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Abstract

Models are often built to evaluate system performance measures or to make quantitative decisions. These

models sometimes involve unknown input parameters that need to be estimated statistically using data. In

these situations, a statistical method is typically used to estimate these input parameters and the estimates

are then plugged into the models to evaluate system output performances. The output performance estima-

tors obtained from this approach usually have large bias when the model is nonlinear and the sample size of

the data is finite.

Phillips and Yu (2009) proposed a simulation based estimation method to reduce the bias of performance

estimators for models that have a closed-form expression. In this paper, we extend the method to more

general situations where the models have no closed-form expression and can only be evaluated through

simulation. A stochastic root-finding problem is formulated to obtain the simulation based estimators and

several algorithms are designed correspondingly. Furthermore, we give a thorough asymptotic analysis of the

properties of the simulation based estimators, including the consistency, the order of the bias, the asymptotic

variance and so on. Our numerical experiments show that the experimental results are consistent with the

theoretical analysis.

Keywords: simulation based estimation, bias reduction, stochastic root-finding, asymptotic analysis

1. Introduction

Models that describe system behaviors are often used to evaluate system performance measures

or to make quantitative decisions. The inputs of these models are often assumed to follow certain

known distribution families but with unknown parameters that need to be estimated using data.

Even though this approach may be subject to input uncertainty (i.e., the mis-specification of the

input distribution families), it is widely used and generally simple and effective. In this approach,
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the key is to estimate the unknown parameters, as long as the model and the input distribution

families are determined. Once the parameters are estimated, their estimates are then plugged into

the models to evaluate performance measures and to select decisions. For instance, in call centers,

staffing decisions are often made according to estimates of the arrival rates; in manufacturing

companies, procurement decisions and production plannings are often made based on estimates of

the future demands.

Parameter estimation is a widely studied problem in the area of statistics. Many methods have

been proposed to solve the problem and the parameter estimators often possess some desirable

statistical properties, e.g., consistency, unbiasedness and minimum variance. When the parameter

estimators are plugged into the models, however, the resulted estimators of the system performance

measures, which we call performance estimators throughout this paper, may not inherit the same

properties. For instance, we consider a M/M/1/J queueing model where the service rate and the

buffer size are given, but the arrival rate is estimated through observed inter-arrival times. Suppose

the true value of the arrival rate is 0.9, then the average steady-state queue length can be obtained

from a function (Allen, 1990) and is calculated to be 8.098. We may obtain the maximum likelihood

estimator (MLE) of the arrival rate from the inter-arrival times. The expectation of the MLE of the

arrival rate approximated from numerical experiments is 0.905 when the sample size of the inter-

arrival times is 200, indicating that the relative bias of the parameter estimator is only about 0.6%.

However, we find that the expectation of the MLE of the average queue length is approximately

15.39 (i.e., with a relative bias of 90%), showing that the performance estimator is heavily biased

even though the parameter estimator is not.

This phenomenon is quite ubiquitous when a nonlinear model is used to evaluate a performance

measure. In the classical estimation approach, the input parameter is estimated solely from the

observed data and is separated from the output performance evaluation. Throughout the paper,

we call the classical estimation approach the two-step approach and its corresponding performance

estimator the two-step estimator. In the two-step approach, the input parameter is estimated

higher or lower than the true value, however, has different effects on the estimation of the output
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performance measures. For instance, in the M/M/1/J example, as the average queue length is

an increasing and convex function of the arrival rate, an overestimated arrival rate may return us

a queue length estimate which is much greater than the true queue length, especially when the

traffic intensity is high, while an equally underestimated arrival rate may return us a queue length

estimate which does not deviate too much away from the true queue length. In this sense, we

should try to avoid overestimating the arrival rate. Similarly, it is also possible that we need to

avoid underestimating the input parameters as the model changes. Therefore, we should take a

holistic view to link the parameter estimation and the performance evaluation together.

Phillips and Yu (2009) proposed a simulation based estimation method (SBE method) to es-

timate option prices through the Black-Scholes pricing formula, where the input parameter is the

volatility of the underlying asset that is estimated using MLE method. The basic idea of the SBE

method can be described as follows. For an arbitrary input parameter, simulate data based on it

and obtain the simulated two-step estimator, i.e., the performance estimator estimated from simu-

lated data. Repeat such a process many times and calculate the average of the simulated two-step

estimators. Minimize the distance between the average of the simulated two-step estimator and the

two-step estimator estimated from the observed data by choosing the appropriate input parameter.

The chosen input parameter is then plugged into the model to get a new performance estimator,

which is called the simulation based estimator (SBE). Phillips and Yu (2009) showed, numerically,

that the bias of the SBE is reduced compared to that of the two-step estimator.

For the SBE method, the performance measures of models are required to be evaluated many

times to get the average of the two-step estimators. In practice, the performance functions of many

models do not have a closed-form expression, but have to be evaluated through simulation. In this

sense, the method may introduce high simulation cost. Moreover, the existing SBE method does not

provide an efficient algorithm to find the SBE. Therefore, a noticeable issue is the implementation

of the SBE method. In this paper, we formulate a stochastic root-finding problem to help find the

SBE. We suggest to solve the root of the stochastic root-finding problem with a sample average

approximation (SAA) method when the closed-form expression of the model is available and is
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smooth, and with a stochastic approximation (SA) method when the closed-form expression of the

model is not available but can be evaluated through simulation and is monotone. When the model

meets these structure requirements, both algorithms can significantly reduce the simulation cost,

compared with the Phillips and Yu’s method.

In addition, we construct a mathematical formulation for the SBE method, based on which we

provide a theoretical explanation of the method. Particularly, the SBE method builds a functional

relationship between the input parameter and the bias of its corresponding two-step estimator

through simulation, which sheds light on how to adjust the input parameter estimators. We can

also interpret the SBE method as a special case of the method of moments in terms of our analysis.

Moreover, we provide a thorough asymptotic analysis of the statistical properties of the estimators.

Under some smoothness and monotonicity conditions, we can show that the SBE of the performance

measure retains some desirable properties such as consistency, asymptotic normality and unchanged

variance when the sample size of the observed data goes to infinity. We also show that the SBE

has smaller bias than the two-step estimator does when the sample size of the observed data is

sufficiently large.

Literature Review

The study of parameter uncertainty in decision models is an important research area of oper-

ations research. In the stochastic simulation literature, how to account for parameter estimation

errors has always been a very important research problem. The problem is often formulated as the

construction of a valid confidence interval for an output performance measure; see, for instance,

Henderson (2003) for a review. Cheng and Holland (1997) proposed to use a first-order approxi-

mation to propagate the confidence intervals of input parameters to the confidence interval of the

output performance measure. Barton et al. (2014) provided a confidence interval for the output

performance that accounts for uncertainty in the input parameters via metamodel-assisted boot-

strapping. Chick (2001) applied a Bayesian model averaging approach to this problem, and Biller

and Corlu (2011) further extended the Bayesian model to handle correlated inputs.
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When it comes to reduce the bias of estimators, a lot of methods have been proposed. Most of

these methods directly estimate the bias and then do the bias correction. For instance, the Jackknife

method (Wu, 1986) omits one data point from the original data each time and calculates the mean

jackknife estimator to help estimate the Jackknife bias. Asmussen and Glynn (2007) proposed

a method that applies Taylor expansion to the performance function and estimates the bias of

the performance estimators based on the bias and variance of the input parameters. Parametric

bootstrap method resamples data from the estimated parametric distribution and then uses the

simulated sample to estimate the bias (see, for instance, Efron and Tibshirani (1994) for details).

The bias is then corrected by subtracting the estimated bias from the previous estimator.

The use of simulation methods in estimation is in general called simulation based estimation

in econometrics literature; see, for instance, Chapter 12 of Cameron and Trivedi (2005). Its basic

idea is to use a Monte Carlo method to approximate likelihood functions or expectations. For

instance, McFadden (1989) proposed the method of simulated moments for estimation of discrete

response models where moments are approximated through a Monte Carlo method. Another SBE

method is called indirect inference, introduced by Smith (1993) and Gouriéroux et al. (1993). It uses

simulation experiments performed under the initial model to correct for the asymptotic bias of input

parameters estimated from an approximated model, which is used to replace the complicated and

intractable initial model. Unlike the above SBE methods that focus on estimating the parameters,

the SBE method in this paper focuses on the estimation of model performance measures.

The rest of the paper is organized as follows. We introduce the basic ideas and algorithms of

the SBE method in Section 2 and analyze the statistical properties of the SBE in Section 3. We

then illustrate the performance of SBEs through numerical examples in Section 4. The conclusions

and a discussion on future studies are made in Section 5. All mathematical proofs are included in

the Appendix.
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2. Basic ideas and algorithms of SBE method

Let θ denote the input parameter (or parameter vector) of a model and θ lies in a parameter

space Θ ⊂ RN , where N is the dimension of θ. Denote the model by p(·), which is a function

that maps θ to the output performance measure p(θ). The true value of the input parameter θ0 is

unknown and is estimated through a sample of observed data X0 = {X1, . . . , Xn}. Denote θ̂n(·) an

estimator that maps the data to an estimate. An estimate of θ0 obtained from data X0 is actually

θ̂n(X0). For simplicity, we use θ̂n to denote θ̂n(X0). Then, a widely used estimator is p(θ̂n), which

is a two-step estimator of p(θ0).

In statistical analysis, the observed data X0 is typically assumed to be a sample from a known

distribution family with an unknown parameter θ0. In this paper, we relax this assumption by

assuming that we can simulate a sample X(θ) for any given θ ∈ Θ, and the simulated sample

X(θ) has an identical joint distribution as the observed data X0 when θ = θ0. In this sense, a

known input distribution family is not mandatory for the data simulation process. For instance,

X(θ) = f(θ, Y ), where f(θ, Y ) is a mapping that maps the input parameter θ and other random

variable Y into a random variable X(θ).

Focusing on estimating option prices, Phillips and Yu (2009) proposed the following SBE method

to estimate p(θ0).

Algorithm 1 Simulation based estimation method

Step 1: Obtain the two-step estimator p(θ̂n) from the real data X0.
Step 2: For a given θ ∈ Θ, simulate data X(θ) = {X1(θ), . . . , Xn(θ)}, use the same two-step
approach to obtain p(θ̂n(X(θ)))
Step 3: Repeat Step 2 for K times, and get the average of the performance estimators
1
K

∑K
k=1 p(θ̂n(Xk(θ))).

Step 4: Try different θ and choose one that minimizes the distance between 1
K

∑K
k=1 p(θ̂n(Xk(θ)))

and p(θ̂n). Denote the chosen θ by θ∗ and let p(θ∗) be the new estimator of p(θ0).

The new estimators θ∗ and p(θ∗) are the SBEs of the unknown quantities θ0 and p(θ0). A

drawback of this algorithm is that finding the θ∗ is nontrivial. In this algorithm, data need to be

simulated and the function p(·) needs to be evaluated K times to get the average of the performance

estimators for any given θ. Things get worse if the closed-form expression of p(·) is unknown and can

6
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only be obtained through simulation in reality. If we run M simulations to approximate p(·), then,

to get the average of the performance estimators for a given θ, KM simulation runs are needed.

This is quite computational intensive, especially when the simulation of the model is expensive.

Besides, the algorithm does not provide an efficient method to search for θ∗. In this paper, we figure

out that if the model has some appealing structures, the computational cost can be significantly

reduced.

We begin with formulating a stochastic root-finding problem to find the SBEs. Define

bn(θ) = EX

[
p
(
θ̂n(X(θ))

)]
for all θ ∈ Θ. We use EX to denote that the expectation is taken with respect to the simulated data

X(θ). Let θ̃n denote a solution of the following root-finding problem (i.e., finding θ that satisfies

the following equation):

bn(θ) = p(θ̂n). (1)

Assume that θ̃n exists and θ̃n ∈ Θ. Then, θ̃n and p(θ̃n) are the SBEs. Notice that θ̃n is an intuitive

estimator as p(θ̂n) is not an unbiased estimator of p(θ0), but an unbiased estimator of bn(θ0). This

is because E[p(θ̂n)] = EX0 [p(θ̂n(X0))] = bn(θ0). The second equality holds because X0 and X(θ0)

are identically distributed. Then, the SBE method may be viewed as a special case of the method

of moments with one observation point p(θ̂n).

To better understand the SBE method, we plot p(·) and bn(·) in Figure 1 based on the example

discussed in the introduction. The vertical distance between p(·) and bn(·) represents the bias of the

two-step estimator and the horizontal distance between the p(·) and bn(·) represents the correction

of the input parameter estimator (i.e., |θ̂n − θ̃n|). When the sample size n is small, the function

bn(·) lies away from p(·), the bias is large and the correction is large as well; as n increases, the

function bn(·) gets closer to p(·), the bias decreases and so does the correction.

We propose solving the root-finding problem (1) with a sample-average approximation (SAA)

method or a stochastic approximation method in terms of different models.

7
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Figure 1: Change of bn(·) with respect to n

2.1. Sample Average Approximation Method

In many problems we may write X(θ) = X(θ, ω), where ω incorporates all the randomness in

X(θ) and does not depend on θ. For instance, when X(θ) denotes an i.i.d. sample of an exponential

random variable with mean θ, we may write Xi(θ) = −θ log(ωi), where ωi is a uniform(0, 1) random

variable; when X(θ) denotes an i.i.d. sample of a normal random variable with mean θ and variance

1, we may write Xi(θ) = θ+ωi, where ωi follows a standard normal distribution. While simulating

data, we can first simulate an i.i.d. sample of ω, which is denoted by {ω1, . . . , ωK}. And then, for

any value θ, the simulated data X(θ, ω) can be simulated by {X(θ, ω1), . . . , X(θ, ωK)}.

We may approximate bn(θ) by a sample-average function

b̄n(θ) =
1

K

K∑
k=1

p
(
θ̂n(X(θ, ωk))

)
.

The SAA method proposes solving the root-finding problem

b̄n(θ)− p(θ̂n) = 0, (2)

with a large value of K. Shapiro et al. (2009) showed that, under some mild conditions, the

solution of the root-finding problem (2) converges to the solution of the root-finding problem (1) as

K →∞. Notice that, once K and {ω1, . . . , ωK} are fixed, the root-finding problem (2) becomes a

deterministic problem and we may use Newton’s method to solve it. Let b̄′n(·) denote the first-order

derivative of b̄n(·). We have the following Algorithm 2.
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Algorithm 2 SBE method with SAA

Step 1: Obtain the two-step estimator p(θ̂n) from real data X0. Set j = 1 and θj = θ̂n.
Step 2: Simulate data {ω1, . . . , ωK}, and obtain the mappings b̄n(·) and b̄′n(·) by
1
K

∑K
k=1 p

(
θ̂n(X(·, ωk))

)
and 1

K

∑K
k=1

[
p
(
θ̂n(X(·, ωk))

)]′
.

Step 3: Set θj+1 = θj − 1
b̄′n(θj)

[
b̄n(θj)− p(θ̂n)

]
.

Step 4: Repeat Step 3 until θj+1 converges and let p(θj+1) be the new estimator of p(θ0).

The notation
[
p
(
θ̂n(X(·, ωk))

)]′
denotes the first-order derivative of p

(
θ̂n(X(·, ωk))

)
.

In general, the algorithm is very efficient when it is applicable because we only need to simulate

data {ω1, . . . , ωK} for one time and Newton’s method typically converges fast. However, this

method may be difficult to apply if calculating b̄′n(θj) is not easy (e.g., when the closed-form

expression of p(·) is not available).

2.2. Stochastic Approximation Method

Sometimes, p(·) has no closed-form expression but can only be expressed as follows:

p(θ) = EG[G(θ)], (3)

where G(θ) is a random variable depending on θ. This case is suitable for simulation modeling

problems where G(θ) is an observation from running a stochastic simulation experiment at θ. It

is important to distinguish the expectation EG with the expectation EX, where EG is taken with

respect to the simulated observation G(θ).

Then, the root-finding problem (1) may be written as

EX

{
EG

[
G(θ̂n(X(θ)))

]}
− EG[G(θ̂n)] = 0. (4)

We combine EX and EG together to rewrite Problem (4) as

EX,G

[
G(θ̂n(X(θ)))−G(θ̂n)

]
= 0. (5)

We propose to solve Problem (5) using the Robbins-Monro algorithm, which is a well known

stochastic approximation algorithm. Define fn(θ) = EX,G

[
G(θ̂n(X(θ)))−G(θ̂n)

]
. When fn(·) is

non-decreasing, we have the following Algorithm 3.

In the algorithm, {aj : j = 1, 2, . . .} is a sequence of positive step-sizes satisfying that
∑∞

j=1 aj =

9
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Algorithm 3 SBE method with SA

Step 1: Obtain the two-step estimator p(θ̂n) from real data X0. Set j = 1 and θj = θ̂n.

Step 2: Simulate data X(θj), and then simulate G
(
θ̂n(X(θj))

)
and G(θ̂n). Set

θj+1 = θj − aj
[
G
(
θ̂n(X(θj))

)
−G(θ̂n)

]
.

Step 3: Repeat Step 2 until θj+1 converges and let p(θj+1) be the new estimator of p(θ0).

∞ and
∑∞

j=1 a
2
j <∞. When fn(·) is non-increasing, we just need to set

θj+1 = θj + aj

[
G
(
θ̂n(X(θj))

)
−G(θ̂n)

]
in step 2 of the algorithm. Robbins and Monro (1951) proved that θj converges to the root in L2

as j →∞, if G
(
θ̂n(X(θj)) is uniformly bounded on Θ and fn(·) is differentiable and monotone.

This algorithm is typically computationally efficient, because there is no need to evaluate the

expected performance estimator at every point θ. In each iteration, only one simulation observation

of X(θ) and two evaluations of G(·) are enough. Moreover, the convergence rate is of polynomial

order (Nemirovsky and Yudin, 1983). However, it is also possible that the algorithm may perform

poorly in some problems, because it may be sensitive to the choice of the gain sequence {aj : j =

1, 2, . . .} and the starting point θ1. If this is the case, we suggest using common random numbers

to introduce a positive correlation between G
(
θ̂n(X(θj))

)
and G(θ̂n), so as to reduce the variance

of their difference.

3. Properties of SBE

In this section we analyze the consistency, bias and variance of SBEs. To simplify the explana-

tion and analysis, we assume that the closed-form expression of p(·) is available throughout Section

3. If p(·) is obtained from simulation, the theoretical results hold as long as the simulation is

replicated enough times such that the simulation uncertainty can vanish. To concentrate on the

main idea we only consider the one-dimensional case, i.e., θ is a scalar, throughout the paper.

3.1. Consistency

To consider the consistency of SBEs, we make the following assumptions.

10
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Assumption 3.1. There exists an open interval Θ0 = (a, b) with a, b ∈ R and a < b such that
θ0 ∈ Θ0.

Assumption 3.1 is generally a weak assumption, because it only requires that we have a prior

knowledge on the range of θ0, where the range may be very wide as long as it is not unbounded.

In practice, system analysts often have some knowledge about the parameter of the system. For

instance, the demand of a product or the arrival rate of customers cannot be infinity.

Assumption 3.2. The performance function p(·) is Lipschitz continuous and strictly monotone
on Θ0.

When p(·) is available, Assumption 3.2 is easy to verify. Even when p(·) is not available,

Assumption 3.2 can sometimes be verified based on system knowledge. For instance, average queue

length is typically continuous and strictly monotone with respect to the average arrival rate.

Assumption 3.3. The function bn(·) is Lipschitz continuous and strictly monotone.

When p(·) is Lipschitz continuous and strictly monotone, it may be possible to verify the

continuity and monotonicity of bn(·). Here we show one typical case that the assumption holds.

Suppose X(θ) can be expressed as X(θ, ω). Then, for a fixed value of ω, if θ̂n(X(θ, ω)) is Lipschitz

continuous and monotone with respect to θ (e.g., X(θ, ω) follows exponential distribution or normal

distribution), by the continuity and strict monotonicity of p(·), bn(·) is also Lipschitz continuous

and strictly monotone.

Let bn(Θ0) = {bn(θ) : θ ∈ Θ0} be the range of bn(·). Then, we have the following lemma.

Lemma 3.1. Suppose that Assumptions 3.1 to 3.3 hold. If p(θ̂n) ∈ bn(Θ0), then θ̃n exists and is
unique, and θ̃n ∈ Θ0.

The proof of Lemma 3.1 is quite straightforward. By Assumption 3.3, bn(·) is strictly monotone

and, thus, invertible. Therefore, the solution to the root-finding problem (1) is θ̃n = b−1
n (p(θ̂n)),

and is existing and unique.

By Newey (1991), a sequence of random functions {Y1(θ), . . . , Yn(θ)} is said to converge to a

function y(θ) in probability uniformly in θ ∈ Θ if supθ∈Θ P(|Yn(θ) − y(θ)| > ε) → 0 as n → ∞ for

any ε > 0. In the next assumption, we assume that the estimator θ̂n(X(θ)) is uniformly convergent.
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Assumption 3.4. The estimator θ̂n(X(θ)) converges to θ in probability uniformly in θ ∈ Θ0 as
n→∞.

The uniform convergence in probability can be easily verified for some frequently used distri-

butions. For instance, let θ̂n(X(θ)) be the MLE of the mean of an exponential distribution with

mean equal to θ. We have

sup
θ∈(a,b)

P
{∣∣∣θ̂n(X(θ))− θ

∣∣∣ > ε
}

= sup
θ∈(a,b)

P

{∣∣∣∣∣
(
− 1

n

n∑
i=1

log(ωi)− 1

)
θ

∣∣∣∣∣ > ε

}

= P

{∣∣∣∣∣
(
− 1

n

n∑
i=1

log(ωi)− 1

)∣∣∣∣∣ > ε

b

}
→ 0,

because − 1
n

∑n
i=1 log(ωi) converges to 1 in probability by the weak law of large numbers (Feller,

1968). Therefore, θ̂n(X(θ)) converges to θ in probability uniformly. Generally, it can also be

verified that under some conditions, the MLE of parameters of an exponential family of distributions

converge in probability uniformly. The details are included in the Appendix.

Assumption 3.5. For some r > 0,

lim
n→∞

sup
θ∈Θ0

EX

[∣∣∣θ̂n(X(θ))
∣∣∣1+r

]
<∞.

Assumption 3.5 guarantees the uniform integrability of θ̂n(X(θ)) over all n. Then, we have the

following lemma on the uniform convergence of bn(θ).

Lemma 3.2. Suppose Assumptions 3.2, 3.4 and 3.5 hold. Then, bn(θ)→ p(θ) uniformly on Θ0 as
n→∞.

Notice that bn(θ) − p(θ) is the bias of p
(
θ̂n(X(θ))

)
when the input parameter is θ. Lemma

3.2 shows that bn(θ) converges to p(θ) and the bias vanishes as n gets large. Then, we have the

following theorem on the consistency of the SBEs θ̃n and p(θ̃n).

Theorem 3.1. Suppose that Assumptions 3.1 to 3.5 hold and p(θ̂n) ∈ bn(Θ0). Then, θ̃n → θ0 and
p(θ̃n)→ p(θ0) in probability as n→∞.

Theorem 3.1 illustrates that, if the two-step estimators themselves are consistent, the SBEs keep

the consistency.
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3.2. Bias and Variance

Throughout this paper, we follow the definitions of Lehmann (1999) when using the notation

of o(·) and O(·). In specific, for two sequences of numbers an and bn, we write an = o(bn) if

|an/bn| → 0, which states that for large n, an is of order smaller than that of bn. And we write

an = O(bn) if |an/bn| is bounded, which states that an is of order smaller than or equal to that of

bn.

We make the following assumption on the existence of an asymptotic expansion of θ̂n(X(θ)).

Assumption 3.6. The estimator θ̂n(X(θ)) admits the following asymptotic expansion:

θ̂n(X(θ)) = θ +
A(θ)

nα
+
B(θ)

n2α
+ o(n−2α), (6)

where α ∈ (0,+∞), A(θ) and B(θ) are random terms with the parameter θ, A(θ) is differentiable
and B(θ) is continuous with respect to θ, and A(θ) has a finite second moment at θ0 and B(θ) has
a finite first moment at θ0.

Many estimators have asymptotic expansions in the form of Equation (6) under some regularity

conditions, see Hall (1992), Gouriéroux and Monfort (1995), Kolassa (1997) and Gouriéroux et al.

(2000). For instance, if θ̂n(X(θ)) is an MLE, which is consistent and asymptotically normal under

some conditions (Newey and McFadden, 1994), θ̂n(X(θ)) can often be expanded as

θ̂n(X(θ)) = θ +
σZ√
n

+ o(n−1/2), (7)

where σ is the standard deviation of
√
n
[
θ̂n(X(θ))− θ

]
and Z is a standard normal random

variable. Let p′(·) denote the first-order derivative of p(·). If p(·) is differentiable, by Assumption

3.6 and Taylor’s Theorem, we have

p
(
θ̂n(X(θ))

)
= p(θ) + p′(θ)

A(θ)

nα
+

[
p′(θ)

B(θ)

n2α
+

1

2
p′′(θ)

A(θ)2

n2α

]
+ o(n−2α).

We can apply the above expansions to estimators θ̂n and p(θ̂n) as well. Then, we have

θ̂n = θ0 +
A0(θ0)

nα
+
B0(θ0)

n2α
+ o(n−2α), (8)

p(θ̂n) = p(θ0) + p′(θ0)
A0(θ0)

nα
+

[
p′(θ0)

B0(θ0)

n2α
+

1

2
p′′(θ0)

A0(θ0)2

n2α

]
+ o(n−2α), (9)

where A0(θ0) and B0(θ0) are identically distributed as A(θ0) and B(θ0). We add the subscript 0

to A and B to denote that the randomness of A0(θ0) and B0(θ0) comes from the observed data
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X0. The randomness of A(θ) and B(θ) for a given θ, on the other hand, comes from the simulated

data X(θ). According to the Equation (9), the bias1 of p(θ̂n) is

E0

[
p(θ̂n)− p(θ0)

]
= p′(θ0)E0 [A0(θ0)]

1

nα

+

{
p′(θ0)E0 [B0(θ0)] +

1

2
p′′(θ0)E0

[
A0(θ0)2

]} 1

n2α
+ o(n−2α), (10)

where E0 denotes that the expectation is taken with respect to the observed data X0. Notice

that E0 is different from EX. By Equation (10), if E0 [A0(θ0)] 6= 0, the bias of p(θ̂n) is O(n−α). If

E0 [A0(θ0)] = 0, e.g., when θ̂n is a consistent MLE and p′(θ0)E0 [B0(θ0)] + 1
2p
′′(θ0)E0

[
A0(θ0)2

]
6= 0,

the bias of p(θ̂n) is O(n−2α).

We summarize the properties of the SBE p(θ̃n) in the following theorem.

Theorem 3.2. Suppose that Assumptions 3.1 to 3.6 hold, p(·) has continuous third derivative and
p′(θ0) 6= 0. Then, p(θ̃n) admits the following asymptotic expansion:

p(θ̃n) = p(θ0) + p′(θ0)
A0(θ0)− EX[A(θ0)]

nα
+
S0(θ0)

n2α
+ o(n−2α), (11)

where S0(θ0) is a random term depending on θ0. Furthermore, p(θ̃n) has the following properties:

(a) E0

[
p(θ̃n)

]
− p(θ0) = o(n−2α);

(b) limn→∞Var
[
p(θ̃n)

]
/Var

[
p(θ̂n)

]
= 1;

(c) If A0(θ0) follows a normal distribution, then

nα
[
p(θ̃n)− p(θ0)

]
⇒ p′(θ0)

√
Var [A0(θ0)] · Z

as n → ∞, where “⇒” denotes convergence in distribution and Z is a standard normal
random variable.

Theorem 3.2 shows that the bias of p(θ̃n) is o(n−2α). Therefore, p(θ̃n) is asymptotically less

biased than the two-step estimator p(θ̂n). Furthermore, Theorem 3.2 also shows that the asymptotic

variance of the SBE p(θ̃n) is the same as that of the two-step estimator p(θ̂n). In other words, the

bias reduction achieved by the SBE method is not accompanied by an increase in variance, which

makes the bias reduction more meaningful.

Theorem 3.2 also provides the asymptotic distribution of the SBE p(θ̃n) when θ̂n is asymptoti-

cally normally distributed. Notice that a variance estimator of θ̂n is often available. Let σ̂2
n denote

1When analyzing the bias, we need the uniform integrability of the remainder. We follow the convention of some
statistical literature such as Gouriéroux and Monfort (1995) and choose to ignore this issue for simplicity.
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an estimator of Var(θ̂n). By the Delta method (Casella and Berger, 2002), the variance of p(θ̂n) can

be estimated by [p′(θ̂n)]2σ̂2
n. Therefore, by Theorem 3.2, Var(θ̃n) may be estimated by [p′(θ̂n)]2σ̂2

n

as well. Then, an asymptotically valid (1− α)× 100% confidence interval of p(θ0) is(
p(θ̃n)− zα/2p′(θ̂n)σ̂n, p(θ̃n) + zα/2p

′(θ̂n)σ̂n

)
.

Remark: The bias of the SBE can be further reduced by keeping applying the SBE method

to the SBE. The basic idea is to treat θ̃n as θ̂n and get a step further SBE by solving the following

equation EX[p(θ̃n(θ))] = p(θ̃n), where θ̃n(θ) is the simulated SBE which is estimated from the

simulated data X(θ). If we apply the SBE method recursively, we can theoretically prove that the

bias of the estimators will vanish eventually. However, the recursive implementation of the SBE

method typically requires a prohibitively large amount of computation, it is in general difficult to

implement the recursive SBE method in practice.

4. Numerical Results

In many service systems, such as restaurants, banks and hospitals, the average queue length is

often used as a measure of service quality and thus used to determine the quantity of resources.

Many of these systems may be described by a queueing model. In this section, we consider different

queueing models based on whether their closed-form expressions are available or not.

4.1. A closed-form expression of p(θ) is available

Consider a M/M/1/J queue, where J denotes the buffer size. Let the service rate µ = 1 and

buffer size J = 100. The arrival rate θ is estimated from observed inter-arrival times. The long run

average queue length is denoted by p(θ), which has a closed-form expression by Allen (1990).

Suppose the true arrival rate θ0 is 0.9, then, the true value p(θ0) is 8.098. Let the sample size

n = 500. We replicate the experiment 10000 times, and plot in Figure 2 the histograms of both the

MLEs θ̂n and p(θ̂n) and the SBEs θ̃n and p(θ̃n). From the histograms, we see that the MLE θ̂n is

almost unbiased and the estimates are distributed symmetrically around the true value θ0 = 0.9.

However, due to the nonlinearity of the performance function p(·), the performance estimator p(θ̂n)

15

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

So
ut

he
rn

 C
ro

ss
 U

ni
ve

rs
ity

] 
at

 1
4:

33
 0

7 
O

ct
ob

er
 2

01
7 



is right skewed. This causes p(θ̂n) to be heavily biased. After applying the SBE method, the

estimator θ̃n moves to the left and is biased low, but the performance estimator p(θ̃n) is less skewed

and less biased.

0.7 0.8 0.9 1 1.1
0

500

1000

(a) Histogram of θ̂n

0.7 0.8 0.9 1 1.1
0

500

1000

(b) Histogram of θ̃n

0 10 20 30
0

500

1000

1500
(c) Histogram of p(θ̂n)

0 10 20 30
0

500

1000

1500
(d) Histogram of p(θ̃n)

p(θ0)=8.1

mean(p(θ̂n)) = 10.8
p(θ0)=8.1
mean(p(θ̃n)) = 8.4

Figure 2: Histograms of the MLEs and SBEs

We then compare the SBE method with other bias reduction methods. The jackknife method

estimates p(θ0) by pJn, where

pJn = np(θ̂n)− n− 1

n

n∑
i=1

p(θ̂in), (12)

and θ̂in is estimated from the data with the ith observation removed. The parametric bootstrap

method estimates the bias by

Bias∗ =
1

B

B∑
b=1

p(θ̂n(Xb(θ̂n)))− p(θ̂n),

where Xb(θ̂n) denotes the data sampled (or simulated) from the distribution with the parameter

θ̂n and b denotes the bth sample. Notice that 1
B

∑B
b=1 p(θ̂n(Xb(θ̂n))) is actually a sample average
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Table 1: Comparison of MLEs, JK estimators, Bootstrap estimators and SBEs

Sample size 500 650 800 1000 1250 1500 2000 2500 3000

mean(θ)
MLE 0.9020 0.9011 0.9016 0.9008 0.9008 0.9009 0.9004 0.9005 0.9005
SBE 0.8843 0.8871 0.8900 0.8914 0.8932 0.8946 0.8957 0.8968 0.8973

std(θ)
MLE 0.040 0.036 0.032 0.029 0.026 0.023 0.021 0.018 0.016
SBE 0.039 0.034 0.030 0.027 0.024 0.022 0.020 0.018 0.016

mean(p)

MLE 10.796 10.076 9.708 9.214 8.977 8.835 8.627 8.513 8.435
JK 7.450 7.698 7.716 7.842 7.906 7.949 8.018 8.056 8.054

Boots 7.467 7.524 7.484 7.698 7.817 7.892 7.950 8.006 8.046
AG 7.478 7.621 7.755 7.839 7.927 7.986 8.036 8.058 8.067
SBE 8.442 8.238 8.179 8.029 8.047 8.074 8.081 8.091 8.092

Relative
Bias
(%)

MLE 33.32 24.43 19.88 13.79 10.86 9.10 6.53 5.13 4.17
JK 8.00 4.94 4.72 3.16 2.37 1.84 0.99 0.52 0.54

Boots 7.79 7.09 7.58 4.94 3.47 2.54 1.83 1.14 0.64
AG 7.65 5.89 4.23 3.19 2.10 1.37 0.76 0.48 0.38
SBE 4.26 1.73 1.01 0.84 0.62 0.30 0.20 0.08 0.06

std(p)

MLE 8.58 6.98 5.64 4.35 3.60 3.06 2.58 2.11 1.86
JK 7.77 5.75 4.18 3.14 2.78 2.38 2.02 1.81 1.67

Boots 8.15 5.85 4.18 3.38 2.79 2.43 2.04 1.81 1.67
AG 7.55 5.05 3.93 3.19 2.69 2.39 2.04 1.84 1.67
SBE 7.44 5.90 4.55 3.46 2.89 2.50 2.21 1.86 1.67

MSE(p)

MLE 80.896 52.633 34.402 20.168 13.733 9.907 6.936 4.624 3.573
JK 60.793 33.223 17.618 9.925 7.765 5.687 4.087 3.278 2.791

Boots 66.821 34.552 17.849 11.584 7.863 5.947 4.184 3.285 2.792
AG 57.387 25.730 15.563 10.243 7.265 5.725 4.165 3.387 2.790
SBE 55.472 34.830 20.709 11.976 8.355 6.251 4.884 3.460 2.789

Coverage
Probability

(%)

MLE 90.03 90.55 91.46 91.70 92.44 92.79 93.14 93.44 93.85
JK 87.21 88.19 89.10 89.72 90.43 91.10 91.68 92.36 92.64

Boots 94.41 93.96 93.92 94.05 93.56 93.83 93.86 93.77 94.38
AG 86.79 88.07 88.99 89.42 90.33 90.99 91.81 92.18 92.72
SBE 87.50 87.67 88.93 90.66 90.43 91.09 91.64 92.09 92.65

Computation
Cost

(seconds)

MLE - - - - - - - - - - - - - - - - - -
JK 0.03 0.03 0.05 0.07 0.10 0.14 0.22 0.34 0.46

Boots 0.35 0.39 0.43 0.49 0.55 0.63 0.77 0.91 1.05
AG - - - - - - - - - - - - - - - - - -
SBE 1.20 1.20 1.23 1.22 1.28 1.31 1.35 1.44 1.60

The experiment is run on a computer with 3.40 GHz Intel i7-2600 Processor. The computation cost is
measured by the average computation time of each run. The “- -” represents that the computation time is
smaller than 0.001 second.
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approximation of bn(θ̂n). The corrected performance estimator can be written as:

p∗n = p(θ̂n)− Bias∗ = 2p(θ̂n)− bn(θ̂n). (13)

We call the estimator of the bias correction method of Asmussen and Glynn (2007) the AG

estimator. If the input parameter estimator is unbiased, then the AG estimator pAGn is

pAGn = p(θ̂n)− 1

2
p′′(θ̂n)σ̂n,

where σ̂2
n is an estimator of Var(θ̂n).

We repeat the experiments 10000 times to calculate the means and standard deviations of

different estimators and report them in Table 1. The SBEs are obtained by applying the SAA

method. The results show that the SBEs have largest bias reduction compared with other methods.

To analyze the rate of convergence of the biases of each estimators, we apply linear regression to

log(|bias|) with respect to log(n), the results are plotted in Figure 3 and listed as follows:

log
(
|bias(p(θ̂n))|

)
= −1.16 log(n) + 8.20,

log
(
|bias(pJn)|

)
= −1.59 log(n) + 9.52,

log (|bias(p∗n)|) = −1.41 log(n) + 8.66,

log
(
|bias(pAGn )|

)
= −1.77 log(n) + 10.69,

log
(
|bias(p(θ̃n))|

)
= −2.23 log(n) + 12.71.

The regression results indicate that the bias of MLEs is roughly O(n−1) and the bias of SBEs is

roughly O(n−2). This is consistent with the asymptotical results reported in Theorem 3.2, where

α = 1/2. Moreover, the biases of jackknife estimators, bootstrap estimators and AG estimators are

roughly O(n−1.5), which outperform that of MLEs, but are not as good as that of SBEs.

In addition to the significant bias reduction, the results also show that the variance of the SBEs

does not increase compared with that of the MLEs. The MSE of SBEs is smaller than that of

the MLEs but is slightly greater than those of other estimators. The coverage probability of the

95% confidence interval built based on the SBEs appears a little smaller than that of the MLEs.

Considering the fact that the confidence interval is constructed based on the asymptotic analysis,
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Figure 3: Bias Reduction Rate of multiple methods

it is possible that the insufficient coverage probability is caused by the small sample size. In the

table we do observe that the coverage probability increases as the sample size increases.

4.2. Lack of a Closed-Form Expression of p(·)

We consider a M/M/1 queueing model, which starts empty and the performance measure p(·)

that we are interested in is the expected average waiting time for the first m customers, which can

be expressed as follows:

p(θ) = E

[
1

m

m∑
i=1

Wi(θ)

]
,

where Wi(θ) is the waiting time of the ith customer when the arrival rate is θ. The Wi(θ) can be

simulated according to Wi(θ) = max(0,Wi−1(θ) + Si−1 −Xi(θ)), where Si−1 is the service time of

the (i− 1)th customer and Xi(θ) is the inter-arrival time of the ith customer.

Let the service rate be 1 and m = 1000. The true value of the arrival rate is 0.9 and we repeat

the simulation for 109 times to evaluate the true value p(θ0), which is approximately 8.1106 with

95% confidence interval being (8.1103, 8.1109). Once the estimate of θ0, say θ̂n or θ̃n, is obtained,

we repeat simulating the queueing system for 1000 times to get the performance estimator p(θ̂n)

or p(θ̃n). We repeat the numerical experiment for 10000 times to obtain the bias and standard
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Table 2: Comparison of the MLEs, the SBEs and other estimators

Sample size 500 750 1000 1250 1500

mean(θ)
MLE 0.9017 0.9004 0.9009 0.9008 0.9004
SAA 0.8901 0.8925 0.8949 0.8960 0.8963
SA 0.8904 0.8929 0.8953 0.8958 0.8963

std(θ)
MLE 0.040 0.033 0.029 0.025 0.0232
SAA 0.040 0.033 0.029 0.025 0.0233
SA 0.041 0.034 0.030 0.0266 0.0242

mean(p)

MLE 9.0861 8.7096 8.5919 8.5013 8.4120
JK 9.5220 9.9936 7.8608 15.741 7.3440

Boots 8.0101 8.0115 8.0757 8.0964 8.0996
SAA 8.1686 8.0644 8.1330 8.1244 8.1040
SA 8.2692 8.1715 8.1691 8.1538 8.1279

Relative
Bias (%)

MLE 12.028 7.3854 5.9342 4.8172 3.7161
JK 17.401 23.216 3.0799 94.080 9.4800

Boots 1.2391 1.2219 0.4303 0.1751 0.1356
SAA 0.7151 0.5696 0.2762 0.1701 0.0814
SA 1.9555 0.7509 0.7213 0.5326 0.2133

std(p)

MLE 3.823 2.902 2.419 2.109 1.886
JK 82.42 175.4 225.9 269.2 320.8

Boots 3.424 2.646 2.255 1.995 1.802
SAA 3.395 2.648 2.259 1.987 1.792
SA 3.673 2.842 2.402 2.127 1.870

MSE(p)

MLE 15.567 8.780 6.083 4.601 3.648
JK - - - - - - - - - -

Boots 11.734 7.011 5.086 3.980 3.247
SAA 11.529 7.014 5.104 3.948 3.211
SA 13.516 8.081 5.773 4.526 3.497

Coverage
Probability (%)

MLE 91.91 91.95 92.98 93.63 93.74
JK 78.35 63.28 51.13 40.41 35.16

Boots 93.39 92.66 93.08 93.79 93.61
SAA 89.53 89.76 91.33 92.08 92.26
SA 89.53 89.75 91.15 91.51 91.62

The “- -” represents that the MSEs are greater than 5000.

deviations of the estimators. The numerical results are reported in Table 2.

Table 2 shows that the SBE method and the parametric bootstrap method can both reduce the

bias of the performance estimators. The SAA method can outperform the parametric bootstrap

method. The SA method can also reduce the bias, but is not as good as the SAA method and

the bootstrap method. This is mainly because the Robbins-Monro algorithm brings errors while

finding the root. The Jackknife method is not applicable in this example because the noise involved

from the evaluation of the function p(·) is enlarged, according to the Equation (12).
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5. Conclusions and Future Research

In this paper, we extend the SBE method to general problems for bias reduction of the perfor-

mance estimators. The estimators are obtained by solving a stochastic root-finding problem. We

prove that after applying the SBE method, the estimators are consistent and the bias of the perfor-

mance estimators may be reduced to smaller orders of the sample size. Furthermore, the variance

of the SBEs may not necessarily increase and can often be well approximated. Numerical studies

verify the theoretical results and show that the SBE method works well for practical problems.

The SBE method also has some weaknesses. The SBE method introduces extra simulation

cost, which may be a severe problem when the simulation is expensive. Therefore, in terms of bias

reduction, there is a tradeoff between the cost of using simulation and the cost of collecting more

data. The results on consistency and bias reduction developed in this paper require the existence

and uniqueness of the root in the stochastic root-finding problem which, unfortunately, may not

always hold for practical problems. Furthermore, in this paper, we only study the case where the

parameter is of one dimension and the performance function is of one dimension as well. Even

though we do not study the multi-dimensional cases in this paper, we believe that the SBE method

may be extended and we leave them to future studies.
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Appendix A.

Appendix A.1. Proof of Lemma 3.2

To prove bn(θ) converges to p(θ) uniformly on Θ0 is to show that

lim
n→∞

sup
θ∈Θ0

∣∣∣EX

[
p
(
θ̂n(X(θ))

)]
− p(θ)

∣∣∣ = 0.

Since p(·) is Lipschitz continuous, there exists a constant Γ such that

sup
θ∈Θ0

∣∣∣EX

[
p
(
θ̂n(X(θ))

)]
− p(θ)

∣∣∣ ≤ sup
θ∈Θ0

Γ · EX

[∣∣θ̂n(X(θ))− θ
∣∣] .

Therefore, we only need to show that lim
n→∞

sup
θ∈Θ0

EX

[∣∣θ̂n(X(θ))− θ
∣∣] = 0.

For any M > 0, we define an auxiliary function ϕM (x) to be M if x > M , to be x if |x| ≤ M

and to be −M if x < −M . Then, for all θ ∈ Θ0,

EX

[∣∣θ̂n(X(θ))− θ
∣∣] ≤ EX

[∣∣θ̂n(X(θ))− ϕM
(
θ̂n(X(θ))

)∣∣]+ EX

[∣∣ϕM(θ̂n(X(θ))
)
− ϕM

(
θ
)∣∣]+ EX

[
|ϕM (θ)− θ|

]
.

(A.1)

The first term of the right hand side of (A.1) satisfies

EX

[∣∣θ̂n(X(θ))− ϕM
(
θ̂n(X(θ))

)∣∣] ≤ 1

Mr
EX

[∣∣θ̂n(X(θ))
∣∣1+r

1{|θ̂n(X(θ))|>M}
]
≤ 1

Mr
EX

[∣∣θ̂n(X(θ))
∣∣1+r

]
.

By Assumption 3.5, there exists a constant B > 0 such that lim
n→∞

sup
θ∈Θ0

EX

[∣∣θ̂n(X(θ))
∣∣1+r

]
≤ B.

Then,

lim
n→∞

sup
θ∈Θ0

EX

[∣∣θ̂n(X(θ))− ϕM
(
θ̂n(X(θ))

)∣∣] ≤ B

M r
. (A.2)

For any given ε > 0, the second term satisfies

EX

[∣∣ϕM(θ̂n(X(θ))
)
− ϕM (θ)

∣∣] ≤ 2MP
{∣∣ϕM(θ̂n(X(θ))

)
− ϕM (θ)

∣∣ > ε
}

+ εP
{∣∣ϕM(θ̂n(X(θ))

)
− ϕM (θ)

∣∣ ≤ ε}
≤ 2MP

{
|θ̂n(X(θ))− θ| > ε

Γ1

}
+ ε, (A.3)

where the inequality (A.3) holds because ϕM (·) is Lipschitz continuous. Then,

lim
n→∞

sup
θ∈Θ

EX

[∣∣ϕM(θ̂n(X(θ))
)
− ϕM (θ)

∣∣] ≤ ε, (A.4)

where (A.4) holds because of the uniform convergence of θ̂n(X(θ)). Then, by (A.1), (A.2) and

(A.4), we have

lim
n→∞

sup
θ∈Θ0

EX

[∣∣θ̂n(X(θ))− θ
∣∣] ≤ B

M r
+ ε+ lim

n→∞
sup
θ∈Θ0

EX

[
|ϕM (θ)− θ|

]
. (A.5)

Since M can be arbitrarily large and ε can be arbitrarily small, by (A.5), we have

lim
n→∞

sup
θ∈Θ0

EX

[∣∣θ̂n(X(θ))− θ
∣∣] = 0.
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Appendix A.2. Proof of Theorem 3.1

We first prove the uniform convergence of b−1
n (·) to p−1(·). Notice that p(·) is invertible because

p(θ) is continuous and strictly monotone. By Assumption 3.3, bn(·) is also invertible. Theorem 1

of Barv́ınek et al. (1991) states that:

Let {fn}∞n=1 be a sequence of real injection functions defined on (a, b) ⊆
⋂∞
n=1Domfn. If the

sequence converges uniformly to a function f0 on this interval, and if f0 is a continuous injection

on (a, b) and (α, β) ⊆
⋂∞
n=0 fn((a, b)), then f−1

n converges uniformly to f−1
0 on (α, β).

Denote the range of p(θ) on the domain Θ0 by p(Θ0). When Θ0 is an open interval, p(Θ0)

is also an open interval. We denote p(Θ0) by (α, β). Lemma 3.2 shows that bn(·) converges to

p(·) uniformly on Θ0, then, for any ε1 > 0 there exists N1 such that for all n > N1, we have

supθ∈Θ0
|bn(θ) − p(θ)| < ε1. Then, combining with the continuity of bn(·) assumed in Assumption

3.3, we have (α+ ε1, β − ε1) ⊆
⋂∞
n=N1

bn(Θ0).

Notice that we can choose ε1 small enough to guarantee that α+ε1 < β−ε1. Then, by applying

Theorem 1 of Barv́ınek et al. (1991) directly, we can show that b−1
n (·) converges uniformly to p−1(·)

on (α+ ε1, β − ε1), i.e., for any ε2 > 0, there exists N2 such that for all n > N2,

sup
x∈(α+ε1,β−ε1)

|b−1
n (x)− p−1(x)| < ε2. (A.6)

By Lemma 3.1, we have θ̃n = b−1
n (p(θ̂n)). Notice that∣∣θ̃n − θ0

∣∣ =
∣∣b−1
n (p(θ̂n))− θ0

∣∣ ≤ ∣∣b−1
n (p(θ̂n))− p−1(p(θ̂n))

∣∣+
∣∣θ̂n − θ0

∣∣. (A.7)

Then, to prove that θ̃n converges to θ0 in probability, we only need to show that the two terms at

the right hand side of (A.7) converge to 0 in probability respectively. First, consider the first term of

the right hand side of (A.7). By (A.6), if p(θ̂n) ∈ (α+ε1, β−ε1), then, |b−1
n (p(θ̂n))−p−1(p(θ̂n))| < ε2.

Notice that p(θ0) ∈ (α+ε1, β−ε1) if ε1 is small and p(θ̂n) converges to p(θ0) in probability. Therefore,

there exists ε3 > 0 such that (p(θ0)− ε3, p(θ0) + ε3) ⊆ (α+ ε1, β− ε1) and for any ε > 0, there exists
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N3 such that for any n > N3, P
{
|p(θ̂n)− p(θ0)| > ε3

}
< ε. Choose N = max(N1, N2, N3), then for

all n > N , we have

P
{
|b−1
n (p(θ̂n))− p−1(p(θ̂n))| > ε2

}
≤ P

{
p(θ̂n) /∈ (α+ ε1, β − ε1)

}
≤ P

{
p(θ̂n) /∈ (p(θ0)− ε3, p(θ0) + ε3)

}
< ε. (A.8)

Therefore, |b−1
n (p(θ̂n))− p−1(p(θ̂n))| converges to 0 in probability.

The second term of the right hand side of (A.7) converges to 0 in probability by Assumption

3.4. Therefore, θ̃n converges to θ0 in probability. Then, p(θ̃n) converges to p(θ0) in probability as

n→∞ as well.

Appendix A.3. Proof of Theorem 3.2

By Assumption 3.6, we have the following asymptotic expansion for θ̂n(X(θ̃n)):

θ̂n(X(θ̃n)) = θ̃n +
A(θ̃n)

nα
+
B(θ̃n)

n2α
+ o(n−2α).

Applying Taylor’s theorem to Equation (1) and replacing θ̂n and θ̂n(X(θ̃n)) by their expansions

gives

EX

[
p(θ̃n) +

(
A(θ̃n)

nα
+
B(θ̃n)

n2α

)
p′(θ̃n) +

1

2

(
A(θ̃n)

nα
+
B(θ̃n)

n2α

)2

p′′(θ̃n) + o(n−2α)

]

= p(θ0) +

(
A0(θ0)

nα
+
B0(θ0)

n2α

)
p′(θ0) +

1

2

(
A0(θ0)

nα
+
B0(θ0)

n2α

)2

p′′(θ0) + o(n−2α). (A.9)

Because θ̃n is consistent, we can expand it as

θ̃n = θ0 +An + o(An), (A.10)

where An converges to 0 in probability as n→∞.

Now we apply the Taylor Expansion to θ̃n at θ0 to the order of n−2α for the left hand side of

Equation (A.9) and substitute θ̃n by its expansion (A.10), the Equation (A.9) can be written as

p(θ0) +Anp
′(θ0) +

1

2
A2
np
′′(θ0) + EX

[(
A(θ0)

nα
+

1

nα
A′(θ0)An

)(
p′(θ0) + p′′(θ0)An

)]

+EX

[
B(θ0)

n2α
p′(θ0)

]
+

1

2
EX

[
A(θ0)2

n2α
p′′(θ0)

]
+ o(n−2α) + o(n−2α) + o(An)

= p(θ0) +

[
A0(θ0)

nα
+
B0(θ0)

n2α

]
p′(θ0) +

1

2

[
A0(θ0)

nα
+
B0(θ0)

n2α

]2

p′′(θ0) + o(n−2α).

Based on the above equation, we have

Anp
′(θ0) =

A0(θ0)

nα
p′(θ0)− EX[A(θ0)]

nα
p′(θ0) + op0(n−α) + o(An)
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Hence, when p′(θ0) 6= 0, we conclude that An is of order n−α. More specifically, we have An =

(A0(θ0) − EX[A(θ0)])/nα. Then, Equation (A.10) can be written as θ̃n = θ0 + A∗/nα + o(n−α),

where

A∗ = A0(θ0)− EX[A(θ0)]. (A.11)

Now, we consider higher orders. We expand θ̃n as

θ̃n = θ0 +
A∗

nα
+Bn + o(Bn), (A.12)

where Bn converges to 0 in probability as n→∞. Moreover, Bn is of higher order than n−α, i.e.,

Bn = o(n−α). Then, substitute θ̃n of Equation (A.9) by its expansion (A.12) and collect all the

terms that are of orders higher than n−α, we have

Bnp
′(θ0) +

1

2

(A∗)2

n2α
p′′(θ0) + EX

[
A′(θ0)

A∗

n2α
p′(θ0)

]
+ EX

[
A(θ0)

n2α
p′′(θ0)A∗

]
+ EX

[
B(θ0)

n2α
p′(θ0)

]
+

1

2
EX

[
A(θ0)2

n2α
p′′(θ0)

]
+ o(n−2α) + o(Bn) =

B0(θ0)

n2α
p′(θ0) +

1

2

A0(θ0)2

n2α
p′′(θ0) + o(n−2α).

By the above equation, we conclude that Bn is of order n−2α. Then, θ̃n admits the following

expansion:

θ̃n = θ0 +
A∗

nα
+
B∗

n2α
+ o(n−2α). (A.13)

Substitute θ̃n by its expansion (A.13) to the Equation (A.9). Collecting the terms of order O(n−2α)

gives:

B∗p′(θ0) +
1

2
(A∗)2p′′(θ0) =B0(θ0)p′(θ0) +

1

2
A0(θ0)2p′′(θ0)− EX

[
B(θ0)p′(θ0)

]
− 1

2
EX

[
A(θ0)2p′′(θ0)

]
− EX

[
A′(θ0)A∗p′(θ0)

]
+ EX

[
A(θ0)p′′(θ0)A∗

]
. (A.14)

Now, we apply the Taylor expansion to p(θ̃n) at θ0, and we can get the expansion (11),

p(θ̃) = p(θ0) +
A∗

nα
p′(θ0) +

S0(θ0)

n2α
+ o(n−2α),

where S0(θ0) = B∗p′(θ0) + 1
2(A∗)2p′′(θ0).

We then analyze E0[p(θ̃n)− p(θ0)] to analyze the bias of p(θ̃n). By Equation (A.11), we get

E0 [A∗] = E0

[
A0(θ0)− EX[A(θ0)]

]
= 0.
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Then, we consider the term of order n−2α. Based on Equation (A.14), we have

E0

[
B∗

n2α
p′(θ0) +

1

2

(A∗)2

n2α
p′′(θ0)

]
= 0.

Therefore, we show that E0[p(θ̃n)− p(θ0)] = o(n−2α).

Now, we prove statement (b). By Equations (9) and (11), we have

nα
(
p(θ̃n)− p(θ0)

)
= p′(θ0)

(
A0(θ0)− EX[A(θ0)]

)
+ o(1),

nα
(
p(θ̂n)− p(θ0)

)
= p′(θ0)A0(θ0) + o(1).

If lim
n→∞

Var(op(1)) = 0, then lim
n→∞

Var[nαp(θ̃n)] = p′(θ0)2Var[A0(θ0)] and lim
n→∞

Var[nαp(θ̂n)] =

p′(θ0)2Var[A0(θ0)]. Therefore, we have limn→∞Var[p(θ̃n)]/Var[p(θ̂n)] = 1.

For statement (c). Based on the assumption that A0(θ0) follows a normal distribution, we have

nα
[
p(θ̃n)− p(θ0)

]
⇒ p′(θ0)

√
Var [A0(θ0)] · Z

as n→∞, where Z is a standard normal random variable.

Appendix A.4. Verification of the uniform convergence in probability of MLE for exponential family

of distributions

The probability density function of an exponential family has the form:

f(x) = h(x)exp{θT (x)−A(θ)}, θ ∈ Θ

where h(x) is the base density, T (x) is the sufficient statistic vector, A(θ) is the cumulative generat-

ing function. We assume that Θ is open and bounded. If the data is X(θ) = {X1(θ), X2(θ), . . . , Xn(θ)},

then, the MLE of θ is the solution of

∂

∂θ
A(θ) =

∑n
i=1 T (Xi(θ))

n

By Lehmann and Casella (2006), we have ∂
∂θA(θ) = E

[
T
(
X(θ)

)]
and ∂

∂θA(θ) is a one-to-one

mapping. We denote ∂
∂θA(θ) by function g(θ). Then, the MLE of θ is

θ̂n(X(θ)) = g−1

(∑n
i=1 T (Xi(θ))

n

)
.
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If g(θ) is bi-Lipschitz continuous, which can easily be checked, then we have

lim
n→∞

sup
θ∈Θ

P
{∣∣∣θ̂n(X(θ))− θ

∣∣∣ > ε
}

= lim
n→∞

sup
θ∈Θ

P
{∣∣∣∣g−1

(∑n
i=1 T (Xi(θ))

n

)
− θ
∣∣∣∣ > ε

}
≤ lim

n→∞
sup
θ∈Θ

P
{
K

∣∣∣∣∑n
i=1 T (Xi(θ))

n
− g(θ)

∣∣∣∣ > ε

}
= sup

θ∈Θ
lim
n→∞

P
{∣∣∣∣∑n

i=1 T (Xi(θ))

n
− g(θ)

∣∣∣∣ > ε

K

}
= 0

The inequality holds because g−1(·) is Lipschitz continuous on Θ. We can interchange the supreme

and the limit because g(·) is Lipschitz continuous on a bounded set Θ, therefore g(·) is bounded on

Θ. The last equality holds because of the weak law of large numbers. Therefore, under the condition

that ∂
∂θA(θ) is bi-Lipschitz continuous, we verified the uniform convergence in probability for MLE

of the exponential family of distributions.
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