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Abstract

Stochastic kriging is a popular metamodeling technique to approximate computationally

expensive simulation models. However, it typically treats the simulation model as a black box in

practice and often fails to capture the highly nonlinear response surfaces that arise from queueing

simulations. We propose a simple, effective approach to improve the performance of stochastic

kriging by incorporating stylized queueing models which contain useful information about the

shape of the response surface. We provide several statistical tools to measure usefulness of the

incorporated stylized models. We show that even a relatively crude stylized model can improve

the prediction accuracy of stochastic kriging substantially.

Key words: stochastic kriging; metamodel; queueing simulation; stylized queueing model

1 Introduction

Queueing models are widely used to facilitate decision making in a great variety of areas, including

manufacturing, logistics, supply chain management, telecommunication, health care, finance, etc.

However, they generally do not admit analytical expressions except those that are highly stylized such

as Erlang’s loss systems and Jackson networks (Asmussen 2008). Instead, simulation is extensively

adopted to analyze and predict the behavior of complex queueing models that arise from large-scale

stochastic systems in real world applications. The popularity of queueing simulation stems from its

modeling flexibility, allowing the users to incorporate arbitrarily fine details of the system into the
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model and estimate virtually any performance measure of interest. Nevertheless, typical queueing

simulations are computationally expensive to execute, especially if the performance measures of

interest are steady-state quantities or if the systems are heavily utilized (Whitt 1989, Asmussen

1992). The computational inefficiency severely restricts usefulness of queueing simulation in settings

such as real-time decision making and system optimization.

In order to alleviate this inadequacy, metamodeling has been actively developed in the simulation

community; see Barton (1998) for a review. A metamodel, or a model of the simulation model, aims

to characterize the performance measure of the simulation model, i.e. response surface, as a function

of the design variables. It is often built via proper interpolation of the simulation outputs at a

small number of carefully chosen design points. A metamodel runs much faster than the original

simulation model in general, and it yields deterministic outputs rather than stochastic. Hence, it

can be used in lieu of the true response surface to efficiently search for the optimal values of the

design variables, even in real time.

Kriging-type metamodels have recently become popular in the simulation literature, thanks to

their tractability, ease of use, and capability of providing good global fit over the value range of

the design variables and capturing moderate heteroskedasticity of the response surfaces. Kriging

originated in geostatistics (Matheron 1963) and was later successfully adopted in the design and

analysis of computer experiments (DACE) community to fit deterministic simulation models (Sacks

et al. 1989); see Kleijnen (2009) for a review. In this paper, we focus on stochastic kriging which was

proposed by Ankenman et al. (2010) to account for the intrinsic uncertainty in stochastic simulation

that results from the random simulation noise. This metamodel has been used successfully for

uncertainty quantification in stochastic simulation (Xie et al. 2014) and simulation optimization

(Scott et al. 2011, Sun et al. 2014).

Simulation metamodels including stochastic kriging treat the simulation model to approximate

as a black box in general, discarding its internal details and structural properties of the response

surface. This issue may become severe when the response surface is highly nonlinear or even exhibits

“exploding” behavior, which is often the case for queueing simulation if the simulated queue is near

saturation with a high utilization. Our solution to this issue takes advantage of stylized queueing

models which are highly analytically tractable due to their greatly simplifying assumptions. Albeit

not good at quantitative prediction, stylized models can capture the essential dynamics of the
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queueing system, facilitating the development of managerial insights. For example, they may help

the users to identify the bottleneck of a queueing network and its saturation mechanism.

The central idea of this paper is to use the stylized queueing model to capture the highly nonlinear

trend of the response surface, use regression that is linear in the unknown coefficients to adjust

both the scaling factor of the stylized queueing model and the mean level of the “detrended” surface,

and use the spatial correlation inherent in stochastic kriging to correct the remaining bias. Notice

that stylized queueing models generally have analytical solutions or simple numerical solutions

for the performance measure of interest, so their computational complexity is negligible relative

to the simulation model. By incorporating stylized queueing models, we effectively extract the

valuable structural information about the response surface from them and transform the queueing

simulation model from a black box to a gray box. We will demonstrate that the gray-box perspective

greatly enhances the performance of stochastic kriging in the context of queueing simulation and

significantly accelerate the process of solving the associated simulation optimization problems. Other

contributions of this paper include developing several statistical tools to measure usefulness and

effectiveness of a stylized queueing model in the proposed metamodel.

Incorporating context-specific information to improve the prediction accuracy of metamodels for

queueing simulation is not new; see Cheng and Kleijnen (1999) and Yang et al. (2007). Specifically,

they assume that the “trend” of the response surface consists of two factors, one of which accounts

for the exploding behavior of saturated queues. However, this factor requires that the users know

exactly the saturation point where the explosion occurs, which is not necessarily the case for

complex queueing networks and even prohibitively difficult if the design variable of interest is

multidimensional. Moreover, their metamodels are based on low-order polynomial regressions, which

tend to provide good fit only locally, rather than the kind of robust global fit that stochastic kriging

aims for. In the same vein, Lin et al. (2016) recently proposed to leverage an analytical model to

enhance kernel regression, another popular metamodeling technique. In their work, the simulation

outputs are adjusted by the outputs of the analytical model before being used in kernel regression.

The net effect is that the predicted responses at locations that are distant from (resp., close to) the

design points are basically determined by the analytical (resp., simulation) model. By contrast, the

use of analytical models in our paper is to detrend the response surface so that the residuals can be

better fitted by a stationary random field. A notable result of our different treatment is that both
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the analytical and simulation models have a nonnegligible impact in the prediction of the responses

at all locations.

There are other ways to enhance stochastic kriging as well by incorporating auxiliary information.

One approach is to leverage the gradient information of the response surface, provided that it can be

acquired along with the observations of the surface itself easily; see Morris et al. (1993) and Mitchell

et al. (1994) in the DACE setting, and Chen et al. (2013) and Qu and Fu (2014) in the stochastic

simulation settings. Another main approach is to assume that a coarser but faster simulation model

of the same system is available in addition to the original expensive simulation model, and then

leverage the simulation outputs from both models and the correlations between them to refine

the prediction; see Kennedy and O’Hagan (2000) and Forrester et al. (2007). However, both of

the approaches above adopt a black-box perspective and generally do not take into account the

structural information that is necessary to represent the highly heteroskedastic response surfaces of

queueing simulation. Moreover, our approach is orthogonal to theirs in a sense and can be used in

combination with them to achieve further enhancement.

Our approach to enhancing stochastic kriging can be viewed as a means for improving the trend

modeling. Other aspects that one can investigate to improve the prediction accuracy of stochastic

kriging include experiment design (e.g., design point placement and simulation budget allocation)

and choice of the covariance function. Design of computer experiments is an research area of great

importance in its own right and we refer to Santner et al. (2003, §5 and §6) for a general exposition

on the subject. In particular, the experiment design proposed by Ankenman et al. (2010) which

assumes a constant trend term in stochastic kriging and attempts to minimize the integrated mean

squared error of prediction over the entire design space can be potentially extended to our setting

without essential difficulty.

The choice of the covariance function, on the other hand, can be viewed formally as a model

selection problem, and thus statistical tools such as information criteria or cross validation can

be readily applied; see Rasmussen and Williams (2006, §5). One can also choose the covariance

function based on domain knowledge such as the smoothness of the response surface, since the level

of differentiability is uniquely determined by that of the covariance function; see Xie et al. (2010).

We remark that the three aspects – trend modeling, experiment design, and choice of covariance

function – are essentially orthogonal but equally important for enhancing stochastic kriging. The
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approach that the present paper follows represents a simple way to improve trend modeling, and

any improvement made to the other two aspects can and should be incorporated in practice to

further boost the prediction accuracy of stochastic kriging.

The remainder of this paper is organized as follows. In §2 we build the framework for stylized-

model enhanced stochastic kriging. In §3 we present several statistical measures for evaluating

stylized queueing models. In §4 we demonstrate through an illustrative example the benefits of

stylized models and validity of measures. We also compare our stylized-model enhanced stochastic

kriging with another approach that enhances stochastic kriging by leveraging gradient information.

In §5 we propose a few simple approaches for constructing stylized models for a general class of

queueing networks. We study two real-world applications in §6 and conclude in §7. The Appendix

collects some of the technique results.

2 The Framework

In this section, we give an overview of the stochastic kriging metamodel proposed in Ankenman

et al. (2010), discuss its deficiency in practice, and introduce our approach for incorporating stylized

queueing models in stochastic kriging.

2.1 Stochastic Kriging

Metamodeling is concerned with fitting an unknown deterministic response surface Y(x), where

x = (x1, . . . , xd)
ᵀ denotes the design variables of the simulation model. For example, x may represent

the number of servers and their service capacities, while Y(x) the steady-state mean waiting time

of the system. The kriging method expresses Y(x) as

Y(x) := f(x)ᵀβββ +M(x), (1)

where f(x) is a vector of known functions of x, βββ is a vector of unknown parameters of compatible

dimension, and M is a realization of a mean zero random field, which is randomly sampled

from a space of functions mapping Rd 7→ R. A typical example of f(x) is basis functions, such

as polynomials. The metamodel (1) is called “universal kriging”; in particular, if the “trend”
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f(x)ᵀβββ ≡ β0 is a constant, it is called “ordinary kriging”. In the context of stochastic simulation,

Y(x) is observed with random noise. Therefore, the stochastic kriging metamodel assumes that the

simulation output on the j-th replication at design point x is

Yj(x) = f(x)ᵀβββ +M(x) + εj(x), (2)

where ε1(x), ε2(x), . . . are the simulation errors. Suppose that the simulation model is executed at

design points xi with ni simulation replications, i = 1, . . . , k. Define

Ȳ (xi) :=
1

ni

ni∑
j=1

Yj(xi) and ε̄(xi) :=
1

ni

ni∑
j=1

εj(xi).

Then, the metamodel (2) can be rewritten as

Ȳ = Fβββ + M + ε̄εε,

where Ȳ := (Ȳ (x1), . . . , Ȳ (xk))
ᵀ, ε̄εε := (ε̄(x1), . . . , ε̄(xk))

ᵀ, F := (f(x1), . . . ,f(xk))
ᵀ, and M :=

(M(x1), . . . ,M(xk))ᵀ. Further, let ΓΓΓ be the k×k covariance matrix of M , i.e. ΓΓΓij = Cov[M(xi),M(xj)]

for i, j = 1, . . . , k. Let γγγ(x0) be the k × 1 vector (Cov[M(x0),M(x1)], . . . ,Cov[M(x0),M(xk)])
ᵀ.

Let ΣΣΣ = Cov[ε̄εε, ε̄εε] be the k × k covariance matrix of ε̄εε, i.e. ΣΣΣij = Cov[ε̄(xi), ε̄(xj)] for i, j = 1, . . . , k.

The following assumption is usually imposed for stochastic kriging.

Assumption 1. The random field M is a second-order stationary Gaussian process with mean 0.

More specifically, E[M(x)] ≡ 0 and Cov[M(x),M(x′)] = τ2R(x− x′;θθθ), where τ2 is the variance

of M(x) for all x and R is the correlation function that depends only on x− x′ and some unknown

parameters θθθ. Moreover, R satisfies R(0;θθθ) = 1 and R(x − x′;θθθ) → 0 as ‖x − x′‖ → ∞. The

simulation errors ε1(x), ε2(x), . . . are independent and identically distributed with normal distribution

N (0, σ2(x)), and independent of M.

Remark 1. In all the numerical examples of this paper, we assume a Gaussian correlation function

of form R(x− x′;θθθ) = exp(−
∑d

i=1 θi|xi − x′i|2) with θi > 0 for i = 1, . . . , d; see Stein (1999, §2.7)

for more types of correlation functions.

We are interested in predicting the response Y(x0) at an arbitrary point x0. It can be shown
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with a similar derivation in Stein (1999, §1.2) that under Assumption 1, the best unbiased predictor

that minimizes the mean squared error (MSE) of prediction is

Ŷ(x0) = f(x0)
ᵀβββ + γγγ(x0)

ᵀ (ΓΓΓ + ΣΣΣ)−1
(
Ȳ − Fβββ

)
,

and the optimal MSE is

MSE∗(x0) = τ2 − γγγ(x0)
ᵀ (ΓΓΓ + ΣΣΣ)−1 γγγ(x0), (3)

provided that βββ, ΓΓΓ, γγγ(x0), and ΣΣΣ are known.

2.2 Stylized-Model Enhanced Stochastic Kriging for Queueing Simulation

Despite its general form, in applications f(x) is mostly taken as a constant, i.e. f(x)ᵀβββ ≡ β0.

For instance, such specification is recommended in Ankenman et al. (2010); see also Sacks et al.

(1989) and Kennedy and O’Hagan (2001). A main reason, in addition to the obvious simplicity, is

that f(x)ᵀβββ represents the user’s knowledge about the shape of the response surface. For complex

simulation models, it is often difficult to acquire such meaningful information in advance. To avoid

introducing spurious constituent functions to the metamodel, it is generally preferable to take a

black-box viewpoint and use a constant trend, unless there is actual prior information that suggests

otherwise. Following the naming convention in the kriging literature, we call stochastic kriging with

a constant trend ordinary stochastic kriging (OSK).

However, the response surfaces in the queueing simulation setting are highly nonlinear and

highly heteroskedastic in general, and often exhibit exploding behavior as the utilization of the

queue increases. Given the high computational cost, both the number of design points at which

the simulation model is executed and the number of simulation replications are commonly limited.

In this case, the simulation outputs are insufficient to reveal the true shape of the surface, leading

to inaccurate predictions. To illustrate, consider the steady-state expected number of customers

(including the one in service) Y(x) of an M/M/1 queue with utilization x ∈ (0, 1). It is well known

that Y(x) = x/(1− x), and clearly the surface explodes as x approaches 1. In order to highlight the

deficiency of using a constant trend, we assume that the simulation is “noiseless” and Y(x) can be
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Figure 1: Ordinary Kriging for M/M/1 Queue.

computed without error for any arbitrary x. OSK is then reduced to traditional ordinary kriging

in this case. We compute Y(x) at 5 design points x = 0.1, 0.3, 0.5, 0.7, 0.9 and take a Gaussian

correlation function of the form R(x; θ) = e−θx
2

for the ordinary kriging metamodel. Figure 1 shows

that the predicted surface of ordinary kriging is reasonably good for most of the value range of x.

However, it fails to capture the unboundedness of Y(x) when the queue is saturated, which is of

greater interest for decision makers. (Notice that the predicted surface for x ∈ [0.9, 1) appears to be

stabilized whereas the true surface begins to explode.)

In addition to failing to capture the non-constant trend, OSK tends to overestimate the marginal

variance of the constituent Gaussian process in order to compensate the possibly large variation

in the response surface, which should have been characterized by the trend term. The incorrect

estimation of the model variability may become a significant issue both in statistical inference and

in simulation optimization algorithms which often use the variance information to determine the

exploitation-exploration trade-off (Sun et al. 2014). If the trend can be reasonably captured, the

detrended surface would have substantially less variation, and thus is more suitable to be modeled

as a second-order stationary Gaussian process. See also §3.2 for more discussion on the issue.

To alleviate the inadequacy of OSK, we incorporate “informative” functions into f(x). We argue

that basis functions such as polynomials, splines, radial basis function, etc. are not particularly

suitable for the queueing simulation setting, because they lack domain knowledge of the problem

context and do not capture the exploding behavior. And it can be very difficult to specify proper

basis functions when the design variable x is multidimensional. In addition, as the number of basis

functions increases, the users need to address the issue of overfitting and the numerical challenge in

8

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

 

 

 
 
 
 
 



the parameter estimation caused by high-dimensional numerical optimization problems.

Instead, we take advantage of stylized queueing models which can represent the essential structure

of the complex queueing network being simulated, and meanwhile admit analytical solutions or

simple numerical solutions that can be used as informative functions in the metamodel. Indeed,

we shall discuss in §5 and demonstrate in §6.1 and §6.2 that these stylized queueing models can

be easily constructed for a large class of queueing networks. For the time being, suppose that we

have built a proper stylized queueing model with response q(x). Then, the metamodel we propose

for queueing simulation has the same form as (2) with f(x) = (1, q(x))ᵀ and βββ = (β0, β1)
ᵀ. It is

straightforward to extend the formulation to the case of multiple stylized queueing models, but

we focus on the simple case. We call this metamodel stylized-model enhanced stochastic kriging

(SESK). Clearly, the purpose of q(x) is to capture the trend of the true response surface, whereas

the coefficients β1 and β0 are used to represent the scaling factor of q(x) and the mean level of the

detrended surface via linear regression, respectively.

2.3 Maximum Likelihood Estimation

To apply SESK in practice, the parameters βββ, τ2, θθθ, and ΣΣΣ need to be estimated. In this section, we

extend the maximum likelihood estimation (MLE) developed in Ankenman et al. (2010) for OSK.

First, ΣΣΣ represents the intrinsic uncertainty of the simulation, and its estimation can be separated

from the other parameters. Due to the heteroskedasticity in queueing simulation, it is difficult

to construct a parametric model for ΣΣΣ. Instead, we estimate ΣΣΣ by the sample variances of the

simulation outputs, i.e. Σ̂ΣΣ = diag(σ̂2(x1)/n1, . . . , σ̂
2(xk)/nk), where

σ̂2(xi) =
1

ni − 1

ni∑
j=1

(Yj(xi)− Ȳ (xi))
2. (4)

Theorem 1 of Ankenman et al. (2010) shows that using this estimator of ΣΣΣ does not introduce

prediction bias.

Clearly, the simulation outputs Ȳ are multivariate normal under Assumption 1. Hence, assuming

ΣΣΣ is known, the log-likelihood function of (βββ, τ2, θθθ) is

`(βββ, τ2, θθθ) = −k
2

ln(2π)− 1

2
ln
∣∣ΓΓΓ(τ2, θθθ) + ΣΣΣ

∣∣− 1

2
(Ȳ − Fβββ)ᵀ

[
ΓΓΓ(τ2, θθθ) + ΣΣΣ

]−1
(Ȳ − Fβββ), (5)
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where | · | denotes the determinant of a matrix and we write ΓΓΓ = ΓΓΓ(τ2, θθθ) to stress the dependence

on the parameters.

The first-order conditions for maximizing `(βββ, τ2, θθθ) can be easily obtained by applying standard

results for matrix calculus and we omit the details; see Stein (1999, §6.4) for discussion on related

numerical methods.

In summary, a stochastic kriging metamodel is constructed as follows:

(i) Estimate ΣΣΣ as Σ̂ΣΣ = diag(σ̂2(x1)/n1, . . . , σ̂
2(xk)/nk), where σ̂2(xi) is given by (4).

(ii) Using Σ̂ΣΣ instead of ΣΣΣ, maximize `(βββ, τ2, θθθ) in (5) to obtain the estimates (β̂ββ, τ̂2, θ̂θθ). Set

Γ̂ΓΓ := ΓΓΓ(τ̂2, θ̂θθ), and γ̂γγ(x0) := γγγ(τ̂2, θ̂θθ).

(iii) Predict Y(x0) via the plug-in predictor,

̂̂Y (x0) = f(x0)
ᵀβ̂ββ + γ̂γγ(x0)

ᵀ
(
Γ̂ΓΓ + Σ̂ΣΣ

)−1 (
Ȳ − F β̂ββ

)
,

with MSE estimator

M̂SE(x0) = τ̂2 − γ̂γγ(x0)
ᵀ
(
Γ̂ΓΓ + Σ̂ΣΣ

)−1
γ̂γγ(x0) + δδδᵀ

[
F ᵀ
(
Γ̂ΓΓ + Σ̂ΣΣ

)−1
F

]−1
δδδ,

where δδδ = f(x0)− F ᵀ
(
Γ̂ΓΓ + Σ̂ΣΣ

)−1
γ̂γγ(x0); see Stein (1999, §1.5) for a similar derivation.

3 Measures for the Stylized Model

Obviously, multiple stylized queueing models can be constructed for SESK for a given queueing

simulation experiment. Two natural but important questions then arise. (i) How do we test whether

a stylized model indeed provides useful information on the response surface? (ii) How do we select

a stylized model from a set of candidate models? The two questions are about the usefulness and

effectiveness of a stylized model, respectively. Since the true surface is unknown, these questions

cannot be addressed by comparing it with the predicted surface, but based on the statistical evidence

provided by the simulation outputs at the design points. In this section, we devise a hypothesis test

to address the usefulness and propose a new statistic to measure the effectiveness.
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3.1 Z-Test for Usefulness

We propose the following hypothesis test for usefulness of a given stylized model q(x) in SESK:

• null hypothesis H0: β1 = 0;

• alternative hypothesis H1: β1 6= 0.

If H0 is rejected, then q(x) is useful for capturing the trend of the response surface.

Throughout this section, we assume that ΣΣΣ is given. For notational simplicity, let ψψψ := (τ2, θθθᵀ)ᵀ

and ΩΩΩ = ΩΩΩ(ψψψ) := ΓΓΓ(τ2, θθθ) + ΣΣΣ. Let m be the size of ψψψ, i.e. ψψψ = (ψ1, . . . , ψm)ᵀ. Moreover, we use

βββ0 and ψψψ0 to denote the (unknown) true value of βββ and ψψψ, respectively; let β̂ββ and ψ̂ψψ denote their

respective maximum likelihood (ML) estimators given ΣΣΣ.

In order to construct a test statistic, we need to derive the large-sample asymptotic distribution

of the ML estimator β̂1. There are two large-sample asymptotic regimes for MLE in spatial statistics,

i.e. increasing-domain regime and fixed-domain regime (Zhang and Zimmerman 2005). The former

assumes that the minimum distance between the design points is bounded away from zero and the

sampling domain is unbounded. By contrast, the latter assumes that the design points are taken

more and more densely from a fixed and bounded domain. We adopt the increasing-domain regime

(Assumption 2), because the ML estimators in the fixed-domain regime may be inconsistent even for

some widely used correlation functions (Zhang 2004). We impose in Assumption 3 certain regularity

conditions on ΩΩΩ and F in order to obtain the consistency and asymptotic normality of the ML

estimator (β̂ββ, ψ̂ψψ) in the increasing-domain regime. Both Assumptions 2 and 3 are standard (Mardia

and Marshall 1984) and we briefly discuss their applicability in Remarks 2 and 3, respectively.

Assumption 2. The design points {x1, . . . ,xk} form a regular lattice and there exists a constant

c > 0 such that ‖xr − xs‖ ≥ c for all r, s = 1, . . . , k, as k → ∞. For h ∈ Zd, letting σh :=

Cov[M(x + h),M(x)] is absolutely summable over Zd, i.e.
∑

h∈Zd |σh| < ∞. Moreover, both

σh,i and σh,ij are absolutely summable over Zd for all i, j = 1, . . . ,m, where σh,i = ∂σh/∂ψi, and

σh,ij = ∂2σh/∂ψi∂ψj.

Remark 2. It can be verified easily that the power exponential correlation function of the form

R(x− x′;θθθ) = exp(−
∑d

i=1 θi|xi − x′i|α) for α ∈ (0, 2] satisfies the absolute summability conditions

in Assumption 2.
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Assumption 3. Suppose the following regularity conditions on ΩΩΩ and F :

(i) ΩΩΩ is positive definite and twice differentiable with respect to ψψψ for ψψψ ∈ΨΨΨ, where ΨΨΨ is a compact

set containing the true value ψψψ0 as an interior point;

(ii) F has full rank and (F ᵀF )−1 converges to a zero matrix as k →∞;

(iii) for all i, j = 1, . . . ,m, tij/(tiitjj)
1/2 converges as k → ∞ to a finite limit aij, where tij :=

tr(ΩΩΩ−1(∂ΩΩΩ−1/∂ψi)ΩΩΩ
−1(∂ΩΩΩ−1/∂ψj)), and A := (aij)i,j=1,...,m is a nonsingular matrix;

(iv) k(F ᵀΩΩΩ(ψψψ)−1F )−1 converges to a finite limit uniformly for ψψψ ∈ ΨΨΨ as k →∞.

Remark 3. Condition (i) of Assumption 3 is satisfied for many popular correlation functions including

the power exponential correlation function. Notice that F = (1, q) ∈ Rk×2, where 1 ∈ Rk is the

column vector of ones and q = (q(x1), . . . , q(xk))ᵀ. Hence, the first part of condition (ii) is trivially

satisfied if the stylized model q(x) is not a constant. The second part of condition (ii) holds if the

smallest eigenvalue of F ᵀF tends to infinity as k →∞. Simple linear algebra reveals that this is

equivalent to ‖q‖2 + k −
√

(‖q‖2 − k)2 + 4qᵀ1 → ∞ as k → ∞. Conditions (iii) and (iv) ensure

that the Fisher information matrix of the ML estimator is well behaved in the limit.

Now we derive some large-sample asymptotic properties of the ML estimators. Define for any

ψψψ ∈ ΨΨΨ, V (k)(ψψψ) := k(F ᵀΩΩΩ(ψψψ)−1F )−1 and V (ψψψ) := limk→∞ V (k)(ψψψ). Notice that V (k)(ψψψ) ∈ R2×2

for any k, and V (ψψψ) ∈ R2×2. What’s more, V (ψψψ) is positive definite and continuous in ψψψ ∈ ΨΨΨ,

because the convergence of V (k)(ψψψ) is uniform for ψψψ ∈ ΨΨΨ. The main result of the asymptotic

distribution of the ML estimator β̂ββ is stated in the following Theorem 1.

Theorem 1. Let B ∈ Rn×2 be a matrix of rank n (n ≤ 2). Then, under Assumptions 1 - 3,

√
k[BV (k)(ψ̂ψψ)Bᵀ]−

1
2 (Bβ̂ββ −Bβββ0)

d−→ N (0, I), (6)

as k → ∞, where [BV (k)(ψ̂ψψ)Bᵀ]
1
2 denotes the square root of BV (k)(ψ̂ψψ)Bᵀ, 0 is the n × 1 zero

vector, I is the n× n identity matrix, and
d−→ means “converges in distribution”.

The proof of Theorem 1 is based on the following Lemma 1, which is a direct application of the

Theorems 1 - 3 in Mardia and Marshall (1984).
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Lemma 1. Under Assumptions 1 - 3,

ψ̂ψψ
p−→ ψψψ0 and

√
k(β̂ββ − βββ0) d−→ N (0,V (ψψψ0)), (7)

as k →∞, where
p−→ means “converges in probability”.

Proof of Theorem 1. We first prove that as k →∞,

V (k)(ψ̂ψψ)
p−→ V (ψψψ0). (8)

This is equivalent to show that for any ε, δ > 0, there exist M <∞ for which

Pr(|V (k)
ij (ψ̂ψψ)− Vij(ψψψ0)| ≥ ε) < δ, k > M, i, j = 1, 2. (9)

From the first part of (7) of Lemma 1, ψ̂ψψ
p−→ ψψψ0 as k → ∞. Since V (ψψψ) is continuous in ψψψ ∈ ΨΨΨ,

the continuous mapping theorem (Billingsley 1999, §1.2) indicates that conditionally on ψ̂ψψ ∈ ΨΨΨ,

V (ψ̂ψψ)
p−→ V (ψψψ0) as k →∞. Hence, there exists M1 <∞ for which

Pr
(
|Vij(ψ̂ψψ)− Vij(ψψψ0)| ≥ ε

2

∣∣∣ ψ̂ψψ ∈ΨΨΨ
)
<
δ

2
, k > M1, i, j = 1, 2. (10)

Since V (k)(ψψψ)→ V (ψψψ) uniformly for ψψψ ∈ ΨΨΨ, there exists M2 <∞ for which

|V (k)
ij (ψψψ)− Vij(ψψψ)| < ε

2
, k > M2, ψψψ ∈ ΨΨΨ, i, j = 1, 2. (11)

Since ψ̂ψψ
p−→ ψψψ0 and ψψψ0 is an interior point of ΨΨΨ, there exist M3 <∞ for which

Pr(ψ̂ψψ /∈ΨΨΨ) <
δ

2
, k > M3. (12)

Consequently, for any i, j = 1, 2 and k > M := max{M1,M2,M3},

Pr
(
|V (k)
ij (ψ̂ψψ)− Vij(ψψψ0)| ≥ ε

∣∣∣ ψ̂ψψ ∈ ΨΨΨ
)

= Pr
(
|V (k)
ij (ψ̂ψψ)− Vij(ψ̂ψψ) + Vij(ψ̂ψψ)− Vij(ψψψ0)| ≥ ε

∣∣∣ ψ̂ψψ ∈ΨΨΨ
)

≤ Pr
(
|V (k)
ij (ψ̂ψψ)− Vij(ψ̂ψψ)|+ |Vij(ψ̂ψψ)− Vij(ψψψ0)| ≥ ε

∣∣∣ ψ̂ψψ ∈ ΨΨΨ
)
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≤ Pr
( ε

2
+ |Vij(ψ̂ψψ)− Vij(ψψψ0)| ≥ ε

∣∣∣ ψ̂ψψ ∈ΨΨΨ
)

<
δ

2
, (13)

where the second inequality follows from (11) and the third from (10). Therefore,

Pr(|V (k)
ij (ψ̂ψψ)− Vij(ψψψ0)| ≥ ε)

= Pr
(
|V (k)
ij (ψ̂ψψ)− Vij(ψψψ0)| ≥ ε

∣∣∣ ψ̂ψψ /∈ΨΨΨ
)

Pr(ψ̂ψψ /∈ΨΨΨ) + Pr
(
|V (k)
ij (ψ̂ψψ)− Vij(ψψψ0)| ≥ ε

∣∣∣ ψ̂ψψ ∈ΨΨΨ
)

Pr(ψ̂ψψ ∈ΨΨΨ)

≤Pr(ψ̂ψψ /∈ΨΨΨ) + Pr
(
|V (k)
ij (ψ̂ψψ)− Vij(ψψψ0)| ≥ ε

∣∣∣ψ̂ψψ ∈ΨΨΨ
)

<δ,

where the last inequality follows from (12) and (13). This proves (9) and thus (8) holds.

Once having (8), the remaining steps to prove Theorem 1 are straightforward. From the second

part of (7) of Lemma 1, we have, as k →∞,

√
k(Bβ̂ββ −Bβββ0)

d−→ N (0,BV (ψψψ0)Bᵀ). (14)

By applying the continuous mapping theorem on (8), we have as k →∞,

[BV (k)(ψ̂ψψ)Bᵀ]−
1
2
p−→ [BV (ψψψ0)Bᵀ]−

1
2 . (15)

Hence, by (14) and (15) and Slutsky’s theorem, Theorem 1 is proved. �

Theorem 1 gives the asymptotic distribution of Bβ̂ββ for any B ∈ Rn×2 of rank n. Specifically, if

B is the 2× 2 identity matrix, then (6) is reduced to the asymptotic distribution of β̂ββ. If B = (0, 1),

then (6) is reduced to the asymptotic distribution of β̂1, which will be used to construct a test

statistic for the proposed hypothesis test. We state this specific case in the following corollary.

Corollary 1. Under Assumptions 1 - 3,

√
k[V

(k)
22 (ψ̂ψψ)]−

1
2 (β̂1 − β01)

d−→ N (0, 1),

as k → ∞. In addition, Z(k) d−→ N (0, 1) as k → ∞ under the null hypothesis H0, where Z(k) :=
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β̂1[k/V
(k)
22 (ψ̂ψψ)]1/2.

Set Z(k) to be the statistic of the hypothesis test. Corollary 1 then implies that the hypothesis

test is a Z-test since Z(k) is asymptotically normal. The p-value of the hypothesis test asymptotically

equals 2Φ(−|Z(k)|), where Φ denotes the cumulative distribution function of N (0, 1). Moreover, H0

is rejected at the asymptotic significance level α if |Z(k)| ≥ z1−α/2, where z1−α/2 is the 100(1−α/2)%

quantile of N (0, 1), or if the p-value is smaller than α.

Recall that one can easily extend the SESK to incorporate multiple stylized models. We therefore

extend the hypothesis test and the related results accordingly as follows. The proof is similar as

that of Theorem 1 and Corollary 1 and is omitted.

Theorem 2. Suppose that ` distinctive stylized models are used in SESK (2), i.e., f(x) =

(1, q1(x), . . . , q`(x))ᵀ and βββ = (β0, β1, . . . , β`)
ᵀ. Let V (k)(ψψψ) := k(F ᵀΩΩΩ(ψψψ)−1F )−1 ∈ R(1+`)×(1+`) for

any ψψψ ∈ ΨΨΨ, where F = (1, q1, . . . , q`) ∈ Rk×(1+`). Let B = (0, 1, . . . , 1) ∈ R1×(1+`). Consider the

hypothesis test

H0 : β1 = β1 = . . . = β` = 0 versus H1 : β1 6= 0 or β2 6= 0 or . . . or β` 6= 0.

Let Z(k) := [k/(BV (k)(ψ̂ψψ)Bᵀ)]1/2 ·Bβ̂ββ be the test statistic. Then, Z(k) d−→ N (0, 1) as k →∞, under

Assumptions 1 - 3 and the null hypothesis H0.

Remark 4. Rejecting the null hypothesis in the Z-test only means that at least one of the stylized

models included is useful in capturing the shape of the response surface. It does not, however,

indicate which stylized model is the best or which combination of these stylized models should be

chosen. To quantify the effectiveness of the stylized models included in SESK, one can use the K2

statistic presented in §3.2 or the information criteria like AIC and BIC presented in §3.3.

3.2 K2 Statistic for Effectiveness

In the presence of multiple candidate stylized models, it is desirable for the users to have a convenient

tool for model selection. In the context of linear regression, the coefficient of determination R2

measures how well a model fits the data and can be interpreted as the proportion of the total

variation of the data explained by the model. However, R2 or other measures based on the sum of
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squared errors may not be suitable in our setting for the following reason. For stochastic kriging, in

the absence of simulation noise, the predicted surface would pass through exactly the simulation

outputs at the design points, in which case the sum of squared errors would be zero. This implies

that the sum of squared errors can be reduced to zero by simply increasing the number of replications

at each design point, and thus cannot reflect the goodness-of-fit of the stylized model. Nevertheless,

inspired by R2, we propose a new statistic called K2:

K2 = 1−
τ̂2S
τ̂2O
,

where τ̂2S and τ̂2O are the ML estimates of τ2 in SESK and OSK, respectively.

Similar as R2, a large value of K2 indicates that a large portion of the variation in the observations

Ȳ can be explained by the stylized model. An intuitive reason is as follows. OSK treats the response

surface Y(x) as a realization of a second-order stationary Gaussian process, which has a constant

marginal variance. In order to capture the highly nonlinear shape of the response surface for

queueing simulation, which often exhibits exploding behavior, the marginal variance τ2O in OSK

needs to be large. By contrast, the same process is used to model the residual surface Y(x)−β1q(x)

in SESK. If the stylized model q(x) can capture the main trend of Y(x), the residual surface would

have much less variation than the original surface does, and thus the marginal variance τ2S in SESK

would be smaller than τ2O.

Remark 5. Consider the following two linear regression models that are analogous to OSK and SESK,

respectively: (i) yi = cO +σOεi and (ii) yi = cS +βxi+σSεi, i = 1, . . . , k, where εi’s are independent

standard normal random variables. Let σ̂O, σ̂S , ĉS , and β̂ denote the ML estimates. It can be shown

easily that σ̂2O = k−1
∑k

i=1(yi − y)2, where y = k−1
∑k

i=1 yi, and σ̂2S = k−1
∑k

i=1(yi − ĉS − β̂xi)2.

Hence, R2 associated with the simple linear regression is

R2 = 1− sum of squared residuals

total sum of squares
= 1−

∑k
i=1(yi − ĉS − β̂xi)2∑k

i=1(yi − y)2
= 1−

σ̂2S
σ̂2O

,

which bears a structure similar to K2.

Remark 6. It is well known that the value range of R2 is [0, 1], but K2 is more subtle. We prove in

Appendix A that K2 ∈ [0, 1] if ΣΣΣ = 0 and θθθ is known. Otherwise, K2 may become negative, albeit
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rarely in practice, when the number of design points k is small. A negative K2 means complete

failure of the stylized model.

We now provide another intuition regardingK2. Let IMSE =
∫

MSE∗(x)dx denote the integrated

MSE of stochastic kriging over the entire design space, where MSE∗(x) is given by (3). Then,

IMSES
IMSEO

can also be used to measure the global goodness-of-fit of SESK relative to OSK, where the

subscript S and O indicate SESK and OSK, respectively. But it may be computationally prohibitive

to implement this measure in practice because it involves a multidimensional numerical integration

and, even to approximate it requires computation of the true responses at a large number of design

points, which would be excessively expensive.

Nevertheless, we argue heuristically that 1− IMSES
IMSEO

is somewhat similar to K2 intuitively. Assume

that the numbers of replications at all design points are sufficiently large so that the simulation

errors there are negligible. Then, it can be shown easily that MSE∗(x0) ≈ 0 if x0 is close to any

one of the design points and that MSE∗(x0) ≈ τ2 if x0 is far away from all the design points.

Therefore, if the design space is large and the number of design points is small, then IMSE is roughly

proportional to τ2, and thus K2 = 1− τ2S
τ2O
≈ 1− IMSES

IMSEO
.

We stress here that albeit inspired by R2, K2 is not rigorously derived and should only be

considered as a heuristic statistic that measures the proportion of the total variation of the response

surface explained by the incorporated stylized model. But its advantage is the simplicity, since the

estimation of τ2 is necessary for use of stochastic kriging and K2 can be computed with nearly zero

additional cost. Consequently, we suggest that K2 should not be used alone but as a sanity check

to ensure that conclusions from other statistical tools such as the Z-test in §3.1 and the information

criteria in §3.3 are consistent.

3.3 Information Criteria

Although we have been focusing on the case of one single stylized model in SESK, multiple stylized

models can indeed be incorporated. Then, the complexity of SESK metamodels may be different in

terms of the number of unknown parameters. So in addition to K2, which does not account for the

metamodel complexity, we suggest using the popular model selection methods Akaike information

criterion (AIC, Akaike 1974) and Bayesian information criterion (BIC, Schwarz 1978). Both criteria
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are driven by MLE and penalize the number of model parameters in an effort to avoid model

overfitting. Their difference lies in the form of the penalization. In particular,

AIC =− 2`(β̂ββ, τ̂2, θ̂θθ) + 2p,

BIC =− 2`(β̂ββ, τ̂2, θ̂θθ) + p ln(k),

where p is the number of unknown parameters and k is the data size (i.e. number of design points).

For example, p = m+ 1 for OSK since βββ = β0, where m is the size of (τ2, θθθ), whereas p = m+ `+ 1

for SESK, where ` is the number of stylized models incorporated. If several SESK metamodels are

available, we select the one with the smallest AIC or BIC value. Notice that AIC or BIC can also be

used to select the best among several stylized models if one wants to incorporate one single stylized

model in SESK.

4 An Illustrative Example – M/G/1 Queue

We now consider a simple example to gain insights on benefits of incorporating stylized models in

stochastic kriging, and demonstrate the proposed measures. Let Y(x) be the steady-state mean

queue length (excluding the customer in service) of an M/G/1 queue with arrival rate x ∈ (0, 1)

and unit service rate. Suppose that the service times follow the gamma distribution with shape

parameter 1/2 and scale parameter 2, so the squared coefficient of variation of the service time

distribution is 2. It then follows from the Pollaczek-Khintchine formula that Y(x) = 1.5x2/(1− x).

Let Qt(x) be the queue length of this system at time t. A natural estimator of Y(x) is

ȲT (x) :=
1

T

∫ T

0
Qt(x) dt,

the average queue length during T units of simulated time, and its asymptotic variance σ2(x) :=

limT→∞ T Var[ȲT (x)] is given by Equation (13) of Whitt (1989)

σ2(x) =
x(20 + 121x− 116x2 + 29x3)

4(1− x)4
.
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Then, for large T , ȲT (x)
d
≈ N (Y(x), σ2(x)/T ), where

d
≈means “approximately equals in distribution”.

Therefore, we can use this approximation to generate random samples of ȲT (x) instead of running

steady-state simulation, which is time-consuming and subject to the initialization bias.

4.1 Benefits of Stylized Models and Validity of Measures

To illustrate SESK, we set up an experiment with k = 4 design points x = 0.2, 0.4, 0.6, 0.8, and

allocate n = 20 simulation replications to each of them. Each replication is generated from

N (Y(x), σ2(x)/T ) with T = 2, 500. Based on the synthetic data, we compute the estimates

(Σ̂ΣΣ, β̂ββ, τ̂2, θ̂θθ), the plug-in predictor
̂̂Y (x), and the MSE estimator M̂SE(x).

Consider three stylized models: q(1)(x) = x2/(1− x), q(2)(x) = 3x9, and q(3)(x) = 10(x− 0.52)2.

Notice that q(1)(x) is the steady-state mean queue length in an M/M/1 queue with arrival rate x

and unit service rate, which is obviously a good approximation for the M/G/1 queue. As a rough

approximation, q(2)(x) somewhat captures the trend of Y(x), albeit not as closely as q(1)(x) does.

Last, q(3)(x) appears irrelevant to Y(x). For instance, q(3)(x) is not an increasing function as Y(x).

Notice that all these stylized models are in closed form, so the computational cost is negligible

compared to running the simulation model.

Figure 2 shows that OSK completely fails to capture the exploding behavior of Y(x) as x

approaches 1. By contrast, incorporating the response surface of the M/M/1 queue q(1)(x) yields a

predicted surface almost identical to the true surface. Of course, this is an ideal case since q(1)(x)

happens to be a multiple of Y(x). A more realistic situation is demonstrated by q(2)(x), which

captures the monotonicity but not the exploding behavior of Y(x). Surprisingly, although q(2)(x) is

merely a rough approximation, it dramatically enhances the prediction accuracy of SESK relative

to OSK. This shows that SESK is fairly robust with respect to the choice of the stylized model.

Nonetheless, if the incorporated stylized model has little similarity to the true surface, which is the

case for q(3)(x), SESK does not show significant improvement over OSK.

Table 1 confirms the above findings. The Z-test suggests that q(1)(x) and q(2)(x) are significant

for explaining the variation in Y(x), whereas q(3)(x) is not. Moreover, the three statistics K2, AIC,

and BIC all indicate that q(1) and q(3)(x) are the best and worst among the three stylized models,

respectively. In particular, K2 ≈ 1 for q(1)(x) aligns with the fact that q(1)(x) perfectly captures
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Figure 2: OSK v.s. SESK for the M/G/1 Queue.

Table 1: OSK v.s. SESK for the M/G/1 Queue.

Metamodel
Z-test

K2 AIC BIC
Z(k) p-value

OSK - - - 22.7 20.9

SESK with q(1) 22.4 <0.001 1.00 -1.3 -3.8

SESK with q(2) 7.6 <0.001 0.95 9.9 7.4

SESK with q(3) 0.6 0.54 0.06 24.4 21.9

the trend of Y(x), making the variation of the residual surface Y(x)− β1q(1)(x) negligible.

Albeit artificial, this numerical example demonstrates that by incorporating a reasonable stylized

model, SESK can produce substantially more accurate predictions than OSK, even with only a

small number of design points. More importantly, SESK is relatively robust and does not require

the incorporated stylized model to have a high degree of similarity to the true response surface.

Finally, the proposed Z-test and K2 statistic can diagnose the usefulness and effectiveness of a

candidate stylized model for the small sample case, producing findings that are consistent with the
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popular tools AIC and BIC.

4.2 Comparison with Gradient Enhanced Stochastic Kriging

Another approach to enhancing stochastic kriging is to incorporate gradient information. We now

compare SESK with the stochastic kriging with gradient (SKG) proposed in Chen et al. (2013) in

terms of prediction accuracy; see Qu and Fu (2014) for a different way of incorporating gradient

estimates in stochastic kriging that has comparable performance with SKG. However, in order that

gradient enhanced stochastic kriging be feasible, one needs to be able to compute the gradient

estimates with a negligible additional cost once the responses of the simulation model have been

observed. To that end, the simulation model ought to have a relatively simple structure, so that

techniques such as infinitesimal perturbation analysis or likelihood ratio method can be applied to

compute the gradient estimates efficiently. However, the general simulation models considered in

this paper are too complex to yield efficient gradient estimation; see examples in §6. One then often

resorts to the finite difference (FD) method, which amounts to a substantial computational overhead

by running the simulation model at nearby locations and tends to incur significant estimation errors.

We conduct the comparison between SESK and SKG for the M/G/1 queue. To imitate the usual

situation in practice where the simulation model is a black-box and the user does not have a means

to compute the gradients efficiently, we apply FD to estimate the gradients. In particular, associated

with each simulation replication at each design point, we compute a FD gradient estimate based on

the central difference with step size 0.01. The results are presented in Figure 3. The left panel shows

the predicted surface of SKG, whereas the right panel shows the predicted surface of SESK with

a coarse stylized model q(2). Clearly, SESK has better performance in terms of extrapolating the

exploding response surface. This is because the gradient estimates only provide local information

about the shape of the surface, whereas the stylized model provides global information. In addition,

using central differences for gradient estimation, SKG would run the simulation model 3 times

as many as SESK. Therefore, if the stylized model is well chosen, then SESK can produce more

accurate prediction with less computational cost than SKG does.
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Figure 3: SKG v.s. SESK for the M/G/1 Queue.

5 Constructing Stylized Models for Queueing Networks

Clearly, there is no unique rule for constructing stylized models for queueing simulation. A stylized

model with higher accuracy is generally more complex and more computationally expensive. We

remark here that the quantitative accuracy of the stylized model is not our uppermost concern.

Instead, we focus on the simplicity and convenience of the approaches, since a basic representation

of the qualitative behavior of the response surface may suffice.

Suppose that the simulation model is an open queueing network that consists of a finite number

of stations to provide service. External customers may enter the network via each station. A

customer that completes the service at one station may be routed to another to receive further

service or leave the network. In this section, we propose several simple methods for constructing

stylized models for such queueing networks. The resulting stylized models either yield closed-form

solutions or can be computed numerically with a negligible cost relative to the simulation model.

5.1 Jackson Network

The Jackson network (Jackson 1963) is a classical stylized queueing model. It assumes that the

external arrivals to each station follow a Poisson process, that the service times at each station are

independent and exponentially distributed, and that each station has an infinite capacity. Moreover,

the customers are routed randomly according to prespecified probabilities. The Jackson network

is highly analytically tractable. Many performance measures such mean waiting time and mean

number-in-system have closed-form expressions. Analogous to the M/G/1 queue in §4, one may
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consider to use the Jackson network as the stylized model in SESK if each station of the original

queueing network has stationary external arrivals, independent and identically distributed service

times, and infinite capacity.

5.2 Finite Capacity and Blocking

Service capacity is often a design variable that needs to be optimized in practice to balance system

performance and operating costs. Hence, networks with infinite capacity like the Jackson network

are not suitable to approximate such real systems. Notice that finite capacity queueing networks

have potential loss and temporary blocking of customers; see Balsamo et al. (2013, §2.2).

In queueing theory, there is a class of analytically tractable queueing networks that permit

the so-called “product-form” solutions. Examples include Jackson networks (Jackson 1963) and

Kelly networks (Kelly 1979); see Chao (2011) for an recent overview. Such networks can be

decomposed into isolated stations and their behavior can be analyzed separately. This suggests

that if the simulation model is a finite-capacity queueing network, then one may simply consider

the decomposition approximation as the stylized model for SESK. The only nontrivial calculation

required is to properly adjust the parameters such as arrival rates and service rates to approximate

the interdependence between the stations in the original network. We provide in Appendix B a

relatively simple way for parameter adjustment based on the approach in Korporaal et al. (2000).

The case study in §6.1 demonstrates the use of the stylized model constructed in this way to study

patient flow in a hospital. We refer interested readers to Osorio and Bierlaire (2009) for a more

sophisticated approximation scheme.

5.3 Time-Varying Arrivals

The arrival process is often nonstationary in practice. A natural approach to addressing time-varying

arrivals is the pointwise stationary approximation (Whitt 1991). In this approach, the time-varying

arrival rate process is approximated by a piecewise constant function. Within each piece, the arrival

rates are considered as a constant equal to the average. The performance measure of interest can be

calculated independently for each piece and then aggregated by taking a weighted average, where

the weights may be approximated by the total number of customers in each piece. The advantage of

this approach is its simplicity. However, the performance of this approach depends critically on how
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the pieces are set in terms of both the number of pieces and the length of each piece. In addition,

during the peak time of the arrivals, the average arrival rate within a piece may exceed the total

service rate, implying an unstable queue.

Another approach is the fluid approximation that is built on heavy traffic analysis; see Gautam

(2012, §8) for an introduction on the subject. We provide in Appendix C a simple fluid approximation

for time-varying queues. Both of the above approaches for constructing stylized models for time-

varying arrivals will be demonstrated in the case study in §6.2 that addresses the dock allocation

problem at an air cargo terminal.

6 Case Studies

We consider two real-world examples of queueing simulation in this section, each of which has a

distinctive feature. The first example stems from the healthcare industry and involves a queueing

network with finite capacity in each of its stations which induces blocking behavior. The second

example, on the other hand, comes from the logistics industry and involves time-varying arrival

processes. We demonstrate, through the two case studies, that: (i) reasonable stylized models can

be constructed easily for a large class of queueing networks; (ii) prediction accuracy of stochastic

kriging can be significantly enhanced by incorporating such stylized models; (iii) the proposed

measures can diagnose and quantify the improvement properly. All the numerical experiments

(including the M/G/1 queue in §4) are implemented in MATLAB R2015a (Intel i7-3770 CPU @

3.40GHz, 8 GB RAM). The code is available at simopt.github.io. In the implementation, we

have taken advantage of the open source code for stochastic kriging (stochastickriging.net).

6.1 Case Study 1 – Patient Flow in a Hospital

This problem is adopted from Osorio and Bierlaire (2009). The hospital of interest has nine medical

units (i.e., stations), each of which has a different number of beds. The patients and the beds are

considered as customers and servers, respectively. For medical unit i, i = 1, . . . , 9, the external

patients arrive following a Poisson process with arrival rate γi, the service time of each bed follows

the exponential distribution with rate µi, and the number of beds is ci; see Table 2. The hospital as

a whole is modeled as a queueing network and the patients are routed among the medical units
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Table 2: Parameter Configuration of the Hospital.

i 1 2 3 4 5 6 7 8 9

γi/hr. 0.39 0.50 0.25 0.06 0.18 0.03 0.13 0.16 0.00
µi/hr. 0.32 0.26 0.34 0.01 0.02 0.01 0.02 0.22 0.52
ci 4 8 5 18 18 4 4 10 6

Table 3: Transition Probability Matrix.

i 1 2 3 4 5 6 7 8 9

1 - - - .16 .02 - - .71 -
2 - - - .07 - - - .84 -
3 - - - .03 .01 - - - .95
4 .18 .01 .03 - .03 .01 .11 .03 -
5 .05 .01 .01 .01 - .07 - - -
6 .02 - - .01 .10 - - - -
7 .05 - .05 .04 - - - .01 -
8 - - - - - - .01 - -
9 - - - .05 - - .05 .02 -

according to the transition probability matrix given in Table 3. Each medical unit is bufferless

having no waiting room, so the capacity of each unit is the same as the number of beds. Due to the

finite capacity, a patient who finishes his service in one unit will be blocked at his current location,

if the unit to which he should be routed is full. In this case, the patient waits at his current location

until there is an opening in the target unit. While being blocked, the patient keeps occupying his

bed and it is unavailable for other patients. If there are multiple blocked patients waiting to enter

the same unit, they are unblocked on a first-blocked-first-released basis. This blocking mechanism is

known as blocking-after-service (BAS) (Balsamo et al. 2013, §2.2). The performance measure of

interest Y(x) is the steady-state sojourn time in the hospital (length of stay), where x ∈ R9 is the

vector of the number of beds in the nine medical units.

We want to predict Y(x) over a wide range of x, say, up to 60% difference from the current

configuration, i.e. xi ∈ (1 ± 60%)ci, i = 1, . . . , 9. To implement the metamodels, we consider a

simple experiment design. We alter the value of each xi while keeping the other variables fixed at

the current configuration, namely the design point is of the form (c1, . . . , ci−1, xi, ci+1, . . . , c9). The

altered values are chosen to be centered around the current configuration of the number of beds in

each station; see the row of “Design Point” in Table 4. Including these altered configuration and

the current configuration of the number of beds, we obtain 23 design points in total and use them
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Table 4: Experimental Design. The numbers in the table are the possible values of xi. The design points
given here do not but should include the current configuration (c1, . . . , c9).

i 1 2 3 4 5 6 7 8 9

Design Point
(c1, . . . , ci−1, xi, ci+1, . . . , c9)

2, 6 4, 12 2, 8
10, 14
22, 26

10, 14,
22, 26

2, 6 2, 6 6, 14 2, 10

Evaluation Point
(x1, . . . , x9)

3, 5 3, 13 3, 7
8, 18,

28
8, 18,

28
3, 5 3, 5 5, 15 3, 9

to construct the metamodels. At each design point, the simulation model is run with 10 replications

with warm-up length 10,000 hours and total run length 50,000 hours. The average run time of the

simulation model at one design point is about 240 seconds.

To apply SESK, we construct a simple stylized model as follows. We decompose the finite-capacity

queueing network into isolated independent stations and model each station as a finite-capacity

multi-server queue. The only non-trivial calculation required is to adjust the structural parameters

of each station (e.g., arrival and service rates) properly in order to approximate the interdependence

between the stations in the original network. The whole construction is based on the approach of

Korporaal et al. (2000), and the details are given in Appendix B. The average run time of evaluating

the stylized model at one design point is about 0.06 second, thereby negligible compared to the

simulation model.

To evaluate the prediction accuracy, we consider the root mean squared error (RMSE)

RMSE =

√∑
x0∈C

1

|C|
(
̂̂Y (x0)− Y(x0))2, (16)

and the mean absolute percentage error (MAPE)

MAPE =
100

|C|
∑
x0∈C

∣∣∣∣∣∣
̂̂Y (x0)− Y(x0)

Y(x0)

∣∣∣∣∣∣ , (17)

where C denotes the set of predicted points and |C| is its cardinality. However, the total number

of points in the entire domain is large and to estimate the “true” response at any point requires

extensive simulation. It is thus computationally prohibitive to use all these points to evaluate the

prediction quality of the metamodels. Instead, we select several representative values for each xi,
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Table 5: OSK v.s. SESK for Patients’ Mean Sojourn Time.

Metamodel
Hypothesis test

K2 AIC BIC RMSE (hr.) MAPE (%)
Z(k) p-value

OSK - - - 49.8 62.3 3.7 7.4
SESK 12.9 < 0.001 0.82 15.7 29.3 1.3 2.7

Stylized Model - - - - - 2.3 5.4
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Figure 4: Predicted Patients’ Mean Sojourn Time as a Function of x4.

and use the full factorial design to form the grid for the evaluation purpose. We call these points

the evaluation points; see the row of “Evaluation Point” in Table 4. The total number of evaluation

points is |C| =
∏9
i=1mi = 1, 152, where mi is the number of representative values of xi. For each of

the 1,152 evaluation points, we estimate the “true” response through running the simulation for

sufficiently many replications so that the simulation noise is negligible (e.g. the half-width of the

95% confidence interval is less than 0.05 hour).

The numerical results are shown in Table 5. We can find that both the RMSE and MAPE in

SESK are smaller than those in OSK, which shows that the SESK gives better fitting. On the other

hand, the results of the hypothesis test strongly reject H0, suggesting the usefulness of the stylized

model. The K2 is 0.82, showing high explaining power of the stylized model. Besides, the AIC and

BIC in SESK are much smaller than those in OSK. All the measures are consistent to the actual

improved performance by incorporating the stylized model.

For better visualization, we plot in Figure 4 the predicted patients’ mean sojourn time as a func-

tion of x4 while keeping the other variables fixed, i.e. Y(x) for x ∈ {x|x = (4, 8, 5, x4, 14, 4, 4, 10, 6)ᵀ}.

Notice that in this set, the point with x4 = 18 happens to be a design point at which the simulation
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model is executed. We see clearly that the prediction accuracy of OSK is satisfying for the flat part

of the response surface, which is expected. However, it does not capture the steep, nonlinear part at

the left end of the curve. This is the place where the stylized model makes an impact and improves

the prediction accuracy considerably.

6.2 Case Study 2 – Dock Allocation at an Air Cargo Terminal

This is a practical problem encountered by one of the largest air cargo terminals worldwide. A

critical resource for daily operations of the terminal is shipping/receiving docks, where cargoes are

delivered and picked up at the docks by trucks of forwarding agents. There are primarily four types

of cargo at this terminal: (1) pallet bulk cargo, (2) general bulk cargo, (3) perishable cargo, and

(4) prepacked cargo. Each type of cargo demands a distinctive material handling system that does

not apply to other types. Hence, the management of the terminal needs to determine the optimal

scheme for allocating the total available docks to the four types of cargo so that the average waiting

time of the trucks is minimized.

The terminal operates continuously (24 hours per day, 7 days per week). The historical data

indicate that the arrival rates of the four types of cargoes are time-varying (Figure 5) and that

their service times follow different probability distributions (Table 6). The simulation model of

interest here is the terminal consisting of four independent Mt/G/s queues, each of which models

the process of handling one type of cargo with s allocated docks. Let x = (x1, x2, x3, x4)
ᵀ be the

numbers of docks that are allocated to the four types of cargoes. The performance measure of

interest, Y(x), is the long-run average waiting time of the trucks.
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Figure 5: Time-Varying Arrival Rates of the Four Cargo Types.
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Table 6: Service Time Distributions and Dock Allocation. WEIB(a, b) and GAMM(a, b) denote the Weibull
and Gamma distribution with scale parameter a and shape parameter b, respectively.

Cargo Type Service Time Distribution (min.) Number of Docks

1 WEIB(21.8, 1.3) x1
2 7 + WEIB(67.6, 1.5) x2
3 7 + GAMM(25.7, 0.9) x3
4 7 + GAMM(9.4, 3.0) x4

We consider two stylized models. One (i.e., stylized model 1) is the stationary approximation,

that is, queue i is approximated by an M/M/si queue with arrival rate λ̄i and service rate µi, where

λ̄i is the average arrival rate and si = xi, i = 1, . . . , 4. The other (i.e., stylized model 2) is based on

the fluid approximation of time-varying queues and is detailed in Appendix C. The average run

time of evaluating the two stylized models at one design point is about 0.002 and 0.003 second,

respectively.

6.2.1 Evaluating Prediction Accuracy

The terminal has 111 available docks in total, so x1 + x2 + x3 + x4 ≤ 111. To ensure stability of the

four queues, the number of docks must satisfy λ̄i < µixi, i = 1, . . . , 4. Specifically, this requirement

translates to {x1 ≥ 5, x2 ≥ 61, x3 ≥ 5, x4 ≥ 21}. To evaluate the prediction accuracy, we calculate

RMSE defined in (16) and MAPE defined in (17), for all points in the feasible region. Hence,

|C| = 8, 855. For each evaluation point, we estimate the “true” response by extensive simulation as

follows. The run length of the simulation model is set sufficiently long (e.g. 25 days = 600 hours)

and the first 10 days is considered as the warm-up period to in order to reduce the initialization

bias. Moreover, each simulation is replicated for sufficiently many times so that the simulation noise

is small (e.g. the half-width of the 95% confidence interval is less than 0.1 minute).

Since the feasible region is not a hypercube, to find a good set of design points we adopt the

space-filling approach detailed in Forrester et al. (2008, §1.4.3), while considering uniform random

designs instead of random Latin hypercubes. Given the total number of design points, the optimal

design is defined via maximizing the smallest pairwise distance between the design points (Morris

and Mitchell 1995). However, to identify the optimal design is computationally infeasible in general,

so certain random search procedures are often used to find the best design up to a computational

budget. We assume that the number of design points is 40 and repeat the above space-filling
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approach 40 times, each using a different random seed and resulting in a different design upon

termination. We conduct the experiment for each of the 40 designs. To produce the simulation

outputs for constructing the metamodels, normally at each design point the simulation model is

replicated 30 times with the run length 8 days and warm-up period 5 days. For design points at

which the estimated standard deviation of the simulation output is beyond 1 minute, simulation effort

is increased so that it is controlled around 1 minute. The average run time of the simulation model

at one design point is about 96 seconds. Hence, the computational effort for the two considered

stylized models (0.002 and 0.003 second run time) is indeed negligible.

In addition to the single stylized-model setup, we also consider the case of incorporating both

stylized models in SESK, in which case the trend term becomes β0 + β1q1(x) + β2q2(x). The

numerical results based on one typical set of design points are presented in Table 7, and those based

on all the 40 sets of design points are presented in Table 8.

Clearly, the stationary approximation is very rough for queueing systems with time-dependent

characteristics. Despite its crudeness, it can significantly improve the prediction accuracy of the

stochastic kriging metamodel. The fluid approximation is a much better stylized model, suggested

by both the model selection tools (K2, AIC, and BIC) and the measurements for prediction accuracy

(RMSE and MAPE). Incorporating both stylized models provide even more accurate predictions.

In addition, based on the same design as that of Table 7, we plot in Figure 6 the predicted

long-run mean waiting time of different metamodels as a function of x2, i.e. Y(x) for x ∈ {x|x1 =

6, x2 = 62, . . . , 74, x3 = 10, x4 = 95 − x2}. Notice that (6, 69, 10, 26) in the set happens to be a

design point at which the simulation model is executed. As expected, OSK does not perform well

and stylized models greatly improve the prediction accuracy. In particular, stylized model 1 roughly

captures the trend of the response surface and thus provides noticeable improvement; stylized model

2 is more accurate and the improvement it causes is substantial, making the predicted responses

almost identical to the true responses. Incorporating both stylized models further improves the

prediction accuracy as shown by the better fitted surface and narrower ±1.96
√

M̂SE intervals.

Notice also that in terms of the prediction, SESK with stylized model 1 incorporated is highly

accurate for x2 > 67, whereas SESK with stylized model 2 incorporated is much better for x2 ≤ 67.

Hence, incorporating both stylized models is, to some extent, analogous to model averaging (Hastie

et al. 2009, Chapter 8).
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Table 7: OSK v.s. SESK for Trucks’ Mean Waiting Time Based on One Typical Design.

Metamodel
Z-test

K2 AIC BIC RMSE (min.) MAPE (%)
Z(k) p-value

OSK - - - 305.3 315.5 9.6 10.7

SESK (stylized model 1) 21.1 <0.001 0.62 260.0 271.9 4.3 4.4
SESK (stylized model 2) 74.2 <0.001 0.86 208.9 220.7 2.3 2.6

SESK (stylized model 1 & 2) 44.1 <0.001 0.99 137.5 151.0 1.0 1.1

Stylized model 1 - - - - - 44.6 68.7
Stylized model 2 - - - - - 21.8 22.2

Table 8: OSK v.s. SESK for Trucks’ Mean Waiting Time Based on 40 Designs.

Kriging model
RMSE (min.) MAPE (%)

Min Max Mean Median Min Max Mean Median

OSK 6.2 15.7 9.8 9.4 7.5 18.6 10.7 10.1

SESK (stylized model 1) 2.2 11.7 3.6 3.1 2.2 7.4 3.4 3.2
SESK (stylized model 2) 1.8 4.8 2.5 2.3 2.1 3.5 2.7 2.6

SESK (stylized model 1 & 2) 0.9 1.4 1.1 1.0 1.1 1.6 1.2 1.2
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Figure 6: Predicted Trucks’ Mean Waiting Time as a Function of x2. Based on one typical design.
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6.2.2 Searching for Optimal Allocation

To find the optimal dock allocation is a discrete optimization via simulation (DOvS) problem.

Random search algorithms are often used to solve such problems; see Andradóttir (2006) for an

overview. In particular, the Gaussian process-based search (GPS) algorithm developed in Sun

et al. (2014) is a state-of-the-art globally convergent algorithm. In the same vein as OSK, the GPS

algorithm treats the response surface Y(x) as a realization of a second-order stationary Gaussian

process. In each iteration of the algorithm, based on the constructed Gaussian process one can

calculate the probability that a solution is better than the current sample-best solution. This

probability is then used to build a sampling distribution for the next design point to be sampled.

It is shown in Sun et al. (2014) that in terms of total computational time including both running

time of the simulation model and computational overhead, the GPS algorithm has significantly

better performance than other popular algorithms, such as the global random search algorithm of

Andradóttir (1996) and the sequential kriging optimization algorithm of Huang et al. (2006), for

typical DOvS problems. We now use the dock allocation problem to illustrate how stylized models

can further enhance the performance of the GPS algorithm.

Notice that stylized models can be integrated in the GPS algorithm by revising the algorithm

so that it treats the residual surface Y(x)− f(x)ᵀβββ as a realization of a second-order stationary

Gaussian process. Then, all the calculations involved in the GPS algorithm can be easily modified

and we omit the details. We call the new algorithm stylized-model enhanced GPS (SEGPS).

To search for the optimal dock allocation, we use the fluid approximation as the stylized model,

and initially set βββ = (0, 1)ᵀ and select 3 design points randomly, at each of which the simulation

model is run to generate 5 independent observations. In each iteration of the SEGPS algorithm, we

construct a Gaussian process based on all the previous simulation outputs. Then, we construct a

sampling distribution and from it we sample the next 3 design points at each of which the simulation

model is replicated for 5 times. For every 5 iterations (i.e., 15 design points), the value of βββ is

updated through linear regression. The whole algorithm is stopped after 90 design points are visited,

so the total number of observations is 450 upon termination. We repeat the experiment 40 times

and compute the average estimated optimal value as a function of the number of observations. For

comparison, the original GPS algorithm is also implemented in the same manner with the only
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Figure 7: DOvS for Dock Allocation – GPS v.s. SEGPS.

difference that there is no stylized model f(x) (thus also no updating about βββ). Figure 7 shows

that the SEGPS algorithm converges significantly faster than the GPS algorithm.

7 Conclusions

We propose in this paper a simple, effective approach to improve the performance of stochastic

kriging for queueing simulation. By incorporating stylized models that provide useful information

about the shape of the unknown response surface, we demonstrate that the prediction accuracy can

be improved substantially through two representative case studies. The stylized models need not to

be highly accurate. Instead, the performance of SESK is fairly robust relative to the choice of the

stylized models. This feature is particularly appealing to practitioners. Finally, we briefly illustrate

that in addition to improving prediction accuracy, incorporation of stylized models can accelerate

the convergence of the GPS algorithm for DOvS problems. We believe that the same idea should be

able to extend to other algorithms for more general simulation optimization problems. We leave it

to future investigation.
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Appendix

A Value Range of K2

If ΣΣΣ = 0, the log-likelihood function (5) reduces to

`(βββ, τ2, θθθ) = −k
2

ln(2π)− 1

2
ln |τ2R(θθθ) + ΣΣΣ| − 1

2
(Ȳ − Fβββ)ᵀ[τ2R(θθθ) + ΣΣΣ]−1(Ȳ − Fβββ)

= −k
2

ln(2π)− k

2
ln(τ2)− 1

2
ln |R(θθθ)| − 1

2τ2
(Ȳ − Fβββ)ᵀR(θθθ)−1(Ȳ − Fβββ).

Further, if θθθ is known, it is easy to see that the maximizer (β̂ββS , τ̂
2
S) = arg maxβββ,τ2 `(βββ, τ

2, θθθ) satisfies

kτ̂2S = (Ȳ − F β̂ββS)ᵀR(θθθ)−1(Ȳ − F β̂ββS).

It follows that

`(β̂ββS , τ̂
2
S , θθθ) = −k

2
(ln(2π) + 1)− 1

2
ln |R(θθθ)| − k

2
ln(τ̂2S). (18)

Moreover, notice that

`(β̂ββS , τ̂
2
S , θθθ) = max

β0,β1,τ2
`((β0, β1), τ

2, θθθ) ≥ max
β0,τ2

`((β0, 0), τ2, θθθ) = `(β̂ββO, τ̂
2
O, θθθ).

Then, by (18), we conclude that 0 ≤ τ̂2S ≤ τ̂2O, and thus 0 ≤ K2 ≤ 1.

B Decomposition of Finite-Capacity Queueing Networks

To facilitate the presentation of the stylized queueing model used in §6.1, we first introduce some

notations. Let K be the number of stations in the network. For station i, let γi, λi, di, µi, and ci

denote its external arrival rate, internal arrival rate, departure rate, service rate, and number of

servers, respectively, i = 1, . . . ,K. After service completion at station i, a customer is routed to

station j with probability pij or leaves the network with probability pi0 = 1−
∑K

j=1 pij .

The stylized queueing model for the finite-capacity queueing network with bufferless stations and

BAS blocking mechanism in §6.1 is constructed as follows. Following the method in Korporaal et al.

(2000), we decompose the network into K isolated independent stations, each of which is a queue of

type (M(γ) +M(λ))/M(ν)/s/N . The performance measure of the network is then approximated by
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aggregating that of each isolated station. Here, s is the number of servers, N is the buffer size, i.e.

the maximum queue length, and M(ν) means the service time follows the exponential distribution

with mean 1/ν. Moreover, M(γ) and M(λ) represent two independent Poisson arrival processes

with arrival rates γ and λ, formed by the external and internal customer arrivals, respectively. We

differentiate two types of customer loss. An external customer is considered a loss if he finds all s

servers occupied upon his arrival. By contrast, an internal customer is considered a loss if he finds

all s servers and all N waiting positions are occupied upon his arrival. Notice that the number

of customers in this queueing model forms a finite-state birth-death process, so its steady-state

performance measures can be calculated easily. We omit the details and present the results below.

Proposition 1. Let {πi : i = 0, 1, . . .} be the steady state distribution of the number of customers

in an (M(γ) +M(λ))/M(ν)/s/N queue. Then,

πi =


(
γ+λ
ν

)i
1
i!π0, if 0 ≤ i ≤ s,(

γ+λ
ν

)s
1
s!

(
λ
sν

)i−s
π0, if s+ 1 ≤ i ≤ s+N and N ≥ 1,

where,

π0 =


1/

[∑s
i=0

(
γ+λ
ν

)i
1
i! +

(
γ+λ
ν

)s
1
s!

∑N
i=1

(
λ
sν

)i]
, if N ≥ 1,

1/

[∑s
i=0

(
γ+λ
ν

)i
1
i!

]
, if N = 0.

Let L(γ, λ, ν, s,N), Q(γ, λ, ν, s,N), BE(γ, λ, ν, s,N), and BI(γ, λ, ν, s,N) denote the mean number

of customers in system, mean queue length, loss probability of external customers, and loss probability

of internal customers in steady state, respectively. Then,

L(γ, λ, ν, s,N) =

s+N∑
i=1

iπi,

Q(γ, λ, ν, s,N) =


∑s+N

i=s+1(i− s)πi, if N ≥ 1,

0, if N = 0,

BE(γ, λ, ν, s,N) =
s+N∑
i=s

πi,

BI(γ, λ, ν, s,N) = πs+N .
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We now determine the parameters for each isolated (M(γ)+M(λ))/M(ν)/s/N queue. Following

Korporaal et al. (2000), we give the following heuristic iterative algorithm. Linear interpolation (of

performance measures) are applied to deal with non-integer s and N .

(i) Specify a small ε > 0. Set n = 0 and specify an initial guess of the loss probability b
(0)
j (e.g.

0). Let νj = µj , sj = cj , and Nj =
∑K

i=1 cipij , for j = 1, . . . ,K.

(ii) Update the parameters via the following equations

dj = γj(1− bj) +

K∑
i=1

dipij , j = 1, . . . ,K,

λj =

K∑
i=1

dipij , j = 1, . . . ,K,

sj = cj −
K∑
i=1

djpji
di

Q(γi, λi, νi, si, Ni), j = 1, . . . ,K,

bj = BE(γj , λj , νj , sj , Nj), j = 1, . . . ,K.

(iii) If max
j=1,...,K

|bj − b(n)j | < ε, stop. Otherwise, let b
(n+1)
j =

b
(n)
j +bj

2 and n← n+ 1; go to step (ii).

(iv) Compute νj for j = 1, . . . ,K via

1

νj
=

1

µj
+

∑
i∈{i|pji>0}

BI(γi, λi, µi, si, Ni)λi
djµisi

.

After the parameters of each isolated (M(γ) + M(λ))/M(ν)/s/N queue are determined, the

mean sojourn time S of the network can be computed via Little’s law,

K∑
j=1

L(γj , λj , νj , sj , Nj) = S

K∑
j=1

γj(1− bj).

C Fluid Approximation of Time-Varying Queues

We first use an Mt/M/s queue as a simple approximation of the original Mt/G/s queue in §6.2. Let

X(t) denote the number of customers in the system at time t. Then, X̄(t), the fluid approximation

to E[X(t)], is available in closed form; see Gautam (2012, §8.4). Further, we propose the following

heuristic approach for approximating the long-run mean waiting time of the time-varying queue.
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Suppose that the arrival rate is cyclic with period T . For example, in the dock allocation problem

in §6.2, the arrival rates of cargoes to an air cargo terminal cycle with a 24-hour period. For a

customer who arrives at time t, we approximate his expected waiting time in queue, WQ(t), by

WQ(t) ≈ 1

sµ
[X̄(t)− s+ 1]+, (19)

where [x]+ = max{0, x}. The interpretation of this approximation is as follows. If there is at least

one idle server upon his arrival, i.e. X(t) ≤ s− 1, then the customer needs no waiting. Otherwise,

he needs to wait for X(t) − (s − 1) customers to depart the system. Since all the s servers are

working, the departure rate is sµ, so the waiting time is [X(t)− (s− 1)]/(sµ).

To approximate the long-run mean waiting time, we average the expected waiting times of

all the customers that arrive during a cyclic period. Specifically, we apply a piecewise constant

approximation for the arrival rate process. Suppose that the period [0, T ] is decomposed into L

pieces, {[t`−1, t`) : ` = 1, . . . , L}, with t0 = 0 and tL = T . Suppose that piece ` has average arrival

rate λ̄`. Then, the mean number of arrivals during [t`−1, t`) is approximately (t` − t`−1)λ̄`. We

assume that the arrival times of these customers are evenly distributed on [t`−1, t`) and let ξ` denote

the collection of these arrival times, i.e.,

ξ` =

{
t`−1 + i

1

λ̄`

∣∣∣ i = 0, 1, . . . , b(t` − t`−1)λ̄`e − 1

}
,

where b·e is the round function that returns the nearest integer. Then, we approximate the long-run

mean waiting time, WQ, by

WQ ≈
1

|ξξξ|
∑
t∈ξξξ

WQ(t),

where WQ(t) is approximated by (19), ξξξ :=
⋃L
`=0 ξ` and |ξξξ| denotes its cardinality.
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