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Abstract
We consider the problem of nonparametric multi-product dynamic pricing
with unknown demand and show that the problem may be formulated as an
online model-free stochastic program, which can be solved by the classical
Kiefer-Wolfowitz stochastic approximation (KWSA) algorithm. We prove that the

expected cumulative regret of the KWSA algorithm is bounded above by 𝜅1

√
T +𝜅2

where 𝜅1, 𝜅2 are positive constants and T is the number of periods for any T = 1,

2, … . Therefore, the regret of the KWSA algorithm grows in the order of
√

T ,
which achieves the lower bounds known for parametric dynamic pricing problems
and shows that the nonparametric problems are not necessarily more difficult to solve
than the parametric ones. Numerical experiments further demonstrate the effective-
ness and efficiency of our proposed KW pricing policy by comparing with some
pricing policies in the literature.
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1 INTRODUCTION

Companies often need to make pricing decisions with lit-
tle knowledge on the demand function. In such cases, they
may experiment different selling prices in different time
periods to learn the demand function (of the prices), and
to find the optimal prices that maximize their revenues.
The problem has been studied extensively in the operations
research and management science literature recently (see
Keskin and Zeevi (2014) and the references therein). Most of
the papers consider a single product and assume the demand
function of the product follows a parametric model with
unknown parameters that need to be learned. For instance,
den Boer and Zwart (2014) and Keskin and Zeevi (2014)
both assume the demand function is linear in the price, and
Broder and Rusmevichientong (2012) assume a parametric
model of the customer’s willingness-to-pay distribution. One
critical insight learned from the literature is that a myopic
pricing policy, which always sets the price as the current
best based on all the information collected in all previous

periods, typically leads to incomplete learning of the demand
function, and is therefore not optimal. Here the incomplete
learning means that the parameters of the demand functions
cannot be learned consistently, that is, the parameter esti-
mators do not converge to the true values as the number of
periods goes to infinity (cf. Keskin and Zeevi (2018) for a
detailed introduction on incomplete learning).

To avoid incomplete learning, different pricing policies
have been proposed. Broder and Rusmevichientong (2012)
propose the MLE-CYCLE policy which separates demand
learning and revenue optimization. By balancing the two
efforts in an optimal way, they show that the expected cumula-
tive regret (ie, the difference between the expected cumulative
revenues if we know the optimal price and if we use the pro-
posed pricing policy for all periods from 1 to T) is of the

order
√

T . den Boer and Zwart (2014) propose a controlled
variance pricing policy that perturbs the myopic policy to pre-
vent the price from concentrating too fast to ensure sufficient
learning. By controlling the variance in an optimal way, they
also show that the expected cumulative regret is of the order
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T1/2+ 𝛿 for a small 𝛿 > 0. Keskin and Zeevi (2014) also pro-
pose semimyopic pricing policies to ensure complete learning
and show that the expected cumulative regret is of the order√

T and they also extend their results to the pricing of mul-
tiple products. In all three aforementioned pricing policies,
the parameters of the demand function may be estimated con-
sistently by using forced exploration, thus avoiding incom-
plete learning. Recently, Keskin and Zeevi (2018) propose
a limited-memory learning scheme (ie, adaptively choosing
the estimation windows) to improve the certainty-equivalence
policy in both static and slowly time-varying environments
without forced exploration. Furthermore, Broder and Rus-
mevichientong (2012) and Keskin and Zeevi (2014) prove
respectively that the lower bounds of the expected cumula-

tive regrets of their problems are
√

T , no matter what pricing
policies are used. Therefore, the aforementioned pricing poli-
cies are either asymptotically optimal or asymptotically near
optimal.

In practice, the parametric form of the demand function is
typically unknown and using parametric models may cause
model mis-specifications that cannot be removed. To solve the
problem, Besbes and Zeevi (2015) consider a single-product
pricing problem and take a nonparametric approach to
approximate the demand function by a first-order Taylor’s
expansion (ie, a linear function) with a finite-difference
derivative estimator. They show that, by controlling the size
of the finite difference appropriately and by allowing the
derivative at the current solution to be learned completely
(ie, converging to the true value), the resulted optimal price
converges to the true one and the expected cumulative regret

is of the order
√

T(log T)2. This is a truly surprising result,
because it shows that without a parametric assumption and
without the complete learning of the demand function, the
expected cumulative regret of the nonparametric approach is
almost asymptotically optimal even for a parametric problem.
Furthermore, Besbes and Zeevi (2015) conjecture that it is
possible to achieve the optimal rate of

√
T even for the

nonparametric approach.
In this note we extend the nonparametric formulation of

Besbes and Zeevi (2015) to a multi-product setting, and show
that the problem is an example of model-free stochastic pro-
grams. We propose to use a variant of Kiefer-Wolfowitz
stochastic approximation (KWSA) algorithm, the most
famous model-free stochastic programming tool, to solve the
problem and call it the Kiefer-Wolfowitz (KW) pricing pol-
icy. Instead of analyzing the regret of our specific problem, we
analyze the regret of the KWSA algorithm for general stochas-
tic programs and show that its expected cumulative regret is

bounded by 𝜅1

√
T+𝜅2 for some problem-dependent constants

𝜅1 > 0 and 𝜅2 > 0 for all T = 1, 2, … . By applying this gen-
eral result to the multi-product dynamic pricing problem, we
show that the expected cumulative regret of the KW pricing

policy is also bounded above by 𝜅1

√
T +𝜅2, which is asymp-

totically optimal based on the lower bounds of Broder and

Rusmevichientong (2012) and Keskin and Zeevi (2014) and
which also proves the conjecture of Besbes and Zeevi (2015),
not only for single-product cases but also for multiple-product
cases, without assuming a parametric model of the demand
function.

Our work is related to two different streams of literature.
(There is an abundant literature on both dynamic pricing
and stochastic approximation. Due to the space limitation
of a technical note, we focus only on the works that are
closely related to the problem studied in this paper.) The first
stream is dynamic pricing with unknown demand learning
in the revenue management area. Besides the aforementioned
papers, that is, Broder and Rusmevichientong (2012), den
Boer and Zwart (2014), Keskin and Zeevi (2014, 2018),
and Besbes and Zeevi (2015), we would like to add a few
closely related works. Lobo and Boyd (2003) is the first work
that identifies through numerical studies that a myopic pric-
ing policy is not optimal for a linear demand function, and
price dithering, that is, adding noises to the myopic solutions,
may improve the performance of the pricing policy. Harri-
son, Keskin, and Zeevi (2012) is one of the early works that
demonstrate a myopic Bayesian policy may lead to incom-
plete learning under the simplest model uncertainty setting
(ie, a binary demand model). Interesting readers may refer
to Aviv and Vulcano (2012) and den Boer (2015) for com-
prehensive reviews on various dynamic pricing and learning
problem formulations.

The second stream of literature is stochastic approxima-
tion (SA). SA algorithms, such as those of Robbins and
Monro (1951) and Kiefer and Wolfowitz (1952), are typically
used to solve offline stochastic optimization problems, and
they have been used in many different areas (cf. the books of
Benveniste, Priouret, and Metivier (1990) and Kushner and
Yin (2003) for introductions). The rates of convergence of
these algorithms have been studied extensively (see Chapter
10 of Kushner and Yin (2003)). In particular, Fabian (1967)
proved that the asymptotic rate of convergence of the solu-
tions is T−1/4. This result implies that, if the algorithm is
used to solve online stochastic optimization problems (such

as ours), the asymptotic rate of the regret is
√

T . (The terms
“offline” and “online” refer to two types of objectives when
solving stochastic optimization problems. In offline prob-
lems, we only care about the quality of the final solution when
the algorithm stops. In online problems, we care about the
quality of every solution that the algorithm evaluates before it
stops, in particular we want to minimize the cumulative opti-
mality gaps (i.e., cumulative regrets) between every evaluated
solution and the optimal.) The same asymptotic rate was also
obtained by Cope (2009). However, the rate of convergence
results is typically asymptotic. In this note, we borrow some
ideas of Nemirovski, Juditsky, Lan, and Shapiro (2009), who
propose a robust SA algorithm, to conduct a finite-time regret
analysis of our variant of KWSA algorithm and show that the

regret is upper bounded by 𝜅1

√
T + 𝜅2 for all T = 1, 2, … .
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KWSA algorithm, which is the fundamental algorithm
behind our approach, is also an example of the zeroth-order
(or derivative-free) stochastic convex optimization in the lit-
erature. Compared with first-order problems (ie, the gradient
information is available) whose rate of convergence of the
cumulative regret is lower bounded by (log T) for strongly
convex cost functions (cf. Zinkevich, 2003), zeroth-order
problems are in general more difficult and the rate of con-
vergence of the cumulative regret is only lower bounded

by (√T) (see, for instant, the algorithms in Agarwal,

Dekel, and Xiao (2010) achieving the optimal bound (√T)
for strongly convex functions and Agarwal, Foster, Hsu,
Kakade, and Rakhlin (2013) achieving a near-optimal bound

(√T(log T)2) for general convex functions, respectively).
Interested readers may refer to Table 1 in both Shamir (2013)
and Besbes, Gur, and Zeevi (2015) for summaries on the rate
of convergence of the average regret and cumulative regret
under various settings of stochastic convex optimization prob-
lems.

Indeed, both den Boer and Zwart (2014) and Besbes and
Zeevi (2015) also notice the connection of the dynamic
pricing problem to SA algorithms. However, den Boer and
Zwart (2014) point out that SA algorithms are used to solve
offline problems instead of online problems and “the perfor-
mance [of a SA algorithm] is measured by the quality of the
estimate of the maximizer, and not by the cumulative costs
[ie, regrets] that leads to the estimate.” In this note, we show
that SA algorithms can also be used to solve online optimiza-
tion problems and achieve asymptotic optimality. Besbes and
Zeevi (2015) have a subsection on KWSA algorithms (ie,
Section 3.3). But as they point out, their focus is not on the
nonparametric approach to solving the problem but “to under-
stand whether policies that are typically used for learning
and earning (and designed for well-specified scenarios) suffer
from misspecification.” In this note, our focus is to explore the
asymptotical optimality of the KWSA algorithm in solving
the multi-product dynamic pricing problem.

We want to emphasize that the regret analysis of the KWSA
algorithm is quite standard and it is not the main contribution
of this technical note. Instead, this technical note only tries
to connect the two streams of literature, and shows that the
dynamic pricing problem can indeed be solved by the KWSA
algorithm with the optimal rate.

The rest of this technical note is organized as follows: in
Section 2 we introduce our variant of the KWSA algorithm
and analyze its finite-time regret. In Section 3 we formulate
the nonparametric multi-product dynamic pricing problem
and show that it may be solve by the KWSA algorithm and the
resulted KW pricing policy is asymptotically optimal. Numer-
ical studies demonstrate the effectiveness and efficiency of
our KW pricing policy by comparing with some existing pric-
ing policies in Section 4, followed by concluding remarks
in Section 5. Some additional proofs are included in the
Appendix.

ALGORITHM 1 Online KWSA algorithm

Initialization. Let x0 ∈Ω be a starting solution. Let the
iteration counter n = 1 and period counter t = 0.

Step 1. Function evaluations and information collection.
• Let t = t+ 1. Set x̃t = xn and observe F(x̃t, 𝜉n,0);
• For i = 1, 2, … , d,

Let t = t+ 1. Set x̃t = xn + cnei and observe F(x̃t, 𝜉n,i).
End the for-loop.

Step 2. Updating.
Let

xn+1 = ΠΩ(xn − anG(xn)),
where ΠΩ is a projection operator onto the set Ω, that is,
ΠΩ(x) = argminx′∈Ω‖x − x′‖, and

G(xn) =
1
cn
([F(xn + cne1, 𝜉n,1) − F(xn, 𝜉n,0)], … ,

[F(xn + cned, 𝜉n,d) − F(xn, 𝜉n,0)])T.

Let n = n+ 1 and go back to Step 1.

2 KWSA ALGORITHM AND FINITE-TIME
REGRET

Consider the following online stochastic optimization
problem:

min
x∈Ω

{f (x) ≔ E[F(x, 𝜉)]}, (1)

where Ω⊂ℜd is convex and compact. We propose to use a
variant of KWSA algorithm (ie, Algorithm 1) to solve the
problem. Let {an, n = 1, 2, … } and {cn, n = 1, 2, … } be two
positive sequences of real numbers, which will be used in the
algorithm.

Remark 1 Note that during each iteration
round, Algorithm 1 conducts d + 1 periods of
function evaluations. That is, in the nth iteration,
the time period t changes from k+ 1 to k+ d + 1,
where k = n(d + 1), and the function evaluations
have been taken down over x̃k+1 = xn, x̃k+2 =
xn + cne1, … , x̃k+d+1 = xn + cned. Also note
that {an, n = 1, 2, … } and {cn, n = 1, 2, … }
in Algorithm 1 as well as in Algorithm 2 can
be properly selected to guarantee the conver-
gence rate, which will be introduced in details
in Theorems 1 and 2 and be discussed more in
Remark 5.

Algorithm 1 is different from the classical KWSA
algorithm of Kiefer and Wolfowitz (1952) in two aspects.
First, the classical KWSA algorithm is for solving offline opti-
mization problems where only the terminal solutions of the
iterations, that is, x1, x2, … , are of interest. While in our
version of the algorithm, we are interested in all evaluated
solutions x̃1, x̃2, … because they all produce regret. This is
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the difference between offline and online stochastic optimiza-
tions. Second, Algorithm 1 uses a forward finite-difference
gradient estimator G(xn) instead of a central finite-difference
estimator. We show in Remark 5 that the asymptotic growth
rates of the expected cumulative regret of using both gradi-
ent estimators are the same. Therefore, we use the forward
finite-difference estimator for simplicity.

Let x* = argminx∈Ω f (x) be the optimal solution of
Problem (1). Then, we may define the expected cumulative
regret of the first T periods as

R(T) =
T∑

t=1

E[f (x̃t) − f (x∗)]

for any T = 1, 2, … .
To analyze the regret R(T) of Algorithm 1 in solving

Problem (1), we make the following assumptions on the
problem.

Assumption 1 There exists a finite constant
M > 0 such that E{[F(x, 𝜉)]2}≤M for all x∈Ω.

Assumption 2 The expected value function
f (x) is twice continuously differentiable in Ω.

Assumption 3 The expected value function
f (x) is strongly convex in Ω, that is, there exists
a finite constant B1 > 0 such that

f (x′) ≥ f (x)+∇f (x)T(x′ −x)+ 1

2
B1‖x′ − x‖2.

Notice that Assumption 1 implies that f (x) is well defined
for all x∈Ω, Assumptions 2 implies that‖∇2f (x)‖ ≤ B2 (2)

for some finite B2 > 0 for all x∈Ω, and Assumption 3 implies
that

[∇f (x′) − ∇f (x)]T(x′ − x) ≥ B1‖x′ − x‖ (3)

for all x, x′ ∈Ω. Moreover, Assumption 3 also implies that
there is a unique optimal solution to Problem (1). We denote it
as x* and make the following assumption to assume it is in the
interior of Ω, that is, int(Ω), which implies that ∇f (x*) = 0.

Assumption 4 The optimal solution x* satis-
fies x* ∈ int(Ω).

Given the above assumptions, we can prove the fol-
lowing theorem that bounds E[‖xn − x*‖2]. The analysis
used to prove the theorem is motivated by Kiefer and
Wolfowitz (1952) and Nemirovski et al. (2009). In par-
ticular, Nemirovski et al. (2009) analyze the convergence
of E[‖xn − x*‖2] of Robbins-Monro SA algorithm, which
assumes an unbiased estimator of ∇f (xn) is available, known
as the first-order stochastic optimization problem in the lit-
erature. In our algorithm, it is not available and a forward
finite-difference estimator is used instead.

Theorem 1 Suppose that Algorithm 1 is
used to solve Problem (1) and Assumptions
1–4 are satisfied. Let an = 𝛾n−1 and cn =
𝛿n− 1

4 with 1/(4B1)<𝛾 < 1/(2B1) and 𝛿 > 0.
Then, there exists a constant 𝜆> 0 such that
E[‖xn − x∗‖2] ≤ 𝜆n− 1

2 for all n = 1, 2, … .

Proof Let bn = E[‖xn − x*‖2]. Notice that
ΠΩ(x*) = x* and ‖ΠΩ(x)−ΠΩ(x′)‖≤ ‖x−x′‖.
Then,

bn+1 = E{‖ΠΩ(xn − anG(xn)) − x∗‖2}
= E{‖ΠΩ(xn − anG(xn)) − ΠΩ(x∗)‖2}
≤ E{‖xn − anG(xn) − x∗‖2}
= bn + a2

nE(‖G(xn)‖2) − 2anE[G(xn)T(xn − x∗)]. (4)

Let

g(x) = 1
cn
([f (xn + cne1) − f (xn)], … ,

([f (xn + cned) − f (xn)])T.

Notice that

E[G(xn)T(xn − x∗)] = E{E[G(xn)T(xn − x∗)xn]}
= E[g(xn)T(xn − x∗)]
= E[∇f (xn)T(xn − x∗)] + E[(g(xn)
−∇f (xn))T(xn − x∗)]. (5)

By Assumption 4, ∇f (x*) = 0. Then, by
Equation (3),

E[∇f (xn)T(xn − x∗)] = E{[∇f (xn) − ∇f (x∗)]T(xn − x∗)}
≥ B1E[‖xn − x∗‖2] = B1bn. (6)

Notice that, by Taylor’s expansion and
Equation (2),

g(xn) − ∇f (xn) =
1
2

cn(eT
1∇

2(𝜼1)e1, … , eT
d∇

2(𝜼d)ed)T

≤ 1
2

B2cn1,

where 1 is a d-dimensional vector with all ele-
ments being 1. Then,

E[(g(xn) − ∇f (xn))T(xn − x∗)] ≥ −1
2

B2cnE[xn − x∗x]

≥ −1
2

B2cn
√

d
√

bn, (7)

where the last inequality follows from Jensen’s
inequality. Therefore, by Equations (5)-(7),

E[G(xn)T(xn − x∗)] ≥ B1bn −
1
2

B2cn
√

d
√

bn. (8)

Furthermore, by Assumption 1,

E(‖G(xn)‖2) ≤ 4dM2

c2
n

. (9)

Then, by Equations (4), (8), and (9),

bn+1 ≤ (1 − 2anB1)bn + ancnB2

√
d
√

bn

+ 4da2
n

c2
n

M2. (10)
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Notice that an = 𝛾n−1 and cn = 𝛿n− 1
4 with

1/(4B1)<𝛾 < 1/(2B1) and 𝛿 > 0. Then, we have

bn+1 ≤
(

1 − 2𝛾B1

n

)
bn + 𝛾𝛿B2

√
d n− 5

4

√
bn

+ 4d𝛾2M2

𝛿2
n− 3

2 . (11)

By induction (see Appendix), there exists 𝜆> 0
such that

bn ≤ 𝜆 n− 1
2 , n = 1, 2, … (12)

This concludes the proof of the theorem. ▪

Remark 2 Fabian (1967) proves that

E[‖xn − x∗‖2] = (
n− 1

2

)
. In Theorem 1

we provide a finite-time upper bound of
E[‖xn − x*‖2] which implies the result proved
by Fabian (1967).

Remark 3 If we use Algorithm 1 to solve
an offline stochastic program, we may consider
using a central finite-difference gradient esti-
mator. By Fabian (1967), if we set an = 𝛾n−1

and cn = 𝛿n− 1
6 , using a central finite-difference

estimator may result in a better rate of conver-

gence, that is, E[‖xn − x∗‖2] = (
n− 2

3

)
. How-

ever, in Remark 5, we show that using central
finite-difference estimators does not lower the
growth rate of the expected cumulative regret.

Based on Theorem 1, we can prove the following theorem
that provides a finite-time bound on expected cumulative
regret of Algorithm 1.

Theorem 2 Suppose that Algorithm 1 is used
to solve Problem (1) and Assumptions 1-4 are
satisfied. Let an = 𝛾n−1 and cn = 𝛿n− 1

4 with
1/(4B1)<𝛾 < 1/(2B1) and 𝛿 > 0. Then, there
exists constant 𝜅1 > 0 and 𝜅2 > 0 such that
R(T) ≤ 𝜅1

√
T + 𝜅2 for all T = 1, 2, … .

Proof Notice that, in each iteration of
Algorithm 1, d + 1 solutions, xn, xn + cne1, … ,
xn + cned, need to be evaluated. Let r(n) denote
the expected regret of iteration n, n = 1, 2, … .
Then,

r(n) = E[F(xn, 𝜉n,0) + F(xn + cne1, 𝜉n,1)
+ · · · + F(xn + cned, 𝜉n,d)] − (d + 1)f (x∗)

= E[f (xn) − f (x∗)] + E[f (xn + cne1) − f (x∗)]
+ · · · + E[f (xn + cned) − f (x∗)]. (13)

Notice that ∇f (x*) = 0 (by Assumption 4) and‖∇2f (x)‖≤B2 for all x∈Ω (by Equation (2)).

Then, we have

f (xn) − f (x∗) ≤ 1
2

B2‖xn − x∗‖2,

f (xn + cnei) − f (x∗) ≤ 1
2

B2‖xn + cnei − x∗‖2

≤ B2(‖xn − x∗‖2 + c2
n), i = 1, … , d.

Then, by Equation (13) and Theorem 1,

r(n) ≤ (1
2
+ d

)
B2bn + dB2c2

n

≤ (2d + 1
2

𝜆 + d𝛿2
)

B2 n− 1
2 . (14)

Then,

R(T) ≤
⌈T∕(d+1)⌉∑

n=1

r(n) =
(2d + 1

2
𝜆 + d𝛿2

)
B2

⌈T∕(d+1)⌉∑
n=1

n− 1
2

≤ (2d + 1
2

𝜆 + d𝛿2
)

B2 ∫
(T+d)∕(d+1)

0
x−

1
2 dx

≤ [(2d + 1)𝜆 + 2d𝛿2]B2√
d + 1

(
√

T +
√

d)

≤ 2(𝜆 + 𝛿2)
√

d + 1 ⋅
√

T + 2(𝜆 + 𝛿2)(d + 1).

This concludes the proof of the theorem
with 𝜅1 = 2(𝜆 + 𝛿2)

√
d + 1 and

𝜅2 = 2(𝜆+ 𝛿2)(d + 1). ▪

Remark 4 Cope (2009) proves that R(T) =
(√T). In Theorem 2 we provide a finite-time
upper bound of R(T) which implies the result of
Cope (2009).

Remark 5 In Remark 3, we point out that
using a central finite-difference gradient estima-
tor may result in a better rate of convergence for

E[‖xn − x*‖2] if setting cn = 𝛿n− 1
6 . Notice that,

by Equation (14), r(n) ≤ 𝜈1E[‖xn − x∗‖2]+𝜈2c2
n

for some 𝜈1 > 0 and 𝜈2 > 0. Then, the regret
r(n) = (max{E[‖xn − x∗‖2], c2

n}). If using a
central finite-difference estimator with cn =
𝛿n− 1

6 , r(n) will be dominated by c2
n and r(n) =

(
n− 1

3

)
, causing R(T) = (

T
2
3

)
, which is not

as good as (√T). Therefore, even when using
a central finite-difference gradient estimator, we

also need to set cn = 𝛿n− 1
4 , which leads to the

same (√T) of the regret.

3 MULTI-PRODUCT DYNAMIC PRICING

Consider a firm that sells d different products over multi-
ple periods. The firm may set the prices of the products,
denoted by p = (p1, … , pd)T, at the beginning of each
period and observe the random demands, denoted by D(p) =
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(D1(p), … ,Dd(p))T. The revenue of the period is then

Θ(p) = pTD(p) =
d∑

i=1

piDi(p).

The objective of the firm is to choose the price p from a set of
permissible prices, denoted by Ω, to maximize the expected
revenue, that is,

max
p∈Ω

{𝜃(p) ≔ E[Θ(p)]}. (15)

A difficulty in solving Problem (15) is that the distribu-
tion of D(p) (and also the expected demand function E[D(p)])
may be unknown. Therefore, Problem (15) cannot be solved
directly. Instead, one may design a pricing policy to deter-
mine the prices at the beginning of each period, based on the
information up to the period, and observe the corresponding
demands and the revenue. LetΨ be a pricing policy which sets
pt = Ψ(p1, … , pt− 1, D1(p1), … , Dt− 1(pt− 1)). Our goal is to
find a pricing policy Ψ that maximizes the expected cumu-
lative revenue of the first T periods, which is equivalent to
minimize the expected cumulative regret

R(T ,Ψ) =
T∑

t=1

E[𝜃(p∗) − 𝜃(pt)], (16)

where p* is the true optimal price but unknown to us.
In this note we take a nonparametric approach that does

not assume D(p) to follow any parametric model. Notice
that our formulation is extremely general. It allows dif-
ferent cross elasticities among the demands, either com-
plementary or substitutable, and it includes the parametric
demand models of Broder and Rusmevichientong (2012), den
Boer and Zwart (2014), and Keskin and Zeevi (2014) and
the single-product nonparametric demand model of Besbes
and Zeevi (2015) as special cases. Then, by den Boer and
Zwart (2014) and Keskin and Zeevi (2014), we know that
R(T ,Ψ) grows at least in the order of

√
T for any feasible

policy Ψ.
Based on the KWSA algorithm (ie, Algorithm 1), we pro-

pose the KW pricing policy (ie, Algorithm 2), denoted by
ΨKW.

Notice that the KW pricing policy is very different from the
existing policies in the literature. As pointed out by Keskin
and Zeevi (2014), complete learning is critical to the pricing
policies proposed by Broder and Rusmevichientong (2012),
den Boer and Zwart (2014), and Keskin and Zeevi (2014).
Here the complete learning means that the parameters of
the demand models need to be learned consistently, that is,
the parameter estimators converge to the true values as the
number of periods goes to infinity. For the nonparametric
approach proposed by Besbes and Zeevi (2015), complete
learning of the demand function is not necessary. Neverthe-
less, the derivative estimator of the expected demand function
still needs to be learned consistently. To achieve that, Bes-
bes and Zeevi (2015) force the iterations become longer
and longer, so that the finite-difference derivative estima-
tor becomes more and more accurate. In the KW pricing

ALGORITHM 2 KW pricing policy

Initialization. Let p0 ∈Ω by a starting price vector. Let the
iteration counter n = 1 and period counter t = 0.

Step 1. Pricing and information collection.
• Let t = t+ 1. Set p̃t = pn and observe Θt = Θt(p̃t);
• For i = 1, 2, … , d,
Let t = t+ 1. Set p̃t = pn+cnei and observeΘt = Θt(p̃t).
End the for-loop.

Step 2. Updating.
Let

pn+1 = ΠΩ(pn + anG(pn)),
where ΠΩ is a projection operator onto the set Ω, that

is, ΠΩ(p) = argminp′∈Ω‖p − p′‖, and

G(pn) =
1
cn
[(Θk+2 − Θk+1), … , (Θk+d+1 − Θk+1)]T

with k = n(d + 1). (Note that the index k introduced
here is only for notational simplification of the
expressions of Θt, where t = k+ 1, … ,
k+ d + 1. In order to make the expression
of G(pn) in Algorithm 2 consistent with that
of G(xn) Algorithm 1, in fact, we can rewrite G(xn) =
1

cn
([F(x̃k+2, 𝜉n,1) − F(x̃k+1, 𝜉n,0)], … , [F(x̃k+d+1, 𝜉n,d)

([−F(x̃k+1, 𝜉n,0)])T, with k = n(d + 1).) Let n = n+ 1
and go back to Step 1.

policy, however, the length of the iteration is always fixed (ie,
d + 1) and the finite-difference gradient estimator is always
noisy and inconsistent. To ensure convergence, the KW pric-
ing policy uses a slow optimizing strategy, only changing
the price vector by a size of an along the estimated (noisy)
gradient direction and allowing the errors to cancel out in
the limit, and the strategy leads to an asymptotically optimal
pricing policy (as shown in Theorem 3). In contrast, pric-
ing policies of Broder and Rusmevichientong (2012), den
Boer and Zwart (2014), Keskin and Zeevi (2014), and Besbes
and Zeevi (2015) all use an aggressive optimizing strategy,
moving the price directly to the myopically optimal solution
(with some adjustments to avoid incomplete learning). With
the aggressive optimizing strategy, their policies need com-
plete learning of either the demand function or the derivative.
We use a multi-product linear demand model to illustrate the
differences between the aggressive optimizing and the slow
optimizing strategies in Section 4.4.

The following theorem establishes a finite-time upper
bound of the expected cumulative regret for the KW pric-
ing policy when solving the multi-product dynamic pricing
problem. It is based on Theorems 1 and 2.

Theorem 3 Suppose that the KW pricing pol-
icy is used to solve Problem (15) and that the
following assumptions hold:

1. Ω⊂ℜd is a convex and compact set and
p* ∈ int(Ω);



374 HONG ET AL.

2. E[D(p)] is twice continuously differentiable
in Ω and maxp∈ΩE[‖D(p)‖2]<∞;

3. 𝜃(p) is strongly concave.

Then, there exist constants 𝜆> 0, 𝜅1 > 0, and
𝜅2 > 0 such that E(‖pn − p∗‖2) ≤ 𝜆 n− 1

2 for all
n = 1, 2, … and R(T ,ΨKW) ≤ 𝜅1

√
T + 𝜅2 for

all T = 1, 2, … .

By the lower bounds of the expected cumulative regret
established by Broder and Rusmevichientong (2012) and
Keskin and Zeevi (2014), Theorem 3 essentially shows that
the KW pricing policy is asymptotically optimal. It also shows
that the conjecture of Besbes and Zeevi (2015) is true not
only for single-product dynamic pricing problems but also
for multi-product dynamic pricing problems. It further con-
firms the surprising finding of Besbes and Zeevi (2015)
that, in terms of the asymptotic growth rate of the expected
cumulative regret, the nonparametric approach may be as
good as the parametric one. Nevertheless, the nonparametric
approach may avoid model misspecifications that always exist
in parametric models.

4 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to show
the practical performance of the KW pricing policy under
single- or multi-product linear or nonlinear demand mod-
els. We first demonstrate that the cumulative regret indeed

grows in the order of
√

T in Section 4.1. Ideally, we would
like to compare our KW pricing policy with other nonpara-
metric multi-product pricing policies. However, there are no
such policies. Therefore, we compare to the multiple-product
parametric policies of Keskin and Zeevi (2014) under their
parametric demand models in Section 4.2. However, we do
not assume that the parametric forms of the demand models
are known to the KW policy. In Section 4.3, we compare the
KW pricing policy to the single-product nonparametric pol-
icy of Besbes and Zeevi (2015). Finally, in Section 4.4, we
illustrate the slow optimizing strategy by a comparison among
the KW policy, Greedy ILS (iterated least squares) policy and
the MCILS (multivariate constrained iterative least squares)
policy of Keskin and Zeevi (2014).

4.1 Illustration of the rate optimality of the total regret

We adopt the same multi-product linear demand model
used in Keskin and Zeevi (2014), in which the random
demand for product i in period t, denoted by Dt(pt) =
(D1t(pt), … ,Ddt(pt))T, has the following linear form,

Dit(pt) = 𝛼i+𝛽 i ⋅pt+𝜖it, for i = 1, … , d, and t = 1, 2, … ,

where pt = (p1t, … , pdt)T is the price for all products at
period t, and 𝛼i ∈ ℜ, 𝛽 i = (𝛽i1, … , 𝛽id) ∈ ℜd are the
unknown parameters, and 𝜖it are independent and identically

FIGURE 1 Average cumulative regret of the KW pricing policy [Colour

figure can be viewed at wileyonlinelibrary.com]

distributed (i.i.d.) normal random variables with mean zero
and variance 𝜎2. We assume that the compact set of all fea-
sible prices is Ω = {p : p∈ [l1, u1]× [l2, u2]× · · · × [ld, ud]},
where 0≤ li < ui <∞ for i = 1, 2, … , d. In the matrix form,
the demand model can be expressed as follows,

Dt(pt) = 𝛼 + Bpt + 𝜖t, for t = 1, 2, … ,

where 𝜖t = (𝜖1t, … , 𝜖dt)T ∈ ℜn, 𝛼 = (𝛼1, … , 𝛼d)T ∈ ℜd,
and B is a d × d matrix

B =

⎡⎢⎢⎢⎢⎣
𝛽11 𝛽12 · · · 𝛽1d

𝛽21 𝛽22 · · · 𝛽2d

⋮ ⋮ ⋱ ⋮
𝛽d1 𝛽d2 · · · 𝛽dd

⎤⎥⎥⎥⎥⎦
.

Then, the optimal price p∗ = −(B + BT)−1𝛼.
In the following experiment, we all consider the 2-product

case, that is, d = 2. Other parameters are set as follows, 𝛼 =

(1.1, 0.7)T, B =
[
−0.5 0.05
0.05 −0.3

]
, 𝜎2 = 0.01, and [l1, u1]= [0.1,

2.5], [l2, u2] = [0.1, 2.5]. The initial price is p0 = (0.75, 2.1)T
and 𝛾 = 3 and 𝛿 = 1 in the positive sequences of {an} and
{cn}. Then the optimal price is p∗ ≈ (1.237, 1.373)T.

Figure 1 displays the average T-period regret
R(T ,ΨKW) and its 95% confidence interval (CI) over 100
macro-replications with respect to

√
T , where T = 1, 2, … ,

3000. From Figure 1, we find that, except for the cases of
small T (roughly T ≤ 25 in our setting), the expected cumu-
lative regret of the KW pricing policy grows linearly in

the order of
√

T , which verifies the performance guarantee
obtained in Theorem 3.

4.2 Comparison with multi-product parametric
pricing policies

We consider the multi-product linear demand model and
compare our KW pricing policy with two policies, that
is, the ILS and MCILS policies, proposed by Keskin and

http://wileyonlinelibrary.com
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FIGURE 2 Comparisons between the ILS and KW pricing policies

[Colour figure can be viewed at wileyonlinelibrary.com]

Zeevi (2014). The parameter settings are the same as used in
Section 4.1.

Figure 2 displays the average T-period regret R(T ,ΨKW)
and R(T ,ΨILS), as well as their 95% CIs, respectively, over
100 macro-replications for T = 1, 2, … , 3000. From Figure 2,
we find that the cumulative regret for the KW policy increases

slightly (in the order of
√

T) while that for the ILS policy
increases linearly with respect to T . This finding demonstrates
the phenomenon of incomplete learning, since the greedy ILS
estimates may get stuck at some nonoptimal values without
further exploration, resulting a constant fraction of revenue
loss in each period, thus leading to a linearly increasing cumu-
lative regret. However, in the KW pricing policy, during each
iteration, we perturb the price by small amount for each sin-
gle product once, observe the corresponding demand for all
products, and then update the whole price using the stochas-
tic gradient at the end of each iteration, which has inherently
taken the tradeoff between exploration and exploitation into
consideration. It is also worthwhile pointing out that, by a
comparison of the 95% CI between the greedy ILS and KW
pricing policies, KW policy seems more stable than ILS,
which is not surprising since ILS often stops at different
nonoptimal points, resulting a large variation of its solution
quality.

To avoid the incomplete learning and achieve the asymp-
totic optimality, Keskin and Zeevi (2014) propose a
MCILS(𝜅) policy, where 𝜅 is a threshold parameter, that
adjusts the greedy ILS price whenever its deviation from the
historical average price is not sufficiently large. By doing so,

they show that MCILS(𝜅) policy achieves an (√T log T)
of the cumulative regret. To compare the performances of
the MCILS(𝜅) and KW pricing policy, we still consider a
2-product linear demand model under the same parameter set-
tings as in Section 4.1. In order to implement the MCILS(𝜅)
policy, we also need to choose the first three additional
price vectors as p1 = (2.0, 2.0)T, p2 = (2.0, 0.75)T, p3 =

(0.75, 2.0)T, and determine the value of the threshold 𝜅, which
is set as 𝜅 = 0.8, 1.0, 1.2, respectively.

Figure 3 presents the average T-period regret
R(T ,ΨKW) and R(T ,ΨMCILS(𝜅)) with different 𝜅, over 100
macro-replications for T = 1, 2, … , 300. We notice that
MCILS(𝜅) performs well without surprise because it is a
specifically designed policy for the multi-product linear
demand model. However, it is worthwhile pointing out that
our nonparametric KW pricing policy is also competitive
compared with the MCILS(𝜅) policy if the parameter 𝜅 is
chosen improperly (eg, 𝜅 = 1.2 in our settings). Even through

the (√T log T) of the growth rate of R(T ,ΨMCILS(𝜅)) will
not change in terms of 𝜅, the value of R(T ,ΨMCILS(𝜅)) varies
significantly for different values of 𝜅. In fact, we know that
when 𝜅 is too large, MCILS(𝜅) reduces to the greedy ILS;
meanwhile when 𝜅 is too small, the algorithm forces explo-
ration in almost every step, causing a lot of computational
efforts.

4.3 Comparison with a single-product nonparametric
pricing policy

In this subsection, we use the single-product general demand
model of Besbes and Zeevi (2015) as follows. In each period,
the seller chooses a price pt from Ω = [l, u], and observes a
demand response,

Dt(pt) = 𝜆(pt) + 𝜖t, t = 1, 2, … ,

where 𝜆(⋅) is a positive, strictly decreasing and twice contin-
uously differentiable function, and 𝜖t, t = 1, 2, … , are i.i.d.
normal random variables with zero mean and variance 𝜎2.

Besbes and Zeevi (2015) propose a linear semimyopic
policy, which is nonparametric and whose regret is upper

bounded by the order of
√

T(log T)2. We compare the perfor-
mances of the KW pricing policy and the linear semimyopic
policy under three different demand models, that is, the linear,
exponential, and logit models, as follows.

a. Linear: 𝜆(p) = (𝛼 − 𝛽p)+, where 𝛼 = 1,
𝛽 = 0.5, and 𝜎2 = 0.052. Let Ω= [l, u] = [0.5,
1.5], and then the optimal price is p* = 1. Let
p̂1 = 0.7, Ii = 1, 𝛿t = 𝜌t−1/4 where 𝜌 = 0.5,
and i = {1, … , ti+1} for the semimyopic
policy; and let p0 = 0.7, 𝛾 = 3, and 𝛿 = 1 for
the KW pricing policy.

b. Exponential: 𝜆(p) = exp(𝛼 − 𝛽p), where
𝛼 = 1, 𝛽 = 0.3, and 𝜎2 = 0.052. Let Ω = [l,
u] = [2.5, 3.5], and then the optimal price
is p* = 3. Let p̂1 = 2.7, Ii = 1, 𝛿t = 𝜌t−1/4

where 𝜌 = 0.2, and i = {1, … , ti+1} for the
semimyopic policy; and let p0 = 2.7, 𝛾 = 3,
and 𝛿 = 1 for the KW pricing policy.

c. Logit: 𝜆(p) = exp(𝛼 − 𝛽p)/(1+ exp(𝛼 − 𝛽p)),
where 𝛼 = 1, 𝛽 = 0.3, and 𝜎2 = 0.052. Let
Ω= [l, u]= [3, 7], and then the ptimal price is

http://wileyonlinelibrary.com
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FIGURE 3 Comparisons between the MCILS(𝜅) and KW pricing policies. (A) MCILS(𝜅 = 0.8) versus KW. (B) MCILS(𝜅 = 1.0) versus KW. (C)

MCILS(𝜅 = 1.2) versus KW [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Comparisons between the semimyopic and KW pricing policies. (A) Under linear model. (B) Under exponential model [Colour figure can be

viewed at wileyonlinelibrary.com]

p* ≈ 5.2238. Let p̂1 = 4.5, Ii = 1, 𝛿t = 𝜌t−1/4

where 𝜌 = 0.5, and i = {1, … , ti+1} for the
semimyopic policy; and let p0 = 4.5, 𝛾 = 10,
and 𝛿 = 1 for the KW pricing policy.

Figure 4 presents the averaged cumulative regrets of the
KW pricing policy and the semimyopic policy under linear,
exponential and logit demand models, respectively, over 100
macro-replications for T = 1, 2, … , 200. From Figure 4, we
observe that the semimyopic policy outperforms the KW pric-
ing policy when the underlying model is indeed linear, which
is not surprising because the semimyopic policy presumes
that the underlying demand model as linear and estimates the
parameters based on a linear curve. However, when the under-
lying demand model is nonlinear (eg, exponential or logit),
the performance of the KW pricing policy is generally better
than that of the semimyopic policy, which indicates that the
KW pricing policy may have advantages when applied to the
dynamic pricing context with nonlinear demand models.

4.4 Illustration of the aggressive and slow optimizing
strategies

In Section 3, we mention that many existing pricing poli-
cies use an aggressive optimizing strategy, while the KW
pricing policy uses a slow optimizing strategy. In this subsec-
tion, we continue to use the 2-product linear demand model

in Section 4.2 and to compare the KW pricing policy with
the ILS policy and MCILS (𝜅 = 1.2) policy. The parameter
settings remain the same.

In Figure 5, the horizontal axis p1 and the vertical axis p2

denote the prices of the two products, respectively, and the
star denotes the theoretical optimal price p*. We present the
scatter plots of the price evaluation points determined by ILS,
MCILS, and KW pricing policies along different time periods
during one macro-simulation run. In particular, we choose the
same time period intervals for three policies, namely, t∈ [0,
2000], [8000, 10 000], and [28 000, 30 000].

From the top three subplots in Figure 5, we observe that
the price points evaluated by the greedy ILS policy converge
very quickly during the first time interval, which reflects
the term of “greedy” in its name, but soon get stuck at a
nonoptimal price point. This is the so-called incomplete learn-
ing phenomenon. In the middle three subplots, we observe
that there exists a clear circular trajectory around the opti-
mal price point. The radius of the circle diminishes as time
period increases. Eventually, the circular trajectories gradu-
ally shrink to the optimal point. That is because MCILS policy
enforces some computational effort for exploration to slow
down the active learning speed towards the optimal directions
to avoid incomplete learning. In the bottom three subplots,
we observe that the price points evaluated by the KW policy
appear three clusters of cloud shadows. The clusters will
become more concentrated and closer to the optimal price

http://wileyonlinelibrary.com
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FIGURE 5 Illustration of the aggressive and slow optimizing strategies [Colour figure can be viewed at wileyonlinelibrary.com]

point over time, which typically reflects the inactive learning
(or slow optimizing, in other words). It is worth mention-
ing that although slow optimizing strategy seems to make the
evaluation points wonder around in early time periods with-
out any clear trajectory, it will effectively reduce the scope
of exploration and concentrate around the optimal solution
over time.

5 CONCLUSIONS

We study a nonparametric multi-product dynamic pricing
problem with demand learning, and formulate it as an online
stochastic optimization problem. We propose a nonparamet-
ric KW pricing policy, which is a variant of the classical
KWSA algorithm, and show that the corresponding expected

cumulative regret is upper bounded by 𝜅1

√
T + 𝜅2 for all

T = 1, 2, … , where 𝜅1, 𝜅2 are positive constants and T is

the number of time periods. Therefore, the KW pricing policy

achieves the optimal (√T) order of regret. Finally, we con-

duct numerical studies to study the performance of the KW

pricing policy and compare with other polices under various

demand models.

There are some possible extensions of this work. First,

the KWSA algorithm requires evaluating d + 1 points at

each iteration, which may slow the algorithm significantly

when the dimension is high. When the dimension is high,

that is, there are many products whose prices need to

be determined by the decision maker, it would be bet-

ter to use some other online optimization algorithms, such

http://wileyonlinelibrary.com
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as the simultaneous perturbation stochastic approximation
algorithm of Spall (1992), to remove the effect of the dimen-
sion. Second, there exists certain substitution or complemen-
tary effects among different products, resulting in different
correlation structures among different products. Then, how
to better utilize this type of correlation information to design
dynamic pricing and learning policies is another interest-
ing research direction. Third, the market environments may
change over time, which may require a nonstationary optimal
pricing strategy, then the nonstationary stochastic optimiza-
tion algorithms, for example, the ones in Besbes et al. (2015)
and Keskin and Zeevi (2016), may be adopted to solve this
type of problems.
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APPENDIX: EXISTENCE OF 𝜆 OF EQUATION (12)

Let 𝛼 = 2𝛾B1, 𝛽 = 𝛾𝛿B2

√
d, and 𝜔 = 4d𝛾2M2

𝛿2
. By

Equation (11), we have

bn+1 ≤ (
1 − 𝛼

n

)
bn + 𝛽n− 5

4

√
bn + 𝜔n− 3

2 . (A1)

Let 𝜆 = max{b1, 𝜆0}, where

𝜆0 =

(
𝛽 +

√
𝛽2 + 2𝜔(2𝛼 − 1)

2𝛼 − 1

)2
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and, because 2𝛼 − 1> 0, 𝜆0 also satisfies

(2𝛼 − 1)𝜅 − 2𝛽
√
𝜅 − 2𝜔 ≥ 0, ∀𝜅 ≥ 𝜆0. (A2)

We prove by induction that bn ≤ 𝜆n− 1
2 . It is easy to see

that it holds for n = 1. For any n = 1, 2, … , suppose that

bn ≤ 𝜆n− 1
2 . Then, by Equation (A1) and because 1− 𝛼/n> 0

due to 𝛼 < 1,

bn+1 ≤ (
1 − 𝛼

n

)
𝜆n− 1

2 + 𝛽
√
𝜆n−3∕2 + 𝜔n− 3

2

= 𝜆n− 1
2 − (𝛼𝜆 − 𝛽

√
𝜆 − 𝜔)n− 3

2

= 𝜆n− 1
2 − 𝜆

2
n− 3

2 − 1
2
[(2𝛼 − 1)𝜆 − 2𝛽

√
𝜆 − 2𝜔]n− 3

2

≤ 𝜆
(

n− 1
2 − 1

2
n− 3

2

)
, (A3)

where the last inequality follows from Equation (A2) and the

fact that 𝜆 = max{b0, 𝜆0}≥ 𝜆0. Let g(x) = x−
1
2 . Then, g′(x) =

− 1

2
x−

3
2 . Notice that g(x) is convex. Then,

g(x′) − g(x) ≥ g′(x)(x′ − x).

Then,

(n + 1)−
1
2 − n− 1

2 = g(n + 1) − g(n) ≥ g′(n) = −1
2

n− 3
2 .

Therefore,

n− 1
2 − 1

2
n− 3

2 ≤ (n + 1)−
1
2 .

Then, by Equation (A3), we have bn+1 ≤ 𝜆(n + 1)−
1
2 . This

concludes the induction proof and, therefore, bn ≤ 𝜆n− 1
2 for

all n = 1, 2, … .


