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1 Introduction

Consider the following optimization problem:

min
x∈X f (x) s.t. h(x) = Pr{c1(x, ξ) � 0, · · · , cm(x, ξ) � 0} � 1 − α, (1.1)

where X ⊂ R
d is a convex set, ξ is a random vector and α ∈ (0, 1). Problem (1.1)

is called a chance constrained program (CCP). In particular, it is called a single CCP
when m = 1 and a joint CCP when m � 2. CCPs arise naturally in many application
areas such as economics, finance and engineering. For instance, the cash matching
problem of Dentcheva et al. [1] maximizes the value of the portfolio at the end of the
planning horizon while covering all scheduled payments with a probability at least
95%; the reservoir system design problem of Prékopa et al. [2] minimizes the total
building and penalty costs while satisfying demands for all sites and all periods with a
probability at least 80%. Chance-constrained optimization problems were introduced
by Charnes et al. [3] and Miller and Wagner [4]. Since then, they have been studied
extensively in the stochastic programming literature. For a recent review of the topic,
readers are referred to Prékopa [5].

To solve Problem (1.1), there are three major difficulties. First, the feasible set
defined by the chance constraint may not be convex even when ci , i = 1, · · · ,m, are
convex or linear in the decision variables x . Then, finding a global optimal solution to
the problem becomes very difficult. Second, the mathematical tractability of an indi-
vidual probability function Pr{ci (x, ξ) � 0} is already poor since only the distribution
of ξ may be known (even this may not be known in many practical situations). In prob-
lem (1.1), however, we need to handle a joint probability function. Third, designing
efficient numerical methods to solve the problem is often difficult. In many cases, for
instance, the joint probability function may only be evaluated through Monte Carlo
simulation.

In stochastic programming literature, different approaches have been proposed to
address the three difficulties. For the first difficulty, Prékopa [5] has shown that the
joint probability function h(x) is quasi-concave (which defines a convex feasible set)
if c1(x, ξ), · · · , cm(x, ξ) are quasi-concave functions of (x, ξ) and ξ has a logcon-
cave probability distribution, which includes uniform distribution, multivariate normal
distribtion, and many others. However, this condition is very restrictive and it is not
satisfied even when ci (x, ξ) = ξTx . Lagoa et al. [6] showed that an individual prob-
ability constraint in the form of Pr{aTx � b} � 1 − α defines a convex set provided
that the vector (aT, b)T has a symmetric logconcave density with α < 1/2.When h(x)
is not quasi-concave (or at least not verifiable), many convex approximations of h(x)
have been proposed, e.g., the quadratic approximation of Ben-Tal and Nemirovski [7],
the conditional value-at-risk (CVaR) approximation of Rockafellar and Uryasev [8]
for an individual probability function, and the Bernstein approximation of Nemirovski
and Shapiro [9]. These approximations typically find feasible but suboptimal solutions
to Problem (1.1).

For the second difficulty, a common approach is to approximate the joint proba-
bility function by a set of individual probability functions. A popular choice is to use
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Boole inequality, which guarantees the satisfaction of the joint probability constraint
if Pr{ci (x, ξ) � 0} � αi , i = 1, · · · ,m, and α1+· · ·+αm = α (e.g., Nemirovski and
Shapiro [9]). There are also other sharper approximations, see, for instance, Chapter 6
of Prékopa [10] and Chen et al. [11]. However, they often require the joint probability
function to have certain special structures. These approximations also find feasible but
suboptimal solutions to Problem (1.1).

For the third difficulty, there are generally three approaches. When the chance con-
straint is in some special cases, the gradient of the joint probability function may
be evaluated. Then, the problem can be solved as a nonlinear optimization prob-
lem by standard gradient-based algorithms. For instance, ∇h(x) may be computed if
h(x) = Pr{T x � ξ} where T is a deterministic matrix (e.g., Prékopa [10]). Urya-
sev [12] derived a general gradient formula for the joint probability function which
invloves a surface integral. Prékopa [10] pointed out that no numerical evaluation
technique has been reported for the formula except when h(x) = Pr{T x � ξ} and
ξ has a multivariate normal distribution. Marti [13] also reported several techniques
for computing the gradient of h(x), including integral transformation and orthogonal
function series expansions which may be difficult to implement in practice. When the
chance constraint is approximated by functions that are analytically tractable, e.g., the
quadratic approximation of Ben-Tal and Nemirovski [7], the problem can be solved
using standard nonlinear optimization solvers.

Another approach that is often used to handle the third difficulty is the Monte
Carlo method. Under this approach, a sample of ξ , denoted as {ξ1, · · · , ξn}, is first
generated, and then optimization problem is approximated by the sample problem
(often through, but not limited to a sample-average approximation). The approximation
problem is then solved using different methods. For instance, the CVaR approximation
of Rockafellar andUryasev [8], the scenario approach of Calafiore and Campi [14,15],
the sequential convex approximation of [16,17] are all solved using this approach, and
Meng et al. [18] and Sun et al. [19] studied the asymptotic convergence. An advantage
of this approach is that it does not require the density of ξ . Instead, it only requires a
sample of ξ which may be sampled from a complicated simulation model.

Among different solution methods, convex approximations and scenario analysis
are the two most popular ones, because both of them do not require too restrictive
assumptions on the distribution of ξ . Under the assumption that ci (x, ξ), i = 1, · · · ,m
are convex in x , both methods convert the original non-convex CCPs into convex
programs that may be solved by many optimization packages. However, both of these
methods only provide guarantees on the feasibility of the solution, but not on the
optimality. To resolve the program, Hong et al. [16] first proposed a sequential convex
approximation algorithm,which solves a convex program in each iteration based on the
information obtained from the previous iteration. They show that, under some technical
conditions, the sequence of the solutions converge to a KKT point of the original
Problem (1.1). Hu et al. [20] and Hong et al. [17] further improved the algorithm by
removing some of the technical conditions and providing more insights.

In this paper, we derive closed-form expressions of both the gradient∇h(x) and the
Hessian ∇2h(x) of the joint probability function h(x) with very limited assumptions
on the continuity and integrability of ξ and ci (x, ξ). Then, we show that ∇h(x) and
∇2h(x) can be computed (estimated) when a sample of ξ is given. Once ∇h(x) and
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∇2h(x) are available, we may solve Problem (1.1) directly using nonlinear optimiza-
tion algorithms. This may be viewed also as a Monte Carlo approach, and the local
optimality of the solution is guaranteed by properties of the nonlinear optimization
algorithms.

Our approach addresses the second and third difficulties in solving CCPs. First, we
are able to handle joint probability constraint directly without approximating them by
individual probability constraints. This removes the conservatism due to the approx-
imation and allows us to obtain much better solutions especially when m is large.
Second, compared to some other Monte Carlo approaches, ours is more efficient espe-
cially when the sample size n is large. For instance, the number of constraints in
the CVaR approximation of Rockafellar and Uryasev [8] and the scenario analysis of
Nemirovski and Shapiro [9] increase linearly in the sample size n. Then, n cannot
be too large; otherwise, the problems become difficult to solve numerically. In our
approach, however, the samples are only used to evaluate h(x), ∇h(x) and ∇2h(x),
which is an O(n) operation if both m and d are fixed. This allows us to use much
larger sample sizes and obtain solutions with better precision.

Using Monte Carlo methods in gradient estimation is a classical topic in the sim-
ulation literature (see Fu [21] for a thorough introduction). There are in general two
approaches, pathwise method originated by Ho and Cao [22] and later elaborated by
Glasserman [23] and Fu andHu [24], and likelihood ratiomethod proposed by Reiman
andWeiss [25] andGlynn [26]. Ourmethod falls into the category of pathwisemethod.
Traditionally, pathwise method cannot handle expectations of discontinuous function
(for instance, the indicator function in joint probability function). However, in recent
years, by combining kernel estimation, pathwise method has also been used to esti-
mate gradient of probability functions [27], quantile functions (Hong [28] and Fu et
al. [29]) and other types of functions that may be expressed by the expectation of a
discontinuous function (e.g., Hong and Liu [27]). The method proposed in this paper
is specially designed to estimate gradients and Hessian of joint probability functions,
which are new in the literature.

In summary, we make the following contributions in this paper:

1. We prove new closed-form expressions of the gradient and Hessian of a joint
probability function where ci (x, ξ) may be linear or nonlinear in x and ξ .

2. We provide aMonte Carlo method to evaluate the gradient and Hessian of the joint
probability function based only on samples of ξ . Themethod is an O(n) operation,
with our parameters fixed, where n is the sample size.

3. We propose a Monte Carlo method to solve CCPs using existing nonlinear opti-
mization algorithms. The method guarantees the local optimality and works well
for testing problems.

The rest of the paper is organized as follows:We derive the closed-form expressions
of the gradient andHessian of the joint probability function and introduceMonte Carlo
methods to compute them in Sects. 2 and 3, and give more details on how to use the
gradient and Hessian to solve CCPs. The numerical illustrations are presented in
Sect. 4, followed by the conclusions in Sect. 5.
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2 Analysis of Gradient

Throughout this paper, we use ci , ∇xci and ∇2
x ci denote ci (x, ξ), ∇x ci (x, ξ) and

∇2
x ci (x, ξ) for all i = 1, 2, · · · ,m when there is no ambiguity. Then

h(x) = Pr{c1 � 0, · · · , cm � 0} = E

[
m∏
i=1

1{ci�0}

]
,

where 1{·} is an indicator function.

2.1 Background

In this paper, we make following assumptions on ci (x, ξ).

Assumption 2.1 For all i = 1, 2, · · · ,m, E (|ci (x, ξ)|m) < ∞, and ci (x, ξ) has a
continuous density fci (t) in the neighborhood of t = 0, ci (x, ξ) is differentiable with
respect to x , and there exists a function Ki (x, ξ) with E ([Ki (x, ξ)]m) < ∞ such that

|ci (x + �x, ξ) − ci (x, ξ)| � Ki (x, ξ) · ‖�x‖ (2.1)

when ‖�x‖ is small enough, and ‖ · ‖ is the Euclidean norm.

Assumption 2.2 For all i = 1, 2, · · · ,m, let

qi (t) = E

⎡
⎣∇xci ·

m∏
j=1, j �=i

1{c j�0}
∣∣ci = t

⎤
⎦ .

Then qi (t) is continuous at t = 0.

Assumption 2.1 requires ci (x, ξ) to be a continuous random variable in a neigh-
borhood of 0 and to have finite mth moment for all i = 1, 2, · · · ,m. It also requires
ci (x, ξ) to satisfy a Lipschitz continuity for every x in its local neighborhood. This
assumption is typically satisfied. For instance, when ci (x, ξ) = ξTx , then we may set
Ki (x, ξ) = ‖ξ‖; when ci (x, ξ) = xTξ x , then wemay set Ki (x, ξ) = (2‖x‖+1)·‖ξ‖.
Notice that the assumption also implies that E (‖∇x ci (x, ξ)‖m) < ∞ for all i =
1, 2, · · · ,m.

Assumption 2.2 is a more technical assumption. Since ci (x, ξ) is a continuous
random variable in the neighborhood of 0, as assumed in Assumption 2.1, a small
perturbation of t at t = 0 typically does not result in a sudden change to the conditional
expectation. Therefore, this assumption is typically satisfied though it is difficult to
verify in practice.

Notice that ∇h(x) = ∇xE
[∏m

i=1 1{ci (x,ξ)�0}
]
. Then, a critical question is whether

we can interchange the differentiation and the expectation. To answer this question
and also to facilitate the analysis in the rest of this paper, we first prove the following
lemma on the validity of interchanging differentiation and expectation.
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Lemma 2.3 Let θ(x, ξ) be a function of x ∈ X ⊂ R
d and a random vector ξ .

Suppose that θ(x, ξ) is differentiable with respect to x for every x ∈ X for almost
all ξ (almost surely with respect to ξ ), and that there exists a function Kθ (x, ξ) with
E [Kθ (x, ξ)] < ∞ such that

|θ(x + �x, ξ) − θ(x, ξ)| � Kθ (x, ξ) · ‖�x‖ (2.2)

when ‖�x‖ is small enough. Then

∇E [θ(x, ξ)] = E [∇xθ(x, ξ)] .

Proof Let g(x) = E [θ(x, ξ)]. Then ∇g(x) = (∂g(x)/∂x1, · · · , ∂g(x)/∂xd)T. Then,
it suffices to prove that ∂g(x)/∂xi = E [∂θ(x, ξ)/∂xi ] for all i = 1, 2, · · · , d. Let ei
denote the i th column of an identity matrix. Since∣∣∣∣θ(x + �xi ei , ξ) − θ(x, ξ)

�xi

∣∣∣∣ � Kθ (x, ξ)

when |�xi | is small and E [Kθ (x, ξ)] < ∞, then by the dominated convergence
theorem [30],

∂g(x)

∂xi
= lim

�xi→0
E

[
θ(x + �xi ei , ξ) − θ(x, ξ)

�xi

]

= E

[
lim

�xi→0

θ(x + �xi ei , ξ) − θ(x, ξ)

�xi

]
.

Since θ(x, ξ) is differentiable with respect to x almost surely for every x ∈ X , then
∂g(x)/∂xi = E [∂θ(x, ξ)/∂xi ]. This concludes the proof of the lemma.

Lemma 2.3 is a result directly from the dominated convergence theorem. Note
that indicator functions are not Lipschitz continuous. Then, Eq. (2.2) does not hold
for θ(x, ξ) = ∏m

i=1 1{ci�0}. Therefore, Lemma 2.3 is not applicable to h(x) =
E
[∏m

i=1 1{ci�0}
]
. To overcome this difficulty, we define

�(x, y1, · · · , ym) = E

[
m∏
i=1

(yi − ci ) · 1{ci�yi }

]
.

By Assumption 2.1, E(|ci |m) < ∞. Then by Hölder’s inequality (Durrett [30])

E

[∣∣ m∏
i=1

(yi − ci ) · 1{ci�yi }
∣∣] �

m∏
i=1

[
E
(|yi − ci |m

)] 1
m < ∞.

Therefore, �(x, y1, · · · , ym) is well defined. Notice that f (z) = z · 1{z�0} is a Lip-
schitz continuous function with the Lipschitz constant being 1, it is differentiable
everywhere except at z = 0, and f ′(z) = 1{z�0} when z �= 0. Then, we have the
following lemma on the relationship between �(x, y1, · · · , ym) and h(x).
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Lemma 2.4 Suppose that Assumption 2.1 is satisfied. Then

h(x) = ∂m �(x, y1, · · · , ym)

∂y1 · · · ∂ym
∣∣∣∣
y1=···=ym=0

.

Proof Let �1(y1, x, ξ) = ∏m
i=1(yi − ci ) · 1{ci�yi }. Then �(x, y1, · · · , ym) =

E[�1(y1, x, ξ)]. We first prove that we can apply Lemma 2.3 on E[�1(y1, x, ξ)].
Since f (z) = z · 1{z�0} is a Lipschitz continuous function with the Lipschitz

constant being 1, then

|�1(y1 + �y1, x, ξ) − �1(y1, x, ξ)| �
∣∣∣∣∣
m∏
i=2

(yi − ci ) · 1{ci�yi }

∣∣∣∣∣ · |�y1|.

By Assumption 2.1 and Hölder’s inequality, E
[∣∣∏m

i=2(yi − ci ) · 1{ci�yi }
∣∣] < ∞.

Since f (z) is differentiable everywhere except at z = 0, then �1(y1, x, ξ) is dif-
ferentiable with respect to y1 except at y1 = c1(x, ξ). By Assumption 2.1, c1(x, ξ)

has a density in a neighborhood of 0, then Pr{c1(x, ξ) = y1} = 0 when y1 is in the
neighborhood of 0. Therefore, by Lemma 2.3,

∂ �(x, y1, · · · , ym)

∂y1

∣∣∣∣
y1=0

= E

[
∂�1(y1, x, ξ)

∂y1

]∣∣∣∣
y1=0

= E

[
1{c1�0} ·

m∏
i=2

(yi − ci ) · 1{ci�yi }

]
.

Wemay use the same techniques to continue differentiating�(x, y1, · · · , ym)with
respect to y2, · · · , ym . We have

∂m �(x, y1, · · · , ym)

∂y1 · · · ∂ym
∣∣∣∣
y1=···=ym=0

= E

[
m∏
i=1

1{ci�0}

]
= h(x).

This concludes the proof of the lemma.

By Lemma 2.4, to find ∇h(x) and ∇2h(x), we may interchange the order of dif-
ferentiations1 to obtain

∇h(x) = ∇x
∂m �(x, y1, · · · , ym)

∂y1 · · · ∂ym
∣∣∣∣
y1=···=ym=0

= ∂m ∇x�(x, y1, · · · , ym)

∂y1 · · · ∂ym
∣∣∣∣
y1=···=ym=0

, (2.3)

1 There are technical conditions for interchanging the order of differentiations (see, for instance, Marsden
and Hoffman [31]). The conditions are weak and typically satisfied by practical problems. To avoid too
much technicality, we implicitly assume that the order can be interchanged throughout the paper.
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∇2h(x) = ∇2
x

∂m �(x, y1, · · · , ym)

∂y1 · · · ∂ym
∣∣∣∣
y1=···=ym=0

= ∂m ∇2
x�(x, y1, · · · , ym)

∂y1 · · · ∂ym
∣∣∣∣
y1=···=ym=0

. (2.4)

In the rest of this section and next section, we use these two equations to analyze
∇h(x) and ∇2h(x).

2.2 A Closed Form of Gradient

In this subsection we derive a closed form of ∇h(x) based on Eq. (2.3). We first
prove the following lemma on ∇x�(x, y1, · · · , ym).

Lemma 2.5 Suppose that Assumption 2.1 is satisfied. Then

∇x�(x, y1, · · · , ym) = −
m∑
i=1

E

⎡
⎣∇xci · 1{ci�yi } ·

m∏
j=1, j �=i

(y j − c j ) · 1{c j�y j }

⎤
⎦ .

Proof Let βi (x, ξ) = (yi − ci ) · 1{ci�yi } for all i = 1, 2, · · · ,m. Notice that
E
[|βi (x, ξ)|m] < ∞ by Assumption 2.1. Since βi (x, ξ) = − f (ci − yi ) where

f (z) = z · 1{z�0}, then

|βi (x + �x, ξ) − βi (x, ξ)|
= | f (ci (x + �x, ξ) − yi ) − f (ci (x, ξ) − yi )|
� |ci (x + �x, ξ) − ci (x, ξ)|
� Ki (x, ξ) · ‖�x‖, (2.5)

where the first inequality follows from the Lipschitz continuity of f (z) and the second
inequality follows from Assumption 2.1. Furthermore, by Assumption 2.1, we have

|βi (x + �x, ξ)| � |βi (x, ξ)| + Ki (x, ξ) · ‖�x‖ � |βi (x, ξ)| + Ki (x, ξ) (2.6)

when ‖�x‖ is small enough.
Let β(x, ξ) = ∏m

i=1 βi (x, ξ). Then �(x, y1, · · · , ym) = E [β(x, ξ)]. Notice that

β(x + �x, ξ) − β(x, ξ)

=
m∏
i=1

βi (x + �x, ξ) −
m∏
i=1

βi (x, ξ)

=
m∑
i=1

⎧⎨
⎩

i−1∏
j=1

β j (x, ξ) · [βi (x + �x, ξ) − βi (x, ξ)] ·
m∏

j=i+1

β j (x + �x, ξ)

⎫⎬
⎭ .
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Then by Eqs. (2.5) and (2.6),

|β(x + �x, ξ) − β(x, ξ)| �
m∑
i=1

⎧⎨
⎩

i−1∏
j=1

|β j (x, ξ)| · Ki (x, ξ)

·
m∏

j=i+1

[∣∣β j (x, ξ)
∣∣ + K j (x, ξ)

]⎫⎬⎭ · ‖�x‖

when ‖�x‖ is small enough. Then

E

⎡
⎣ m∑

i=1

⎧⎨
⎩

i−1∏
j=1

|β j (x, ξ)| · Ki (x, ξ) ·
m∏

j=i+1

[∣∣β j (x, ξ)
∣∣ + K j (x, ξ)

]⎫⎬⎭
⎤
⎦

�
m∑
i=1

⎡
⎣i−1∏

j=1

E
(|β j (x, ξ)|m) · E ([Ki (x, ξ)]m)

·
m∏

j=i+1

E
([∣∣β j (x, ξ)

∣∣ + K j (x, ξ)
]m)⎤⎦

1
m

�
m∑
i=1

⎡
⎣i−1∏

j=1

E
(|β j (x, ξ)|m) · E ([Ki (x, ξ)]m)

·
m∏

j=i+1

2m−1 [E (∣∣β j (x, ξ)
∣∣m) + E

([K j (x, ξ)]m)]
⎤
⎦

1
m

< ∞,

where the first inequality follows from Hölder’s inequality, the second inequality
follows from Minkowvski’s inequality [30], and the third inequality holds because
E
([K j (x, ξ)]m) < ∞ and E

(|β j (x, ξ)|m) < ∞.
Furthermore, for all x ∈ X ,

∇xβ(x, ξ) = −
m∑
i=1

∇xci · 1{ci�yi } ·
m∏

j=1, j �=i

(y j − c j ) · 1{c j�y j }

for all ξ except when ξ satisfies ci (x, ξ) = yi for some i = 1, 2, · · · ,m. Since
ci (x, ξ) has a density in a neighborhood of 0 for all i = 1, 2, · · · ,m, then β(x, ξ) is
differentiable almost surely when yi is close enough to 0 for all i = 1, 2, · · · ,m.
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Then by Lemma 2.3,

∇x�(x, y1, · · · , ym)

= E [∇xβ(x, ξ)] = −
m∑
i=1

E

⎡
⎣∇x ci · 1{ci�yi } ·

m∏
j=1, j �=i

(y j − c j ) · 1{c j�y j }

⎤
⎦ .

This concludes the proof of the lemma.
Now we can use Eq. (2.3) to derive a closed form of ∇h(x). We summarize the

result in the following theorem.

Theorem 2.6 Suppose that Assumptions 2.1 and 2.2 are satisfied, and fci is defined
in Assumption 2.1. Then

∇h(x) =
m∑
i=1

fci (0) · E
⎡
⎣∇xci ·

m∏
j=1, j �=i

1{c j�0}

∣∣∣∣∣∣ ci = 0

⎤
⎦ .

Proof Let

φi (x, y1, · · · , ym) = −E

⎡
⎣∇xci · 1{ci�yi } ·

m∏
j=1, j �=i

(y j − c j ) · 1{c j�y j }

⎤
⎦

for all i = 1, 2, · · · ,m. By Lemma 2.5, ∇x�(x, y1, · · · , ym) = ∑m
i=1 φi (x, y1, · · · ,

ym). Then by Eq. (2.3), it suffices to prove that

∂φi (x, y1, · · · , ym)

∂y1 · · · ∂ym
∣∣∣∣
y1=···=ym=0

= fci (0) · E
⎡
⎣∇xci ·

m∏
j=1, j �=i

1{c j�0}
∣∣ci = 0

⎤
⎦ . (2.7)

By the similar arguments used in the proof of Lemma 2.4, we can show that

∂φi (x, y1, · · · , ym)

∂y1 · · · ∂yi−1∂yi+1 · · · ∂ym
∣∣∣∣
y1=···=yi−1=yi+1=ym=0

= −E

⎡
⎣∇x ci · 1{ci�yi } ·

m∏
j=1, j �=i

1{c j�0}

⎤
⎦ .
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Notice that

E

⎡
⎣∇x ci · 1{ci�yi } ·

m∏
j=1, j �=i

1{c j�0}

⎤
⎦

=
∫ ∞

yi
E

⎡
⎣∇x ci ·

m∏
j=1, j �=i

1{c j�0}

∣∣∣∣∣∣ ci = t

⎤
⎦ fci (t)dt

=
∫ ∞

yi
qi (t) fci (t)dt,

where qi (t) is defined in Assumption 2.2. Since both fci (t) and qi (t) are continuous
in a neighborhood of t = 0 by Assumptions 2.1 and 2.2, then by fundamental theorem
of calculus [31],

∂

∂yi

∫ ∞

yi
qi (t) fci (t)dt

∣∣∣∣
yi=0

= −qi (0) fci (0).

Therefore,

∂φi (x, y1, · · · , ym)

∂y1 · · · ∂ym
∣∣∣∣
y1=···=ym=0

= fci (0)qi (0)

= fci (0) · E
⎡
⎣∇x ci ·

m∏
j=1, j �=i

1{c j�0}
∣∣ci = 0

⎤
⎦ .

Then Eq. (2.7) holds for all i = 1, 2, · · · ,m. This concludes the proof of the theorem.

2.3 Monte Carlo Method for Computing Gradient

When solving chance-constrained optimization problems, we often know how to
simulate ξ based on the model of ξ or we may have some historical observations of ξ .
Therefore, in this subsection, we suppose that we have n independent and identically
distributed (i.i.d.) observations of ξ , denoted as {ξ1, ξ2, · · · , ξn} and we discuss how
to use these observations to compute ∇h(x) for any x ∈ X .

There are two major difficulties in computing ∇h(x) using Theorem 2.6. First,
the densities of ci , i = 1, 2, · · · ,m are typically unknown. Second, the conditional
expectations condition on {ci (x, ξ) = 0}, which is a probability zero event for every
i , is typically satisfied by none of the n observations of ξ .

To overcome these difficulties, notice that

fB(b) · E[A|B = b] = ∂bE
[
A · 1{B�b}

] = lim
δ→0

1

δ
E

[
A · 1{− δ

2�B−b� δ
2

}] , (2.8)
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where the first equality refers to the proof of Theorem 1 of Hong [28], and the second
equality holds by the derivative definition. Then, we may set δ small and compute
1/δ ·E [

A · 1{−δ/2�B−b�δ/2}
]
by using {ξ1, · · · , ξn}. Notice that fB(b) is not required

and {−δ/2 � B − b � δ/2} is no longer a probability zero event. Therefore, we may
estimate the expectation by a standard sample mean.

However, this method does not utilize the observations that do not satisfy
{−δ/2 � B − b � δ/2}, even though they may include useful information. In this
paper, we suggest to use the kernel method to compute fB(b) · E[A|B = b]. A
one-dimensional kernel function K is a symmetric density such that uK (u) → 0 as
|u| → ∞ and

∫∞
−∞ u2K (u) du < ∞ [32]. For instance, the standard normal density

K (u) = 1√
2π

e−u2/2 is a widely used one-dimensional kernel function. Similar to Eq.
(2.8), we have (see Liu and Hong [33] for detail)

fB(b) · E[A|B = b] = lim
δ→0

1

δ
E

[
A · K

(
B − b

δ

)]

by Bochner’s lemma [34]. Let {(A1, B1), (A2, B2), · · · , (An, Bn)} be an i.i.d. sample
of (A, B). Then, fB(b)·E[A|B = b] can be estimated by the followingkernel estimator

Ĥ(b) = 1

nδn

n∑
=1

A · K
(
B − b

δn

)
. (2.9)

It can be shown that Ĥ(b) is a consistent estimator of fB(b) ·E[A|B = b] as n → ∞
if δn → 0 and nδn → ∞. Furthermore, the rate of convergence is (nδn)

−1/2 under
some technical conditions [32]. The asymptotic properties of Ĥ(b) hold even when
the sequence {(A1, B1), · · · , (An, Bn)} is not an i.i.d. sequence. For instance, the
properties also hold when the sequence is φ-mixing, which means it is stationarily
dependent but does not have long-range dependence.

Therefore, we may estimate ∇h(x) by the following estimator

∇̂h(x) = 1

nδn

n∑
=1

m∑
i=1

∇x ci (x, ξ) ·
m∏

j=1, j �=i

1{c j (x,ξ)�0} · K
[
ci (x, ξ)

δn

]
. (2.10)

Notice that computing ∇̂h(x) is an O(n) operation with a fixed m and the dimension
d. It can be done efficiently when the sample size n is large. If we also considerm and
d, then computing ∇̂h(x) is an O(nmd) operation, and it also scales well in both m
and d.

3 Analysis of Hessian

In this section, we apply Eq. (2.4) to analyze ∇2h(x) and discuss how to compute
it through a Monte Carlo method.
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3.1 Background

We make the following additional assumptions on ci (x), i = 1, 2, · · · ,m.

Assumption 3.1 For all i = 1, 2, · · · ,m, fci (t) is differentiable at t = 0,
E
(|ci (x, ξ)|m+1

)
< ∞ and E

([Ki (x, ξ)]m+1
)

< ∞ where Ki (x, ξ) is defined in
Assumption 2.1.

Assumption 3.2 For all i = 1, 2, · · · ,m, ci (x, ξ) is twice differentiable with respect
to x , and there exists a function Gi (x, ξ) with E

(
[Gi (x, ξ)]m+1) < ∞ such that

‖∇x ci (x + �x, ξ) − ∇xci (x, ξ)‖ � Gi (x, ξ) · ‖�x‖

when ‖�x‖ is small enough. Furthermore, for all i, j = 1, 2, · · · ,m and i �= j ,
(ci , c j ) has a continuous joint density fci ,c j (t, s) in a neighborhood of (0, 0).

Assumption 3.3 For all i, j = 1, 2, · · · ,m and i �= j , let

ui (t) = E

⎡
⎣∇x ci∇x c

T
i ·

m∏
j=1, j �=i

1{c j�0}
∣∣∣∣ci = t

⎤
⎦ ,

vi (t) = E

⎡
⎣∇2

x ci ·
m∏

j=1, j �=i

1{c j�0}
∣∣∣∣ci = t

⎤
⎦ ,

wi, j (t, s) = E

⎡
⎣∇x ci∇x c

T
j ·

m∏
k=1,k �=i, j

1{ck�0}
∣∣∣∣ci = t, c j = s

⎤
⎦ .

Then ui (t) is differentiable at t = 0, vi (t) is continuous at t = 0, and wi, j (t, s) is
continuous at (t, s) = (0, 0).

Assumption 3.1 adds on Assumption 2.1. It requires fci (t) to be differentiable
at t = 0, whereas Assumption 2.1 only requires it to be continuous. It requires
ci (x, ξ) and Ki (x, ξ) to have finite (m+1)st moments, whereas Assumption 2.1 only
requires them to have finite mth moments. Notice that Assumption 3.1 also implies
that E

(‖∇xci (x, ξ)‖m+1
)

< ∞.
Assumption 3.2 extends the local Lipschitz continuity to ∇xci (x, ξ). It is typi-

cally satisfied. For instance, when ci (x, ξ) = ξTx , we may set Gi (x, ξ) = 0; when
ci (x, ξ) = xTξ x , we may setGi (x, ξ) = ‖ξ‖. Notice that the assumption also implies
that E

(‖∇2
x ci (x, ξ)‖m+1

)
< ∞ for all i = 1, 2, · · · ,m.

Assumption 3.3 is an extension of Assumption 2.2. Since (ci , c j ) is a continuous
random vector in a neighborhood of (0, 0), as assumed in Assumption 3.2, a small
perturbation of t or s or both t and s at t = 0 and s = 0 typically does not result in a
sudden change to the conditional expectations. Therefore, this assumption is typically
satisfied though it is difficult to verify in practice.
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3.2 A Closed Form of Hessian

In this subsection we derive a closed form of ∇2h(x). By Lemma 2.5,

∇2
x�(x, y1, · · · , ym) =

m∑
i=1

∇xφi (x, y1, · · · , ym), (3.1)

where

φi (x, y1, · · · , ym) = −E

⎡
⎣∇x ci · 1{ci�yi } ·

m∏
j=1, j �=i

(y j − c j ) · 1{c j�y j }

⎤
⎦ .

Since ∇xci · 1{ci�yi } is discontinuous in x , then the expression inside of the expec-
tation is also discontinuous in x . Therefore, we cannot apply Lemma 2.3 directly on
φ(x, y1, · · · , ym) to obtain ∇xφi (x, y1, · · · , ym).

To solve this problem, we use the same techniques used in Sect. 2. We define

�i (x, y1, · · · , ym) = −E

⎡
⎣∇x ci ·

m∏
j=1

(y j − c j ) · 1{c j�y j }

⎤
⎦

for all i = 1, 2, · · · ,m. By Assumption 3.1 and Hölder’s inequality,

E

⎡
⎣∥∥∇x ci ·

m∏
j=1

(y j − c j ) · 1{c j�y j }
∥∥
⎤
⎦ �

[
E
(
‖∇x ci‖m+1

)

·
m∏
i=1

E
(
|yi − ci |m+1

)] 1
m+1

< ∞.

Then �i (x, y1, · · · , ym) < ∞ is well define. Similar to Lemma 2.4, we can prove
that

φi (x, y1, · · · , ym) = ∂

∂yi
�i (x, y1, · · · , ym).

Then by interchanging the order of differentiations, we have

∇xφi (x, y1, · · · , ym) = ∇x

[
∂

∂yi
�i (x, y1, · · · , ym)

]

= ∂

∂yi
[∇x�i (x, y1, · · · , ym)] . (3.2)
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Similar to Lemma 2.5, we can prove that

∇x�i (x, y1, · · · , ym)

= −E

⎡
⎣∇x

⎧⎨
⎩∇x ci ·

m∏
j=1

(y j − c j ) · 1{c j�y j }

⎫⎬
⎭
⎤
⎦

= −E

⎡
⎣∇2

x ci ·
m∏
j=1

(y j − c j ) · 1{c j�y j }

⎤
⎦

+
m∑
j=1

E

⎡
⎣∇x ci∇x c

T
j · 1{c j�y j } ·

m∏
k=1,k �= j

(yk − ck) · 1{ck�yk }

⎤
⎦ . (3.3)

By Eqs. (2.4), (3.1), (3.2) and (3.3),

∇2h(x)

=
m∑
i=1

∂m+1

∂y1 · · · ∂ym∂yi
[∇x�i (x, y1, · · · , ym)]

∣∣∣∣
y1=···=ym=0

= −
m∑
i=1

∂m+1

∂y1 · · · ∂ym∂yi
E

⎡
⎣∇2

x ci ·
m∏
j=1

(y j − c j ) · 1{c j�y j }

⎤
⎦
∣∣∣∣∣∣
y1=···=ym=0

+
m∑
i=1

m∑
j=1

∂m+1

∂y1 · · · ∂ym∂yi
E

⎡
⎣∇xci∇xc

T
j · 1{c j�y j }

·
m∏

k=1,k �= j

(yk − ck) · 1{ck�yk }

⎤
⎦
∣∣∣∣∣∣
y1=···=ym=0

. (3.4)

Nowweanalyze the three termson the right-hand side ofEq. (3.4).By the techniques
used in the proof of Lemma 2.4, for all i = 1, 2, · · · ,m,

∂m+1

∂y1 · · · ∂ym∂yi
E

⎡
⎣∇2

x ci ·
m∏
j=1

(y j − c j ) · 1{c j�y j }

⎤
⎦
∣∣∣∣∣∣
y1=···=ym=0

= ∂

∂yi
E

⎡
⎣∇2

x ci · 1{ci�yi } ·
m∏

j=1, j �=i

1{c j�0}

⎤
⎦
∣∣∣∣∣∣
yi=0
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= ∂

∂yi

⎧⎨
⎩
∫ ∞

yi
E

⎡
⎣∇2

x ci ·
m∏

j=1, j �=i

1{c j�0}
∣∣∣∣ci = t

⎤
⎦ · fci (t) dt

⎫⎬
⎭
∣∣∣∣∣∣
yi=0

= − fci (0) · E
⎡
⎣∇2

x ci ·
m∏

j=1, j �=i

1{c j�0}
∣∣∣∣ci = 0

⎤
⎦ , (3.5)

where the last equation follows from Assumptions 2.1 and 3.3 and fundamental theo-
rem of calculus.

Similar, for all i, j = 1, 2, · · · ,m and i �= j ,

∂m+1

∂y1 · · · ∂ym∂yi
E

⎡
⎣∇xci∇xc

T
j · 1{c j�y j } ·

m∏
k=1,k �= j

(yk − ck) · 1{ck�yk }

⎤
⎦
∣∣∣∣∣∣
y1=···=ym=0

= ∂2

∂yi∂y j

{∫ ∞

yi

∫ ∞

y j
E
[
∇xci∇xc

T
j

·
m∏

k=1,k �=i, j

1{ck�0}
∣∣∣∣ci = t, c j = s

⎤
⎦ · fci ,c j (t, s) dsdt

⎫⎬
⎭
∣∣∣∣∣∣
yi=y j=0

= fci ,c j (0, 0) · E
⎡
⎣∇xci∇xc

T
j ·

m∏
k=1,k �=i, j

1{ck�0}
∣∣∣∣ci = 0, c j = 0

⎤
⎦ , (3.6)

where the last equation follows from Assumptions 3.2 and 3.3 and fundamental theo-
rem of calculus.

Similar, for all i = 1, 2, · · · ,m,

∂m+1

∂y1 · · · ∂ym∂yi
E

⎡
⎣∇xci∇xc

T
i · 1{ci�yi } ·

m∏
j=1, j �=i

(y j − c j ) · 1{c j�y j }

⎤
⎦
∣∣∣∣∣∣
y1=···=ym=0

= ∂2

∂y2i
E

⎡
⎣∇x ci∇x c

T
i · 1{ci�yi } ·

m∏
j=1, j �=i

1{c j�0}

⎤
⎦
∣∣∣∣∣∣
yi=0

= ∂2

∂y2i

⎧⎨
⎩
∫ ∞

yi
E

⎡
⎣∇xci∇xc

T
i ·

m∏
j=1, j �=i

1{c j�0}
∣∣∣∣ci = t

⎤
⎦ · fci (t) dt

⎫⎬
⎭
∣∣∣∣∣∣
yi=0

= − ∂

∂yi

⎧⎨
⎩ fci (yi ) · E

⎡
⎣∇x ci∇xc

T
i ·

m∏
j=1, j �=i

1{c j�0}
∣∣∣∣ci = yi

⎤
⎦
⎫⎬
⎭
∣∣∣∣∣∣
yi=0

, (3.7)
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where the second last equation follows from Assumptions 2.1 and 3.3 and funda-
mental theorem of calculus, and the differentiability of the last equation is given by
Assumptions 3.1 and 3.3.

Combining Eqs. (3.4) to (3.7), we have the following theorem on ∇2h(x).

Theorem 3.4 Suppose that Assumptions 2.1 to 3.3 are satisfied. Then

∇2h(x)

=
m∑
i=1

fci (0)·E
⎡
⎣∇2

x ci ·
m∏

j=1, j �=i

1{c j�0}
∣∣∣∣ci = 0

⎤
⎦+

m∑
i=1

m∑
j=1, j �=i

fci ,c j (0, 0)

·E
⎡
⎣∇x ci∇x c

T
j ·

m∏
k=1,k �=i, j

1{ck�0}
∣∣∣∣ci = 0, c j = 0

⎤
⎦

−
m∑
i=1

∂

∂yi

⎧⎨
⎩ fci (yi ) · E

⎡
⎣∇x ci∇x c

T
i ·

m∏
j=1, j �=i

1{c j�0}
∣∣∣∣ci = yi

⎤
⎦
⎫⎬
⎭
∣∣∣∣∣∣
yi=0

.(3.8)

Though there is a differentiation sign in the third term of Eq. (3.8), we show in next
subsection that it can be computed easily by the kernel method.

3.3 Monte Carlo Method for Computing Hessian

Suppose that we have n i.i.d. observations of ξ , denoted as {ξ1, ξ2, · · · , ξn}. Then
for any x ∈ X , all three terms of Eq. (3.8) can be computed through the kernel method.
The first term is in the form of fB(b) · E[A|B = b], which can be estimated by Ĥ(b)
of Eq. (2.9).

Nowwe consider the second term of Eq. (3.8). LetG(u, v) be a symmetric bivariate
density such that ‖(u, v)‖2 ·G(u, v) → 0 as ‖(u, v)‖ → ∞ and

∫∞
−∞

∫∞
−∞ ‖(u, v)‖2 ·

G(u, v) dudv < ∞. Then G(u, v) is a two-dimensional kernel function ([32]). For
instance, the bivariate normal density G(u, v) = 1

2π e
−(u2+v2)/2 is a two-dimensional

kernel function. Then fB,C (b, c) · E[A|B = b,C = c] can be estimated by

Ĵ (b, c) = 1

nδ2n

n∑
=1

A · G
(
B − b

δn
,
C − c

δn

)
,

where {(A1, B1,C1), · · · , (An, Bn,Cn)} is a sequence of i.i.d. observations of
(A, B,C). It can be shown that Ĵ (b, c) is a consistent estimator of fB,C (b, c)·E[A|B =
b,C = c] as n → ∞ if δn → 0 and nδ2n → ∞. Furthermore, the rate of convergence
is (nδ2n)

−1/2 under some technical conditions [32]. The asymptotic properties also
hold when the observations are not i.i.d., e.g., they are φ-mixing. Since the second
term of Eq. (3.8) is in the form of fB,C (b, c) · E[A|B = b,C = c]. We may use
Ĵ (b, c) to estimate it.

Notice that the third term of Eq. (3.8) is in the form of d
db { fB(b) · E[A|B = b]}.

Since fB(b) · E[A|B = b] can be estimated by Ĥ(b) of Eq. (2.9), then it is natural to
estimate d

db { fB(b) · E[A|B = b]} by
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L̂(b) = d

db
Ĥ(b) = − 1

nδ2n

n∑
=1

A · K ′
(
B − b

δn

)
,

where K ′(u) is the derivative of K (u). For instance, K ′(u) = − u√
2π

e−u2/2 when

K (u) = 1√
2π

e−u2/2.

Therefore, we can estimate ∇2h(x) by the following estimator

∇̂2h(x)

= 1

nγ1,n

n∑
=1

m∑
i=1

∇2
x ci (x, ξ) ·

m∏
j=1, j �=i

1{c j (x,ξ)�0} · K
[
ci (x, ξ)

γ1,n

]

+ 1

nγ 2
2,n

n∑
=1

m∑
i=1

m∑
j=1, j �=i

∇xci (x, ξ) · ∇xc j (x, ξ)
T

·
m∏

k=1,k �=i, j

1{ck (x,ξ)�0} · G
[
ci (x, ξ)

γ2,n
,
c j (x, ξ)

γ2,n

]

+ 1

nγ 2
3,n

n∑
=1

m∑
i=1

∇x ci (x, ξ) · ∇x ci (x, ξ)
T

·
m∏

j=1, j �=i

1{c j (x,ξ)�0} · K ′
[
ci (x, ξ)

γ3,n

]
. (3.9)

We use γ1,n , γ2,n and γ3,n instead of δn to denote the bandwidth parameter in ∇̂2h(x),
because they are not necessarily the same as the δn used in ∇̂h(x). Notice that com-
puting ∇̂2h(x) is also an O(n) operation with a fixed m and d. It can also be done
efficiently when the sample size n is large. If we also consider the effects of m and d,
the computational complexity of computing ∇̂2h(x) becomes O(nm2d2). Therefore,
when m and d are large, computing ∇̂2h(x) is significantly slower than computing
∇̂h(x).

3.4 Chance-Constrained Programs

In this section, we outline a simulation-based approach to solve Problem (1.1). We
first generate n i.i.d. observations of ξ through Monte Carlo simulation. We denote
them as ξ1, · · · , ξn . We may estimate h(x) by

ĥ(x) = 1

n

n∑
=1

m∏
i=1

1{ci (x,ξ))�0},

∇h(x) by ∇̂h(x) of Eq. (2.10) and∇2h(x) by ∇̂2h(x) of Eq. (3.9) for any x ∈ X . Then,
we may feed the estimated values of h(x), ∇h(x) and ∇2h(x) together with f (x),
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∇ f (x) and ∇2 f (x) into a nonlinear optimization solver to solve the problem. Notice
that solving a nonlinear program is often equivalent to finding solutions to the KKT
conditions. Therefore, the convergence of the proposed simulation-based algorithm
can be guaranteed by the convergence results on stochastic generalized equations as
the sample size n → ∞ (see, for instance, Section 5.2 of Shapiro et al. [35]).

Since Problem (1.1) may not be a convex program, there may exist multiple local
optimal solutions. Our approach may not be able to find the global optimal solution of
the problem when the problem is non-convex. Although we cannot guarantee global
optimality, wemay try to find a good local optimal solution. To achieve this, we suggest
to first solve either the CVaR approximation of Rockafellar and Uryasev [8] or the
ε-approximation of Hong et al. [16], then use the solution as the starting solution to
our approach. In this way, we ensure that the solution found by our approach is a
local optimal solution that is at least better than the CVaR approximation or the ε-
approximation.Moreover, if theCVaRapproximation is used to find a starting solution,
we do not recommend using the algorithm proposed by Rockafellar and Uryasev [8],
because it requires solving a convex optimization programwith over n×m constraints
and it will be computationally very expensive if the sample size n is large. Instead, we
suggest using the algorithm proposed by Hong and Liu [36] because, similar to our
algorithm, it only uses the sample to estimate the value and the gradient of the CVaR
function and it can handle cases with a very large sample size.

4 Numerical Example

We consider the norm optimization example, which is used by Hong et al. [16].
Let x = (x1, · · · , xd)T denote a d-dimensional vector on R

d , and ξ = (ξ1, · · · , ξm)

with ξi = (ξi,1, · · · , ξi,d)
T be a d ×m matrix of mutually independent and identically

distributed (i.i.d.) standard normal randomvariables. Let ξi ◦x = (ξi,1x1, · · · , ξi,d xd)T

be the Hadamard product. Suppose that we are interested in solving the following
optimization problem:

max ‖x‖1 =
d∑
j=1

|xi |

s.t. Pr{‖ξi ◦ x‖ � M, i = 1, 2, · · · ,m} � 1 − α,

x j � 0, j = 1, · · · , d.

Let ci (x, ξi ) = M2−∑d
j=1 x

2
j ξ

2
j,i . Then by Eq. (1.1), the problem can be reformulated

as

min −
d∑
j=1

xi

s.t. h(x) � 1 − α,

x j � 0, j = 1, · · · , d.
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4.1 Estimation of Gradient and Hessian

In this subsection, we consider the performance of the gradient and Hessian esti-
mators. During the implementation, the kernel function is chosen to be the standard
normal density function. Let d = 2, m = 2, and M = 2. Because ξ1 and ξ2 are i.i.d.,
Pr{ci (x, ξi ) � 0, i = 1, 2} = (

Pr{c1(x, ξ1) � 0})2. Moreover, ξ1,1 and ξ1,2 are i.i.d.
standard normal random variables, then by the convolution of the density functions,
the true value of the gradient and hessian matrix of h(x) can be calculated analytically.
We fix x1 = 1, and change x2 from −2 to 2. Let the sample size n = 10 000, and
the bandwidth δn = n−1/5 for the gradient estimator and γn = 0.2n−1/4 for Hessian
matrix estimator. Replicate 100 times of the estimators, and the estimated values, true
values, and 95% confident intervals (CI) of each elements in gradient and Hessian
matrix are reported in Figs. 1 and 2. These figures illustrate that our estimators can
estimate the gradient and Hessian matrix accurately.

Next, we consider the performance of the estimators against the sample sizes,
and obtain Fig. 3, which indicates that the estimation accuracy will benefit from the
increasing of the sample size. However, accuracies of kernel estimators also depend
on the choice of the bandwidth. Therefore, in order to improve the estimation accuracy
further, bandwidth should be carefully chosen.
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Fig. 1 Estimating each component of the gradient
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Fig. 2 Estimating each component of the Hessian matrix
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Fig. 3 RMSE for gradient (left) and Hessian matrix (right) w.r.t different sample sizes

4.2 Optimization Results

In this subsection, we study the optimization results by applying the kernel estima-
tors of the gradient and Hessian in optimization solvers. Similar as in Hong et al. [16],
let d = m = 10, M = 10, α = 0.1 sample size n = 10 000, and set stopping criteria
X tol = 10−3. We solve the optimization problem in MATLAB and use the nonlin-
ear optimization solver FMINCON. First, we use the CVaR approximation and the
ε-approximation solutions as the initial solutions, and then compare the performance
of the methods with gradient estimator (denote by G-CVaR and G-eps, respectively),
and with both gradient and Hessian matrix estimators (denote by H-CVaR and H-eps,
respectively) in the following box plots.

Note that, by Fig. 4 and Table 1, Hessian matrix appears not beneficial for the opti-
mization solver FMINCON. The optimal objective values and numbers of iterations
of the H-CVaR and the H-eps do not improve comparing with the G-CVaR and the
G-eps, respectively. On the contrary, due to the computation of Hessian matrix, the
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Fig. 4 Box plots of optimal objective value and iteration for G-CVaR, G-eps, H-CVaR, and H-eps

Table 1 CPU time for G-CVaR,
G-eps, H-CVaR, and H-eps G-CVaR/s G-eps/s H-CVaR/s H-eps/s

Mean 1.727 1.690 175.1 142.6
Maximum 3.011 5.184 269.0 242.2
Minimun 0.750 4 0.719 3 92.20 54.78
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CPU time increases significantly. We also test d = 2 and m = 2 case, which has an
accurate estimation of Hessianmatrix according to Fig. 2. The results also indicate that
adding Hessian matrix in the optimization solver costs more time, and the optimiza-
tion effects are not improved. Therefore, we conclude that, even though Hessian may
be estimated accurately, its use in the solver FMINCON does not help solve the joint
CCP. However, there might be other solvers that may work well with the information
of Hessian and this is a direction of future research.

Next, we compare the G-CVaR and the G-eps with the sequential convex approx-
imation (SCA) algorithm of Hong et al. [16], with either CVaR or ε-approximation
as the starting point (denoted as DC-CVaR or DC-eps), and obtain Fig. 5 and Table 2
with more strict stopping criteria X tol = 10−6. For the SCA approximation method,
we set the same stopping criteria, i.e., X tol = 10−6, in each iterative optimization, and
the stopping criteria for the macroiteration are 10−3.

In Fig. 5, the performances of the G-CVaR and the G-eps are better than those of the
DC-CVaR and the DC-eps, respectively, i.e., the mean values and the mediums of the
G-CVaR and the G-eps are closer to the optimum. Moreover, from Table 2, the CPU
times of the G-CVaR and the G-eps are also much smaller than those of the DC-CVaR
and the DC-eps. In Fig. 5, we also notice that some optimal values found by G-CVaR
andG-eps are better than the true optimal values, indicating that the constraints may be
violated. Notice that this is a common issue in sample-based methods where solutions
may violate the constraints due to the randomness in the sample. To understand how
serious the constraint violation is, we calculate the true values of the left-hand side
of the chance constraint for all solutions found by all four algorithms and plot them
in Fig. 6. From this figure, we see that the solutions found by DC-CVaR and DC-eps
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Fig. 5 Box plots of optimal objective value for the G-CVaR, G-eps, DC-CVaR, and DC-eps

Table 2 CPU time for G-CVaR,
G-eps, DC-CVaR, and DC-eps G-CVaR/s G-eps/s DC-CVaR/s DC-eps/s

Mean 17.15 22.13 471.3 671.6
Maximum 27.72 31.74 883.4 940.9
Minimun 7.557 13.03 33.14 207.0
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Fig. 6 Box plots of the left-hand side of the chance constraint for the solutions found by G-CVaR, G-eps,
DC-CVaR, and DC-eps

always satisfy the chance constraint, while the solutions found by G-CVaR and G-eps
typically violate the chance constraint, but the amount of violations are typically quite
small. If such constraint violation is a concern in practical applications, one may add
a buffer to α (say α + β). Recently, Lam [37] provided an approach based on the
empirical divergence to determine the appropriate buffer size.

5 Conclusions

In this paper, we derive closed-form expressions of the gradient and Hessian of
joint probability functions and develop Monte Carlo estimators of them. We then
design aMonteCarlo algorithm, basedon these estimators, to solve chance-constrained
programs. Our numerical study shows that the algorithm works well, especially only
with the gradient estimators.

There are a few directions for future research in this field. First, we are interested in
developing new or utilizing existing algorithms (or solvers) that may take advantage
of the information on Hessian matrix. Second, quantifying the convergence and the
rate of convergence of the proposed algorithm is certainly an interesting problem that
is worth studying. Third, it would be interesting to develop a general guidelines on
how to choose the sample size n or a buffer size on constraint threshold α to reach a
predetermined precision level and satisfy the constraint with a given probability.
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