r

N1r

�1 −
r

Njr

�j

)

→
s√2a= sã (7)

w.p.1 for all s ∈ 40117, where ã=
√

2a by definition.
Because r = �N �

1js�, we have N �
1js ¶ r + 1. Recall that

Nlr ¾ r −m and �ìlr �¶m. Then, when n0 ¾m+ 1 imply-
ing that r ¾m+ 1,

s

√

N �
1j

�2
1 +�2

j

·
1
Nlr

∑

n∈ìlr

Xln

¶
√

4r + 15s
�2

1 +�2
j

·
m

r −m
· max
n=110001r

�Xln�

=

√

s m2

�2
1 +�2

j

·

√

r4r + 15

r −m
·

1
√
r

max
n=110001r

�Xln�0

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
1188 Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS

We have already shown that

1
r

max
n=110001r

X2
ln → 0 w.p.1

as r → �, which implies that

1
√
r

max
n=110001r

�Xln� → 0 w.p.1

as r → �. Notice also that
√

r4r + 15/4r − m5 → 1 as
r → �. Therefore, as �→ 0,

s

√

N �
1j

�2
1 +�2

j

·
1
Nlr

∑

n∈ìlr

Xln → 0 (8)

w.p.1 for both l = 1 and j .
Notice that (6), (7), and (8) correspond to the limits of

the three terms on the RHS of Equation (5), respectively.
Therefore, by Whitt (2002, Theorem 11.4.5), we have as
�→ 0,

(

s

√

N �
1j

�2
1 +�2

j

6Ȳ14N1r5− Ȳj4Njr572 0 < s ¶ 1
)

⇒ B4s5+ sã= 4Bã4s52 0 < s ¶ 150 (9)

Then by (4) and (9), and by in Whitt (2002, Theo-
rem 11.4.5) again, we have Z1j4 · 5 ⇒ Bã4 · 5 on 40117 as
�→ 0. Combined with the result in Equation (2), we con-
clude the proof of the lemma.

Remark 4. Lemma 1 establishes the foundation for show-
ing the statistical validity of the APS procedure. Notice
that the proof of Lemma 1 does not require the condition
that âil and âjn are independent for i 6= j or l 6= n. This
indicates that the APS procedure can be implemented in
parallel computing environments where the multiple pro-
cessors are not identical so that the replication times may
be dependent on each other.

4.2. The Asymptotic Validity

Before proving the asymptotic validity of the APS proce-
dure, we first define the continuation region that determines
the elimination decisions in the procedure. Let

U �
1j4s5= max

{

01
a
√

�2
1 +�2

j

�
√

N �
1j

−
�
√

N �
1j

2
√

�2
1 +�2

j

·
�2

1 /r +�2
j /r

S2
14N1r5/N1r + S2

j 4Njr5/Njr

· s

}

0

The symmetric continuation region C�
1j for Z1j4·5 is formed

by the upper boundary U �
1j4s5 and lower boundary −U �

1j4s5.
Then either alternative 1 or j is eliminated depending on
whether Z1j4·5 exits the continuation region C�

1j from above
or below. By Equation (4), it is easy to show that

U �
1j4s5→U4s5= max

{

01
a

ã
−

ã

2
· s

}

1 w.p.1 as �→ 01

where ã=
√

2a. Then the asymptotic region C, formed by
U4s5 and −U4s5, is a symmetric triangular region.

Let T �
1j denote the stopping time at which Z1j4·5 first

exits the continuation region C�
1j , i.e.,

T �
1j = inf8s2 �Z1j4s5�¾U �

1j4s591 (10)

and let T1j denote the stopping time at which Bã4·5 first
exits the triangular region C, i.e.,

T1j = inf8s2 �Bã4s5�¾U4s590 (11)

Lemma 1 establishes the weak convergence of Z1j4·5 to
Bã4 · 5 on 60117. However, elimination decisions are only
made at these stopping times. To bound the probability of
incorrect selection, we need a stronger result that ensures
the value at the stopping time Z1j4T

�
1j5 can be approximated

by Bã4T1j5, which can be guaranteed by the following
lemma.

Lemma 2 (Convergence to a Brownian Motion Pro-
cess at the Stopping Time). Suppose that the conditions
in Theorem 1 are all satisfied. Then

Z1j4T
�

1j5 ⇒ Bã4T1j5

as �→ 0.

Remark 5. The key idea for proving Lemma 2 is exactly
the same as that of proving Kim et al. (2005, Proposi-
tion 3.2). We summarize the proof in the e-companion
EC.1.3 for completeness.

To prove the validity of the APS procedure, we also
need the lemma of Fabian (1974), i.e., Lemma EC.2 in
the e-companion, on the probability of Bã4 · 5 exiting the
triangular continuation region C. This lemma is the foun-
dation of many sequential R&S procedures, including those
of Kim and Nelson (2001, 2006a) and Hong and Nelson
(2005, 2007). Now we are ready to prove Theorem 1.

Proof of Theorem 1: We start from the slippage config-
uration where �1 − �=�2 = · · · =�k. Then we have

lim inf
�→0

�8select alternative 19

= lim inf
�→0

[

1 −�

{k−1
⋃

j=1

8alternative j eliminates 19
}]

¾ 1 − lim sup
�→0

k−1
∑

j=1

� 8alternative j eliminates 19 1 (12)

where (12) is due to Bonferroni inequality. Notice that

lim sup
�→0

� 8alternative j eliminates 19

= lim sup
�→0

�
{

Z1j4T
�

1j5¶ 0
}

(13)

=�
{

Bã4T1j5¶ 0
}

(14)

=
1
2
e−4a/ã5ã

=
�

k− 1
1 (15)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS 1189

where (13) denotes the probability that alternative j elimi-
nates alternative 1 since Z1j4·5 exits the continuation region
through the lower boundary, (14) follows from Lemma 2,
and (15) follows from Lemma EC.2 in the e-companion.
Plugging (15) into (12) yields

lim inf
�→0

� 8select alternative 19¾ 1 −

k−1
∑

j=1

�

k− 1
= 1 −�0

For general cases under the IZ formulation, i.e., �1 −�¾
�2 ¾ · · · ¾ �k, Z1j4 · 5 defined in (1) no longer converges
in distribution to Bã4 · 5. However, we can define

V1j4s5=
�2

1 /r +�2
j /r

S2
14N1r5/N1r + S2

j 4Njr5/Njr

· s

√

N �
1j

�2
1 +�2

j

· 6Ȳ14N1r5− Ȳj4Njr5− 4�1 −�j − �570

Then

V1j4s5¶Z1j4s51 a0s0 (16)

By Lemma 1, we know that V1j4 · 5⇒Bã4 · 5 as �→ 0. Let

T �1V
1j = inf8s2 �V1j4s5�¾U �

1j4s590

Then

lim sup
�→0

� 8alternative j eliminates 19

= lim sup
�→0

�
{

Z1j4T
�

1j5¶ 0
}

¶ lim sup
�→0

�
{

V1j4T
�1V

1j 5¶ 0
}

(17)

=�
{

Bã

(

T1j

)

¶ 0
}

=
�

k− 1
1 (18)

where (17) follows from (16). Plugging (18) into (12) con-
cludes the proof of the theorem.

5. Numerical Implementation
In this section, we report on an extensive numerical study
to test the effectiveness and efficiency of both the VKN
procedure and the APS procedure and their applicability
to solve large-scale R&S problems in parallel computing
environments.

5.1. Master/Slave Structure and a Parallel
Computing Simulator

We design a parallel computing environment using the
master/slave structure, a widely used structure for parallel
computing, which contains two functions: a single mas-
ter and multiple slaves. The master maintains data infor-
mation for all alternatives and manipulates two daemon
threads (daemon threads can be viewed as service providers

for other threads running in the same program. When the
only remaining threads are daemon threads, the program
will exit automatically), called “to-do” and “compare.” The
to-do thread manages the input sequence of all surviving
alternatives and the compare thread conducts pairwise com-
parisons and elimination decisions based on the simulation
observations collected from the slaves. Each slave, created
as a daemon thread, works in a very simple cycle: taking
an alternative from the to-do thread, generating an observa-
tion, and submitting the observation to the compare thread
for comparison. In the procedures, we denote the master as
processor 0 and the slaves as processors 1121 0 0 0 1m.

This parallel structure is programmed in Java and can
be easily implemented on various computer configurations,
e.g., Windows operating systems on personal computers or
Linux operating systems on local servers. Moreover, with
a communication protocol (e.g., HTTP), it can be extended
to computer farms or clouds. For more introduction about
the master/alave structure, we refer to Silvay and Buyya
(1999) for general details and Fujimoto et al. (2010) for
an implementation in the cloud. We implement our pro-
cedures using the master/slave structure on a local server
with 48 working cores and 64 GB memory. The server runs
CentOS 6.2, a Linux-based operating system.

With respect to the simulation experiments that have
been used to evaluate existing R&S procedures in the liter-
ature, the observations are often generated in a very simple
way; e.g., Kim and Nelson (2001) simulate one observa-
tion by generating a normal random variable, so the repli-
cation time for generating one observation tends to be
extremely short. This is a common and reasonable approach
for testing procedures in a single-processor computing envi-
ronment, where replication times do not affect the output
sequence and therefore do not affect the properties of the
procedure, as evaluated by the probability of correct selec-
tion, or the efficiency of the procedure, as evaluated by
the expected total number of observations. In a parallel
computing environment, however, replication times affect
the output sequence, affecting both the properties and effi-
ciency of the procedure. Therefore, we need to take them
into consideration in experimental designs.

There are two approaches to evaluating the impact of
(random) replication times. The first one is to make the
slaves sleep artificially for a certain amount of time. How-
ever, this approach may be very time consuming in testing
large-scale R&S problems with a large number of proces-
sors because replication times cannot be set too small for
two reasons. One is due to the limitation of Java, which
may lose accuracy when the elapsed time is less than one
millisecond. In addition, it takes time to wake up a sleep-
ing thread and it is difficult to fully control the frequent
sleep-active cycles in a punctual manner. The other reason
is the potential overhead on the master caused by com-
parison work. No matter how observations are generated,
either in parallel or sequentially, they must be recorded
one by one in the master for pairwise comparison. Even

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
1190 Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS

if time for processing one observation is relatively small
(within 001 milliseconds by a rough estimation), it could
cause many observations to be queueing in front of the
master when the unit comparison time exceeds the ratio of
the replication time to the number of slaves. Such cases are
not representative of real situations.

These concerns motivate us to consider a second ap-
proach to test parallel computing R&S procedures: we build
a simulator on a single processor to simulate the situations
in a parallel computing environment. As discussed in §2.1,
experiments in a parallel computing environment can be
considered as a multiserver queue. Thus, they may be sim-
ulated using a typical discrete-event simulation mechanism,
where replication times are simulated under the simulation
clock instead of the real clock. By managing the simulation
clock properly, we can guarantee correct logic of events
happening on the simulator.

In §5.2 we conduct an extensive numerical study on the
simulator to evaluate the effectiveness and sampling effi-
ciency of both the VKN and the APS procedures. In §5.3
we apply the APS procedure to solve a practical R&S prob-
lem with more than 201000 alternatives in an actual parallel
computing environment and analyze its performance.

5.2. The Effectiveness and Sampling
Efficiency Tests

We assume that Xil follows a normal distribution with mean
�i and variance �2

i , and âil follows an exponential dis-
tribution with mean Ɛ6âil7 = � for all i = 1121 0 0 0 1 k and
l = 1121 0 0 0 0 To study how dependence between Xil and âil
affects the performance of the procedure, we consider three
scenarios in which Xil and âil are independent, positively
correlated, and negatively correlated, respectively. For these
three scenarios, we can use the NORTA method of Cario
and Nelson (1998) to generate âil and Xil as follows,

âil = −� log41 −ê4W 1
il55

Xil =�i +�i

(

�W 1
il +

√

1 −�2W 2
il

)

where Wil = 4W 1
il1W

2
il5 is a bivariate standard normal vector

with correlation zero. When �= 0, Xil and âil are indepen-
dent, and when � > 0 (or < 0), Xil and âil are positively
(or negatively) correlated.

We first consider the slippage configuration (SC) of
means where �1 = �1�2 = �3 = · · · = �k = 0 and the
equal-variance configuration where �i = 1 for all i. The
main goal of the experiment is to demonstrate that our pro-
cedures can solve large-scale problems using multiple pro-
cessors, so we vary the number of alternatives from k = 103

to k = 104 and the number of processors as m= 4148196.
The first-stage sample size is fixed to n0 = 16, and the IZ
parameter is specified as �= 1/

√
n0. The expected replica-

tion time is � = 100 units (in simulation clock time), and
the correlation is �= 0, �= 008, and �= −008 for indepen-
dent, positively correlated, and negatively correlated cases,

respectively. The targeted probability of correct selection
(PCS) is set to 0095; i.e., 1−�= 0095. To achieve two-digit
precision of the estimated PCS, we made 11000 macrorepli-
cations in all configurations.

The SC is often considered as a difficult configuration
since all inferior alternatives are close to the best. For
many practical large-scale problems, a substantial number
of the inferior alternatives may be significantly different
from the best. Therefore, we consider another configuration
of means, called grouped-decreasing-means (GDM) config-
uration, in which 10%, 20%, 30%, and 40% of the alter-
natives are �, 2�, 3�, and 4� different from the best. The
means of GDM are defined as follows,

�i =

�1 i = 11
01 i = 21 0 0 0 1 �001k� + 11
−�1 i = �001k� + 21 0 0 0 1 �003k� + 11
−2�1 i = �003k� + 21 0 0 0 1 �006k� + 11
−3�1 i = �006k� + 21 0 0 0 1 k0

To make the test problem more difficult to solve, we con-
sider an increasing-variance configuration where �2

i =

��i − �� + 2�, and the IZ parameter is � = 005. The first-
stage sample size for the GDM is set to n0 = 10.

In Table 1 we summarize the simulation results for both
the VKN and APS procedures in all scenarios under the
SC settings when the number of alternatives is k = 103. We
report the average total number of observations generated
(Total Samples) with 95% confidence interval, the aver-
age simulation time for completing one macroreplication of
either procedure (Makespan) with 95% confidence interval,
and the estimated PCS, across 11000 macroreplications.

From the table we have several findings. First, both the
VKN and APS procedures can deliver the desired PCS, but
the VKN procedure tends to be more conservative than the
APS procedure, which may be because the APS procedure
uses variance updating and it is valid only asymptotically.
Second, it seems that the correlations between performance
outputs and replication times do not play an important role.
Third, the total sample sizes needed for different numbers
of processors m are almost the same and the makespan
reduces linearly as m increases, which implies multiple
processors are attractive for R&S problems. However, it
is worthwhile pointing out that the makespan is computed
without considering the time for processing elimination
decisions on the simulator, which results a linear speedup.
A linear speedup is seldom achieved in an actual parallel
computing environment because the processing capacity of
the master and the overhead of I/O (input/output) between
the master and the slaves could affect the speedup as the
number of processors increases. Intuitively, if there are too
many slaves and the replication times are too short, then
it is inevitable that many observations are ready to be sent
back to the master for elimination while the master is not
able to finish pairwise comparisons immediately; as a con-
sequence, this may accumulate a queue in front of the mas-
ter (see the e-companion EC.2 for an example).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS 1191

Table 1. Summary under the SC settings when k = 103.

m= 4

Configuration Independent Positive corr. Negative corr.

VKN
Total samples 30528 × 105 30554 × 105 30469 × 105

±00032 × 105 ±00027 × 105 ±00030 × 105

Makespan 80821 × 106 80884 × 106 80673 × 106

±00079 × 106 ±00069 × 106 ±00075 × 106

PCS 0.999 0.998 0.999
APS

Total samples 10788 × 105 10788 × 105 10791 × 105

±00013 × 105 ±00013 × 105 ±00013 × 105

Makespan 40470 × 106 40469 × 106 40478 × 106

±00033 × 106 ±00032 × 106 ±00033 × 106

PCS 0.986 0.987 0.984

m= 48

VKN
Total samples 30529 × 105 30553 × 105 30545 × 105

±00032 × 105 ±00032 × 105 ±00032 × 105

Makespan 70358 × 105 70401 × 105 70385 × 105

±00067 × 105 ±00066 × 105 ±00066 × 105

PCS 1.000 0.999 0.996
APS

Total samples 10792 × 105 10787 × 105 10792 × 105

±00013 × 105 ±00013 × 105 ±00013 × 105

Makespan 30733 × 105 30722 × 105 30733 × 105

±00028 × 105 ±00028 × 105 ±00027 × 105

PCS 0.981 0.988 0.986

m= 96

VKN
Total samples 30578 × 105 30596 × 105 30512 × 105

±00031 × 105 ±00029 × 105 ±00034 × 105

Makespan 30732 × 105 30760 × 105 30671 × 105

±00033 × 105 ±00031 × 105 ±00036 × 105

PCS 0.998 0.998 0.997
APS

Total samples 10792 × 105 10792 × 105 10786 × 105

±00013 × 105 ±00013 × 105 ±00013 × 105

Makespan 10867 × 105 10867 × 105 10861 × 105

±00014 × 105 ±00014 × 105 ±00014 × 105

PCS 0.982 0.984 0.978

For the GDM configuration, to avoid reporting similar
results, we consider only the independent case (correlation
� = 0) using the APS procedure when the number of pro-
cessors is m = 48 and the number of alternatives varies
from k = 1 × 103, 2 × 1031 0 0 0 1104. The estimated PCS
for each k is always greater than the desired level 0095.
Figure 6 plots the average total sample size for different k’s,
from which we see that the total number of samples appears
to increase almost linearly.

5.3. The Three-Stage Buffer Allocation Problem

We consider a three-stage flowline with a finite number of
buffer storage locations in front of stations 2 and 3 (includ-
ing the one in service at each station, denoted as x4 and x5)
and an infinite number of jobs in front of station 1 (see

Buzacott and Shanthikumar 1993, Pichitlamken et al. 2006,
Xu et al. 2010). There is a single server at each station, and
the service time at station i is exponentially distributed with
service rate xi, i = 11213. If the buffer of station i is full,
then station i−1 is blocked (i.e., production blocking) and
a finished job cannot be released from station i − 1. The
total number of buffer locations and the total service rates
are limited. The goal is to find an allocation of buffer loca-
tions and service rates such that the steady-state through-
put of the flowline is maximized. The constraints of this
problem are x1 + x2 + x3 ¶ 20, x4 + x5 = 20, 1 ¶ xi ¶ 20,
and xi ∈ �+ for i = 1121 0 0 0 15. The problem has totally
k = 211660 feasible solutions. For any feasible solution, the
throughput is estimated from running a simulation experi-
ment with total simulation time being 1,000 units and the

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
1192 Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS

Figure 6. Total sample size vs. number of systems
when m= 48.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
×105

Number of alternatives

T
ot

al
 s

am
pl

e
si

ze

×103

warm-up period being 500 units (in simulation clock time).
This problem size with 21�660 alternatives was often con-
sidered too large to be solved by R&S procedures. In the
simulation literature, it is often solved by optimization via
simulation algorithms, as in Pichitlamken et al. (2006) and
Xu et al. (2010). With parallel computing environments,
however, we may solve this problem as an R&S problem.

By solving the balance equations for the underlying
Markov chain from Buzacott and Shanthikumar (1993), we
obtain that the optimal solutions are �6�7�7�12�8� and
�7�7�6�8�12� (denoted as best alternatives) with steady-
state throughput 5776. We set the IZ parameter as �= 001
and define the feasible solutions with steady-state through-
put within � from the best as good alternatives. The event
of selecting one from either the best or the good alterna-
tives is defined as a “correct selection.” Table 2 provides
the information for all best and good alternatives.

Unlike the experiments reported in §5.2, which are
implemented on a simulator of parallel computing environ-
ments, we solve this problem on a (real) local server with

Figure 7. A screenshot of the master/slave with the number of processors m= 4.

Table 2. Best and good alternatives for the
buffer allocation problem.

Alternative Throughput Status

�6�7�7�12�8� 5776 Best
�7�7�6�8�12� 5776 Best
�6�7�7�13�7� 5772 Good
�7�7�6�7�13� 5772 Good
�6�7�7�11�9� 5771 Good
�7�7�6�9�11� 5771 Good

48 processors and 64 GB memory and running CentOS 6.2,
a Linux-based operating system. To understand how the
number of processors (i.e., slaves) affects the performances
of the APS procedure, we test this problem with different
numbers of processors, m = 1, 4, 8, 16, 32, 48. In these
experiments, we set the first-stage sample size n0 = 10 and
the desired PCS as 0.95.

Figure 7 captures a snapshot of the status of the threads
for the master/slave structure after starting the APS pro-
cedure with 4 slaves. From the figure, we observe that all
slaves (denoted as slaves 0 to 3) are working in parallel to
generate samples, whereas the two threads in the master,
named “consume sample” thread (i.e., the compare thread)
and “produce alt” thread (i.e., the to-do thread), are idling
at that time since the elimination has not been conducted
and the input sequence has already been prepared.

In Table 3 we report the average total sample size with
95% confidence interval, the average makespan with 95%
confidence interval, and the estimated PCS, based on 100
macroreplications. We find that the total sample sizes are
almost the same for various numbers of slaves and the APS
procedure can always deliver a correct selection. However,
we also notice that the makespan (i.e., total time to com-
plete the procedure) seems not to reduce in proportion to
the number of slaves. This is because the R&S procedure

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS 1193

Table 3. Summary of three-stage-buffer-allocation example with different m’s.

Number of slaves m= 1 m= 4 m= 8 m= 16 m= 32 m= 48

Total samples (×105) 20426 20434 20442 20442 20433 20436
±00004 ±00004 ±00004 ±00004 ±00003 ±00004

Makespan (minutes) 37005 12904 9404 6803 4107 3402
±109 ±203 ±301 ±401 ±302 ±109

PCS 1000 1000 1000 1000 1000 1000

is not completely parallel. To estimate what percentage of
the procedure is executed in parallel, we fit the average
makespan based on Amdahl’s law (Amdahl 1967), which
states that the speedup of parallelism can be defined as
1/441 − P5+ P/m5, where P the proportion of a program
that can be made parallel, 1−P is the remaining proportion
that cannot be parallelized, and m is the number of proces-
sors. Suppose the makespan, T , can be modeled as follows,

T = �

[

41 −P5+
P

m

]

+ �

= 4�−�P5+�P ·
1
m

+ � = c0 + c1

1
m

+ �

where � is the constant coefficient and � is random noise.
By a linear regression, we obtain that c0 = 4004 and c1 =

33209 (with R2 ¾ 00994), which implies that P = 00892,
indicating that 8902% of the program can be made parallel,
a very high compatibility. Notice that this result is what we
expected because the vast majority of the tasks are indepen-
dent simulation runs that can be easily parallelized, and it
suggests that large-scale R&S problems may be effectively
solved using a parallel computing environment when it is
available.

6. Conclusions and Future Work
In this paper, we show that it is very attractive to solve
large-scale R&S problems using parallel computing envi-
ronments, which may reduce total computational time by
an order of magnitude and greatly enlarge the set of R&S
problems that are considered solvable. However, we also
find that a direct implementation of sequential R&S pro-
cedures in a parallel computing environment may lead to
unexpected statistical issues and affect the statistical valid-
ity and efficiency of procedures. In this paper, we design
two different approaches to solve R&S problems in parallel
computing environments.

To further improve the efficiency of the procedures, there
are a few issues that are worth future investigation. First,
we adopted a straightforward round-robin rule in the input
sequence in this paper. However, this may not be necessary.
Indeed, a higher level of efficiency may be achievable if
we use more carefully chosen input sequences. Second, the
current master/slave structure requires a large amount of
communication between the master and slaves. When sim-
ulation experiments are computationally fast or there are
a very large number of slaves, the master may become a
bottleneck. More effective ways of handling the operations
on the master are also worth studying.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2015.1413.

Acknowledgments

The authors would like to thank the associate editor and two
anonymous referees for their insightful and detailed comments
that have significantly improved this paper. A preliminary version
of this paper (Luo and Hong 2011) was published in the Pro-
ceedings of the 2011 Winter Simulation Conference. This research
was supported in part by the Hong Kong Research Grants Council
[GRF 613012], the Natural Science Foundation of China [Grants
71401104, 71325003, and 71421002], and Program of Shanghai
Subject Chief Scientist [15XD1502000].

References
Amdahl G (1967) Validity of the single processor approach to achiev-

ing large-scale computing capabilities. AFIPS Conf. Proc., Vol. 30
(ACM, New York),483–485.

Bechhofer RE (1954) A single-sample multiple decision procedure for
ranking means of normal populations with known variances. Ann.
Math. Statist. 25:16–39.

Bechhofer RE, Santner TJ, Goldsman DM (1995) Design and Analysis of
Experiments for Statistical Selection, Screening, and Multiple Com-
parisons (John Wiley and Sons, New York).

Branke J, Chick SE, Schmidt C (2007) Selecting a selection procedure.
Management Sci. 53(12):1916–1932.

Buzacott JA, Shanthikumar JG (1993) Stochastic Models of Manufactur-
ing Systems (Prentice Hall, Englewood Cliffs, NJ).

Cario MC, Nelson BL (1998) Numerical methods for fitting and sim-
ulating autoregressive-to-anything processes. INFORMS J. Comput.
10(1):72–81.

Chen EJ (2005) Using parallel and distributed computing to increase
the capability of selection procedures. Proc. 2005 Winter Simulation
Conf. (IEEE, Washington, DC), 723–731.

Chen C-H, Lin J, Yücesan E, Chick SE (2000) Simulation budget allo-
cation for further enhancing the efficiency of ordinal optimization.
Discrete Event Dynamic Systems 10:251–270.

Chick SE, Frazier PI (2012) Sequential sampling with economics of selec-
tion procedures. Management Sci. 58(3):550–569.

Chick SE, Gans N (2009) Economic analysis of simulation selection prob-
lems. Management Sci. 55(3):421–437.

Chick SE, Inoue K (2001a) New procedures to select the best sim-
ulated system using common random numbers. Management Sci.
47(8):1133–1149.

Chick SE, Inoue K (2001b) New two-stage and sequential procedures for
selecting the best simulated system. Oper. Res. 49(5):732–743.

Durrett R (2004) Probability: Theory and Examples, 3rd ed. (Duxbury
Press, Pacific Grove, CA).

Fabian V (1974) Note on Anderson’s sequential procedures with triangular
boundary. Ann. Statist. 2:170–176.

Foster I (1995) Designing and Building Parallel Programs: Concepts
and Tools for Parallel Software Engineering (Addison-Wesley, Read-
ing, MA).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Luo et al.: Sequential R&S Procedures using Parallel Computing
1194 Operations Research 63(5), pp. 1177–1194, © 2015 INFORMS

Fujimoto RM (1990) Parallel discrete event simulation. Commun. ACM
33:30–53.

Fujimoto RM, Malik AW, Park AJ (2010) Parallel and distributed simu-
lation in the cloud. SCS Model. Simulation Magazine 1:1–10.

Glynn PW, Heidelberger P (1991) Analysis of parallel replicated simula-
tions under a completion time constraint. ACM Trans. Model. Com-
put. Simulation 1:3–23.

Heidelberger P (1988) Discrete event simulation and parallel processing:
statistical properties. SIAM J. Sci. Statist. Comput. 6:1114–1132.

Hong LJ (2006) Fully sequential indifference-zone selection procedures
with variance-dependent sampling. Naval Res. Logist. 53:464–476.

Hong LJ, Nelson BL (2005) The tradeoff between sampling and switching:
New sequential procedures for indifference-zone selection. IIE Trans.
37:623–634.

Hong LJ, Nelson BL (2007) Selecting the best system when systems are
revealed sequentially. IIE Trans. 39:723–734.

Hong LJ, Nelson BL (2009) A brief introduction to optimization via simu-
lation. Proc. 2009 Winter Simulation Conf. (IEEE, Washington, DC),
75–85.

Hsieh M, Glynn PW (2009) New estimators for parallel steady-state simu-
lations. Proc. 2009 Winter Simulation Conf. (IEEE, Washington, DC),
469–474.

Kim S-H, Nelson BL (2001) A fully sequential procedure for indifference-
zone selection in simulation. ACM Trans. Modeling Comput. Simu-
lation 11:251–273.

Kim S-H, Nelson BL (2006a) On the asymptotic validity of fully sequen-
tial selection procedures for steady-state simulation. Oper. Res.
54(3):475–488.

Kim S-H, Nelson BL (2006b) Selecting the best system. Henderson SG,
Nelson BL, eds. Elsevier Handbooks in Operations Research and
Management Science: Simulation (Elsevier, Amsterdam), 501–534.

Kim S-H, Nelson BL, Wilson JR (2005) Some almost-sure conver-
gence properties useful in sequential analysis. Sequential Anal. 24(4):
411–419.

Luo J, Hong LJ (2011) Large-scale ranking and selection using cloud
computing. Proc. 2011 Winter Simulation Conf. (IEEE, Washington,
DC), 4051–4061.

Misra J (1986) Distributed discrete-event simulation. ACM Comput. Sur-
veys 18:39–65.

Nelson BL, Swann J, Goldsman D, Song W (2001) Simple procedures for
selecting the best simulated system when the number of alternatives
is large. Oper. Res. 49(6):950–963.

Ni EC, Hunter SR, Henderson SG (2013) Ranking and selection in a high
performance computing environment. Proc. 2013 Winter Simulation
Conf. (IEEE, Washington, DC), 833–845.

Pichitlamken J, Nelson BL, Hong LJ (2006) A sequential procedure for
neighborhood selection-of-the-best in optimization via simulation.
Eur. J. Oper. Res. 173:283–298.

Pinedo ML (2008) Scheduling: Theory, Algorithms, and Systems, 3rd ed.
(Springer, New York).

Rinott Y (1978) On two-stage selection procedures and related prob-
ability-inequalities. Commun. Statist.—Theory Methods 7:799–811.

Silvay LME, Buyya R (1999) Parallel programming models and
paradigms. High Performance Cluster Computing: Programming and
Applications (Prentice Hall, Upper Saddle River, NJ), 4–27.

Stein C (1945) A two-sample test for a linear hypothesis whose power is
independent of the variance. Ann. Math. Statist. 16:243–258.

Whitt W (2002) Stochastic-Process Limits, Springer Series in Operations
Research (Springer, New York).

Xu J, Nelson BL, Hong LJ (2010) Industrial strength COMPASS: A com-
prehensive algorithm and software for optinization via simulation.
ACM Trans. Modeling Comput. Simulation 20:1–29.

Yücesan E, Luo Y-C, Chen CH, Lee I (2001) Distributed web-based
simulation experiments for optimization. Simulation Practice Theory
9:73–90.

Jun Luo is an assistant professor of Antai College of Eco-
nomics and Management at Shanghai Jiao Tong University. His
research interests include stochastic modeling and simulation,
with their applications in service operations management and
healthcare management.

L. Jeff Hong is Chair Professor of Management Sciences in
the College of Business at City University of Hong Kong. His
research interests include stochastic simulation, stochastic opti-
mization, business analytics, and financial risk management.

Barry L. Nelson is Walter P. Murphy Professor of Industrial
Engineering and Management Sciences at Northwestern Univer-
sity. His research addresses statistical issues in the design and
analysis of stochastic computer simulation experiments, including
metamodeling, multivariate input modeling, simulation optimiza-
tion, input uncertainty quantification, and variance reduction. He
is a Fellow of INFORMS and IIE.

Yang Wu received his bachelor degree from Software Institute
at Nanjing University and his master degree from Industrial Engi-
neering and Logistics Management at the Hong Kong University
of Science and Technology. Currently he is a software develop-
ment engineer at the Alibaba Group in China.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
4.

21
4.

42
.2

6]
 o

n
28

 F
eb

ru
ar

y
20

16
, a

t 1
8:

49
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

