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Abstract. Specifying a proper input distribution is often a challenging task in simulation
modeling. In practice, there may be multiple plausible distributions that can fit the input
data reasonably well, especially when the data volume is not large. In this paper, we
consider the problem of selecting the best from a finite set of simulated alternatives, in the
presence of such input uncertainty. We model such uncertainty by an ambiguity set
consisting of a finite number of plausible input distributions and aim to select the al-
ternative with the best worst-case mean performance over the ambiguity set. We refer to
this problem as robust selection of the best (RSB). To solve the RSB problem, we develop a
two-stage selection procedure and a sequential selection procedure; we then prove that
both procedures can achieve at least a user-specified probability of correct selection under
mild conditions. Extensive numerical experiments are conducted to investigate the com-
putational efficiency of the two procedures. Finally, we apply the RSB approach to study a
queueing system’s staffing problem using synthetic data and an appointment-scheduling
problem using real data from a large hospital in China. We find that the RSB approach can
generate decisions significantly better than other widely used approaches.
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1. Introduction
Simulation is widely used to facilitate decision making
for stochastic systems. In general, the performance of
a stochastic system depends on design variables and
environmental variables. The former are controllable by
the decision maker, whereas the latter are not. By sim-
ulating the environmental variables, the decision maker
can estimate the system’s mean performance for arbi-
trary values of the design variables. A crucial step for
building a credible simulation model is to characterize
the environmental variables with an appropriate prob-
ability distribution, typically referred to as the input
distribution in simulation literature. This is often difficult,
mainly because of lack of enough data or measure-
ment error in the data, either of which causes un-
certainty concerning the input distribution—that is,
input uncertainty.

Input uncertainty has drawn substantial interest from
the simulation community in the past two decades; see
Henderson (2003) for a survey. The existing work usu-
ally assumes that the input distribution belongs to a
particular parametric family, but the parameters of the

distribution need to be estimated. This assumption re-
duces the input uncertainty to the so-called parameter
uncertainty, and the primary objective becomes to
characterize the randomness of the simulation out-
put that is amplified by the parameter uncertainty.
For instance, Cheng and Holland (1997) use the delta
method to approximate the variance of the simula-
tion output, and Barton and Schruben (2001) use the
bootstrap method.
However, in practice, it is nontrivial to determine the

proper parametric family. Indeed, there may be sev-
eral plausible parametric families that fit the input
data reasonably well if the data volume is not large.
For instance, in Section 7, we study an appointment-
scheduling problem in a large hospital in China. The
maximum number of operations of a particular type
performed by a surgeon in the hospital in 2014 is 138,
and goodness-of-fit tests reject neither the gamma
distribution nor the lognormal distribution when fit-
ting the data for the duration of operations. Notice that
these two parametric families may result in qualita-
tively different performances of a stochastic system.
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For instance, a queueing system’s behavior depends
critically on whether its service times are light-tailed or
heavy-tailed (Asmussen 2003). Therefore, in this paper
we focus on the uncertainty in specifying the para-
metric family of the input distribution, instead of con-
sidering parameter uncertainty.

One approach to address this difficulty is Bayesian
model averaging (Chick 2001). It measures the sto-
chastic system by the weighted average of its mean
performance under different plausible input distribu-
tions, where the weights are specified by prior esti-
mation of the likelihood that a particular plausible
distribution is the “true” distribution. This approach
takes an “ambiguity-neutral” viewpoint concerning the
input uncertainty.

In this paper,we take a robust approach that adopts an
“ambiguity-averse” (Epstein 1999) viewpoint and uses
the worst-case mean performance of all the plausible
distributions to assess a stochastic system. Using the
worst-case analysis to account for uncertainty has a long
history in economic theory. Ellsberg (1961) argues that
in a situation where probability distributions cannot be
specified completely, considering the worst of all the
plausible distributions might appeal to a conservative
person. Gilboa and Schmeidler (1989) rationalize the
ambiguity aversion by showing that an individual who
considers multiple prior probability distributions and
maximizes the minimum expected utility over these dis-
tributions would act in this conservative manner. How-
ever, we do not argue or suggest that worst-case analysis
is better than the “model-averaging” approach. Instead,
we believe that they are equally important and that
decisionmakers should consider different perspectives in
order to be fully aware of the potential risks of a decision.

We focus on an important class of simulation-based
decision-making problems. We assume that the de-
sign variables of the stochastic system of interest take
values from a finite set, each of which is referred to as
an alternative. The mean performance of an alterna-
tive is estimated via simulation, and we are interested
in selecting the “best” alternative. This is known as the
selection of the best (SB) problem in simulation litera-
ture. Because of statistical noise inherent in the simu-
lation procedure, the probability that the best alternative
is not selected is nonzero regardless of the computational
budget. Thus, the objective is to develop a selection pro-
cedure that selects the best alternative with some statis-
tical guarantee; see Kim and Nelson (2006) for an
overview. In this paper, we consider the SB problem in
the presence of input uncertainty and solve it in a way
that is robust with respect to input uncertainty.

1.1. Main Contributions
First, we model the input uncertainty as an ambigu-
ity set consisting of finitely many plausible distribu-
tion families whose associated parameters are properly

chosen. We then transform the SB problem in the pres-
ence of input uncertainty into a robust selection of the best
(RSB) problem. Each alternative has a distinctive mean
performance for each input distribution in the ambi-
guity set, and its worst-case mean performance is used
as a measure of that alternative. The best alternative is
defined as the one having the best worst-case mean
performance.
Second, assuming the ambiguity set is given and

fixed, we propose a new indifference-zone (IZ) formu-
lation and design two selection procedures accordingly.
The IZ formulation was proposed by Bechhofer (1954).
However, to cope with our robust treatment of input
uncertainty, we redefine the IZ parameter, denoted by δ,
as the smallest difference between the worst-case mean
performance of two alternatives that a decision maker
considers worth detecting. Then, the statistical evidence
for designing a proper selection procedure can be
expressed as the probability of selecting an alternative
that is within δ of the best alternative in terms of their
worst-case mean performance. We develop a two-stage
procedure and a sequential procedure with statistical
validity—that is, they guarantee achieving a proba-
bility of correct selection (PCS) that is no less than a
prespecified level in a finite-sample regime and an as-
ymptotic regime, respectively.
Third, we extend standard numerical tests for the SB

problem to the new setting and demonstrate the com-
putational efficiency of the two proposed RSB pro-
cedures. In particular, the sequential RSB procedure’s
efficiency in terms of the required total sample size
is insensitive to the IZ parameter δ when δ is small
enough. This is appealing to a practitioner, because it
enables δ to be set as small as possible so that the
unique best alternative can be selected instead of some
“near-best” one without worrying computational bur-
den. Besides, the proposed sequential RSB procedure is
carefully designed so that it requires a much smaller
total sample size than a plain-vanilla sequential RSB
procedure as the problem scale increases.
Fourth, we assess the RSB approach in a queue-

ing simulation environment, where the input data, and
thus the ambiguity set, is subject to random varia-
tion. Specifically, we consider a multiserver queue with
abandonment, whose service time has an unknown
distribution. The decision of interest is the staffing
level—that is, the number of servers. The cost of the
queueing system depends on waiting and abandon-
ment of the customers as well as the staffing level. We
compare the RSB approachwith a common approach for
input modeling in practice—that is, the decision maker
fits a group of distribution families to the input data and
uses the best-fitted one as if it were the true distribution.
An extensive numerical investigation reveals that the
RSB approach can generate a staffing decision that has a
significantly lower and more stable cost.
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Finally,we apply theRSB approach to an appointment-
scheduling problem using real data from a large hospital
in China. We show that in the presence of deep input
uncertainty, the scheduling decision generated by the
RSB approach incurs significantly lower operating costs
than otherwidely used approaches, including a so-called
“increasing order of variance” scheduling rule, one that
is commonly viewed as a good heuristic in healthcare
practice and that was theoretically shown to be the op-
timal scheduling rule under some robust framework
(Mak et al. 2015).

1.2. Related Literature
This paper is related to three streams of literature—that
is, simulation input uncertainty, robust optimization,
and selection of the best. Studies of input uncertainty
in simulation literature have focused on the impact of
input uncertainty on simulation output analysis; for
instance, constructing confidence intervals to reflect input
uncertainty. A preferred approach is resampling, con-
sisting of macroreplications, in each of which the input
data are first resampled to construct an empirical dis-
tribution as the input distribution. The sampled empirical
distribution is then used to drive the simulationmodel to
estimate the performance of the involved stochastic
system. Finally, the performance estimate is collected
as a bootstrap statistic from each macroreplication, and
a dynamic confidence interval is constructed for the
performance measure of interest. Representative arti-
cles include Cheng and Holland (1997) and Barton and
Schruben (2001). Bayesian model averaging also relies
on macroreplication, but each macroreplication begins
with sampling from the posterior (based on the input
data) of the plausible input distributions and then uses
the sampled input distribution to drive the simulation
model; see Chick (2001). Recently, Barton et al. (2014)
and Xie et al. (2014) have both studied the propagation
of input uncertainty to the estimated performance of a
stochastic system, using nonparametric bootstrapping
and Bayesian analysis, respectively.

The above research essentially takes an ambiguity-
neutral attitude to the input uncertainty rather than
an ambiguity-averse attitude as we do. In addition,
it concentrates on the performance analysis of a sto-
chastic system for a fixed value of its design variables.
Unlike our paper, they do not include optimizing the
performance over the design variables. Optimizing per-
formance in the presence of distributional uncertainty is
a theme of robust optimization; see Ben-Tal et al. (2009)
for an introduction to this broad area. However, robust
optimization literature generally does not consider cases
in which an objective function is embedded in a black-
box simulation model and can only be evaluated by
using random samples; an exception is Hu et al. (2012),
but they focus on parameter uncertainty of the input
distribution.

There is also a vast literature regarding the SB prob-
lem. Selection procedures can be categorized into fre-
quentist procedures or Bayesian procedures, depending
on the viewpoint adopted for interpreting the unknown
mean performance of an alternative. The former treats
it as a constant and can be estimated through repeated
sampling. Representative frequentist selection proce-
dures include Rinott (1978), Kim and Nelson (2001),
Chick andWu (2005), Frazier (2014), and Fan et al. (2016).
All these adopt an IZ formulation and use PCS as a
selection criterion, except Chick andWu (2005), in which
the selection criterion is set to be expected opportunity
cost, and Fan et al. (2016), in which an IZ-free formu-
lation that can save users from the burden of specifying
an appropriate IZ parameter is proposed. The present
paper follows a frequentist viewpoint as well. Bayesian
procedures, on the other hand, view the unknown
mean of an alternative as a posterior distribution con-
ditionally on samples calculated by Bayes’ rule. The
main approaches used in the Bayesian framework in-
clude (i) optimal computing budget allocation (He et al.
2007), (ii) knowledge gradient (Frazier et al. 2009),
(iii) expected value of information (Chick et al. 2010),
and (iv) economics of selection procedures (Chick
and Frazier 2012).
Few prior papers in SB literature address input

uncertainty, except Corlu and Biller (2013, 2015), whose
authors focus on the subset-selection formulation in-
stead of the IZ formulation, and Song et al. (2015),
which finds that in the presence of input uncertainty,
IZ selection procedures designed for the SB prob-
lems may fail to deliver a valid statistical guarantee of
correct selection for some configurations of the com-
peting alternatives. Unlike our paper, these three pa-
pers all take an ambiguity-neutral viewpoint.

2. Robust Selection of the Best
Suppose that a decisionmaker needs to decide among k
competing alternatives—that is, S � {s1, s2, . . . , sk}. For
each si, i � 1, . . . , k, let g(si, ξ) denote its performance
given an input variable ξ. In practice, ξ is typically
random and follows probability distribution P0. Notice
that P0 may differ between the alternatives, but we
suppress its dependence on si for the purpose of no-
tational simplicity. Each alternative is then measured
by its mean performance EP0[ g(si, ξ)], i � 1, . . . , k. The
decision maker aims to select the best alternative from
S, which is defined as the one having the smallest mean
performance,

min
s∈S EP0[ g(s, ξ)].

This is known as the SB problem, and a great variety of
selection procedures have been developed, aiming to
provide a desirable statistical guarantee on the prob-
ability of selecting the best.
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To date, the SB problem has been studied primarily
under the premise that the distribution P0 is known
and fixed. However, this is hardly the case in real-
world applications. We assume that the distribution
P0 belongs to an ambiguity set P that consists of a finite
number of plausible distributions—that is, P � {P1,
P2, . . . ,Pm}. The form of P is determined by the fol-
lowing common scenario in input modeling: Modern
simulation software—for example, Input Analyzer
of Arena (Kelton et al. 2009)—typically has a built-in
functionality to fit input data to a specified para-
metric distribution family and to perform some
goodness-of-fit tests (e.g., Kolmogorov–Smirnov test
and chi-squared test). A preliminary exploration of the
input data may suggest a set of plausible distribution
families, and they are then examined by the software
one at a time. Hence, a typical example of P is such
that each Pj belongs to a distinctive parametric fam-
ily, whose parameters are estimated from the data and
which is not rejected by the goodness-of-fit tests.
Notice that the ambiguity set P constructed in this
way will converge to the true input distribution as the
data volume increases, provided that the true distri-
bution family is included in the set of plausible dis-
tribution families.

Given the ambiguity set P, we measure an alter-
native by its worst-case mean performance over P and
denote the best alternative as the alternative with the
smallest worst-case mean performance. Then, the SB
problem in the presence of input uncertainty is for-
mulated as

min
s∈S

max
P∈P

EP[g(s, ξ)], (1)

which we call the RSB problem. Our goal is to develop
selection procedures that, upon termination, select the
best alternative with a probability of at least a user-
specified value 1 − α, (0<α< 1).
Remark 1. The formulation (1) assumes that P is given
and fixed. On its own, it does not address the issue of
statistical consistency in the sense that P converges to
the unit set that contains only the true distribution P0
as the size of the input data grows to infinity. Thus,
this issue is not addressed by the RSB methodology
developed here. For our methodology to perform cor-
rectly, a certain mechanism needs to be implemented
to ensure that all plausible distributions in P that are
not P0 would be discarded eventually as more input
data become available. Using a goodness-of-fit test is
one possible approach. But further theoretical work on
this issue would be of interest.

Remark 2. There is a subtle but critical difference be-
tween the conventional SB context and the context of
the present paper with regard to the concept of “ran-
dom sample.” In the former context, P0 is known and

the mean performance of each si is estimated by a
random sample of size N of the simulation output
g(si, ξ) with ξ generated from P0, so the estimate de-
pends on N. In the RSB context, however, P0 is un-
known, and the distributions in P all try to estimate P0
based on a sample of it of size � (i.e., the input data), so
each Pj ∈ P depends on �. Therefore, in an RSB pro-
cedure, the estimate of each alternative’s mean per-
formance under each Pj generally depends on both N
and �. By assuming P is given and fixed, we essentially
ignore the dependence on �. A more complete treat-
ment would account for the fact that each Pj ∈ P es-
timated from the input data are actually random and
make � a possible factor for designing an RSB pro-
cedure. But this is beyond the scope of the present
paper.

Before moving to next section, we first introduce
some necessary notations and assumptions. Let “sys-
tem (i, j)” represent the pair of decision si and proba-
bility scenarioPj, and g(si, ξ)with ξ followingdistribution
Pj denote the random observation from system (i, j);
further, let μij � EPj[g(si, ξ)] and σ2ij � VarPj[g(si, ξ)].
The following assumptions are imposed throughout
the paper.

Assumption 1. For each i � 1, 2, . . . , k, μi1 ≥ μi2 ≥ · · ·
≥ μim. Moreover, μ11 <μ21 ≤ . . . ≤ μk1.

Assumption 2. For each i � 1, 2, . . . , k and j � 1, 2, . . . ,m,
σ2ij <∞.

In the RSB problem (1), our objective is to identify
for each alternative its corresponding worst-case
probability scenario, which is irrelevant to how the
probability scenarios are ordered in the ambiguity set.
Without loss of generality, we allow the means μij’s to
be of certain configuration presented in Assumption 1;
otherwise, we can sort the means and relabel the sys-
tems in the desired order. Clearly, under Assumption 1,
system (i, 1) yields the worst-case mean performance of
alternative i, i � 1, . . . , k, and alternative 1 is the unique
best alternative in (1).
Assumption 2 states that for each si, the random

performance g(si, ξ) is of finite variance under each Pj
included in the ambiguity set. Considering VarP0[g(si,
ξ)]<∞ in many practical situations, it is reasonable to
choose the probability scenario P yielding the finite
VarP[g(si, ξ)] for all i as a candidate representative for
P0 and then include it into the ambiguity set. Besides,
assuming a finite variance of the random performance
of each system is common in SB literature.

2.1. Indifference-Zone Formulation
We adopt the IZ formulation to design RSB procedures.
Under the IZ formulation, the sought procedures
are expected to provide a lower bound for both the
probability of correct selection (CS) and the probability
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of good selection (GS); see, for example, Ni et al. (2017)
for their definitions in the SB setting. Because the RSB
problem is of a minimax structure different from SB
problems, the CS andGS events need to first be carefully
redefined.

Let δ be a prespecified IZ parameter that is the smallest
difference that the decision maker deems worth de-
tecting. If μ21 − μ11 > δ, alternative 1 is better than the
others by at least δ, measured by their worst-case
mean performance over P, due to Assumption 1. We
define the CS event as the event where alternative 1 is
selected. If μ21 − μ11 ≤ δ, some “good” alternatives
exist, and their worst-case mean performances are
within δ of alternative 1; decision makers feel in-
different between those good alternatives and alter-
native 1. We define the GS event as the event where one
of the good alternatives is selected. Hence, selecting
alternative i is a good selection if μi1 − μ11 ≤ δ.

Subtlety exists in the definitions of CS and GS, and it
is worth some remarks. Take CS for an example. In the
presence of the ambiguity set P, it may be tempting to
define CS as selecting system (1, 1), which refers to a pair
of the best alternative and its corresponding worst-
case probability scenario. However, what matters to a
decision maker is to select the best alternative rather
than identifying which input distribution yields the
worst-case mean performance of the alternatives. This
is because the selected alternative will be imple-
mented later, and the ambiguity set is merely used to
evaluate the alternatives.

In SB literature, most IZ procedures are designed for
the situation when μ21 − μ11 > δ, and thus it is con-
ventional to say a procedure is statistically valid if the
achieved probability of correct selection (PCS) is no
smaller than a prespecified value 1 − α. Borrowing the
notation from SB literature, we use PCS to denote a
measure of statistical validity, but in the extended
way. Particularly, we define PCS as the probability of
CS if μ21 − μ11 > δ and the probability of GS other-
wise. Then, this paper seeks RSB procedures with
statistical validity in the following form: given a pre-
specified α ∈ (0, 1)

P{μi∗1 − μ11 ≤ δ} ≥ 1 − α, (2)

where i∗ is the index of the selected alternative upon
termination of a procedure.

2.2. Double-Layer Structure
In view of the minimax formulation of the RSB prob-
lems (1), we propose a double-layer structure for de-
signing RSB procedures. An inner-layer procedure
aims to select system (i, 1), which produces the worst-
case mean performance for alternative i with at least a
prechosen inner-layer PCS, for each i � 1, 2, . . . , k. An
outer-layer procedure, on the other hand, aims to select

system (1, 1) from the inner-layer selected systems with
at least prechosen outer-layer PCS. After the double-
layer selection process, we expect system (1, 1) to be
selected with at least the probability of 1 − α. To that
end, the PCS in each layer must be judiciously chosen
so that the overall PCS is no less than 1 − α as in (2).
The detailed discussion is deferred to Section 3.2.
Figure 1 illustrates the double-layer structure of RSB
procedures.

3. Two-Stage RSB Procedure
In this section, we develop a two-stage RSB procedure
with the statistical validity in the form of (2). In the first
stage, we take a small number of samples from each
system to calculate the sample variance of each pair-
wise difference. Based on them, we calculate the sam-
ple sizes needed for the second stage and select the best
alternative based on the sample means obtained after
the second-stage sampling.
The required sample size here resembles formally

that of a typical two-stage procedure for the SB prob-
lem. However, the IZ parameter needs a special treat-
ment to accommodate the double-layer structure. We
wish to obtain an IZ for the RSB problem that has a
given IZ parameter value. We’d do this by using two
separate IZ parameter values—one corresponding to
the inner-layer and the other to the outer-layer selection
process—but calculated in a combined way so that the
required IZ parameter value is obtained for the overall
RSB problem.
The procedure is based on pairwise comparisons

between the systems, each of which has a nonzero
probability to yield an incorrect result due to simula-
tion noise. We need to specify how much probabil-
ity of making an error in each pairwise comparison is
allowed—hereafter referred to as the error allowance
and denoted by β—in order to achieve the overall PCS.
It is nontrivial to specify error allowances due to the
double-layer structure.
Assuming that the inner-layer and outer-layer IZ

parameters, denoted by δI and δO, respectively, as well
as the error allowance are known, we now present the
two-stage RSB procedure (Procedure T). Specification
of (δI, δO) and β will be addressed in Section 3.1 and
Section 3.2, respectively.

Procedure T: Two-Stage RSB Procedure.
0. Setup. Specify the inner-layer and outer-layer IZ

parameters (δI , δO), the error allowance β, and the first-
stage sample size n0 ≥ 2. Set h � t1−β,n0−1 to be the
100(1 − β)% quantile of the Student’s t distribution
with n0 − 1 degrees of freedom.

1. First-stage sampling. Take n0 independent repli-
cations Xij,1, . . . ,Xij,n0 of each system (i, j). Compute the
first-stage sample mean of each system and the sample
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variance of the difference between each pair of systems
as follows

X̄ij(n0) � 1
n0

∑n0
r�1

Xij,r, 1 ≤ i ≤ k, 1 ≤ j ≤ m,

S2ij,i′j′ �
1

n0 − 1

∑n0
r�1

Xij,r − Xi′j′,r − (X̄ij(n0) − X̄i′j′ (n0))[ ]2,
1 ≤ i, i′ ≤ k, 1 ≤ j, j′ ≤ m.

2. Second-stage sampling. Compute the total sample
size N � max(i,j),(i′,j′){n0,Nij,i′j′}, where

Nij,i′j′ � max
h2S2ij,i′j′

δ2I

⌈ ⌉
,
h2S2ij,i′j′

δ2O

⌈ ⌉{ }
,

1 ≤ i, i′ ≤ k, 1 ≤ j, j′ ≤ m,

with 	x
 denoting the smallest integer no less than x.
Take N − n0 additional independent replications of
each system.

3. Selection. Compute the overall sample mean of
each system based on the N replications

X̄ij(N) � 1
N

∑N
r�1

Xij,r, 1 ≤ i ≤ k, 1 ≤ j ≤ m.

Return i∗ � argmin1≤i≤k max1≤j≤m X̄ij(N) as the best
alternative. □

Similarly to two-stage procedures for the SB prob-
lem, the two-stage RSB procedure is easy to implement,
and variance reduction techniques, such as common
random numbers, can readily be applied to increase the
efficiency of the algorithm, where the efficiency is de-
fined in terms of the total sample size required.

3.1. Inner-Layer and Outer-Layer IZ Parameters
The inner layer is used to estimate the worst-case mean
performance of each alternative, whereas the outer
layer is to compare the alternatives based on the esti-
mates in the inner layer. If system (i, j∗i ) is correctly
selected in the inner layer to represent the worst sys-
tem of alternative i, then by the definition of δI and
Assumption 1,

0<μi1 − μij∗i ≤ δI, i � 1, . . . , k. (3)

Suppose that alternative i is δ away fromalternative 1—that
is, μi1 − μ11 > δ. Then, alternative i being eliminated
by alternative 1 is necessary for the CS event. To that
end, we need to ensure μij∗i − μ1j∗1 > δO, when com-
paring μ1j∗1 and μij∗i in the outer layer. Notice that

μij∗i − μ1j∗1 � (μij∗i − μi1) + (μi1 − μ11) + (μ11 − μ1j∗1)
> (−δI) + δ + 0 � δ − δI ,

thanks to (3). Hence, it suffices to take δO � δ − δI.
In order to determine the values of δI and δO for a given

δ, we minimize the total sample size of the procedure
over the choice of (δI, δO). Specifically, we solve the
following optimization problem for each pair of systems

minimize
δI ,δO>0

max
h2S2ij,i′j′

δ2I
,
h2S2ij,i′j′

δ2O

{ }

subject to δI + δO � δ.

(4)

It is straightforward to solve this problem, and the
optimal solution is δI � δO � δ/2.

Remark 3. Notice that 	h2S2ij,i′j′/δ2I 
 [respectively (resp.),
	h2S2ij,i′j′/δ2O
] represent the sample size required by
the comparison between system (i, j) and system (i′, j′)
in the inner-layer (resp., outer-layer) selection process.
Because the inner-layer and outer-layer selection pro-
cesses are conducted simultaneously after all the sam-
ples are generated, we should treat both layers equally
and thus assign equal computational budget to them,
leading to the optimal choice δI � δO � δ/2.

3.2. Error Allocation
Besides the IZ parameter, another critical parameter
that determines the efficiency of the two-stage RSB
procedure is the error allowance β for each necessary
pairwise comparison. It must be chosen judiciously in
order that the statistical validity (2) be achieved.
First, we notice that P{CS} ≥ P system (1,1) is selected

{ }
,

because selecting system (1, 1) is obviously a CS event.
Then, the Bonferroni inequality can bound the right-
hand side from below, allowing us to give a PCS
guarantee via choosing an appropriate β. Nevertheless,
it is worthwhile to point out that, due to the double-

Figure 1. Two-Layer Structure of RSB Procedures

Notes. Systems in the same column do not necessarily have the same input distribution. They are ordered to satisfy Assumption 1. The
methodology developed in this paper even allows the alternatives to have different ambiguity sets.
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layer structure, CS can be obtained, even if system
(1, 1) is eliminated, as long as the selected worst system
of alternative 1 is better than any other alternative’s se-
lectedworst system. This contributes the overcoverage of
the realized PCS; see Section 5.

Specifically, system (1, 1) being eliminated by system
(1, j) amounts to X̄11(N)< X̄1j(N), j � 2, . . . ,m, whereas
system (1, 1) being eliminated by system (i, j) amounts
to X̄11(N)> X̄ij(N) � max1≤l≤m X̄il(N), i � 2, . . . , k, j �
1, . . . ,m. Then, it follows that

P{ICS} ≤ P system (1, 1) is not selected
{ }

� P ⋃
m

j�2
X̄11(N)< X̄1j(N){ }

⋃⋃
k

i�2
⋃
m

j�1

{
X̄11(N)

{

> X̄ij(N) � max
1≤l≤m

X̄il(N)
}}

≤ ∑m
j�2

P X̄11(N)< X̄1j(N){ }

+∑k
i�2

∑m
j�1

P X̄11(N)> X̄ij(N){ }
, (5)

where ICS is short for incorrect selection and the last
inequality follows the Bonferroni inequality. Therefore,
we can achieve a target PCS 1 − α by ensuring each of
the km − 1 terms in the summation (5) bounded by β �
α/(km − 1) from above. We name this method of error
allocation the multiplicative rule.

Nevertheless, the multiplicative rule can easily become
overconservative, even if k andm are bothmoderate. For
instance, if k � m � 10, then the error allowance under
the multiplicative rule is equivalent to that for the SB
problem with 100 alternatives. Observe that the over-
conservativeness of the multiplicative rule stems from
the fact that it uses the event of not selecting system
(1, 1) to represent the ICS event itself. By doing so, we
implicitly treat all the km − 1 pairwise comparisons as
equally important. In fact, we do not need to ensure
correct selection of the worst system for each alternative
in the inner-layer selection process, except for alter-
native 1. The bulk of the km − 1 pairwise comparisons
associated with the multiplicative rule turn out to be
unnecessary. To see this, notice that

P{ICS} � P ⋃
k

i�2
max
1≤j≤m X̄1j(N) > max

1≤j≤m X̄ij(N)
{ }{ }

≤ P A ∪ B{ }, (6)

where A�⋃k
i�2 maxj X̄1j(N)>maxj X̄ij(N){ }

and B�⋃m
j�2

X̄11(N)<X̄1j(N){ }
, and that

A ∪ B � (A ∩ Bc) ∪ B �⋃
k

i�2
X̄11(N)> max

1≤j≤m X̄ij(N)
{ }

∪ B,

(7)

because maxj X̄1j(N) � X̄11(N) on Bc. Hence, by (6)
and (7),

P{ICS} ≤ P ⋃
k

i�2
X̄11(N)> max

1≤j≤m X̄ij(N)
{ }

⋃ ⋃
m

j�2
X̄11(N){{

< X̄1j(N)}
}

≤ P ⋃
k

i�2
X̄11(N)> X̄i1(N){ }

⋃ ⋃
m

j�2
X̄11(N){{

< X̄1j(N)}
}

≤ ∑k
i�2

P X̄11(N)> X̄i1(N){ }

+∑m
j�2

P X̄11(N)< X̄1j(N){ }
. (8)

The inequality above implies that there are k +m − 2
“critical” pairwise comparisons in the RSB problem.
To achieve a target PCS 1 − α, we can simplymake each
of the k +m − 2 terms in the summation (8) be no
greater than β � α/(k +m − 2). We name this method of
error allocation the additive rule. Because its total sam-
ple size is increasing in β, the two-stage RSB procedure
with the additive rule is significantly more efficient
than the one with the multiplicative rule.
Nevertheless, the additive rule is not applicable for

the sequential RSB procedure developed in Section 4,
and the multiplicative rule will be used there. This is
because the additive rule assumes implicitly that the
worst system of each alternative is always retained
during the inner-layer selection process, whereas it may
be eliminated in early iterations of the sequential pro-
cedure; see Remark 5 for more discussion.

3.3. Statistical Validity
We show that the two-stage RSB procedure equipped
with the additive rule of error allocation is statistically
valid. The case of the multiplicative rule can be proved
similarly.

Theorem 1. Suppose that {Xij : i� 1,2, . . . ,k, j� 1,2, . . . , m}
are jointly normally distributed. Set the error allowance
β�α/(k+m−2). Then, the two-stage RSB procedure is sta-
tistically valid—that is, P{μi∗1−μ11 ≤ δ}≥ 1−α.

The two-stage RSB procedure selects the best alter-
native based on the means of typically large samples,
which can be viewed as approximately normally dis-
tributed. To simplify theoretical analysis, we assume
that the observations of the systems are jointly normally
distributed. Then, Theorem 1 states that the two-stage
RSB procedure has finite-sample statistical validity. We
relax the normality assumption to allow the simulation
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outputs to have a general distribution for the sequential
RSB procedure in the next section at the expense of the
finite-sample statistical validity. The sequential RSB
procedure is statistically valid only asymptotically as the
target PCS goes to 1.

4. Sequential RSB Procedure
Sequential procedures for the SB problem typically re-
quire smaller sample sizes than two-stage procedures,
because the former allow inferior systems to be elimi-
nated dynamically during iterations (Kim and Nelson
2001). If switching between simulations of different sys-
tems does not incur substantial computational overhead,
then the overall efficiency of sequential procedures is
usually much higher (Hong and Nelson 2005).

Before presenting our sequential RSB procedure, we
remark that there is a plain-vanilla sequential procedure
for the RSB problem. One can simply apply a sequential
SB procedure separately in each layer. Specifically, for
each alternative, a sequential SB procedure is applied
to select its worst system; it is then applied again to the
collection of “worst systems” to select the best among
them. However, this procedure has a major drawback:
Outer-layer eliminations occur only after the worst sys-
tem of each alternative is identified in the inner layer.
This incurs excessive samples in the inner-layer selection
process, because it is unnecessary to identify the worst
system for alternatives that are unlikely to be the best. By
contrast, our sequential RSB procedures facilitates si-
multaneous elimination of all the surviving systems of
an alternativewhen the alternative appears to be inferior
with high likelihood. Our sequential RSB procedure is
iterative with the following structure.

(i) Take an initial number of samples to estimate the
mean of each system and the variance of each pairwise
difference.

(ii) Perform the inner-layer selection: For each sur-
viving alternative, eliminate systems that are unlikely
to produce the worst-case mean performance.

(iii) Perform the outer-layer selection: Eliminate
inferior alternatives based on the estimated worst-case
mean performance of each surviving alternative.

(iv) If there is only one surviving alternative or all the
surviving alternatives are close enough (determined by
the IZ parameter) to each other, then stop; otherwise,
take one additional sample from each surviving system,
update the statistics, and return to step (ii).

For the inner-layer selection in step (ii), we apply the
IZ-free sequential SB procedure in Fan et al. (2016),
hereafter referred to as the FHN procedure. This pro-
cedure does not require an IZ parameter, and thus we
can set the outer-layer IZ parameter to be the same as
the overall IZ parameter. The reason for choosing the
FHN procedure instead of other sequential SB pro-
cedures that are based on the IZ formulation is be-
cause it is hard to construct an analytically tractable

optimization problem, similar to (4), for the sequential
RSB procedure that relates the decomposition of the
overall IZ parameter to the efficiency of the procedure.
See Section 4.1 for details.
For the outer-layer selection in step (iii), a pairwise

comparison between two surviving alternatives is done
by constructing a confidence interval that bounds the
difference between their worst-case mean perfor-
mances. The confidence level of this interval depends
on the error allowance β. If the confidence interval does
not contain zero, then the two competing alternative are
differentiated, and the inferior one is eliminated (i.e., all
the surviving systems of that alternative are eliminated
simultaneously). See Section 4.2 for details.

4.1. Inner Layer: Eliminating Systems
The objective of the inner-layer selection process is to
perform sequential screening to eliminate systems that
are unlikely to produce the worst-case mean perfor-
mance of each alternative.
We apply the FHN procedure to the systems of each

alternative. In this procedure, the (normalized) partial-
sum difference process between two systems is ap-
proximated by a Brownian motion with drift. We can
then differentiate the two systems by checking whether
the drift of the Brownian motion is nonzero. This is
done by monitoring whether the Brownian motion
exits a well-designed continuation region, whose bound-
aries are formed by ±gc(t) for t ≥ 0, where gc(t) �̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[c + log(t + 1)](t + 1)√

for some carefully chosen con-
stant c that depends on the target PCS 1 − α.
More specifically, consider alternative i and let X̄ij(n)

denote the sample mean based on the first n indepen-
dent replications of system (i, j). Define tij,ij′ (n) � nσ−2ij,ij′
and Zij,ij′ (n) � tij,ij′ (n)[X̄ij(n) − X̄ij′ (n)], where σ2ij,ij′ �
Var[Xij − Xij′ ], for any 1 ≤ j � j′ ≤ m. Then, Zij,ij′ (n) can
be approximated in distribution by a Brownian motion
possibly with a nonzero drift. For any pairwise com-
parison between system (i, j) and system (i, j′) with
j � j′, we keep taking samples from them (i.e., increasing
n) until |Zij,ij′ (tij,ij′ (n))| ≥ gc(tij,ij′ (n)), at which point the
one with a smaller estimated mean performance is
eliminated by the other because we are seeking the
system that has the largest mean performance. Once
eliminated, a system will not be considered in any
subsequent comparisons.

4.2. Outer Layer: Eliminating Alternatives
The sequential RSB procedure allows simultaneous
elimination of all the surviving systems of an alter-
native. This is achieved in the outer-layer selection
process by comparing the estimated worst-case mean
performances of the surviving alternatives. Notice that
pairwise comparisons in the outer layer are done for
alternatives, instead of systems, and the comparisons
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are based on random sets of surviving systems of the
two alternatives. As a result, sequential procedures for
the SB problem are not applicable here.

Consider alternatives i and i′ that have survived after
n samples of the relevant systems. To design an elimi-
nation rule between them, we construct a dynamic
confidence interval (Lii′ (n),Uii′ (n)) for μi1 − μi′1, the dif-
ference between their worst-case mean performances—
that is,

P{μi1 − μi′1 ∈ (Lii′ (n),Uii′ (n)), for all n<∞} ≥ 1 − ε,

for a given confidence level 1 − ε. Hence, if Lii′ (n)> 0
(resp., Uii′ (n)< 0), then μi1 >μi′1 (resp., μi1 <μi′1) with
statistical significance and we eliminate alternative i
(resp., i′); otherwise, we continue sampling. In Propo-
sition 1, we present an asymptotically valid approach
for constructing such a confidence interval.

Proposition 1. For i � 1, 2, . . . , k, let Si(n) denote the set of
surviving systems of alternative i after taking n samples of
the relevant systems and the subsequent inner-layer elimi-
nation. For β ∈ (0, 1), let gc(t) �

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[c + log(t + 1)](t + 1)√
with c � −2 log(2β). For any two alternatives i and i′,
define an interval (Lii′ (n),Uii′ (n)) as follows
Lii′ (n) � max

(i,j)∈Si(n)
X̄ij(n) − max

(i′,j)∈Si′ (n)
X̄i′j(n) − Ci(n) −Dii′ (n),

Uii′ (n) � max
(i,j)∈Si(n)

X̄ij(n) − max
(i′,j)∈Si′ (n)

X̄i′j(n) + Ci′ (n) +Dii′ (n),
(9)

where

Ci(n) � max
(i,j),(i,j′)∈Si(n)

gc(tij,ij′ (n))
tij,ij′ (n) and

Dii′ (n) � max
(i,j)∈Si(n),(i′,j′)∈Si′ (n)

gc(tij,i′j′ (n))
tij,i′j′ (n) .

If (i, 1) ∈ Si(n) and (i′, 1) ∈ Si′ (n) for all n ≥ 1, then

lim sup
β→0

1
2β

P
{
μi1 − μi′1 /∈ Lii′ (n),Uii′ (n)( ) for some

n ≥ 1
} ≤ 1.

Under the IZ formulation, the sequential RSB pro-
cedure stops if either of the following conditions holds:
(i) all but one alternatives are eliminated; or (ii) all the
surviving alternatives are sufficiently close to each
other. The latter condition amounts to Ci(n) +Dii′ (n) ≤
δ for any pair of surviving alternatives i and i′ in the
light of (9). The above stopping criterion ensures that
the unique best alternative or a good alternative is
ultimately selected with certain statistical guarantee.

4.3. The Procedure
We now present the sequential RSB procedure (Pro-
cedure S).

Procedure S: Sequential RSB Procedure.
0. Setup. Specify the error allowance β � α/(km − 1)

and the first-stage sample size n0 ≥ 2. Set c�−2log(2β).
1. Initialization. Set n � n0. Set S � {1, 2, . . . , k} to be

the set of surviving alternatives. Set Si � {(i, j) : j � 1,
2, . . . ,m} to be the set of surviving systems of alter-
native i, i � 1, . . . , k. Take n independent replications
Xij,1, . . . ,Xij,n of each system (i, j).

2. Updating. Compute the sample mean of each
surviving system and the sample variance of the dif-
ference between each pair of surviving systems as
follows:

X̄ij(n) � 1
n

∑n
r�1

Xij,r, i ∈ S, (i, j) ∈ Si,

S2ij,i′j′ (n) �
1

n − 1

∑n
r�1

Xij,r −Xi′j′,r − (X̄ij(n) − X̄i′j′ (n))[ ]2
,

i, i′ ∈ S, (i, j) ∈ Si, (i′, j′) ∈ Si′ .

3. Elimination. For each (i, j) ∈ Si, (i′, j′) ∈ Si′ with
i, i′ ∈ S and i � i′ or j � j′, compute

τij,i′j′ (n) � n
S2ij,i′j′ (n)

and

Zij,i′j′ (n) � τij,i′j′ (n)[X̄ij(n) − X̄i′j′ (n)].
3.1. Inner layer. For each i ∈ S, assign

Si ← Si \ {(i, j) ∈ Si : Zij,ij′ (n)
≤ −gc(τij,ij′ (n)) for some (i, j′) ∈ Si}.

3.2. Outer layer. For each i ∈ S, compute

Ci(n) � max
(i,j),(i,j′)∈Si

gc(τij,ij′ (n))
τij,ij′ (n) ;

for any other i′ ∈ S, compute

τ∗ii′ (n) � min
(i,j)∈Si ,(i′,j′)∈Si′

τij,i′j′ (n) and

Wii′ (n) � max
(i,j)∈Si

X̄ij(n) − max
(i′,j)∈Si′

X̄i′j(n).

Assign

S ← S \ {i ∈ S : τ∗ii′ (n)[Wii′ (n) − Ci(n)]
> gc(τ∗ii′ (n)) for some i′ ∈ S}.

4. Stopping. If either |S| � 1 or

τ∗ii′ (n)[δ − Ci(n)] ≥ gc(τ∗ii′ (n)) and τ∗ii′ (n)[δ − Ci′ (n)]
≥ gc(τ∗ii′ (n)), for all i, i′ ∈ S,

then stop and select i∗ � argmini∈S max(i,j)∈Si X̄ij(n) as
the best alternative. Otherwise, take one additional
replication of each (i, j) ∈ Si with i ∈ S, assign n ← n + 1,
and return to step 2. □
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4.4. Asymptotic Statistical Validity
The FHN procedure for the SB problem allows the
samples of the competing alternatives to have a gen-
eral distribution at the expense of the finite-sample
statistical validity. We show that the sequential RSB
procedure equipped with the multiplicative rule of
error allocation is statistically valid in an asymp-
totic regime in which the targeted PCS level goes
to 1 (i.e., 1 − α → 1). This regime is adopted by Fan
et al. (2016) and dates back to Perng (1969) and
Dudewicz (1969).

Theorem 2. Suppose that {Xij : i� 1,2, . . . ,k, j� 1,2, . . . ,m}
are generally distributed, and that the moment generating
function of {Xij : i� 1,2, . . . ,k, j� 1,2, . . . ,m} is finite in a
neighborhood of the origin of Rk×m. Let n0(α) denote
the initial sample size of the sequential RSB procedure as
a function of α. Set the error allowance β�α/(km−1). If
n0(α)→∞ as α→ 0, then the sequential RSB proce-
dure is statistically valid asymptotically as α→ 0—that is,
limsupα→0P{μi∗1−μ11>δ}/α≤ 1.

Remark 4. Theorem 2 indicates that with generally
distributed simulation outputs, the sequential RSB
procedure is statistically valid for all α> 0 small
enough. The assumption on n0 is imposed to make
sure that the distribution of the sample means con-
verges to the normal distribution as α → 0. This
assumption ensures the strong consistency of sequen-
tially updated variance estimators, thereby facilitating
asymptotic analysis of the procedure. Nevertheless,
numerical experiments show that even with a mod-
erate n0, the procedure can still deliver a prespecified
PCS.

Remark 5. The additive rule of error allocation does
not apply here. In fact, inequality (8), which underpins
the additive rule, implicitly assumes that the worst
system of each alternative is in contention in the inner-
layer selection process. This is certainly the case for the
two-stage RSB procedure. By contrast, the sequential
RSB procedure has multiple rounds of inner-/outer-
layer selection, and the worst system of an alternative
may be eliminated in an early round. Notice that the
dynamic confidence interval (9) hinges on the condition
that the worst system of each alternative is never
eliminated in the inner layer. Indeed, if the system
having the largest mean performance of an alternative
is eliminated in the inner layer, the remaining systems
of the same alternative will yield a smaller estimate of
the worst-case mean performance, which makes this
alternative less likely be eliminated in the outer layer.
Therefore, in order that the sequential RSB procedure
be statistically valid, the errors associated with all the
pairwise comparisons among the systems of each al-
ternative must be controlled, which makes the multi-
plicative rule necessary.

5. Computational Efficiency
In this section, we focus on the procedures’ efficiency
for a small α through a set of numerical experiments
that generalize standard tests for SB procedures.
Suppose that there are k ×m systems, where system

(i, j) refers to the pair of alternative i and jth probability
scenario in the ambiguity set. Let Xij denote the ran-
dom performance of system (i, j), for i � 1, 2, . . . , k, j �
1, 2, . . . ,m, and suppose that (Xij : i � 1, 2, . . . , k, j � 1,
2, . . . ,m) are mutually independent normal random
variables,Xij ∼ N(μij, σ2ij). Under Assumption 1, the two
RSB procedures aim to select alternative 1 upon ter-
mination in an attempt to solve mini maxj E[Xij]. In
particular, we consider two different configurations of
the means that generalize the slippage configuration (SC)
and the monotone decreasing means (MDM) configura-
tion for SB procedures. For SC, we use

[μij]k×m �
0 0 . . . 0
0.5 0.5 . . . 0.5
..
. ..

. . .
. ..

.

0.5 0.5 . . . 0.5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (10)

and for MDM, we use

[μij]k×m �
(
0.5(i − 1) − 0.2(j − 1)

)
1≤i≤k,1≤j≤m

. (11)

Notice that with the configuration (10), the outer-layer
selection process deals with the largest means of each
row—that is, (0, 0.5, 0.5, . . . , 0.5), which is a SC for the
SB problem with IZ formulation. With the configu-
ration (11), the means of each row are monotonically
decreasing, so the inner-layer selection process for each
row corresponds to a SB problem with IZ formula-
tion and a MDM configuration; the outer-layer selec-
tion process, on the other hand, deals with (0, 0.5, . . . ,
0.5(k − 1)), also a monotone configuration of means.
Independently of the means, we further consider

three configurations of the variances:
(i) Equal-variance (EV) configuration: σ2ij � 1 for all

i, j.
(ii) Increasing-variance (IV) configuration: σ2ij � (1 +

0.1(i − 1))(1 + 0.1( j − 1)) for all i, j.
(iii) Decreasing-variance (DV) configuration: σ2ij �(1 + 0.1(i − 1))−1(1 + 0.1( j − 1))−1 for all i, j.
In all the experiments below, we set the initial sam-

ple size n0 � 10 and the target PCS 1 − α � 0.95. For
each experiment specification (i.e., IZ parameter, values
of k and m, configuration of the means and the vari-
ances, rule of error allocation, RSB procedure), we
repeat the experiment 1,000 times independently. We
find that the realized PCS is 1.00 for all the cases. It is
well known in SB literature that selection procedures
that rely on the Bonferroni inequality usually over-
deliver PCS (Frazier 2014). Thus, we only report the
average sample size of each procedure in this section.
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5.1. Comparison Between Multiplicative Rule and
Additive Rule

Weset the IZ parameter δ � 0.5 anddecompose it equally
into the inner-layer and outer-layer IZ parameters.
Notice that the average sample size of Procedure T does
not depend on the means. We study the impact of error
allocation on Procedure T’s efficiency by varying the
problem scale (i.e., k and m) and configuration of
the variances. The numerical results are presented in
Figure 2.

First, as expected, the multiplicative rule requires
more samples than the additive rule, regardless of
problem scale or configuration of the means/variances.
In all the experiments, NM is about 50% ∼ 90% greater
than NA, where NM and NA denote the average sam-
ple size under the multiplicative and additive rules,
respectively.

Second, for a given problem scale, the ratio NM/NA

is almost independent of configuration of the variances.
This is because with an equal split of δ into the in-
ner layer and the outer layer, the average sample
size is N ≈ 4h2δ−2 maxi,j σ2ij, where h � t1−β,n0−1 is the
100(1 − β)% quantile of the student distribution with
n0 − 1 degrees of freedom. Hence, for any given con-
figuration of the variances, NM/NA ≈ h2M/h

2
A. So es-

sentially, the ratio is determined by the value of β,
which depends on the rule of error allocation and
problem scale for a given target PCS.

Third, for the same reason, given a configuration of
the variances the ratio NM/NA increases as k or m in-
creases. However, the rate at which this ratio increases

is low relative to the increase in the values of k and m.
This is caused by the fact that the standard normal
quantile grows very slowly toward the tail of the
distribution.

5.2. Comparison Between Procedure T and
Procedure S

We have argued in Remark 5 that the additive rule
does not apply to Procedure S. We now compare
Procedure S under the multiplicative rule with Pro-
cedure T under the additive rule and show that the
former is much more efficient.
The two RSB procedures are implemented under

different combinations of problem scale, IZ parameter,
and configuration of the means/variances. Again, we
choose δ from 0.5, 0.25, and 0.1, but only present the
numerical results for EV configuration (seen in Figure 3)
because the results for the other two configurations of
the variances are very similar.
First, Procedure S requires dramatically fewer sam-

ples than Procedure T, seen from the fact that NS is
much smaller than NT, where NS and NT denote the
average sample sizes of Procedure S and Procedure T,
respectively. The difference can be orders of magni-
tude for large-scale problems with a small IZ param-
eter; see, for example, the subplots in the first column of
Figure 3. This suggests that there are an enormous
number of early eliminations of systems/alternatives
in Procedure S.
Second, interestingly, NS is not sensitive to δ when δ

is small relative to the difference between the best and

Figure 2. (Color online) Average Sample Sizes of Procedure T with Different Error Allocation Rules

Notes. Top:m varieswith k � 10; bottom: k varies withm � 10. The vertical axis represents the ratio of the average sample size of Procedure T under
the multiplicative rule to that under the additive rule.
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the second-best alternatives—that is, δ ≤ μ21 − μ11. For
example, the dashed lines with circles in the three
subplots in the first row of Figure 3 are almost identical
to each other. Recall that Procedure S terminates if
either of the following two conditions is met: (i) There is
only one alternative left; and (ii) all the surviving al-
ternatives differ from each other in terms of their worst-
case mean performance by no more than δ. The low
sensitivity of NS with respect to δ for small δ suggests
that if δ ≤ μ21 − μ11, the procedure terminates primarily
because the first stopping condition is met, and thus
the procedure mostly selects the unique best alterna-
tive rather than a good alternative between several that
it cannot differentiate. This feature makes Procedure S
particularly attractive in practice. Knowing little of the
differences between competing alternatives, a decision
maker tends to choose a small δ to make sure that the
unique best alternative is identified. Hence, when using
Procedure S, the decision maker can specify an arbi-
trarily small δ without any increase in computational
cost. By contrast, NT is roughly proportional to δ−2.

Third, unlike Procedure T, the efficiency of Pro-
cedure S does depend on the configuration of the
means; see, for example, the first two subplots in the
first column of Figure 3. With everything else the same,

SC requires substantially more samples than MDM
does. In SC, all the systems of each alternative have the
same mean performance, and all alternatives but the
best one have the same worst-case mean performance.
By contrast, in MDM all the systems of each alternative
differ from one another by a clear margin, and so do the
alternatives. Hence, both inner-layer and outer-layer
eliminations in Procedure S with SC occur significantly
less than with MDM.
Lastly, it turns out that as the problem scale (i.e., km)

increases or as δ decreases, NT/NS in general increases.
Hence, the advantage of Procedure S in terms of effi-
ciency is more significant for problems with a larger
scale or for a smaller IZ parameter; see the numerical
results in section EC.3 of the e-companion. Moreover,
such an increase in the ratio is more substantial for
MDM than for SC. This is a consequence of the last
finding—it is more difficult for Procedure S to conduct
eliminations with SC than with MDM.

5.3. Comparison Between Procedure S and
Plain-Vanilla Sequential RSB Procedure

We have argued at the beginning of Section 4 that a
major advantage of Procedure S relative to a plain-
vanilla sequential RSB procedure is that it does not

Figure 3. (Color online) Average Sample Sizes of Procedure T and Procedure S under the EV Configuration

Notes. Top: m varies with k � 10; Bottom: k varies with m � 10. The vertical axis is on a logarithmic scale.
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need to identify the worst system of each alternative
and can perform simultaneous elimination of all the
surviving systems of an alternative if the alternative is
unlikely to be the best, which can save a substantial
number of samples.

Notice that virtually any sequential SB procedure can
be used to form a plain-vanilla sequential RSB pro-
cedure. To ensure a fair comparison against Procedure S,
whose inner-layer selection is performed by the FHN
procedure, we use Procedure 3 in Fan et al. (2016),
which is a truncated version of the FHN procedure that
has an additional stopping criterion to guarantee ter-
mination of the procedure in finite time in the case of
two or more alternatives having the same mean per-
formance. We shall call this plain-vanilla sequential
RSB procedure Procedure V; see the detailed specifi-
cation in section EC.4 of the e-companion.

Both Procedure S and Procedure V are implemented
under different combinations of problem scale, IZ
parameter, and configuration of the means/variances.
Notice that the difference between the worst-case mean
performance of the best and the second-best alterna-
tives is 0.5 in both configurations of the means (10) and
(11). We choose δ from 0.5, 0.25, and 0.1. The numerical
experiment shows that Procedure S requires signifi-
cantly fewer samples than Procedure V in general. One
exception, however, is that if the configuration of the
means is SC and δ � μ21 − μ11 � 0.5, then the compu-
tational costs of Procedure S and Procedure V are al-
most identical. In this case, the alternatives are hard to
differentiate in early iterations of Procedure S, so si-
multaneous elimination of the surviving systems of an
alternative that is unlikely to be the best rarely hap-
pens. The numerical results and more discussion are
presented in section EC.4 of the e-companion.

6. A Multiserver Queue with Abandonment
The theory in this paper is developed under the prem-
ise that the ambiguity set is known and fixed. In
practice, however, an ambiguity set is typically con-
structed based on available data, and thus it may vary
significantly. Therefore, it is important to study the
potential impact of data variation on usefulness of the
RSB approach for simulation-based decision making.
Nevertheless, to characterize theoretically such im-
pact is beyond the scope of this paper. Instead, we
present an extensive numerical investigation in the
context of queueing simulation.

Consider a G/G/s + G model—that is, a queueing
system that has s identical servers and allows a cus-
tomer to abandon the system before receiving any
service if her waiting time in the queue is deemed
to exceed her patience. The interarrival times, service
times, and patience times are independent and gen-
erally distributed. Suppose that both the interarrival
time and the patience time have a known distribution,

but the distribution of the service time P0 is unknown.
Instead, a finite sample from P0 is available for con-
structing an ambiguity set P.
For customer i, i � 1, . . . ,n, let Ii and Wi denote her

indicator for abandonment and the waiting time, re-
spectively. Let ξ denote the service time. We measure
the quality of service by both the probability of aban-
donment and the mean waiting time of those customers
who do not abandon the system. In particular, consider
the following cost function

f (s, ξ) � cAU n−1NA
( ) + cW(n −NA)−1

∑
{i:Ii�0}

Wi + cSs,

(12)

whereNA � ∑n
i�1 Ii is the (random) number of customers

who abandon the system, U(·) is a utility function, and
cA, cW , and cS are all positive constants. Let s be the
decision variable and assume that it takes values from
{1, 2, . . . , k}. To minimize the worst-case mean cost over
the ambiguity set, we solve min1≤s≤k maxP∈P E[ f (s, ξ)],
which becomes a RSB problem of the form (1).
Recent empirical studies on service times in vari-

ous service industries, including telephone call centers
(Brown et al. 2005) and healthcare (Strum et al. 2000),
show that the lognormal distribution often fits his-
torical data well. Hence, we assume that P0 is the
lognormal distributionwithmean 1; equivalently, log(ξ)
is normally distributedwithmean−σ2/2 and variance σ2.
The ambiguity set P is constructed as follows. Upon
observing a sample from P0, we use the maximum
likelihood estimation (MLE) to fit three distribution
families (lognormal, gamma, and Weibull) to the sam-
ple. Then, we conduct the Kolmogorov–Smirnov (K-S)
test to each fitted distribution and include in P those
that are not rejected by the test at significance level 0.05.
Other related parameters are specified as follows.

We assume that the interarrival time and the patience
time are both exponentially distributed with mean 0.1
and 5, respectively. We set the largest number of servers
k � 10, the length of each sample path n � 10, 000, the
utility functionU(p)� log(1/(1−p)), the constants cA � 4,
cW � 2, cS � 1, the first-stage sample size n0 � 10, and
the target PCS 1−α� 0.95. We vary σ∈ {1, 2, 3}, corre-
sponding to different extents of variability of the service
time (the coefficient of variation of ξ is 1.31, 7.32, and
90.01, respectively, in the three cases). We set the sample
size � to be either 50 or 500 to imitate the scenarios of
having a small and large amount of data to construct
the ambiguity set, respectively.
We now assess usefulness of the RSB approach for a

decision maker who does not know the input distri-
bution but has input data to workwith. The benchmark
approach is a typical one in practice: fit a group of
distribution families to the data and use the “best-fitted”
distribution as if it were the true distribution, discarding
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the others some of which may be plausible as well. We
call this approach the best-fitting (BF) approach. We
simply define the best-fitted distribution as the one
having the smallest K-S statistic among all the fitted
distributions.Notice that the RSB approach is reduced to
the BF approach if the ambiguity set contains only the
best fitted distribution.

We first generate 10,000 samples of the cost function
f (s, ξ) for each s � 1, . . . , k, with ξ following the true
distribution P0. For each s, we estimate based on the
samples the mean and the p-quantile of f (s, ξ) under
P0, denoted by M and Qp, respectively. They are used
as performance measures for evaluating sRSB and sBF,
the decisions obtained by the RSB and the BF approach,
respectively. We also compare the RSB approach
with clairvoyance—that is, the decision maker knows
the true distribution and makes the decision sTr that
minimizes E[ f (s, ξ)] under P0. Let MTr and Qp

Tr denote
the corresponding performance measures. Albeit im-
practical, clairvoyance provides a lower bound on
the mean cost that other approaches could possibly
achieve.

Then, we conduct 1,000 macroreplications of the fol-
lowing experiment.

(i) Generate a sample of service times from P0.
(ii) Construct an ambiguity set P based on the

sample.
(iii) Run a RSB procedure on P and {P̂0} to obtain

solutions sRSB and sBF, respectively.
(iv) Retrieve the performance measures of sRSB

(resp., sBF) computed earlier under P0.
(v) Compute the relative difference between sTr and

sRSB and that between sBF and sRSB in terms of the
performance measures.

Hence, there are 1,000 realizations of each relative
difference above. Their average values over the mac-
roreplications are reported in Table 1. We also estimate
the probability that the MLE-fitted lognormal distri-
bution is rejected by the K-S test. It turns out to be 0
based on the 1,000 macroreplications for each case
(σ� 1,2,3, �� 50,500). Hence, the ambiguity sets con-
structed in our experiments always include the true
distribution family; see also Table 2 for their aver-
age size.

We compare the RSB approach with the clairvoyance
based on the left half of Table 1. First, as expected, the
RSB approach yields a higher mean cost than clair-
voyance. The right tail quantiles are also higher for the
RSB approach. The gap between the performance
measures of the two approaches reflects the decision
maker’s lack of information about the true distribution.
Second, with everything else the same, the gap in-
creases as σ increases. This is because a larger σ means
a larger stochastic variability in the service times, in
which case the decision maker is more uncertain about

the true distribution, thereby paying a larger penalty
for the deeper uncertainty. Third, in the same vein,
the gap decreases as the sample size � increases, be-
cause the input uncertainty can be greatly reduced by
a large amount of data. Indeed, the relative differ-
ences in absolute value are about 1% or even lower
when � � 500.
Assuming clairvoyance is obviously not practical. It

is more interesting for practitioners to compare the RSB
approach with the BF approach, which is almost com-
mon practice for simulation-based decision making.
From the right half of Table 1, we first find that the
RSB solution outperforms, or performs at least as good
as, the BF solution for all the performance measures.
Relying on worst-case analysis, the RSB approach is
conservative by design and should protect the decision
maker against extreme cases, producing reliable per-
formance even if the true distribution is not in her favor.
Therefore, the RSB solution performing better for the
right tail quantiles is expected. It is somewhat surpris-
ing, however, that the RSB solution performs better for
the mean cost as well. This suggests that in the presence
of input uncertainty, the potential risk that the BF ap-
proach ends up with a misspecified input distribution
can be so significant that it overwhelms the price that
the decision maker needs to pay for being conservative.
Second, the advantage of the RSB approach over the BF
approach is larger when the uncertainty about the true
distribution is deeper, which means either the true
distribution has a larger stochastic variability (larger σ)
or the sample size � is smaller. In particular, with σ � 3
and � � 50, the RSB approach outperforms the BF ap-
proach by a significant margin (5% ∼ 6%). Third, notice
that with � � 500, the two approaches deliver nearly
identical performance. This is because with a large �, the
input uncertainty is marginal and the ambiguity set
mostly consists of only the best fitted distribution, be-
cause the possibility that the fitted gamma or Weibull
distribution is not rejected by the K-S test is nearly
zero in this situation.
We now further discuss the cause of the difference in

performance between the RSB approach and the BF
approach. When � is not large, the best-fitted distri-
bution is likely to be gamma or Weibull instead of
lognormal, which we refer to as model misspecification.
We estimate the probability of model misspecification
and compute the relative differences between the two
approaches conditional on model misspecification. The
results are shown in Table 2. (The estimated probability
of model misspecification is 0 for σ � 1, 2, 3 if � � 500,
so we do not include them in the table.)
Table 2 shows that first, the probability of model

misspecification is fairly large (17% ∼ 18% on average),
if � is not large. Second, if the best-fitted distribution
is misspecified, the consequence for the BF approach
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can be severe, resulting in a cost that can be over 30%
higher than the cost of the RSB solution. Notice that
the ambiguity set contains 2 ∼ 3 plausible probability
distributions on average. This suggests that in the case
of model misspecification, both the true and the in-
correctly chosen distributions inform the decision
produced by the RSB approach. Third, in the case of
model misspecification, the relative difference in per-
formance between the two approaches grows dra-
matically (from less than 1% to over 30%) as σ increases.
Because the estimated probability of model mis-
specification is roughly the same for different values of
σ, the characteristics of the queueing system under
the wrongly chosen input model is clearly the cause of
the significant degradation in performance of the BF
approach as σ grows. Therefore, the RSB approach has a
substantial advantage over the BF approach for protect-
ing the decision maker against model misspecification,
especially when the input uncertainty is deep.

7. An Appointment-Scheduling Problem
Appointment-scheduling problems are ubiquitous in
the healthcare industry; see Gupta and Denton (2008)
for a comprehensive survey. One challenge in addressing
these problems in practice is that the appointment du-
ration is often random and its distribution is hard to
estimate due to lack of the data. In light of the distri-
butional uncertainty, robust optimization has recently
emerged as a popular framework for solving this class of
problems (Kong et al. 2013, Mak et al. 2015, Qi 2017). In
this section, we apply our RSB approach to study an

appointment-scheduling problem with real data and
compare it with existing approaches.
We consider the appointment-scheduling problem in

Mak et al. (2015). There are n operations to be per-
formed by n different surgeons in an operating room
during a time interval [0,T]. By operation i, we mean
the operation performed by surgeon i, i � 1, . . . ,n.
Operation i requires a random duration di to complete,
which follows distribution Pi. Let Pi denote the am-
biguity set for Pi. We assume that Pi’s are mutually
independent, so the ambiguity set for the joint distri-
bution P � (P1, . . . ,Pn) can be expressed as the Carte-
sian product of (P1, . . . ,Pn)—that is, P � P1 × · · · × Pn.
Let ψ be a permutation of {1, 2, . . . ,n} that indicates

the sequence of the operations performed in the oper-
ating room. Let ti denote the time allowance of operation
i. The planner makes two decisions: the sequence of the
operations ψ and the time allowance of each opera-
tion t � (t1, . . . , tn).
Suppose that all the appointments are scheduled to be

completed by time T, so the feasible region of t is
T � {t ∈ Rn+ :

∑n
i�1 ti ≤ T}. If an operation does not start

as planned because of delay of completion of the pre-
vious operation, a waiting cost is incurred at the rate
of cW ; if the last operation is completed after time T, an
overtime cost is incurred at the rate of cO. LetWi denote
the waiting time of operation ψi, i � 1, . . . , n, and Wn+1
denote the overtime. Then, W1 � 0 and Wi � max{0,
Wi−1 + dψi−1 − tψi−1}, i � 2, . . . , n + 1. Hence, letting d �
(d1, . . . , dn), the total waiting and overtime cost as a
function of (ψ,d, t) is f (ψ,d, t) � cW

∑n
i�1 Wi + cOWn+1.

Table 1. Relative Differences between Clairvoyance, BF, and RSB

σ �

Relative difference between clairvoyance and
RSB (%)

Relaitve difference between BF and
RSB (%)

MTr
MRSB

− 1 Q0.7
Tr

Q0.7
RSB

− 1 Q0.8
Tr

Q0.8
RSB

− 1 Q0.9
Tr

Q0.9
RSB

− 1 MBF
MRSB

− 1 Q0.7
BF

Q0.7
RSB

− 1 Q0.8
BF

Q0.8
RSB

− 1 Q0.9
BF

Q0.9
RSB

− 1

1 50 −1.72±0.13 −1.71±0.13 −1.70±0.14 −1.69±0.14 0.12±0.07 0.14±0.08 0.15±0.08 0.17±0.08
500 −0.40±0.05 −0.39±0.05 −0.38±0.05 −0.38±0.05 0.00±0.04 0.00±0.04 0.00±0.04 0.00±0.04

2 50 −3.55±0.32 −3.77±0.34 −3.88±0.35 −4.07±0.38 1.64±0.32 1.76±0.33 1.84±0.34 1.96±0.35
500 −0.71±0.07 −0.88±0.05 −1.00±0.08 −1.17±0.10 0.02±0.04 0.01±0.04 0.01±0.04 0.01±0.05

3 50 −7.35±0.48 −7.03±0.51 −6.75±0.54 −6.30±0.59 5.32±0.92 5.66±0.93 5.90±0.95 6.23±0.98
500 −1.36±0.11 −1.21±0.12 −1.09±0.14 −0.93±0.17 0.07±0.12 0.08±0.12 0.09±0.12 0.11±0.12

Note. “±” indicates 95% confidence interval.

Table 2. Relative Differences Between BF and RSB Conditional on Model Misspecification

σ � E(|P|) P(misspecification) (in %)

Relative difference (%)

MBF
MRSB

− 1 Q0.7
BF

Q0.7
RSB

− 1 Q0.8
BF

Q0.8
RSB

− 1 Q0.9
BF

Q0.9
RSB

− 1

1 50 2.93±0.02 17.90±2.38 0.39±0.26 0.45±0.26 0.48±0.26 0.53±0.26
2 50 2.56±0.03 17.40±2.35 9.05±1.38 9.70±1.35 10.14±1.34 10.84±1.33
3 50 2.27±0.03 17.30±2.34 31.28±3.09 33.22±2.88 34.56±2.78 36.41±2.64

Note. E(|P|) denotes the mean size of the ambiguity set.
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To minimize the worst-case mean cost over the am-
biguity set, the planner solves

min
ψ

min
t∈T max

P∈P
E[ f (ψ,d, t)]. (13)

In Mak et al. (2015), each ambiguity set Pi is the set of
distributions having the same first two moments as
those of Pi, which are assumed to be known. Then,
problem (13) for a given sequence ψ can be reformu-
lated as a second-order conic program that has an
analytical solution. Specifically, the optimal time al-
lowance is of the form t̃∗ψi

� μψi + ηψiσψi , where μi and
σi are the mean and standard deviation of Pi, and ηi is
a constant that depends on {i, ψ, (μ1, σ1), . . . , (μn, σn)}
and can be computed analytically. Theorem 3 in their
paper further shows that the optimal sequence ψ̃∗
follows the increasing order of variances (OV)—that
is, σψ̃∗

1
≤ · · · ≤ σψ̃∗

n
.

However, their approach does not apply in our
setting, where we formulate Pi as a finite set of plau-
sible probability distributions. In this study, we use the
same rule of determining the time allowances as Mak
et al. (2015) for a given sequence and focus on the
optimal sequencing problem. The scheduling problem
(13) is then reduced to

min
ψ

max
P∈P

E[ f (ψ,d, t̃∗ψ)], (14)

which becomes a RSB problem of the form (1), where
t̃∗ψ � (t̃∗ψ1

, . . . , t̃∗ψn
).

We now solve (14) with the ambiguity set P con-
structed based on real data from a hospital in Anhui
Province, China. This hospital is a major healthcare
facility in the province.1 We use the data on durations
of cesarean sections in the hospital that were performed
in 2014. We fix n � 4 as a representative scenario in
the hospital, so the number of competing alternatives
is 4! � 24.

We consider two data sets: One is relatively large,
denoted byDL, and consists of four obstetricians (OBs)
having 138, 97, 84, and 68 cases in the record, re-
spectively; the other is relatively small, denoted by DS,
and consists of another four OBs having 66, 60, 55, and
54 cases, respectively.

Given a data set D (either DL or DS), let Di denote
the observations of di for OB i, i � 1, . . . , 4. Because
the distribution that generates the real data are un-
known, we assume that the true distribution of di is the
empirical distribution based on Di. Let μi and σ2i de-
note the mean and variance of this distribution. We
stress here that the RSB approach as well as other
approaches introduced later do not have access to
(μi, σ2i ). Instead, they only have access to a random
sample F i from Di.

For comparison, we also apply the following ap-
proaches to find a proper sequence of OBs.

• Best-Fitting: For i � 1, . . . , n, let P̂i be the best-fitted
distribution for F i. Solve (14) with Pi � {P̂i} to obtain a
sequence ψBF.
• Empirical (Em): For each i � 1, . . . ,n, let P̂i be the

empirical distribution based on F i. Solve (14) with Pi �
{P̂i} to obtain a sequence ψEm.
• OV: Sort the OBs in the increasing order of σ̂2i to

obtain a sequence ψOV.
We conduct 1,000 macroreplications of the following

experiment.
(i) Randomly select a fraction γ ∈ (0, 1) of Di,

denoted by F i.
(ii) Construct an ambiguity set Pi by using MLE to

fit six widely used distributions (exponential, gamma,
Weibull, lognormal, Pareto, and triangular) to F i and
retaining thefitted distributions that are not rejected by the
K-S test at significance level 0.05.
(iii) Compute the mean and variance of F i, denoted

by (μ̂i, σ̂2i ). Apply theorem 2 of Mak et al. (2015) to
compute the time allowances t̃∗ψ with (μ̂i, σ̂2i ), i � 1, . . . , 4
for each sequence ψ.
(iv) Run the four competing approaches to solve (14).
(v) For each ψ � ψRSB, ψBF, ψEm, ψOV, generate 107

samples of the cost function f (ψ,d, t̃∗ψ) under the true
distribution of di. Compute M and Qp, p � 0.7, 0.8, 0.9,
based on the samples.
The other parameters involved in our experiment are

specified as follows: cW � 1.0, cO � 0.5, T � ∑4
i�1 μi,

the first-stage sample size n0 � 10, the IZ parameter
δ � 1.0, and the target PCS 1 − α � 0.95. Moreover, we
vary the fraction γ ∈ {0.2, 0.5, 0.8} to imitate the scenarios
of having a small, medium, and large amount of avail-
able data to construct the ambiguity set, respectively.

Remark 6. We find that |Pi| is typically 3 or 4, so the size
of the ambiguity set m � |P| � ∏4

i�1 |Pi| is fairly large,
which typically ranges from 100 to 200 depending onD

and γ.
We obtain 1,000 realizations of M and Qp, one from

each macroreplication. Figure 4 illustrates the distribu-
tion of M for different values of (ψ,γ,D). We omit the
figures for Q0.7, Q0.8, and Q0.9 because they are quali-
tatively similar to Figure 4. In addition, we compute the
relative difference in M or Qp between a competing
approach and the RSB approach: MA/MRSB − 1 and
Qp

A/Q
p
RSB − 1, where the subscript A denotes the com-

peting approach—that is, BF, Em, or OV, for p � 0.7,
0.8, 0.9. Their average over the macroreplications is
shown in Figure 5.
We have several findings. First, the RSB approach

consistently outperforms the other three approaches
by a clear margin, producing the lowest mean cost and
the lowest right tail quantiles.
Second, Figure 4 also shows as γ or equivalently the

sample size increases, the range of the realizations
of the mean cost for each approach obviously decreases.
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This is because the larger the sample size is, the more
information it provides about the true distribution. In
addition, as input data varies, the mean cost of the RSB
solution is the most stable, indicated by the range of its

realizations being considerably narrower than the others.
Notice that the sample size for constructing an am-
biguity set in this example is not large, ranging from
11 to 110 depending on D and γ, and therefore the

Figure 4. (Color online) Distribution of Realizations of M

Note. The violin plots depict the distributions of the presented data constructed via kernel density estimation; the box plots indicate the median,
25% quantile, and 75% quantile.

Figure 5. (Color online) Relative Differences Between Competing Methods and RSB

Notes. MmeansMA/MRSB − 1 andQp meansQp
A/Q

p
RSB − 1, forA � BF,Em,OV, and p � 0.7, 0.8, 0.9. The dots denote the average over the 1,000

macroreplications, whereas the error bars denote the 95% confidence intervals.
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input uncertainty is substantial. In particular, the
sample F i may be far from being representative of the
true distribution—that is, the whole data set Di. In this
case, both the BF approach and the Empirical ap-
proach suffer from using a misspecified distribution
for decision making, whereas the RSB approach can
effectively protect the planner against such a risk.

Third, the OV approach is well known to be a good
heuristic rule in appointment-scheduling literature.
It is essentially built upon worst-case analysis as well.
Indeed, Mak et al. (2015) prove that the OV sequence
is optimal for the robust optimization problem (13),
provided that the ambiguity set P� {(P1, . . . ,Pn) :E(Pi) �
μ̂i,Var(Pi) � σ̂2i , i� 1, . . . ,n}. Therefore, the OV approach
also provides protection against input uncertainty,
outperforming both the BF approach and the empiri-
cal approach in all cases expect (D,γ) � (DL,0.8); see
Figure 5. Nevertheless, its performance is significantly
worse than the RSB approach. (The relative difference
inQ0.7 andQ0.8 can be over 10%.). This is because (i) the
OV approach uses only the first two moments of the
data, whereas the RSB approach uses more information
by fitting various distribution families to the data; and
(ii) the moments are estimated from data, and the es-
timation error can be substantial if the sample size is
not large, whereas fitting distributions to data appears
to be more resilient to such error.

In Kong et al. (2016), several artificial examples of
the scheduling problem are constructed for which the
OV sequence is not optimal. They assume that the input
distribution is known and find that the performance
gap between the OV sequence and the optimal se-
quence is marginal. Our experiments, however, dem-
onstrate that such performance gap may be sizable due
to input uncertainty. In the light of the fact that lack of
data are a common challenge for appointment sched-
uling in healthcare (Macario 2010), our findings are
practically meaningful, as they may encourage hospital
administrators to adopt conservative formulations such
as the RSB approach that do not assume mean and
variance are correctly estimated from tens of data points
and to follow more established statistical procedures to
accept or reject representative distributions.

8. Concluding Remarks
We propose to use worst-case analysis to address the
SB problem with input uncertainty. Two selection pro-
cedures are developed to solve the resulting RSB
problem and are shown to be statistically valid in the
finite-sample and asymptotic regimes, respectively. The
two-stage RSB procedure is simple but rather conser-
vative, requiring an excessive number of samples. The
sequential RSB procedure, on the other hand, is not as
easy to implement, but requires a dramatically smaller
sample size even than the plain-vanilla sequential RSB
procedure.

As shown by both the queueing example in Section 6
and the scheduling example in Section 7, not only can
the RSB approach generate decisions that are reliable
in extreme cases, but also perform better than the best-
fitting approach on average. This makes the RSB ap-
proach a useful tool when the simulation model suffers
from deep input uncertainty. In practice, given limited
input data one may consider to apply both the RSB
approach and the best-fitting (BF) approach to solve the
SB problem in the presence of deep input uncertainty
and use the latter as a numerical check to ensure that
the former works as intended. Another possible way of
checking the robustness of the RSB approach in prac-
tice is to numerically evaluate and compare the mean
performance of the RSB decision under several plau-
sible input distributions included in the ambiguity set.
This paper focuses on the uncertainty in specifying

the parametric family of the input distribution, which
motivates the critical assumption that the ambiguity
set consists of finitely many distributions. This form of
ambiguity set entails the double-layer structure of the
two selection procedures. However, there are a variety
of other ways to construct an ambiguity set—for ex-
ample, via moment constraints (Delage and Ye 2010)
or via statistical divergence (Ben-Tal et al. 2013). Con-
ceivably, changing the form of the ambiguity set would
dramatically alter the structure of the RSB problem, and
new selection procedures would need to be developed.
Parameter uncertainty is an equally important issue.

Ideally, it should be addressed in conjunction with the
uncertainty about the parametric family. One possible
approach is to use likelihood ratio to characterize pa-
rameter uncertainty. Then, the worst-case mean per-
formance over the uncertain parameters within the
same family can be estimated by simulation under a
“nominal” distribution only; see Hu and Hong (2015)
for details. Then, the ambiguity set that characterizes
the uncertainty about both the parametric family and
its parameters can be reduced to a finite set. We leave
the exploration of these questions to future research.

Acknowledgments
The authors thank the associate editor and three anonymous
referees for insightful and invaluable comments that have
significantly improved this paper. The preliminarywork of this
paper (Fan et al. 2013) was presented at the 2013 Winter
Simulation Conference.

Endnote
1This hospital has around 2,800 beds. According to Becker’s Hospital
Review, the largest hospital in the United States has around 2,400
beds as of 2015.
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