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1. Introduction
Many simulation applications require estimating an
expectation of a function of a conditional expectation.
This class of problems is referred to as nested estimation.
Here, we consider the problem of estimating

α � E[g(E[Y |X])], (1)

via Monte Carlo simulation, where X is a random vec-
tor in Rd with d > 1, Y is a random variable in R, and
g( · )may be a nonlinear function.
This problem has important applications in financial

risk management, especially in portfolio risk measure-
ment. Consider risk measurement of a portfolio that
consists of a number of financial instruments, includ-
ing many sophisticated financial derivatives that need
Monte Carlo simulation for accurate pricing. Suppose
that the random vector X denotes risk factors at a
future time horizon up to which we measure the risk,
and E[Y |X] is the portfolio loss given an outcome of X.
This is a conditional expectation as it requires knowing
the cash flows in the portfolio that may be a deter-
ministic function of X, as well as conditional mark-to-
market values of the derivatives in the portfolio. The
latter typically are conditional expectations under a
suitable pricing martingale measure (see, e.g., Duffie

1996, Shreve 2004). Typically, E[Y |X] is not known in
a closed form as a function of X and has to be esti-
mated via simulation. Then, the inner expectation in
(1) reprices the portfolio given outcomes of the risk
factors, and the outer expectation calculates risk of the
portfolio.1 Specification of the function g( · ) depends
on risk measures being used. For instance, when the
risk is measured by the second moment of the portfo-
lio loss, g( · ) is a quadratic function; when the risk is
measured by the probability that the portfolio loss is
larger than some threshold value, g( · ) is an indicator
function; and when the risk is measured by average
loss given that the portfolio loss is larger than some
threshold value, g( · ) is a hockey stick function. Note
that the last two examples are directly linked to value
at risks and tail conditional expectations (also known
as expected shortfalls) that are two very important
risk measures; see, e.g., Baysal and Staum (2008), Bank
for International Settlements (2012), and Broadie et al.
(2015).

Due to high computational costs, portfolio risk mea-
surement is often performed by using highly simpli-
fied models for portfolio losses (see, e.g., Rouvinez
1997, Britten-Jones and Schaefer 1999, and Duffie and
Pan 2001 for delta-gamma approximations), so that
the inner expectation may be evaluated analytically for
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different outcomes of the risk factors. However, these
simplified models may fail to capture important fea-
tures of market dynamics and thus perform poorly.
To avoid drawbacks of highly simplified models, more
realistic models of market dynamics need to be used
for portfolio repricing. Under these models, the inner
expectation may not have a closed-form expression
and estimation via simulation is often necessary. In
this paper, we consider situations where evaluation of
the inner and outer expectations requires Monte Carlo
simulation.
Besides applications to portfolio risk measurement,

other applications of (1) include pricing of com-
plex derivatives such as collateralized debt obliga-
tions (CDOs). For instance, X may represent under-
lying variables such as credit intensities and default
event indicators, and Y may represent portfolio loss of
defaultable assets referencing the CDO. Then, α may
be the price of a tranche of the CDO with an attach-
ment point a and a detachment point b (a < b), which
can be written as (see, e.g., Gordy and Juneja 2006)

α � E[min(b ,max(E[Y |X], a)) − a]
� E[(E[Y |X] − a)+ − (E[Y |X] − b)+],

where x+ ≡max(x , 0) is known as a hockey-stick func-
tion. Another application corresponds to pricing com-
pound options (see Glasserman 2004). For instance,
consider a call option expiring at time T1 to buy a call
option expiring at time T2 > T1. Assuming for nota-
tional simplicity that the discount rate is zero, the price
of this compound option may be expressed as

E[(E[(S(T2) −K2)+ |S(T1)] −K1)+],

where S(t) denotes the price of the underlying stock at
time t, K2 denotes the strike price of the call option on
this stock that expires at time T2, and K1 denotes the
strike price of the option on the call option that expires
at time T1.
A typical approach to nested estimation is to use

nested simulation. Specifically, nested simulation refers
to a two-level simulation procedure. In the outer level,
one simulates a number of scenarios of X. Then, in
the inner level, one simulates a number of samples of
Y for each generated X to estimate E[Y |X]. Tradition-
ally, it is perceived that nested simulation imposes an
unacceptable computational burden. However, Gordy
and Juneja (2010) show that this is not necessarily the
case and that a relatively small number of samples in
the inner level may yield reasonably accurate estimates
for α in (1), particularly for large portfolios. Along
the line of nested simulation, recently some work has
been done to improve its efficiency by exploiting struc-
tural information of the function g( · ). For instance, Lan
et al. (2010) use ranking-and-selection techniques to

improve the efficiency of the inner estimation, Liu et al.
(2010) study how to adaptively allocate computational
effort based on ranking-and-selection techniques for
nested estimation of expected shortfalls, and Broadie
et al. (2011) propose algorithms to sequentially allo-
cate computational effort to inner-level simulations for
estimating probabilities of large portfolio losses.

To explore other approaches to nested estimation,
some researchers (see, e.g., Liu and Staum 2010,
Broadie et al. 2015) have observed That, in practice,
the inner expectation E[Y |X � x] is typically a contin-
uous function of x. This suggests that the value of the
inner expectation can be inferred statistically based on
its properties as a function of x, in a parametric or
a nonparametric manner. This leads to a second class
of estimation techniques that we refer to as smoothing
approaches, via which the values of the inner expecta-
tion on the space of risk factors may be inferred by
sampling a few realizations of these factors.

Smoothing approaches include the least-squares
method (LSM) and the stochastic kriging approach.
LSM was proposed by Longstaff and Schwartz (2001)
and Tsitsiklis and Van Roy (2001) for American option
pricing; see also the previous work of Carriere (1996)
that includes general discussions of nonparametric
regression techniques. Recently, it was used by Broadie
et al. (2015) for portfolio risk measurement. The key
idea of the LSM is to posit that the inner expectation
E[Y |X � x]may be represented as a linear combination
of a number of user-specified basis functions for each
x, and then use a small number of inner-level sam-
ples to estimate these linear coefficients. The key idea
of the stochastic kriging approach is to build a spa-
tial metamodel of E[Y |X � x] based on the samples Y
taken from a few x values, and then infer the values of
the inner expectation using this metamodel (see, e.g.,
Liu and Staum 2010). Unlike the LSM, the stochastic
kriging approach does not assume a parametric rela-
tionship between E[Y |X � x] and x, and is therefore
more flexible and robust. See Ankenman et al. (2010)
for details of stochastic kriging techniques.

Even though results in the literature show that the
smoothing Approaches, in general, work well for port-
folio risk measurement problems, the problems con-
sidered in these papers are often of small dimensions.
Intuitively, however, smoothing approaches may be
affected by the dimension of the risk factors and may
be subject to the curse of dimensionality. Moreover,
many practical portfolio risk measurement problems
are of high dimensions and may have more than a
hundred risk factors. Therefore, in this paper, we con-
sider the following two important research questions
on smoothing approaches and their applications in
portfolio risk measurement:

1. How is the performance of a smoothing approach
affected by the dimension of the risk factors?
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2. How can we design an efficient smoothing ap-
proach that can be applied to portfolio risk measure-
ment problems with a large number of risk factors?

To answer the first question, we study a simple
smoothing approach that estimates E[Y |X � x] by the
average of all the inner samples whose X values are
within a hypercube centered at x. This is a special case
of the Nadaraya-Watson (NW) kernel estimators for
nonparametric regression (see, e.g., the monograph of
Bosq 1998), where the kernel function is chosen to be
a d-dimensional uniform distribution (hence a hyper-
cube centered at x). Hencewe call it the kernel smoothing
approach. We analyze the asymptotic properties of the
approach for different types of g( · ), including smooth,
nondifferentiable, and discontinuous cases. Our main
finding is that, at the optimal choice of the side length
of the hypercube and for all three cases of g( · ), the
rate of convergence of the mean squared error (MSE)
of the kernel-smoothing estimator is Γ−min(1, 4/(d+2)) as
Γ→∞, where Γ denotes the available sampling bud-
get and d is the dimension of X. Therefore the perfor-
mance of the estimator deteriorates as the dimension
d increases. Moreover, compared to the nested simula-
tion approachwhose optimal rate of convergence of the
MSE is Γ−2/3 regardless of the dimension of X (see Lee
1998 andGordy and Juneja 2010), the kernel smoothing
approach has the same or a better rate of convergence
when d 6 4, and a slower rate of convergence when
d > 4.
To answer the second question, we note that for

many practical portfolio risk measurement problems,
the number of risk factors is often very large, e.g., over
100, which renders the direct use of the kernel smooth-
ing approach impractical. However, in portfolio risk
measurement, we find that a high-dimensional prob-
lem may often be decomposed into low-dimensional
ones, which allow an efficient use of the kernel smooth-
ing approach. Such a decomposition technique relies
on an observation that a portfolio loss is typically
a summation of losses of individual financial instru-
ments that form the portfolio, while individual finan-
cial instruments may depend on only a small number
of risk factors. In other words,

E[Y |X]�
l∑

i�1
E[Y i |X]�

l∑
i�1

E[Y i |X j , j ∈Bi], (2)

where l is the number of groups, Bi is a subset of
{1, . . . , d}, Y i denotes the total loss of the financial
instruments in group i, which depends on only the risk
factors {X j , j ∈Bi}, and Y i satisfies ∑l

i�1 Y i � Y.
With the structure in (2), one may apply the ker-

nel smoothing approach to each E[Y i |X j , j ∈ Bi] for
i � 1, . . . , l. The approach may work very well when
the numbers of elements in Bi’s are small, i.e., indi-
vidual financial instrument depends on only a few

risk factors. This is indeed the case for many finan-
cial instruments commonly traded in financialmarkets.
According to the statistics of the World Federation of
Exchanges (2014), in terms of the number of contracts
traded, more than 90% of options traded on exchanges
worldwide in 2013 are written on a single underlying
asset that may be a stock, a stock index, an ETF, an
exchange rate, or a commodity. Price dynamics of these
underlying assets can often be modeled with fewer
than three risk factors, such as the Black-Scholes model
and Heston’s stochastic volatility (SV) model. There-
fore the idea of decomposition is particularly attractive.
To illustrate the practical value of the proposed decom-
position technique, we show in Section 6 that it works
well for a representative example with 200 risk factors.

On the implementation side, we present algorithms
for fast computation of the NW estimator. These algo-
rithms work well for a small d. However, their bene-
fit is not substantial for a large d. To circumvent this
difficulty, we suggest using a variant of the kernel
smoothing estimators, the so-called k-nearest neighbor
(kNN) estimator for large dimensions. The kNN esti-
mator shares the same spirit with the NW estimator in
that it also approximates the expectation E[Y |X � x]
by taking the average of all inner samples whose X
values are within a neighborhood of x. The difference
between these two estimators is that the kNN estima-
tor chooses the set of kNNs for some fixed integer k
as the neighborhood, while the NW estimator chooses
the hypercube with side length h and centered at x
as the neighborhood. We find that the kNN estimator
appears to have a better performance than the nested
simulation estimator even for problems with dimen-
sions as large as 20 and it can be calculated efficiently.
It should be pointed out that in this paper, asymptotic
results are provided only for the NW estimator. While
it is expected that the kNN estimator may have similar
asymptotic properties, the proofs are technically more
challenging and are left for future research.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the background of nonparametric ker-
nel regression and proposes the kernel smoothing
approach. Asymptotic results of the NW estimators
are provided in Section 3, and implementation issues
are discussed in Section 4. In Section 5, we propose
a decomposition technique when the kernel smooth-
ing approach is applied to portfolio risk measurement.
Numerical results are presented in Section 6, followed
by conclusions in Section 7. Some lengthy discussions
and technical proofs are provided in the appendix.

2. A Kernel Approach
2.1. Background
For notational ease, we let m(X) denote E[Y |X], where
the conditional expectation m(x) ≡ E[Y |X � x] is also
known as a regression function in statistics. Then, a
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key issue of estimating α � E[g(m(X))] is how to esti-
mate m(x). Estimation of m(x) has been studied exten-
sively in the literature, see, e.g., the monograph of Bosq
(1998). Among various estimation methods for m(x),
in this paper, we consider the well-known NW kernel
estimator, which originates from Nadaraya (1964) and
Watson (1964). Specifically, given n=independent and
identically distributed (i.i.d.) observations of (X,Y),
denoted by {(Xi ,Yi), 1 6 i 6 n}, the NW estimator of
m(x) is

m̃n(x)�
∑n

i�1 YiKh(x −Xi)∑n
i�1 Kh(x −Xi)

, (3)

where Kh(x)� (1/hd)K(x/h), K is a kernel function that
is a symmetric density function onRd , and h is a band-
width parameter satisfying h → 0 and nhd → ∞ as
n→∞.
It is well known (see, e.g., Section 4.5 of Härdle 1990)

that the choice of the kernel function K is not critical.
Therefore, in the rest of the paper, we let

K(u)�
d∏

i�1
1{−1/26u i61/2} (4)

for u � (u1 , . . . , ud), which is called a d-dimensional
uniform kernel.2
With the uniform kernel, an intuitive explanation of

the kernel method is straightforward: for an outer-level
scenario x, m(x) is estimated by the average of inner-
level samples taken from those outer-level scenarios
lying in a neighborhood of x, where the neighborhood
is chosen to be a hypercube centered at x with a length
of h for each side.
Throughout the paper, we use the notation of o( · )

and O( · ), where for two deterministic sequences an
and bn , an � o(bn) if limn→∞(an/bn)� 0, and an �O(bn) if
lim supn an/bn <∞. We also say that an is asymptotically
smaller than bn if limn→∞(an/bn)� 0.

Let Bn(x) and Vn(x) denote the bias and variance
of m̃n(x), respectively. We summarize the asymptotic
properties of m̃n(x) in the following lemma.

Lemma 2.1. Let σ2(x) � E[Y2 |X � x] − m2(x), µK �

∫Rd uT uK(u) du, and cK � ∫Rd K2(u) du. Then, under regu-
larity conditions discussed in Remark 1,

Bn(x) � B(x)h2
+ o(h2), (5)

Vn(x) �
V(x)
nhd

+
o(1)
nhd

, (6)

where

B(x)�
µK

2 f (x)

[
tr
{
∂
∂x

∂
∂xT [m(x) f (x)]

}
−m(x)tr

{
∂
∂x

∂
∂xT f (x)

}]
, V(x)� cKσ

2(x)
f (x) ,

with f (x) being the density function of X, and AT and tr(A)
denoting transpose and trace of a matrix A, respectively.

Moreover, m̃n(x) satisfies the following central limit
theorem:

√
nhd(m̃n(x) −m(x))⇒

√
cKσ2(x)/ f (x) ·Z, (7)

if nhd+4→ 0 as n→∞, where “⇒” denotes convergence
in distribution and Z denotes a standard normal random
variable.

Remark 1. Key regularity conditions of Lemma 2.1
include existence and continuity conditions: f (x) and
E[Y2 |X � x] exist, f (x) > 0, m(x) and f (x) are
thrice continuously differentiable at x and have
bounded third-order derivatives; and bandwidth con-
ditions: h→ 0, nhd → ∞ and nhd+4 → 0 as n → ∞.
Moreover, for Lemma 2.1 to hold, one also needs some
other regularity conditions that are imposed for math-
ematical convenience. Different sets of such conditions
have been proposed in the literature of nonparametric
statistics. For ease of exposition, we omit the listing of
these regularity conditions but refer interested readers
to Bosq (1998), Bierens (1985), Härdle (1990), Jennen-
Steinmetz and Gasser (1988), and Gasser and Engel
(1990) for detailed discussions.

In this paper, we assume that the results of
Lemma 2.1 hold. These results serve as the basis for
subsequent analysis.

2.2. A Kernel Estimator
Given the NW estimator, we may estimate α �

E[g(m(X))] by using either

M̄n �
1
n

n∑
k�1

g(m̃n(X0, k))

or
M̃n �

1
n

n∑
k�1

g(m̃n(Xk)),

where {X0, k , 1 6 k 6 n} are i.i.d. samples of X that are
independent of {(Xk ,Yk), 1 6 k 6 n}.

The estimators M̄n and M̃n are slightly different,
as M̄n requires an additional set of samples of X.
Both of them are important in practical applications.
For instance, one may use M̄n in a two-phase proce-
dure (see, e.g., construction of low-biased estimators
in Broadie and Glasserman 2004) for pricing American
options, where in the first phase, a set of samples is
used to approximate the optimal exercise policy, and
in the second phase, a different set of samples is used
to evaluate the option price. But in applications such
as portfolio risk measurement, M̃n may be a more nat-
ural estimator, because arguably an additional set of
samples may not be necessary.

Note that M̄n focuses mainly on the setting where
only one inner-level sample is generated for each outer-
level sample. In a more general setting, one may set
the number of outer-level samples to be l, and for each
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outer-level sample, the number of inner-level samples
is n/l, where l and n/l are integers. For i � 1, . . . , l, let
{Yi j , 1 6 j 6 n/l} denote the inner-level samples for Xi .
Define

Ȳi �
l
n

n/l∑
j�1

Yi j , i � 1, . . . , l ,

and the kernel estimator

m̃nl(x)�
∑l

i�1 ȲiKhl
(x −Xi)∑l

i�1 Khl
(x −Xi)

,

where the bandwidth is a function of l, and it is made
explicit by the notation hl .
Suppose that another set of N samples of X, denoted

by {X0, j , 1 6 j 6 N}, are used to estimate α. Then, a
more general estimator of α is

M̄N, n , l �
1
N

N∑
j�1

g(m̃nl(X0, j)). (8)

In what follows, we focus our discussion mainly
for the estimator M̄n , while asymptotic properties of
M̄N, n , l are also discussed at the end of Section 3. The
key idea of the kernel approach is that once we have
generated a set of samples, {(Xi ,Yi), 1 6 i 6 n}, then
for any x ∈ Rd , sampled or not, we may infer the
value of g(m(x)) by using this set of samples. There-
fore, no nested simulation is required, because only one
inner-level sample is simulated for each outer-level sce-
nario. Compared to the nested simulation approach,
the kernel approach may provide a saving in computa-
tional cost, especially when simulating Y is computa-
tionally expensive, which is often the case in practical
applications.
To measure the performance of the kernel approach,

one needs to know the rates of convergence of the esti-
mators. As far as we are aware of, results on rates of
convergence of estimators such as M̄n and M̃n are still
unknown in the literature. One of our objectives is to
fill this gap. A convergence result will also show how
the dimension of X affects the performances of the ker-
nel estimators.
To analyze the rates of convergence of the kernel esti-

mators, in this paper, we focus mainly on M̄n , while
arguing that M̃n has the same rate of convergence
as M̄n . We do so for the sake of conciseness of the
presentation, because a rigorous analysis of M̃n may
require additional technicality without adding much
value to the central ideas of the paper. Without going
deep into the required technical conditions, we argue
in Section EC.2.1 of the e-companion that MSEs of M̄n

and M̃n have the same rate of convergence.

3. Asymptotic Properties
This section is devoted to the asymptotic analysis of
M̄n . To be meaningful, we let g( · ) be a nonlinear func-
tion, because the problem is trivial when g( · ) is linear.
Specifically, if g(t) � at + b for some constants a and b,
then it can be easily seen that

α � E(g(E[Y |X]))� E(aE[Y |X]+ b)� E[aY + b],

and the estimation of α becomes a simple problem.
In the latter analysis, we consider three types of func-

tion g( · ): a smooth function, a hockey-stick function, i.e.,
g(t)� t+, and an indicator function, i.e., g(t)� 1{t>0}. The
latter two functions differ from the first one in smooth-
ness. Specifically, the hockey-stick function has a non-
differentiable but continuous point, while the indica-
tor function has a discontinuous point. We focus on
these three types of functions for two reasons. Firstly,
they are of great practical importance. For instance,
when we estimate expected shortfalls or probabilities
of large portfolio losses, the functions g( · ) of interest
typically have the forms of a hockey-stick function or
an indicator function, respectively. Secondly, for amore
general function with a finite number of nondifferen-
tiable and/or discontinuous points, we may decom-
pose it as a linear combination of these three types
of functions, leading to a straightforward conclusion
that its corresponding kernel estimator shares the same
rate of convergence as that of the three types of func-
tions. An intuition behind the decomposition is that
adding an appropriately chosen linear combination
of hockey-stick and indicator functions to a function
with a finite number of nondifferentiable and/or dis-
continuous points makes it differentiable everywhere.
A detailed discussion on the decomposition is given in
Section EC.2.2 of the e-companion.

Henceforth, we let D ⊆Rd denote the support of X,
and assume that X is a continuous random vector with
a density function f ( · ) on the support. We note from
Lemma 2.1 that

√
nhd(m̃n(x) − m(x)) has a nontrivial

limit for x ∈D. For notational ease, we define

Zn(x)�
√

nhd(m̃n(x) −m(x)). (9)

Under mild conditions, Zn(x) converges to a normal
distribution for each x. Furthermore, we make the fol-
lowing assumption.

Assumption 1. supn E[|Zn(X)|4] <∞.

3.1. Analysis for a Smooth Function
We first consider the relatively simple case where g( · )
is a smooth function. Specifically, we assume that g( · )
is thrice differentiable, and has bounded second- and
third-order derivatives. We study the asymptotic MSE
of M̄n . To do so, we consider its bias and variance
separately.
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3.1.1. Asymptotic Bias. As the asymptotic bias of
m̃n(X) can be easily analyzed based on the known
results of kernel estimation, it is natural to link the bias
of g(m̃n(X)) to that of m̃n(X). Because g( · ) is thrice
differentiable, using Taylor expansion, we have

E[g(m̃n(X)) − g(m(X))]
� E[g′(m(X))(m̃n(X) −m(X))]

+E
[

g′′(m(X))
2 (m̃n(X) −m(X))2

]
+E

[
g′′′(Ξ)

6 (m̃n(X) −m(X))3
]
, (10)

where Ξ is a random variable that lies between m̃n(X)
and m(X).
The basic idea of the bias analysis is based on an

argument that the third term on the right-hand side
(RHS) of Equation (10) is asymptotically smaller than
the first two terms. In particular, we show in Sec-
tion A.2.1 of the appendix that if Assumption 1 holds
and |g′′′(t)| is bounded for all t, then the third term is
of order (nhd)−3/2, which shall be seen to be negligible
when compared to the first two terms. More precisely,
by Lemma 2.1, the first term can be written as

E[g′(m(X))(m̃n(X) −m(X))]
� E(g′(m(X))E[m̃n(X) −m(X) |X])

�

∫
D

g′(m(x))Bn(x) f (x) dx

�

∫
D

g′(m(x))B(x)h2(1+ ox(1)) f (x) dx

� h2E[g′(m(X))B(X)](1+ o(1)), (11)

where the small term ox(1) depends on x, and the sec-
ond to the last equality follows from (5) of Lemma 2.1.3
In a similar manner, we can establish the asymptotic

order of the second term:

E[g′′(m(X))(m̃n(X)−m(X))2]

� h4E[g′′(m(X))B2(X)]+ 1+ o(1)
nhd

E[g′′(m(X))V(X)]. (12)

Recall that the third term is of order (nhd)−3/2. Because
nhd→∞ as n→∞, it can be easily seen that the third
term is negligible when compared to the second term.
Then, by Equations (11) and (12), we establish the

following result on the asymptotic bias of M̄n .

Proposition 3.1. Suppose that Assumption 1 is satisfied,
and the results of Lemma 2.1 hold for all x ∈D. Assume that
the following conditions are satisfied:
(a) The function g( · ) is thrice differentiable with a

bounded third-order derivative.
(b) The random variables g′(m(X))B(X), g′′(m(X)) ·

B2(X), and g′′(m(X))V(X) have finite expectations.

Then,

E(M̄n) − α � E[g′(m(X))B(X)]h2(1+ o(1))

+
1
2E[g

′′(m(X))V(X)]1+ o(1)
nhd

. (13)

Proposition 3.1 reveals an important insight on how
the errors of the inner estimator affect the bias of M̄n .
Recall that

M̄n �
1
n

n∑
k�1

g(m̃n(X0, k)),

and by Lemma 2.1, the inner estimator m̃n(X0, k) has
a bias of order h2 and a variance of order (nhd)−1.
Proposition 3.1 shows that the bias and the variance
of m̃n(X0, k) affect the bias of M̄n . Specifically, the first
term on the RHS of (13) is contributed by the bias of the
inner estimator, while the second term is contributed
by its variance. Note that nhd in the denominator is
proportional to the expected number of samples in the
hypercube.
3.1.2. Asymptotic Variance. To analyze the variance of
M̄n , we first note that

Var(M̄n)�
1
n
Var[g(m̃n(X))]

+

(
1− 1

n

)
Cov(g(m̃n(X0, 1)), g(m̃n(X0, 2))). (14)

The variance term and the covariance term on the
RHS of (14) will be analyzed separately. To analyze
the variance term, we use the following lemma, whose
proof is provided in Section A.1 of the appendix.

Lemma 3.1. Suppose that the discontinuity set of g, de-
noted by Dg , satisfies Pr{m(X) ∈ Dg} � 0, and there exist
a constant C and an integer p > 0 such that |g(t)| 6 C |t |p .
Assume that m̃n(X) converges to m(X) in probability as
n→∞, and there exists some δ > 0 such that

sup
n

E[|m̃n(X)|2p+δ] <∞.

Then,

Var[g(m̃n(X))]�Var[g(m(X))]+ o(1).

Lemma 3.1 shows that under mild regularity con-
ditions, the variance of Var[g(m̃n(X))] comes mainly
from the variance of g(m(X)). The lemma can be
directly applied to the variance term in (14). Next, we
consider the covariance term. It turns out the covari-
ance term is always nonnegative, i.e.,

Cov[g(m̃n(X0, 1)), g(m̃n(X0, 2))] > 0, (15)

whose proof is provided in Section A.2.2 of the
appendix.

Moreover, as discussed below we also find an upper
bound of the covariance term. Since X0, 1 and X0, 2
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are independent, and are independent of {(Xk ,Yk), 1 6
k 6 n}, it can be verified that

nCov[g(m̃n(X0, 1)), g(m̃n(X0, 2))]

� n
{∫

D

∫
D

Cov(g(m̃n(x1)), g(m̃n(x2))) f (x1) f (x2) dx1 dx2

}
.

By the definition of the NW estimator, m̃n(x) is essen-
tially the sample average of Yk ’s whose associated Xk ’s
fall into a hypercube centered at x with a side length
h. Therefore m̃n(x1) and m̃n(x2) are dependent only if
the hypercubes, with the same side length h and cen-
tered at x1 and x2, respectively, have an intersection. It
can be shown that the volume of the intersection is of
order hd . We show in Section A.2.3 of the appendix that
if f (x) is bounded by a constant C1 for all x ∈D, then

nCov[g(m̃n(X0, 1)), g(m̃n(X0, 2))]

6 C1nhd

∫
D

Var[g(m̃n(x))] f (x) dx. (16)

Furthermore, we show in Section A.2.4 of the
appendix that if |g′′(t)| is bounded by a constant C2
and E[(g′(m(X)))4] <∞, then

nhd

∫
D

Var[g(m̃n(x))] f (x) dx

6 2
√
E[(g′(m(X)))4]E[Z4

n(X)]+
C2

2

2nhd
E[Z4

n(X)], (17)

where Zn was defined in (9).
Because supn E[Z4

n(X)] < ∞ by Assumption 1 and
nhd→∞ as n→∞, combining Equations (16) and (17),
we can see that when n is large enough,

nCov(g(m̃n(X0, 1)), g(m̃n(X0, 2)))
6 2C1(

√
E[(g′(m(X)))4]E[Z4

n(X)]+ 1).

Then, Var(M̄n) is of order n−1 by (14). This result is
summarized in the following proposition.

Proposition 3.2. Suppose that Assumption 1 and con-
ditions in Lemma 3.1 are satisfied, and the results of
Lemma 2.1 hold for all x ∈D. Assume that there exist con-
stants C1 and C2 such that f (x) 6 C1 for all x ∈ D, and
|g′′(t)| 6 C2 for all t, and E[(g′(m(X)))4] <∞. Then,

Var(M̄n)�
Var[g(m(X))]+ cn + o(1)

n
, (18)

where cn satisfies 0 6 cn 6 2C1(
√
E[(g′(m(X)))4]E[Z4

n(X)]
+ 1) <∞ when n is large enough.

Proposition 3.2 shows that the variance of M̄n is of
order n−1. It turns out that the covariance term on the
RHS of (14) does not affect the order of the variance,
although it may inflate the variance by a factor that is
bounded by a constant.

3.1.3. Asymptotic Mean Squared Error. Combining
the results of Propositions 3.1 and 3.2, we immediately
establish the asymptotic MSE of M̄n , which is summa-
rized in the following theorem.

Theorem 3.1. Suppose that Assumption 1 and conditions
in Lemma 3.1 are satisfied, and the results in Lemma 2.1
hold for all x ∈ D. Assume that there exist constants C1
and C2 such that f (x) 6 C1 for all x ∈D, and |g′′(t)| 6 C2
for all t. Further assume that the following conditions are
satisfied:

(a) The function g( · ) is thrice differentiable with a
bounded third-order derivative.

(b) The random variables g′(m(X))B(X), g′′(m(X))
B2(X), g′′(m(X))V(X) and (g′(m(X)))4 have finite
expectations.
Then, the MSE of M̄n is

MSE(M̄n)

�

(
E[g′(m(X))B(X)]h2

+
E[g′′(m(X))V(X)]

2nhd

)2

+
Var[g(m(X))]+ cn

n
+ o

((
h2

+
1

nhd

)2

+
1
n

)
, (19)

where cn satisfies 0 6 cn 6
2C1(

√
E[(g′(m(X)))4]E[Z4

n(X)] + 1) < ∞ when n is large
enough.

3.2. Analysis for Hockey Stick and Indicator
Functions

Theorem 3.1 establishes the asymptotic MSE of M̄n
when g is a smooth function. In this subsection, we
consider an extension to the cases of hockey-stick func-
tions and indicator functions.

We note that such an extension is not straightfor-
ward, because the presence of nondifferentiable or dis-
continuous points in g violates the critical conditions
required by Theorem 3.1. To revolve these technical
issues, more elaborate analysis and additional regu-
larity conditions are required. In particular, we sum-
marize in Theorems 3.2 and 3.3 the asymptotic MSEs
of the kernel estimators corresponding to the hockey-
stick function and the indicator function, respectively.
Proofs of these theorems and lengthy discussions of
the additional regularity conditions are provided in
Section EC.1 of the e-companion.

Theorem 3.2. Let g(t) � t+ and M̄n be the corresponding
kernel estimator. Suppose that m(X) has a continuous and
bounded density in a neighborhood of 0, Assumption 1 is
satisfied, the results in Lemma 2.1 hold for all x ∈ D, and
E(|B(X)|) <∞. Assume that f (x) is bounded from above by
a constant C1 for all x ∈D, and there exists some δ > 0 such
that

sup
n

E[|m̃n(X)|2+δ] <∞.
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Then, under some additional regularity conditions,4 the
MSE of M̄n is

MSE(M̄n)

�

(
E[B(X) ·1{m(X)>0}]h2

+ fm(0)E[V(X) |m(X)�0] 1
2nhd

)2

+
Var[m(X) ·1{m(X)>0}]+ cn

n
+ o

((
h2

+
1

nhd

)2

+
1
n

)
,

where fm denotes the density of m(X), and cn satisfies 0 6
cn 6 C1E[Z2

n(X)] <∞.

Theorem 3.2 shows that even in the presence of a
nondifferentiable point, the asymptotic MSE is of the
same order as that for a smooth function.

Theorem 3.3. Let g(t) � 1{t>0} and M̄n be the correspond-
ing kernel estimator. Suppose that m(X) has a continuous
and bounded density in a neighborhood of 0, the results of
Lemma 2.1 hold for all x ∈D. Assume that f (x) is bounded
from above by a constant C1 for all x ∈ D, and there exists
some δ > 0 such that

sup
n

E[|m̃n(X)|δ] <∞.

Then, under the same additional regularity conditions as in
Theorem 3.2, the MSE of M̄n is

MSE(M̄n)�
(

fm(0)E[B(X) |m(X)� 0]h2

− 1
2

∫ ∞

−∞
y1∂y2

p2(y1 , 0) dy1
1

nhd

)2

+
Var[1{m(X)>0}]

n

+ o
((

h2
+

1
nhd

)2

+
1+ nhd+2

n

)
,

where p2 denotes the joint density of (V(X),m(X)).

Theorem 3.3 establishes both the asymptotic bias and
variance of the kernel estimator when g is an indicator
function. The asymptotic bias has the same order as
that for a smooth function. However, compared to the
cases when g is a smooth or a hockey stick function,
its asymptotic variance is slightly different. In this case,
the contribution of the covariance term to the variance
of the estimator is o(1+ nhd+2), while it is O(1) when g
is a smooth or a hockey-stick function.
If we let h �O(n−1/(d+2)), it can be seen that the contri-

bution of the covariance term is asymptotically smaller
than O(1). In other words, with appropriate selection
of h, the covariance term does not inflate the asymp-
totic variance of the estimator.

3.3. Optimized Mean Squared Error
With Theorems 3.1–3.3, we can analyze the optimal
rate of convergence of M̄n for a given computational
budget. In many practical problems, for instance, risk
measurement of financial portfolios (Gordy and Juneja
2010, Liu and Staum 2010), computational effort is pri-
marily spent in generating samples of (X,Y) (espe-
cially Y). We refer to this computational effort as
sampling effort, and the corresponding computational
budget as sampling budget. In this section, we ignore
the effort required for computing the estimator given
the samples of (X,Y), andmainly focus on the relation-
ship between the rate of convergence and the sampling
budget. The issue of computing the estimator shall be
discussed in detail in Section 4.

For all three different types of functions g, we can
see that the dominant term of the MSE of M̄n is(

ah2
+

b
nhd

)2

+
cn

n
,

where cl 6 cn 6 cu ; a, b, cl > 0, and cu > 0 are constants.
Without loss of generality, let the computational

effort required to generate a sample of (X,Y) be 1.
Then, we have Γ � n, where Γ denotes the total sam-
pling budget. We let Γ→∞ to analyze the asymptotic
rate of convergence of the estimator M̄n with respect to
the sampling budget. Then, the dominant term of the
MSE of M̄n can be written as

a2h4
+

2ab
Γhd−2 +

b2

Γ2h2d
+

cn

Γ
.

It can be verified that (see Section EC.2.3 of the e-
companion for a detailed derivation) the optimal rate
of convergence of the MSE then equals

Γ−min(1, 4/(d+2)) ,

and the optimal h is of order Γ−1/(d+2).
An observation from the above analysis is that when

the dimension of X is one or two, i.e., d � 1, 2, the opti-
mal rate of convergence is actually Γ−1, which is the
same as that for a typical sample mean estimator of
an ordinary expectation. However, when the dimen-
sion becomes higher, the rate of convergence of the ker-
nel estimator becomes slower, in contrast to the nested
simulation approach where the rate of convergence is
insensitive to the dimension of X.

A major difference between the nested simulation
approach and the kernel approach is on the bias, while
their variances are both inversely proportional to the
number of outer-level observations. The order of the
asymptotic bias of the nested simulation approach
depends solely on the number of samples used in the
inner-level simulation, no matter how large the dimen-
sion d is. However, for the kernel approach, the bias
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depends on both the bias and variance of the inner esti-
mators. When d becomes larger, either the bias or the
variance of the inner estimator becomes larger. There-
fore the rate of convergence of the kernel approach
deteriorates as d increases.

Compared to nested simulation estimators that con-
verge at a rate of Γ−2/3 (see Lee 1998, Gordy and Juneja
2010), the kernel estimators have the same or faster
rates of convergence when d 6 4, and slower rates of
convergence when d > 4.
In a more general setting where different numbers of

inter- and outer-samples are used in the kernel estima-
tor, asymptotic result on rate of convergence follows in
a similar manner. In particular, for the estimator M̄N, n , l
in (8), the dominant term of its asymptotic MSE is(

ah2
l +

b
nhd

l

)2

+
v1

n
+

v2

N
,

for some constants a, b, v1, and v2. Given a sampling
budget Γ � (N + l)γ1 + nγ2, where γ1 and γ2 denote
the sampling costs for X and Y, respectively, it can be
verified that the optimal rate of convergence of theMSE
is again

Γ−min(1, 4/(d+2)).

However, it should be noted that the optimal hl is dif-
ferent from that in the previous setting.

4. Implementation Issues and
Practical Algorithms

In the asymptotic analysis, we have focused mainly
on computational budget for sampling, while ignor-
ing the effort required to compute the NW kernel esti-
mator. For some other approaches such as the nested
simulation approach, the effort required to compute
estimators may not be an issue and can be ignored.
For instance, given n1 outer-level samples, for each of
which n2 inner samples are generated, computing a
nested estimator typically requires O(n1n2) operations,
which can be done very quickly, and thus the compu-
tational effort is usually ignored. However, with the
same sampling budget, one generates n � n1n2 samples
of (X,Y) in the kernel smoothing approach. Because
computing m̃n(x) requires O(n) operations for each x,
it can be checked that directly calculating M̃n requires
O(n2) operations in total. When sample size n is large,
which is often the case in practice, computation of
the NW kernel estimator may be a bottleneck in the
implementation.
To address this computational issue, one direction

is to propose fast algorithms for computing the NW
kernel estimator. Indeed, when d � 1, fast algorithms
have been proposed in the literature of computational
statistics based on sorting the samples; see Seifert et al.
(1994). For completeness, we briefly describe one of

these algorithms with complexity of O(n log n) in Sec-
tion E.C.2.6 of the e-companion. However, O(n log n)
algorithms are not available for d > 2. When d > 2,
by sorting the samples along one of the d dimensions
and applying similar ideas as in Section EC.2.6, we can
develop an algorithm that requires O(n2h) operations,
where h is the bandwidth. When the bandwidth h is
optimally chosen as O(n−1/(d+2)), the complexity of the
algorithm is O(n(2d+3)/(d+2)).

When d becomes larger, the complexity of the algo-
rithm becomes closer to O(n2), whichmakes the imple-
mentation practically infeasible. We found that, on a
personal computer, computing the NW estimator is
hardly affordable when d � 5 and n � 105. To circum-
vent this difficulty, a practical solutionmay be develop-
ing an approximate algorithm that enables fast imple-
mentation. To this end, we consider a variant of kernel
smoothing, the so-called k-nearest neighbor (kNN),
which can be implemented more efficiently.

k-Nearest Neighbor Estimator
The kNN estimator can be viewed as a special case
of the NW estimator with a variable bandwidth. Intu-
itively, when estimating m(x) � E[Y |X � x], both the
NW estimator and the kNN estimator take the average
of the samples of Y, the associated X values of which
lie within a neighborhood of x. These two estima-
tors are different in terms of choosing the “neighbor-
hood.” The NW estimator chooses a hypercube with
side length of h and centered at x as the neighborhood,
while the kNN estimator chooses the set of k nearest
neighbors as the neighborhood where the term “near-
est” is defined under certain distance metric, e.g., the
Euclidean distance.

Suppose that the distance between two samples of X
is measured by the Euclidean distance metric. Then, a
kNN estimator of m(x) is

m̃knn
n (x)�

1
n

n∑
i�1

Wki(x)Yi ,

where the weight sequence {Wki , 1 6 i 6 n} is defined
by the set of indices

Jx � {i: Xi is one of the k-nearest observations to x}

such that for i � 1, . . . , n,

Wki �

{
n/k if i ∈ Jx

0 otherwise.

Then, a kNN estimator of the quantity of interest, α, is

M̃knn
n �

1
n

n∑
k�1

g(m̃knn
n (Xk)).

One of the most attractive features of the kNN esti-
mator is that it offers computational advantages. Typi-
cally, k is chosen to be an integer that is several orders
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of magnitude smaller than n. Compared to the NW
estimator that requires almost O(n2) operations when
d is large, the kNN estimator can be computed with
O(n log n) operations using fast search algorithms; see,
e.g., Remark 3.3 of Belomestny et al. (2010). With the
help of fast kNN search algorithms, the kNN estimator
is computationally tractable for reasonably large sam-
ple sizes; see more discussion in Härdle (1990). Imple-
mentable packages of kNN search algorithms have
been provided by several scientific computing software
packages such as Matlab and R.

5. Decomposition Portfolio
Risk Measurement

As an important application of nested estimation, port-
folio risk measurement has received increasing atten-
tion recently. To illustrate how portfolio risk measure-
ment fits into the framework of nested estimation, we
first consider an option portfolio as an example in
Section 5.1.

5.1. A Motivating Example
Consider a portfolio of options that are written on d
different stocks and have the same maturity date T.
Let {X1

t , . . . ,X
q
t } denote price dynamics of the underly-

ing stocks at time t > 0. For each stock X i , i � 1, . . . , q,
the portfolio includes a vanilla European call option
with a terminal payoff (X i

T −K i)+, and an exotic option
(in particular, a barrier option) with a terminal payoff
(X i

T − Si)+1{max06t6T X i
t6U i }, where K i , Si , and U i are con-

stants specified in the option contracts.
A risk manager is interested in the probability that

the portfolio loss at a future time τ is larger than or
equal to a given threshold y0, where τ < T. Note that
the portfolio loss at time τ can be written as L �V0−Vτ,
where V0 and Vτ denote the portfolio values at time 0
and time τ, respectively, and V0 is a known constant.
Suppose that stock prices evolve according to the

Black-Scholes model, i.e.,

X i
t � X i

0 exp((µi − σ2
i /2)t + σiB

i
t), i � 1, . . . , q ,

where µi is set as the rate of return of the ith stock
if t 6 τ and a constant risk-free rate r if t > τ,5 and
{B i

t , . . . ,B
q
t } are correlated standard Brownianmotions.

Let Fi
τ denote the filtration generated by {X i

t , 06 t 6 τ}.
By the derivative pricing theory (Duffie 1996), Vτ is
given by

Vτ � e−r∆
d∑

i�1
(E[(X i

T −K i)+ |Fi
τ]

+E[(X i
T − Si)+1{max06t6T X i

t6U i } |Fi
τ])

� e−r∆
d∑

i�1
(E[(X i

T −K i)+ |X i
τ]

+E[(X i
T − Si)+1{max06t6T X i

t6U i } |X i
τ ,max

06t6τ
X i

t]), (20)

where ∆� T − τ, and the second equality follows from
the Markovian property of {X i

t , t > 0}.
We define a vector of risk factors by

X �

(
X1
τ , . . . ,X

q
τ ,max

06t6τ
X1

t , . . . ,max
06t6τ

Xq
t

)
,

and a random variable

Y � V0 − e−r∆
q∑

i�1
[(X i

T −K)+ − (X i
T −K)+1{max06t6T X i

t6U}].

Then, the portfolio loss L � V0 −Vτ can be written as

L � E[Y |X],

and the quantity of interest is

Pr(L > y0)� E[g(E(Y |X))],

where g(x) � 1{x>y0}. The kernel smoothing estimator
proposed earlier in this paper can then be applied to
estimate Pr(L > y0).
In this example, the dimension of the risk factors X

is d � 2q. For large-scale portfolios held by investors, in
practice, q could be very large, e.g., q � 100 or above.
Based on the asymptotic results derived in Section 3, a
direct application of the kernel smoothing approach to
these cases is not practical, because the dimensions are
much higher than the range where the kernel estima-
tors are competitive.

We now examine the example in greater detail. By
(20), we note that the quantity of interest can also be
written as

Pr(L > y0)� E
[
g
(
V0 −

d∑
i�1

E(Y1, i |X i
τ)

−
d∑

k�1
E(Y2, k |Xk

τ ,max
06t6T

Xk
t )
)]
, (21)

where Y1, i � e−r∆(X i
T − K i)+ and Y2, k � e−r∆(Xk

T − Sk)+ ·
1{max06t6T Xk

t 6Uk }.
Then, the kernel smoothing approach can be applied

to estimate each of the conditional expectations on the
RHS of (21). Note that the dimensions of the risk fac-
tors associated with these conditional expectations are
low, either one for the case of E(Y1, i |X i

τ)) or two for
the case of E(Y2, k |Xk

τ ,max06t6T Xk
t ). Therefore the ker-

nel smoothing approach is expected to perform well
based on the asymptotic analysis in previous sections.

In other words, while the dimension of all risk fac-
tors associated with the entire portfolio is typically
high, the dimensions of the risk factors associated
with individual options are often low. This observation
motivates us to apply the kernel smoothing approach
to individual options. By doing so, the effective dimen-
sion of the problem is reduced. In the following sub-
section, we describe this decomposition technique for
more general settings.
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5.2. Decomposition
A risk manager is often interested in measuring the
downside risk of a portfolio, which can be represented
by E[g(E[Y |X])] in many cases, where Y is the ran-
dom portfolio loss at a maturity date, g depends on
the risk measure being used, and X � (X1 , . . . ,Xd) is
a d-dimensional random vector representing risk fac-
tors at a future time horizon up to which we measure
the risk. The problem then fits into the framework of
nested estimation naturally.
While the total number of risk factors associated

with the entire portfolio is usually large, the value
of each financial instrument in the portfolio often
depends on only a small number of risk factors.
For instance, statistics of the World Federation of
Exchanges (2014) show that more than 90% of options
traded on exchanges worldwide in 2013 are written on
a single underlying asset that may be a stock, a stock
index, an ETF, an exchange rate, or a commodity. Typ-
ically, the loss of a portfolio is a linear combination
of losses of individual financial instruments. Therefore
we may divide these instruments into groups, each
depending on only a small number of common risk
factors. In particular, we may rewrite E[Y |X] as

E[Y |X]�
l∑

i�1
E[Y i |X]�

l∑
i�1

E[Y i |X j , j ∈Bi], (22)

where l is the number of groups, Bi is a subset of
{1, . . . , d}, Y i denotes the total loss of the financial
instruments in group i, which depends on only the
risk factors {X j , j ∈Bi}, and Y i satisfies ∑l

i�1 Y i � Y. It
should be pointed out thatBi’s are not necessarily dis-
joint. For instance, the first group may depend on (X1 ,
X2 ,X3), while the second may depend on (X3 ,X4 ,X5).
Here, we want to emphasize that the decomposition of
risk factors in (22) is possible not because of specific
models postulated for X, but because of the unique
structure of financial portfolios, and this structure is
independent of models of X.

Based on the representation in (22), we apply the ker-
nel smoothing approach to estimate E[Y i |X j , j ∈Bi]
for i � 1, . . . , l. Denoted by m̃ni(x j , j ∈ Bi), the ker-
nel estimator of E[Y i |X j , j ∈ Bi] evaluated at X j � x j ,
j ∈Bi . As recommended in Section 4, m̃ni is chosen to
be the NW estimator when the number of elements in
Bi is equal to 1, while it is chosen to be the kNNestima-
tor otherwise. Then, an estimator of α � E[g(E[Y |X])]
is

M̃r
n �

1
n

n∑
k�1

g
( l∑

i�1
m̃ni(X

j
k , j ∈Bi)

)
,

where {X j
k , j∈Bi} denotes the kth sample of {X j , j∈Bi}.

Define de � max{|B1 |, . . . , |Bl |}, where |Bi | denotes
the number of elements in Bi . We call de the effec-
tive dimension. For many equity portfolios in practice,

effective dimension de is often much smaller than the
actual dimension d.

In summary, by decomposing a high-dimensional
problem into a number of low-dimensional ones, the
kernel smoothing approach may be a viable tool for
portfolio risk measurement problems. The decomposi-
tion allows for general dependence structures of risk
factors and works for portfolios that are comprised of
a wide range of financial instruments; see Remark 2.
Furthermore, the decomposition idea may apply to
other smoothing approaches as well. For instance,
when using stochastic kriging, instead of building a
metamodel for a high-dimensional response surface,
one may build metamodels for a number of low-
dimensional surfaces. Whether such a decomposition
offers benefits to stochastic kriging is yet to be con-
firmed, and opens up a direction for future research.

Remark 2. As shown in Section 5.1, the decomposition
technique applies to portfolios with both vanilla and
exotic options. In general, if the payoff of a financial
instrument in the portfolio is path-dependent, aug-
mented risk factors may be appropriately defined to
enable the decomposition. For instance, consider a
portfolio that includes an Asian call option written
on an asset Xt within the Black-Scholes model. Let
((1/T) ∫T

0 Xt dt − κ)+ be the option payoff at maturity
with κ being the strike price. Then, at time τ, the option
value depends on Xaug , ∫τ0 Xt dt and Xτ. By adding
Xaug as an augmented risk factor, the decomposition
proceeds in the same manner as the vanilla case.

The decomposition also adapts to complex pricing
models, such as SV models that are popular, in prac-
tice; see, e.g., Fouque et al. (2000) for details. When SV
models are used, closed-formpricing formulasmay not
exist and simulation is often a preferred pricing tool.
In such cases, the volatility (or variance) processes may
be added as augmented risk factors, and the decom-
position then proceeds with the augmented set of risk
factors.

Remark 3. Although not common, in practice, it is pos-
sible that a portfolio may include high-dimensional
instruments such as European swaptions with dimen-
sions larger than 20. In such cases, one may use
nested simulation in estimating the values of high-
dimensional instruments, while using the kernel
smoothing approach for other low-dimensional ones.
This may perform better than a pure nested simula-
tion procedure or a pure kernel smoothing approach.
A thorough understanding of this hybrid method is of
practical interest and deserves further investigation.

6. Numerical Experiments
We consider two examples. The first one is designed to
examine the impact of dimensionality on performances
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of different estimators, while the second one is a rea-
sonably large and representative example with 200 risk
factors, aiming to demonstrate the practical value of
the proposed kernel smoothing approach in conjunc-
tion with the decomposition technique.

6.1. Impact of Dimensionality
Consider a portfolio that consists of options written
on d stocks whose price dynamics follow the Black-
Scholes model. In the portfolio, there are three call
options written on each stock with different strike
prices. For simplicity, assume that stock returns are the
same, denoted by µ, while risk-free interest rate is r.
Price dynamics of the stocks Xt � (X1

t , . . . ,X
q
t ) evolve

according to

dX i
t � µ

′X i
t dt +

d∑
j�1
σi jX

i
t dB i

t , i � 1, . . . , q , (23)

where µ′ is chosen to be µ under the real-world proba-
bility measure, while it is chosen to be r under the risk-
neutral probability measure. Here, Bt � (B1

t , . . . ,B
q
t ) is

a standard d-dimensional Brownian motion, and with-
out loss of generality, we let Σ� (σi j) be a subtriangular
matrix. Then,

X i
t � X i

0 exp
((
µ′− 1

2

i∑
j�1
σ2

i j

)
t +

i∑
j�1
σi jB

j
t

)
, i � 1, . . . , q.

We assume that the maturities of all the options in
the portfolio are the same, denoted by T. We want to
measure the portfolio risk at a future time τ (τ < T).
In the simulation, we first simulate Xτ under the real-
world probability measure and then simulate XT under
the risk-neutral probabilitymeasure. Note that the (dis-
counted) payoff of the portfolio at time T is a known
function of XT , denoted by VT(XT). We let a constant V0
denote the value of the portfolio at time 0, which can
be calculated by the Black-Scholes formula. At time τ,
the portfolio loss given Xτ is

L(Xτ)� E[V0 −VT(XT) |Xτ].

Note that the dimension of the problem is d � q for
this example. We want to measure the portfolio risk
that is represented by

α � E[g(L(Xτ))],

where we consider three cases: a quadratic function
g(t) � t2, a hockey stick function g(t) � (t − y0) · 1{t>y0},
and an indicator function g(t) � 1{t>y0}, respectively.
Here, y0 is a prespecified threshold. Parameters of the
model are set as follows: X1

0 � · · · � Xq
0 � 100, T � 1,

τ � 1/50, µ � 8%, r � 5%, and y0 � 20%V0. Strike prices
of the three call options are K � 90, 100, 110, respec-
tively, and the elements of the volatility matrix Σ are
randomly selected.

The kernel smoothing approach can be applied to
estimate α. To measure its performance, we need the
true value of α as a benchmark. Note that in this exam-
ple, the analytical expression of L(Xτ) can be derived
using the Black-Scholes formula, and thus we can gen-
erate a large amount (109) of samples of Xτ and use
sample mean of g(L(Xτ)) to accurately approximate α.
We then use this accurate estimate as a benchmark to
measure the performance of an estimators by its rel-
ative root mean squared error (RRMSE), defined as
the percentage of the root MSE to the benchmark. All
RRMSEs reported are estimated based on 1,000 inde-
pendent replications.

We compare the kernel smoothing approach to
the nested simulation approach of Gordy and Juneja
(2010). For both approaches, the sampling budget is
fixed by letting the total number of inner-level samples
be 106. Note that the performance of the nested simu-
lation approach depends on the number of inner-level
samples per each outer-level sample. We try different
numbers of inner-level samples and choose the one that
yields the best performance for the nested simulation
approach. We then compare this “best-possible” per-
formance to the kernel smoothing approach. It should
be emphasized that for practical problems, the opti-
mal number of inner-level sample per each outer-level
sample is unknown, and thus the best-possible per-
formance of the nested simulation estimator may be
difficult to achieve.

When implementing the NW and kNN estimators
for d > 2, we fix the sampling budget as 106 inner-
level samples, and set the number of outer-level sam-
ples to be l � 105 as in (8), each with 10 inner-level
samples. Here, 105, rather than 106, outer-level sam-
ples are preferred mainly due to the computational
advantages it offers, because computational burden
is affected mainly by the number of outer-level sam-
ples, and thus fewer outer-level samplesmay accelerate
the implementation considerably. When d � 1, we set
n1 � 106 and n2 � 1, because a very fast algorithm as in
Section EC.2.6 of the e-companion.

Numerical results for the NW and kNN estimators
are presented in Sections 6.1.1 and 6.1.2, respectively.
Section 6.1.3 reports the numerical results for the ker-
nel smoothing approachwhen the decomposition tech-
nique in Section 5 is applied.

6.1.1. Nadaraya-Watson Estimator. When using the
NW estimator, we apply the well-known leave-one-out
cross-validation procedure to select a good bandwidth
among several prespecified candidates; see, e.g., Li and
Racine (2007). Numerical results confirm that theMSEs
of the NW estimators decay in rates that are consis-
tent with the theoretical results proved in Section 3 for
d � 1, 2, and 4. Details are provided in Section EC.2.7
of the e-companion.
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Table 1. Comparison of RRMSE (%) for the NW Estimator
and Nested Simulation Estimator

NW estimator Nested

d � 1
Quadratic 2.8 7.3
Hockey-stick 6.2 17.4
Indicator 6.0 12.7

d � 2
Quadratic 3.3 7.5
Hockey-stick 7.9 16.3
Indicator 5.7 11.4

d � 4
Quadratic 2.4 7.3
Hockey-stick 5.7 20.9
Indicator 5.9 13.9

Comparison results for the NW estimators and
the nested simulation estimators are summarized
in Table 1 for d � 1, 2, and 4. From the table, it can
be seen that the NW estimator outperforms the nested
simulation estimator, which coincides with the theoret-
ical results that theMSE of the NW estimator may have
a faster rate of convergence when d is relatively low.
For instance, when d � 4 and g is a hockey-stick func-
tion, the RRMSE ratio of the nested estimator to the
NW estimator is 3.6. It implies that to achieve the same
level of accuracy, sampling budget of the nested sim-
ulation approach has to be larger than 3.63 ≈ 46 times
of that of the NW estimator, because RRMSEs of the
nested simulation estimator converge to zero in a rate
of n−1/3.
While numerical results indicate that the NW esti-

mator may have better accuracy than the nested sim-
ulation estimator when d 6 4, we found it difficult to
compare their performances for larger d, because the
computational burden of the NW estimator increases
in d, and it is hardly affordable to run 1,000 replica-
tions when d > 5. The computational time of a single
replication increases from 28 minutes to more than 1
hour when the dimension increases from 4 to 5 using
Matlab running on a PC with 2.4 GHz Intel Xeon CPU.
6.1.2. k-Nearest Neighbor Estimator. Comparison re-
sults for the kNN estimator and the nested simulation
estimator are summarized in Table 2, where we vary
the smoothing parameter k to illustrate its impact on
the performance of the kNN estimator. From the table,
we can see that the kNN estimator may outperform
the nested simulation estimator for dimensions as large
as 20. For instance, when g is a quadratic function,
d � 10 and k � 100, the RRMSE ratio of the nested simu-
lation estimator to the kernel estimator is 4. Taking into
account that the convergence rate of the RRMSE of the
nested simulation approach is n−1/3, the sample size of
the nested simulation approach has to be as large as
43 � 64 times of that of the kNN estimator to achieve
the same level of accuracy.

Table 2. Comparison of RRMSE (%) for the kNN Estimator
and Nested Simulation Estimator

kNN

k 50 100 200 300 Nested

d � 2 Quadratic 14.1 6.7 3.0 2.0 7.5
Hockey-stick 27.7 13.7 7.3 5.6 16.3
Indicator 15.9 8.8 6.3 5.5 11.4

d � 4 Quadratic 11.3 4.2 1.9 3.3 7.3
Hockey-stick 27.0 11.1 6.2 8.0 20.9
Indicator 17.1 8.5 5.4 5.2 13.9

d � 8 Quadratic 8.6 2.0 4.1 6.2 7.2
Hockey-stick 22.4 7.3 9.1 12.9 21.2
Indicator 15.3 6.5 5.3 6.4 14.6

d � 10 Quadratic 7.3 1.8 5.2 7.2 7.2
Hockey-stick 20.3 6.6 11.5 15.8 22.1
Indicator 14.4 5.8 6.1 8.0 15.3

d � 20 Quadratic 5.7 2.7 7.0 9.1 7.0
Hockey-stick 18.6 8.3 18.0 23.7 25.3
Indicator 15.0 5.8 9.1 12.0 17.8

From Table 2, it can also be seen that while the
performance of the kNN estimator is affected by the
smoothing parameter k, it is reasonably good for a
number of k’s ranging from 100 to 300. To select a
reasonably good k, we use the leave-one-out cross-
validation procedure. However, it should be noted
that such cross-validation procedures lead to the same
smoothing parameter for different functions g, while
from numerical results, we note that different k’s may
be more appropriate for different functions g. How to
take into account the functions g in the selection of
smoothing parameters may deserve further investiga-
tion and is left as a topic for future research.

We note that computing the kNN estimator for large
d may require longer time than the nested simulation
estimator (roughly a fewminutes versus a few seconds
usingMatlab running on a PCwith 2.4 GHz Intel Xeon
CPU, 24 GB RAM). However, this is typically not an
issue, in practice, where sampling effort is typically of
major concern and dominates the effort required for
computing estimators, especially when the maturities
of financial instruments are long and risk factors follow
complex pricing models.
6.1.3. Effectiveness of Decomposition. For this exam-
ple, the problem of interest can be decomposed
into several one-dimensional ones after applying the
decomposition technique in Section 5. We compare
the k-nearest neighbor (kNN) estimator in conjunc-
tion with decomposition to the nested simulation esti-
mator, and the recent regression approach in Broadie
et al. (2015). To set basis functions for the regression
method, we use the popular weighted Laguerre poly-
nomials (see, e.g., Longstaff and Schwartz 2001) on
individual risk factors up to an order of 4. Numeri-
cal results are summarized in Table 3, where the three
columns for each approach represent the relative errors
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Table 3. Comparison of RRMSE (%) for the Kernel
Smoothing Approach, the Nested Simulation Approach,
and the Regression Approach

Kernel Nested Regression

d � 2 5.0 5.4 3.2 7.5 16.3 11.4 1.9 4.5 2.8
d � 4 2.9 5.4 2.4 7.3 20.9 13.9 1.8 5.3 3.3
d � 8 1.8 4.1 2.2 7.2 21.2 14.6 1.7 5.4 3.4
d � 10 1.6 3.9 2.3 7.2 22.1 15.3 1.7 5.5 3.5
d � 20 1.2 2.7 2.5 7.0 25.3 17.8 1.8 7.0 4.4

Note. For the kernel smoothing approach, the NW estimator is
applied with decomposition.

for quadratic, hockey-stick and indicator functions,
respectively. From the table, we can see that the kernel
smoothing approach in conjunction with decomposi-
tion works very well. Its relative errors range roughly
from 1% to6% for d � 2, 4, 8, 10, 20. It outperforms
the nested simulation approach significantly in terms
of accuracy, while having comparable computational
speed.
Compared to the regression approach, the kernel

smoothing approach has slightly higher relative errors
when the dimension is low, e.g., d � 2, 4. It turns out,
however, the kernel smoothing approach outperforms
the regression approach when the dimension is higher,
e.g., d �20, especiallywhen g is a hockey stick function.

6.2. A Representative Example
Consider a portfolio that is comprised of derivative
contracts written on q � 100 assets. We divide these 100
underlying assets into four groups with q′ � 25 assets
in each group. Suppose that underlying assets from
different groups are independent.
We assume that the assets in Groups 1–3 followmul-

tidimensional geometric Brownian motions (GBMs) in
the form of (23), while the assets in Group 4 follow a
multidimensional Heston’s SV model as in Dimitroff
et al. (2011). In particular, under this SV model for q′

assets, the price of the ith asset is governed by

dXi(t)� µiXi(t) dt +
√
νi(t)Xi(t) dBi(t),

dνi(t)� κi(θi − νi(t)) dt + ηi

√
νi(t)

· (ρi dBi(t)+
√

1− ρ2
i dB̃i(t)), i � 1, . . . , q′,

where νi(t) describes a mean-reverting variance pro-
cess with reversion rate κi , mean-level θi , volatility ηi ,
and initial value νi(0), B(t) � (B1(t), . . . ,Bq′(t)), and
B̃(t) � (B̃1(t), . . . , B̃q′(t)) are q′-dimensional Brownian
motions, and have correlation matrices Σ � (ρi j)16i , j6q′

and Iq′ , respectively, where Iq′ is an identitymatrixwith
size q′. In this model, B(t) and B̃(t) are independent,
and ρi is used to capture the correlation between the
price process and the variance process.

The portfolio is comprised of different types of
derivative contracts. Details are summarized as fol-
lows.

• Group 1 (GBM Model) and Group 4 (SV Model):
Written on each asset, there are European vanilla call
options.

• Group 2 (GBM Model): Written on each asset,
there are European vanilla call options and geomet-
ric Asian options with payoffs ((∏m

k�1 X(tk))1/m − K)+,
where K is the strike price.

• Group 3 (GBM Model): Written on each asset,
there are up-and-out call options with payoffs
(X(T) −K)+1{max06t6T X(t)6U} and down-and-out call
options with payoffs (X(T) −K)+1{min06t6T X(t)>H}.

Because closed-form pricing formulas for these
derivative contracts are available, we can obtain an
accurate estimate of the portfolio risk, and use this esti-
mate as a benchmark to examine the performances of
different estimators.

This portfolio involves d � 2q � 200 risk factors
in total, including underlying asset prices, stochastic
volatilities, running geometric averages, running max-
ima and minima up to the risk horizon. Our objective
is to measure the portfolio risk up to a time horizon τ�
3/50, where the maturities of all derivative contracts
are set to be 1. Parameters of the model are specified as
follows:

• For all assets under either GBM or SV models,
returns of the assets are set to be 8%, while risk-free
rate is 5%. Initial asset prices are set to be Xi(0) � 100.
Volatilities for assets in Groups 1–3 are set to be 15%,
40%, and 30%, respectively.

• For SV model, ρi � −0.3, κ � 3, ηi � 0.5, θi � 0.09,
and νi(0)� 0.09 for all i. Correlation between Bi(t) and
B j(t) is 0.3 if i , j.

• For each type of derivatives, we consider three
optionswith different strikes K �90, 100, 110. For Asian
options, m � 50 and tk ’s are evenly spaced in [0,T].

During the implementation, the SV model is simu-
lated with the Euler scheme with 200 time-steps; see
Dimitroff et al. (2011). When simulating the continu-
ously monitoring maximum and minimum for barrier
options, 200 time-steps are used and Brownian bridge
approximation is applied for any two adjacent time-
points; see Glasserman (2004, pp. 367–368) for details
of Brownian bridge approximations.

We compare the kernel smoothing estimator to the
nested simulation estimator with different settings,
and the regression estimator as in Broadie et al.
(2015) with weighted Laguerre polynomials up to an
order of 4 as basis functions. The decomposition tech-
nique and the leave-one-out cross-validation proce-
dure for selecting smoothing parameters are applied
when using the kernel smoothing approach. From the
comparison results in Table 4, we find that the kernel
smoothing estimator (kNN) significantly outperforms
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Table 4. Comparison of RRMSE (%) for the Kernel Smoothing Estimator, Nested Simulation Estimators,
and the Regression Estimator

Nested simulation kNN Regression

n � 103 10× 100 20× 50 40× 25 50× 20
Quadratic 53.6 47.2 60.8 68.4 9.2 266
Hockey-stick 143.3 126.5 141.5 162.5 27.3 572
Indicator 99.9 83.6 74.8 81.4 22.4 155

n � 104 50× 200 100× 100 200× 50 400× 25
Quadratic 24.4 21.6 27.6 48.6 2.4 27.2
Hockey-stick 63.0 53.4 60.1 107.1 9.1 58.2
Indicator 46.6 34.5 34.9 54.0 7.2 24.4

n � 105 200× 500 400× 250 1,000× 100 2,000× 50
Quadratic 12.1 9.2 12.9 24.0 1.0 3.2
Hockey-stick 30.3 23.7 28.3 50.2 2.9 6.0
Indicator 21.5 16.7 17.1 28.1 2.3 3.1

Notes. For hockey-stick and indicator functions, y0 is set to be the 90% quantile of the portfolio loss distribution. The
setting k × j for nested simulation estimators means that k outer samples with inner sample size being j.

the nested simulation estimators. For instance, when g
is a quadratic function and sampling budget is n � 105,
the smallest relative error achieved by the nested simu-
lation estimator is 8.8%, while relative error of the kNN
estimator is 1%. Given that relative error of nested sim-
ulation estimators converges to zero in a rate of n−1/3,
sampling budget for the nested simulation estimator
needs to be as large as almost 700(≈ 8.83) times of the
kernel smoothing estimator to achieve the same level
of accuracy.
We also find that the kernel smoothing approach

may outperform the regression approach significantly,
especially when the sampling budget is low. An obser-
vation that is worth mentioning is that RRMSE of the
regression estimator decreases in a faster rate when
sampling budget increases. Despite its slower rate of
convergence, the kernel estimator has smaller RRM-
SEs for all cases with sampling budgets as large as 105,
compared to the regression estimator.

7. Conclusions
We have studied a simple local smoothing approach
for nested estimation, the kernel smoothing approach,
and analyzed its asymptotic properties. While it is
not surprising that the kernel smoothing approach is
preferable only for low-dimensional problems, we have
shown that it may serve as a viable tool for portfo-
lio risk measurement where the dimension of the risk
factors is usually very high. The key to this success-
ful application of the kernel smoothing approach is
an observation that a high-dimensional portfolio risk
measurement problem can often be decomposed into a
sequence of low-dimensional ones for which the kernel
smoothing approach works very well, both theoreti-
cally and practically.
We have demonstrated the efficiency of the kernel

smoothing approach in conjunction with the decom-
position technique. For a portfolio risk measurement

example with 200 risk factors, the kernel smoothing
approach outperforms existing approaches in the liter-
ature, suggesting that the kernel smoothing approach
may be a promising addition to the arsenal of portfolio
risk measurement for practical problems.
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Appendix
A.1. Proof of Lemma 3.1
Since m̃n(X) converges to m(X) in probability, by the con-
tinuous mapping theorem (Durrett 2005), g(m̃n(X)), and
g2(m̃n(X)) converge in probability to g(m(X)) and g2(m(X)),
respectively.

Note that g2(m̃n(X)) 6 C2 |m̃n(X)|2p . Then, g2(m̃n(X)) is
uniformly integrable, which is implied by the assumption
that supn E[|m̃n(X)|2p+δ] for some δ > 0. Thus g(m̃n(X)) is
also uniformly integrable. Because convergence in probabil-
ity combined with uniform integrability implies convergence
in mean, we have

E[g2(m̃n(X))]� E[g2(m(X))]+ o(1) and
E[g(m̃n(X))]� E[g(m(X))]+ o(1).

Then, the conclusion of Lemma 3.1 follows from:

Var[g(m̃n(X))]� E[g2(m̃n(X)) − g2(m(X))]+Var[g(m(X))]
− {E2[g(m̃n(X))] −E2[g(m(X))]}

�Var[g(m(X))]+ o(1).

A.2. Proofs of Equations
A.2.1. Asymptotic Order of the Third Term on the RHS of

Equation (10).
We first note that����(√nhd)3

g′′′(Ξ)
6 (m̃n(X) −m(X))3

����
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6
C
6 |[
√

nhd(m̃n(X) −m(X))]3 | � C
6 |Z

3
n(X)|

if g′′′(t) is bounded by a constant C for all t. Note that
E[|Zn(X)|3] <∞ by Assumption 1. Then,

E
[

g′′′(Ξ)
6 (m̃n(X) −m(X))3

]
� O

(
1

(
√

nhd)3

)
.

In other words, the third term on the RHS of Equation (10) is
of order (nhd)−3/2.

A.2.2. Proof of Equation (15).
Let F � σ{(Xi ,Yi), 1 6 i 6 n} be the σ-algebra generated
by {(Xi ,Yi), 1 6 i 6 n}. Note that the dependence between
g(m̃n(X0, 1)) and g(m̃n(X0, 2)) comes from m̃n , and {X0, i , 1 6
i 6 n} are independent. Then, g(m̃n(X0, 1)) and g(m̃n(X0, 2))
are independent conditional on F. Therefore

Cov[g(m̃n(X0, 1)), g(m̃n(X0, 2))]
�E(E[g(m̃n(X0, 1))g(m̃n(X0, 2)) |F])−E2(E[g(m̃n(X0, 1)) |F])
�E(E[g(m̃n(X0, 1)) |F]E[g(m̃n(X0, 2)) |F])−E2(E[g(m̃n(X0, 1)) |F])
�E[(E[g(m̃n(X0, 1)) |F])2]−E2(E[g(m̃n(X0, 1)) |F])
�Var(E[g(m̃n(X0, 1)) |F])> 0.

A.2.3. Proof of Equation (16).
Let H(x1) and H(x2) denote hypercubes with side length h
and centered at x1 and x2, respectively.

nCov[g(m̃n(X0,1)), g(m̃n(X0,2))]

� n
{∫

D

∫
D

Cov(g(m̃n(x1)), g(m̃n(x2))) f (x1) f (x2)

·1{x2∈H(x1)} dx1 dx2

}
6

n
2

{∫
D

∫
D

(
Var[g(m̃n(x1))]+Var[g(m̃n(x2))]

)
f (x1) f (x2)

·1{x2∈H(x1)} dx1 dx2

}
� n

∫
D

∫
D

Var[g(m̃n(x1))] f (x1) f (x2) ·1{x2∈H(x1)} dx1 dx2 ,

(A.1)

� n
∫
D

Var[g(m̃n(x1))] f (x1)
∫
D

f (x2)1{x2∈H(x1)} dx2 dx1 , (A.2)

where Equation (A.1) follows from symmetry, i.e., 1{x2∈H(x1)} �

1{x1∈H(x2)}, and∫
D

∫
D

Var[g(m̃n(x1))] f (x1) f (x2)1{x2∈H(x1)} dx1 dx2

�

∫
D

∫
D

Var[g(m̃n(x2))] f (x1) f (x2)1{x1∈H(x2)} dx1 dx2.

Because f (x) 6 C1 for all x ∈D, we have
∫
D

f (x2)1{x2∈H(x1)}
dx2 6 C1

∫
D

1{x2∈H(x1)} dx2 � C1hd . Then, Equation (16) follows
immediately from (A.2).

A.2.4. Proof of Equation (17).
By Taylor expansion,

nhd
∫
D

Var[g(m̃n(x))] f (x) dx

6 nhd
∫
D

E[(g(m̃n(x)) − g(m(x)))2] f (x) dx

� nhd
∫
D

E
[(

g′(m(x))(m̃n(x) −m(x))

+
1
2 g′′(ξ)(m̃n(x) −m(x))2

)2]
f (x) dx ,

where ξ lies between m(x) and m̃n(x).
Because |g′′(t)| 6 C2 for all t,

nhd
∫
D

Var[g(m̃n(x))] f (x) dx

6 2nhd
∫
D

(
E[(g′(m(x)))2(m̃n(x) −m(x))2]

+
C2

2

4 E[(m̃n(x) −m(x))4]
)

f (x) dx (A.3)

� 2E[(g′(m(X)))2Z2
n(X)]+

C2
2E[Z4

n(X)]
2nhd

6 2
√
E[(g′(m(X)))4]E[Z4

n(X)]+
C2

2E[Z4
n(X)]

2nhd
, (A.4)

where inequality in (A.3) follows from (a + b)2 6 2a2 + 2b2,
and inequality in (A.4) follows from Hölder’s inequality
(Rudin 1987).

Endnotes
1The inner and outer expectationsmay be taken under a pricingmar-
tingale measure and real-world probability measure, respectively,
and hence one may simulate X and Y under different measures.
However, this issue is of little relevance from simulation perspective.
2Results presented in this paper apply to more general kernel func-
tions with bounded supports. However, extension to unbounded
kernels may involve additional technicality in asymptotic analysis,
mainly in asymptotic variance analysis, which shall be presented in
Section 3.1.2.
3To be rigorous, the last equality of Equation (11) requires ox(1) to be
uniformly integrable. Throughout the paper, we implicitly assume
such a condition when required to avoid too much technicality.
4These regularity conditions are summarized byAssumptions EC.1.1
andEC.1.2 in SectionEC.1.1 of the e-companion,wherediscussions of
these assumptions are also provided.
5Price dynamics are specified under real probability and risk-neutral
measures for t 6 τ and t > τ, respectively.
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