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Abstract. Estimating portfolio risk measures and classifying portfolio risk levels in real
time are important yet challenging tasks. In this paper, we propose to build a logistic
regression model using data generated in past simulation experiments and to use the
model to predict portfolio risk measures and classify risk levels at any time. We further
explore regularization techniques, simulation model structure, and additional simulation
budget to enhance the estimators of the logistic regression model to make its predictions
more precise. Our numerical results show that the proposedmethods work well. Our work
may be viewed as an example of the recently proposed idea of simulation analytics, which
treats a simulation model as a data generator and proposes to apply data analytics tools
to the simulation outputs to uncover conditional statements. Our work shows that the
simulation analytics idea is viable and promising in the field of financial risk management.
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1. Introduction1

In portfolio risk management, simulation studies are
often used to estimate portfolio risk measures, for
example, exceedance probabilities, values-at-risk, or
conditional values-at-risk. These studies often pro-
duce accurate estimates of risk measures as long as
the stochastic processes of the underlying risk factors
may be simulated. However, they can also be very
time-consuming, especially when portfolios consist of
multiple derivative products whose prices also need
to be determined by additional simulation effort. This
type of problem is known as nested estimation, and
it has been studied extensively in the areas of sim-
ulation and financial engineering (see, e.g., Gordy
and Juneja 2010, Liu and Staum 2010, Broadie et al.
2011, and Sun et al. 2011). Nearly all estimation
methods proposed in the simulation literature con-
sider the estimation problem only once—that is, one
is interested only in estimating a risk measure at the
current time point given the current values of all un-
derlying risk factors—and researchers often argue
that these methods may be implemented overnight or
over the weekend so that the long computational time
needed to run them is not a barrier. In practice, how-
ever, portfolio risk measures are often needed in real

time as the current values of the underlying risk
factors change. For instance, the famous “4:15 report”
of J. P. Morgan requires the company to consolidate
the risks of all trading desks based on the closing values
of the underlying factors, available within 15 min-
utes after the market closes every day, and the com-
pany uses it to decide whether the risk is under control
(Jorion 2006). We call this the online risk-monitoring
problem. The estimation methods available in the sim-
ulation literature cannot solve this problem directly
because a portfolio may contain thousands of financial
instruments based on many risk factors, and the risk
factors may change in seconds. As we need to estimate
the riskmeasures in real time based on these risk factors,
we cannot guarantee that the desired simulation results
can be obtained in time.2

We take a different view. We ask whether we can
use the sample paths and derivative prices from a
database of retained past simulation results to esti-
mate online riskmeasures based on the current values
of the underlying risk factors without running ad-
ditional simulation experiments. From a mathemat-
ical point of view, the traditional approaches esti-
mate an unconditional risk measure, which is a fixed
value; what we need is an approach that estimates
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a conditional risk measure, which is a function of
the values of the underlying risk factors at a future
time. This motivates us to consider the simulation
analytics approach recently proposed by Nelson
(2016). The main idea of the simulation analytics ap-
proach is to treat the simulation model as a generator of
multiple (often a large number of) replications of system
dynamics over time and to apply data analytics tools
to mine the data and to estimate conditional statements.

In this article, we consider a specific online risk-
monitoring problem. Suppose that an ordinaryMonte
Carlo simulation study was conducted at an initial
time point (time 0) to evaluate the (unconditional)
exceedance probability (i.e., the probability that the
loss is greater than a given threshold) at an impor-
tant future date (time T). To estimate the exceedance
probability, the simulation study generated many
sample paths from the initial state of the underlying
risk factors at time 0 to time T and evaluated the
portfolio loss (including possibly pricing of deriva-
tives) for each sample path at time T. Our goal is to use
the same sample paths to estimate the same exceed-
ance probability at time T conditional on the state of
the underlying risk factors at any time t ∈ [0,T] and
to classify the portfolio risk at time t into either “safe”
or “dangerous” based on whether the exceedance
probability is below or above a certain threshold. The
problem was motivated by our conversations with in-
vestment practitioners in the insurance industry, who
complained that their company does not set risk limits
dynamically based on portfolio status and, instead, uses
static limits. In this paper, we analyze the problem in the
context of financial simulation, which typically assumes
that the simulation model is the true model, and do not
consider the model misspecification issue.

Regression is commonly used in estimating a
conditional relationship. For instance, Longstaff and
Schwartz (2001) proposed to use linear regression to
approximate continuation values in the American
option pricing problem. To estimate the conditional
probability and to classify the risk category, logistic
regression is used, and the maximum likelihood (ML)
method is applied to estimate the parameters of the
model. According to generalized linear model theory
(Fahrmeir and Kaufmann 1985), we show that such
risk estimators are strongly consistent and asymptoti-
cally normal. In addition, the classification error goes
to zero exponentially fast as the sample size n → ∞.
This result shows that risk classifications, which are
often the main purpose of online risk monitoring, are
significantly easier than risk estimations.

The logistic regression approach is treated as a
baseline method in this paper. We then propose three
performance-enhancing techniques by taking advan-
tage of either existing data analytics tools or the
knowledge of the simulation models to further

improve the baseline method. First, considering that
the number of risk factors is often large in practical
situations, we propose to use L1-regularization (often
known as lasso) to conduct variable selection and to
improve prediction accuracy. The basic idea of lasso
is to trade off a small increase of bias to obtain a large
decrease of variance so that the estimation and clas-
sification can be done more precisely. It is a standard
tool in data analytics to handle high-dimension data,
and we show that it also works well in the context
of online risk monitoring. We also prove that the risk
estimators using lasso are strongly consistent and as-
ymptotically normal, and the classification error goes
to zero exponentially fast as the sample size n → ∞.
Second, noticing that our data are generated from

simulation, we may use our knowledge of the sim-
ulation model (i.e., the data-generating process) to
develop more efficient tools. This is a unique feature
of simulation analytics. In typical data-analytics prob-
lems, data are observed, and the data-generating pro-
cesses are unknown. To improve the baseline method,
we utilize gradient estimation in simulation to develop a
method that perturbs all simulated sample paths so that
they are more spread out. Through both theoretical
analysis and numerical studies, we show that the per-
turbation method can significantly improve the quality
of both risk estimators and risk classifiers, especially
when the time is close to the beginning of the planning
horizonwhen sample paths aremore clustered together.
Third, in some practical situations, we may have time

to conduct a small number of additional simulation
experiments. Therefore, we also consider how to in-
corporate the additional simulationdata into the analysis
to improve the quality of the risk estimators and risk
classifiers. Inparticular,wepropose twoapproaches: one
is to combine two estimators that are derived from the
original data and the new data, and the other is to
combine the original data and the new data together to
compute a new estimator. Through both theoretical
analysis and numerical studies, we show that using
additional simulation data can improve the performance
in both risk estimations and risk classifications.

1.1. Literature Review
Our work is related to three lines of literature. The first is
on portfolio risk measurement. Glasserman et al. (2000,
2002) were among the first to study how to estimate
portfolio values-at-risk. In particular, Glasserman et al.
(2000) considered the case in which the risk factors
follow light-tailed distributions, and Glasserman et al.
(2002) considered the case of heavy-tailed distribu-
tions. Glasserman and Li (2005), Bassamboo et al.
(2008), and Glasserman et al. (2008) studied portfo-
lio credit risks. All of these papers study situations
in which the loss of the portfolio may be calculated
easily through closed-form expressions or delta–gamma
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approximations and consider how to apply variance-
reduction techniques so that the risk measures may be
estimated more precisely. In addition, large pool ap-
proximations, which apply to a very broad class of
models, can be used to study risk measures for large
portfolios; see Iscoe andKreinin (2010), Sirignano and
Giesecke (2016), and Sirignano and Giesecke (2018).

Sometimes, estimation of portfolio losses needs ad-
ditional simulation experiments. For instance, a portfolio
may contain derivatives whose values need to be priced
through simulation. Nested simulation approaches are
often used in these situations. Lee and Glynn (2003)
studied the general formulation of nested simulation
and considered how to balance the simulation effort
in the inner and outer levels, and Gordy and Juneja
(2010) applied it to portfolio risk measurement. Liu
and Staum (2010) used stochastic kriging to improve
the estimation efficiency, and Broadie et al. (2011)
designed an adaptive method to allocate the simu-
lation effort in inner and outer levels. To reduce the
large amount of simulation effort needed in the in-
ner level, Broadie et al. (2015) proposed a regression
method, and Hong et al. (2017) proposed a kernel
method to avoid nested simulations. Interested readers
may see Hong et al. (2014) for a recent comprehen-
sive review on simulation methods in estimating risk
measures.

The second related line of literature is regression.
Regression is a standard technique used in data an-
alytics and statistical learning to construct functional
relations and to classify instances (see, e.g., Hastie
et al. (2011) for a thorough introduction to regression
techniques in statistical learning). In this article, our
goal is to estimate conditional probabilities and use
them for classification. Therefore, it is natural for us to
consider logistic regression. For background on lo-
gistic regression and how to use maximum likelihood
to estimate model parameters, readers are referred to
the monograph of Hosmer and Lemeshow (2004). In
statistical learning, lasso is often usedwith regression
to select variables and to improve prediction pre-
cision, especially when the number of variables is
large. Lasso was first introduced by Tibshirani (1996),
and it can be applied to not only linear regression
models, but also generalized regression models that
include logistic regression. Regression has also been
used at the interface of stochastic simulation and fi-
nancial engineering. For instance, as we mentioned
earlier, Broadie et al. (2015) proposed a regression
method to estimate portfolio risk measures. Sirignano
and Giesecke (2018) used logistic regression to ap-
proximate the transition function in loan-level models.
Longstaff and Schwartz (2001) used a regression
method to price American-style options. Generally,
pricing American-style options is equivalent to solving
dynamic-programming problems in which regression

is often used to approximate the value functions for
backward induction. In our method, regression is used
repeatedly to approximate conditional exceedance pro-
babilities, which are used directly for online risk
monitoring.
The third related line of literature is on reuse of

simulation experiments. Liu et al. (2010) proposed
to run simulation experiments to construct a good
“database” and use it for future estimations. They call
the approach “simulation on demand.” Rosenbaum
and Staum (2015) further developed this idea into
database Monte Carlo simulation that uses the data-
base to construct control variates to reduce the variances
of the estimators. Similar to our idea of reusing sim-
ulation data, Feng and Staum (2017) proposed the
concept of green simulation that uses retained sim-
ulation data as a complementary resource to new
simulation data by employing a change of probability
measures. Unlike the approaches mentioned earlier
that either prerun simulation experiments (as in simu-
lation on demand) or convert the old simulation data to
the new data (as in green simulation), our approach
learns (or mines) the simulation data to uncover con-
ditional relationships available in the data.
The rest of this paper is organized as follows. We

formulate the online risk-monitoring problem in
Section 2 and introduce the logistic regression–
based methods in Section 3. Three performance-
enhancing techniques—lasso, perturbation, and ad-
ditional simulation—are discussed in detail in Sec-
tions 4, 5, and 6, respectively. Numerical results are
presented in Section 7, followed by conclusions and
discussion in Section 8.

2. Problem Statement
Suppose that S(t) � (S1(t), S2(t), . . . , Sm(t))� is a vector
of the underlying risk factors, which may include
prices of stocks and bonds, stochastic interest rates,
etc., and that S(t) follows aMarkov process defined on
a probability space (Ω,^,P) with a natural filtration
^t that governs the evolution of the process. Consider
a portfolio with k financial products, for example,
stocks, bonds, and derivatives, whose values at time t
are denoted by Vi(t), i � 1, . . . , k, which depend on the
realizations of the underlying risk factors S(t). For
convenience of the notation, we let V(t) � (V1(t), . . . ,
Vk(t))�. Furthermore, suppose that the positions on
the financial products arew � (w1, . . . ,wk)�. Then, the
value of the portfolio at time t is

Φ(t) � ∑k
i�1

wiVi(t) � w�V(t). (1)

Let L(t) � Φ(0) −Φ(t). Then, L(t) is the loss of the port-
folio at time t.
Suppose that there is a fixed future time T at which

portfolio loss L(T) needs to be evaluated and further
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actions need to be taken based on L(T). For instance, T
may be the end of the fiscal year at which portfolio loss
needs to be reported to shareholders, or T is the end of
the investment cycle at which bonuses are distrib-
uted. Then the managers of the portfolio may be in-
terested in estimating the loss distribution and the
portfolio risk measures at time T. In this paper, we
consider the estimation of the exceedance probability,
that is, Pr{L(T)> y} for some important threshold
value y. Notice that, if Pr{L(T)> y} may be estimated
for any y, we may use it to obtain other risk measures,
such as value-at-risk and conditional value-at-risk
(Glasserman et al. 2000). In the simulation literature,
much has been done in estimating the unconditional
probability, that is, Pr{L(T)> y}, but we are interested
in estimating the conditional probability Pr{L(T)>
y|^u}, which denotes the exceedance probability given
the information up to time u ∈ (0,T). By the Markov
property3 of the underlying risk factors S(t), we have
Pr{L(T)> y|^u} � Pr{L(T) > y|S(u)}. The conditional
probability is useful because, at any time u ∈ (0, T),
given the realization of S(u) observed in the market,
we can tell the probability that the portfolio loss ex-
ceeds the threshold y at the important future time T,
and we may use the probability as a risk-monitoring
tool to determine whether the portfolio risk is under
control.

2.1. The Data
When the portfolio is formed at time 0, a thorough
simulation study is typically conducted to analyze
the risk profile of the portfolio and report the risk
measures to relevant stakeholders. In this article, we
suppose that the unconditional exceedance probability
Pr{L(T)> y} is estimated through a nested Monte
Carlo simulation study. For this simulation study, one
often has more time available to run simulation ex-
periments, and the risk measures are often estimated
precisely. Then, after the simulation study, we have n
simulated sample paths of the underlying risk fac-
tors, denoted by S1(t),S2(t), . . . ,Sn(t) for 0 ≤ t ≤ T.
These sample paths are often simulated under the real
probability measure, and they are the output of the
outer-level simulation in a nested simulation study.
Moreover, we also have the values of the financial
products at time T evaluated based on each simulated
realization of the underlying risk factors. We denote
them as V1(T),V2(T), . . . ,Vn(T). Notice that these fi-
nancial products may include complicated financial
derivatives whose values do not have closed-form
expressions. Then an inner-level simulation study
under the risk-neutral probability measure may need
to be used to estimate the Vi(T) values. In this article,
we assume that these values can be estimated so ac-
curately that they are effectively without estimation
error. Then, given the weights w of the portfolio, we

can easily calculate the portfolio loss at time T based
on the simulated realizations of the underlyings, and
we denote them as L1(T), L2(T), . . . , Ln(T).

2.2. Online Risk Monitoring
Once the portfolio is constructed, the portfolio man-
agers need to constantly monitor the risk of the port-
folio. For instance, they may need to estimate the
exceedance probability at any real time (instead of
the simulated time) given the market conditions, that
is, the real realization of the underlyings S(u), and
decide whether the portfolio is safe or not at time u.
We call the first the “online risk estimation problem”
and the second the “online risk classification problem.”
For both problems, we want to use the simulated data
in Section 2.1 to avoid simulating more data so that
both problems may be solved quickly to meet the prac-
tical requirements.
In the online risk estimation problem, our goal is to

estimate pu(S(u)) � Pr{L(T) ≥ y|S(u)} for any u ∈ (0,T)
in real time. Notice that pu(S(u)) is a function of S(u).
Therefore, our goal is to estimate a function, which is
often called a regression problem in the field of sta-
tistical learning (Hastie et al. 2011), and the regression
is on S(u) for fixed u. If the function is estimated, we
may then plug in S(u) observed at real time u to es-
timate the exceedance probability pu(S(u)). Notice
that this may be done very quickly if the function has
been estimated beforehand.
In the online risk classification problem, our goal is

to classify the portfolio risk into two categories, safe
and dangerous, based on the exceedance probability
pu(S(u)) in real time. For instance, wemay set α ∈ (0, 1)
as a threshold and classify the portfolio risk as dan-
gerous if pu(S(u))>α and safe otherwise. In practice,
we may set α � 0.05 or 0.1. Risk classification allows
risk managers to know immediately whether actions
need to be taken to control the portfolio risk. Onemay
further extend the number of categories from two to
a higher number in the risk classification problem.
This may lead to risk ratings that resemble the credit
ratings, for example, the AAA to D levels, used by
credit-rating agencies, such as Standard & Poor’s and
Moody’s. Notice that, once the function pu(S(u)) is
estimated, the classification can also be solved imme-
diately given the values of S(u) at the time u ∈ (0,T).

2.3. From Online Risk Monitoring to Online
Risk Control

Notice that online riskmonitoring is only thefirst step
to online risk control, which is often the goal of risk
management. For instance, if the risk classification
indicates that the portfolio risk level is dangerous,
risk managers may decide to change some positions
and add some additional products. To apply the
simulation-analytics approach to estimate the risk
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of this new portfolio, however, there may be some
difficulties. Themajor difficulty is that the newproducts
may depend on new risk factors whose sample paths
are not in our data. Moreover, even when the new
products do not involve new risk factors, how their
values at time T depend on existing sample paths of
underlying risk factors may still be unknown and
require additional simulation effort to evaluate. In
these situations, we have to run additional simulation
experiments because the information cannot be mined
if it is not in the data.

However, if the online risk control involves only
adjusting the positions of existing financial products,
that is, changing the weights w without adding new
products, we can still apply the simulation-analytics
approach to estimate the risk of the new portfolio. To
do that, suppose the weights at time u are now w(u).
Based on the new weights, we may reconstruct the
portfolio value Φ(T) based on Equation (1) and cal-
culate the portfolio loss L(T) for the new portfolio,
assuming the portfolio will be held until time T. Once
we update the data, we are back to the situation that is
considered in Section 2.2. Notice that the recon-
struction of the data does not need additional simulation
experiments. Therefore, it can be done efficiently, and
it will not cause much delay in providing the risk
estimates and the risk classifications.

3. Logistic Regression
As stated in Section 2, our goal is to estimate
pu(S(u)) � Pr{L(T) ≥ y|S(u)} and use it for classifica-
tion for any u ∈ (0,T). To do that, notice that we
have the simulated sample paths {Si(t), 0 ≤ t ≤ T}, i �
1, 2, . . . ,n, and the corresponding portfolio loss Li(T)
for each sample path i. Let

Y � 1 if L(T) ≥ y,
0 otherwise.

{
(2)

We have pu(S(u)) � E[Y|S(u)]. Based on the simulated
sample paths, we have n observations of Y, denoted by
Y1,Y2, . . . ,Yn. Then, to estimate the regression func-
tion pu(S(u)), we have n observations of the input–
output pair for given u and denoted by {(S1(u),
Y1), (S2(u),Y2), . . . , (Sn(u),Yn)}, where the inputs are
also called predictors, input variables, or features,
and the outputs are also called dependent variables or
responses or classes or labels in the areas of statistical
learning.

Notice that both the regression problem and the
classification problem are classical supervised learning
problems. There are parametric and nonparametric
approaches that can be used to solve the problems. For
our problems, because the data were collected from a
separate simulation study, the number of observations
is typically not very large. Moreover, as the portfolio

may includemany assets, the dimension of the features,
that is, the underlying risk factors S(u), may be quite
large. Therefore, the observations may be scattered
sparsely in the feature space. These characteristics typ-
ically make nonparametric methods, such as k-nearest
neighbors and kernel methods, less effective because
of a high level of variance of the predictions (Hastie
et al. 2011). Therefore, in this paper, we consider para-
metric methods that generally trade off variance for
bias but may be effective if the parametric model is
chosen appropriately.

3.1. Logistic Regression Model and Maximum
Likelihood Estimation

Because the response Y is a Bernoulli random vari-
able, to model pu(S(u)), a natural choice is a logistic
regression model (Hosmer and Lemeshow 2004). Let
X(·) : 	m → 	d denote a set of basis functions com-
puted from S(u); we then propose the following lo-
gistic regression model:

log
pu(S(u))

1 − pu(S(u))
( )

� β(u)�X(S(u)), (3)

where β(u) � (β1(u), . . . , βd(u))� is the vector of co-
efficients. It is worthwhile noting that both X(·) and
β(u)depend on the time u. Therefore, for different time
points u ∈ (0,T), we may use different basis functions
and obtain different coefficients.
To use the logistic regressionmodel in Equation (3),

we need to specify the basis functions X(·). One way is
to specify based on the properties of the loss function,
and another is to use polynomials of S(u) because of
the well-known Weierstrass approximation theorem
(Rudin 1991). In this paper, we suggest the second
way, and we propose to use linear and individual
quadratic functions, that is, X(S(u)) � (1,S(u),S2(u))�,
where S2(u) � (S21(u), . . . ,S2m(u))�. Notice that this is
the simplest form of polynomials of S(u) that one
may use, and it should also be the first form of poly-
nomials for one to consider. Fortunately, our nu-
merical results show that this approach works well
for both the regression and classification problems.
Notice that the first component of X is typically one,
so β1 denotes the intercept. More details on the ap-
propriateness of the logistic regression model are pro-
vided in the online supplement.
The parameters of the logistic regression model

of Equation (3) are typically estimated by the ML
method. For the convenience of notation, we omit the
time index uwhen it does not cause confusion. That is,
in Equation (3), we let X denote X(S(u)) and β denote
β(u), and

g(X,β) � exp(β�X)/(1 + exp(β�X)).
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Then, the log likelihood function is

log �(β|X,Y) � Y log g(X,β)( ) + (1 − Y) log 1 − g(X,β)( )
.

(4)

For any u ∈ (0,T), we have the training data {(Xi,Yi),
i � 1, . . . , n}, where Xi � X(Si),

Ln(β) � 1
n

∑n
i�1

Yi log g(Xi,β)( ) + (1 − Yi) log 1 − g(Xi,β)( ){ }

� 1
n

∑n
i�1

Yiβ
�Xi − log 1 + exp(β�Xi)( ){ }

,

(5)

and the ML estimator β̂n is given by

β̂n � argmax
β∈	d

Ln(β), (6)

and the maximization problem may be solved nu-
merically and efficiently by the coordinate descent
algorithm (Hastie et al. 2011). If the data sets are large,
it is advantageous to use the stochastic gradient de-
scent algorithm to solve the maximization problem.

3.2. Online Risk Estimation
In the risk estimation problem, our goal is to estimate
pu(Sr(u)) � Pr{L(T) ≥ y|Sr(u)} given that we have ob-
served Sr(u) at time u. We use the notation Sr(u) to
denote it is the real-world observation of S(u) instead
of a simulated observation. Nevertheless, we assume
that it has the same distribution as the simulated ob-
servations. When using the logistic regression model,
we estimate pu(Sr(u)) by

p̂u(Sr(u)) � g Xr, β̂n

( ) � exp β̂
�
nXr

( )
1 + exp

(
β̂
�
nXr

) , (7)

where Xr � X(Sr(u)) is known at time u and β̂n is the
ML estimator of the unknown parameter β calculated
using the training data, that is, the simulated obser-
vations of {(Xi,Yi), i � 1, 2, . . . , n} at time u. Based on
the generalized linear model theory in Fahrmeir and
Kaufmann (1985), we can assess the quality (i.e., con-
sistency and asymptotic normality) of the risk estimator
p̂u(Sr(u)) easily. To do that, we make the following
assumptions.

Assumption 1. The observations {(Xi,Yi), i � 1, 2, . . . ,n}
are independent observations of (X,Y) and, given X, Y is a
Bernoulli random variable with Pr(Y � 1|X) � g(X,β0).

Notice that the independence condition is easily
satisfied because {(Xi,Yi), i � 1, 2, . . . ,n} are calculated
based on sample paths that are simulated indepen-
dently. Therefore, Assumption 1 basically assumes
that the logistic regression model of Equation (3) is
the true model and the true parameter is β0. This is a

typical assumption that is made in parametric statisti-
cal estimations, and we can only build the properties
of the estimators based on this assumption. Never-
theless, we have to keep in mind that models are just
approximations, and they may introduce bias of which
we are not aware.
Let L(β)denote the expectation of the log-likelihood

function, that is,

L(β) � E log �(β|X,Y)[ ] � E Yβ�X − log 1 + exp(β�X)( )[ ]
.

(8)

Assumption 1 also implies that

β0 � argmax
β∈	d

L(β). (9)

Let H(β) denote the Hessian matrix of the log-
likelihood function, that is, H(β) � ∇2

β log �(β|X,Y).
One can easily verify that

H(β) � − eβ
�X(

1 + eβ�X
)
2
XX�.

We make the following assumptions on H(β), where
the expectations E(·) are taken with respect to the
distribution of (X,Y).
Assumption 2. The Fisher informationmatrix J � −E[H(β0)]
exists and is positive definite.

Assumption 3. There exists a neighborhood of β0, denoted
as 1(β0), such that E[supβ∈1(β0) ‖H(β)‖]<∞.

Assumptions 2 and 3 are typical assumptions used
to analyze the asymptotic properties of the ML estima-
tors (see, for instance, Fahrmeir and Kaufmann (1985)
and Newey and McFadden (1994)), and they can be
satisfied easily in our framework; see the online sup-
plement. Then, we can obtain the asymptotic proper-
ties of the online risk estimator p̂u(Sr(u)) defined in
Equation (7). The following corollary can be found in
Jiang et al. (2016) without proof, and we provide the
detailed proof in the online supplement. Again, we
want to emphasize that the result is conditional on
Sr(u) (and also Xr � X(Sr(u))).
Corollary 1 (Corollary of Fahrmeir and Kaufmann 1985).
Suppose that Assumptions 1, 2, and 3 are satisfied. Then,
p̂u(Sr(u)) → pu(Sr(u)) almost surely (a.s.) and

̅̅
n

√
p̂u(Sr(u)) − pu(Sr(u))[ ]→d N(0,D),

as n → ∞, where D � cXrJ−1X�
r , and c � exp(2β0

�Xr)/
(1 + exp(β0

�Xr))4.
Corollary 1 states that, under the assumption that

the logistic regression model is the true model, the
estimated conditional probability is a consistent es-
timator of the true conditional probability, and it has
an asymptotic normal distribution. As it has been
demonstrated empirically in the online supplement
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that the logistic regression model is a good model for
the conditional probability, Corollary 1 also shows
that our proposed approach can be used to solve the
online risk estimation problem. Furthermore, as the
logistic regression may be done very quickly given
the sample paths or can even be done before Sr(u) is
observed for any given u, the proposed approach can
be used for risk estimation in real time.

3.3. Online Risk Classification
Sometimes we are concerned about the classification
problems, that is, whether the portfolio is safe or not
at a given time. Of course, an accurately estimated
logistic regression model may lead to good classifi-
cations. However, a coarsely estimated logistic re-
gression may also give acceptable classifications. For
example, in Figure 1, the true boundary is the solid line
that classifies the points into two categories. With a
less accurate boundary, the dashed line, the classifi-
cation accuracy is almost as good. Thismotivates us to
consider the accuracy of classification instead of the
accuracy of prediction as in Section 3.2, especially in
high-dimensional cases.

Suppose that α is the threshold probability of the
safe/dangerous zone. If the exceedance probability
pu(Sr(u)) is less than or equal to α, we say the portfolio
is in the safe zone. Otherwise, the portfolio is in the
dangerous zone. In practice, pu(Sr(u)) is unknown,
and we estimate it by p̂u(Sr(u)). Let I and Î denote the
safe/dangerous indictors under the true and esti-
mated probabilities, respectively, that is,

I � 1 if pu(Sr(u)) ≤ α

0 if pu(Sr(u))>α,
Î � 1 if p̂u(Sr(u)) ≤ α

0 if p̂u(Sr(u))>α.

{{

(10)

Then, Î 
� I denotes amisclassification, andwe are also
interested in understanding how the misclassifica-
tion probability, that is, Pr{Î 
� I}, converges to zero as
the sample size n → ∞. To analyze Pr{Î 
� I}, we first
establish a large-deviation result on Pr{‖β̂n − β0‖> δ}
and use it as a bridge. In the rest of this section, we drop
the subscript u for convenience, and we use X to denote
X(Sr(u)) and Xj to denote the jth component of X,
j � 1, 2, . . . , d. This is not to be confused with Xi, which
is the ith observationofX, and the boldface denotes that
it is a vector. We make the following assumption on Xj.

Assumption 4. For each j � 1, 2, . . . , d, there exists a
constant ωj > 0 such that E(eωj |Xj |)<∞.

In this paper, Xj is typically a polynomial function
of the risk factors S(u). Assumption 4 basically re-
quires that all risk factors are light-tailed. However, if
some of risk factor, say Sj(u), is heavy-tailed, we may
redefine it so that it is light-tailed. For instance, if Sj(u)
follows a lognormal distribution, we may redefine it
by taking its logarithm. Based on Assumption 4, we
establish an exponential rate of convergence of the
ML estimator β̂n to the true parameter β0 as summa-
rized in the following theorem, which is a standard
large-deviation result in ML estimator (see Fu et al.
1993). We provide our own proof of this theorem (see
the online supplement) because similar proof tech-
niques are also used in the proof of Theorem 4.

Theorem 1. Suppose that Assumptions 1, 2, and 4 hold.
Then, for any δ> 0, there exists a positive constant c̄(δ)
such that

lim
n→∞− 1

n
log Pr β̂n − β0

⃦⃦⃦ ⃦⃦⃦
> δ

{ }
≥ c̄(δ).

Based on Theorem 1, we have the following theo-
rem showing that both the probability of a large devi-
ation of the estimated exceedance probability from its
true value, that is, Pr{|p̂u(Sr(u)) − pu(Sr(u))|> δ} for
any δ> 0, and the probability of misclassification, that
is, Pr{Î 
� I}, converge exponentially fast as n → ∞.
The following theorem has been stated in Jiang et al.
(2016) but without proof, and we provide the de-
tailed proof in the online supplement.

Theorem 2. Suppose that Assumptions 1, 2, and 4 hold. If
‖Xr‖ 
� 0, then for any δ> 0, there exists c̃(δ)> 0 such that

lim
n→∞− 1

n
log Pr p̂u(Sr(u)) − pu(Sr(u))

⃒⃒ ⃒⃒
> δ

{ } ≥ c̃(δ). (11)

Furthermore, if ‖Xr‖ 
� 0 and pu(Sr(u)) 
� α, then there
exists a constant c0 > 0 such that

lim
n→∞− 1

n
log Pr I 
� Î

{ } ≥ c0. (12)

Theorem 2 indicates that the misclassification prob-
ability converges to zero with an exponential rate.

Figure 1. True and Estimated Classification Boundaries in
the Feature Space Defined by (x1, x2), Where ∗ and ◦ Define
Observations of Different Categories
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This shows that the risk classification problem is, in
general, easier than the risk estimation problem con-
sidered in Section 3.2 as we showed intuitively in
Figure 1. In online risk monitoring, we are often in-
terested more in risk classification than in risk estima-
tion; Theorem 2 shows that we can often expect the
proposed method to give a good risk classification
even when the sample size is not large.

The logistic regression model considered in this
section serves as a baseline model in this paper. It is
quite straightforward once the online risk monitoring
problems are defined as we do. In Sections 4–6, we
consider various techniques to enhance the perfor-
mance of the baseline model, based on either more
advanced data-analytics tools or the knowledge and
the flexibility of the simulation model itself. We show
that these performance-enhancing techniques can in-
deed improve the qualities of risk estimators and risk
classifiers compared with the baseline model, and they
may be used together to achieve further improvements.

4. Regularization Through Lasso
A large financial portfolio may include many finan-
cial products whose prices are affected by multiple
underlying risk factors. Therefore, in a simulation
study, we often simulate the dynamics of a large num-
ber of risk factors. This imposes a challenge to the
online risk-monitoring problems that we consider in
this paper. In particular, when the number of risk
factors is large, the number of predictors (i.e., the
basis functions of the risk factors) used in the logistic
regression model is often larger. Then, the ML estimate
of the model parameters may have a large amount
of variability, known as overfitting, and, thus, reduce
the precision of risk estimation and risk classification.
Furthermore, because of limited positions in relevant
financial instruments, hedging or other reasons, the
risk exposure to some risk factors may be quite small
or even negligible at some time. This motivates us to
consider regularization techniques, commonly used in
statistical learning (e.g., chapter 6 of James et al. 2013),
to reduce the number of predictors in the model
or to shrink the estimated coefficients. The basic idea
is to trade off a small increase in bias to obtain a large
decrease in the variance, thus improving the overall
prediction accuracy of the model. A model with a
smaller number of predictors also brings better model
interpretability. In online risk monitoring, this is par-
ticularly important because it shows clearly to man-
agers the risk factors that they need to monitor closely.
In this section, we propose to use L1 regularization,
also known as lasso, to improve the logistic regres-
sion model. Compared with other regularization tech-
niques, such as L2 regularization, lasso not only
improves prediction accuracy, but it also reduces the
number of nonzero predictors, thus improving the

model interpretability.More explanation on the variable-
selection property of lasso is included in the online
supplement.
Under the logistic regression model, that is, Equa-

tion (3), the lasso estimator is

β̂λn
n � argmax

β∈	d
Ln(β) − λn‖β‖1
{ }

, (13)

where ‖β‖1 �
∑d

j�1 |βj| is the L1-norm of the vector β.
Compared with the ML estimator in Equation (6), the
lasso estimator adds a shrinkage penalty term λn‖β‖1
in the maximization problem, where λn > 0 is known
as the tuning parameter. It is clear that the penalty
term shrinks the lasso estimator toward zero when
compared with the ML estimator β̂n. In particular,
β̂λn
n � β̂n if λn � 0, and β̂λn

n � 0 if λn � +∞.
In the implementation of lasso, the tuning pa-

rameter λn is critical to the prediction accuracy of the
model. To select a good λn, we suggest using k-fold
cross validation with k � 5 or k � 10 to find the λn

value that minimizes the average classification error
of the k test sets (see chapter 5.1 of James et al. 2013
for an introduction). Once the tuning parameter is
chosen, one can use all the training data to refit the
lasso model, that is, Equation (13), to find the lasso
estimate β̂λn

n . For a given tuning parameter, we suggest
using the coordinate descent algorithm of Friedman
et al. (2010) to fit the lasso model.
Similar to Section 3, in this section, we also study

the consistency, asymptotic normality, and large devi-
ation behavior of the lasso estimators of the exceedance
probability as well as the misclassification probability.
We show that the lasso estimators preserve all the as-
ymptotic properties that the ML estimators have. To
study asymptotic properties of the lasso estimators, we
need a stronger assumption on the Hessian matrix H(β)
than Assumption 2, which is commonly used in an-
alyzing lasso estimators (see, for instance, Fan and Li
2001). In the assumption, we let Hjk(β) and βl denote
the (j, k)th element of H(β) and lth element of β, re-
spectively, for any 1 ≤ j, k, l ≤ d.

Assumption 5. There exists a neighborhood of β0, denoted
as1(β0), such that, for any β ∈ 1(β0) and any 1 ≤ j, k, l ≤ d,
∂βlHjk(β) exists and there exists a function Mjkl such that
|∂βlHjk(β)| ≤ Mjkl(X,Y) and E[Mjkl(X,Y)]<∞.

We have the following lemma on the consistency
and asymptotic normality of the lasso estimator β̂λn

n .

Lemma 1 (Fan and Li (2001)). Suppose that Assumptions 1,
2, and 5 hold. If λn → 0 as n → ∞, then β̂λn

n →β0 in prob-
ability as n → ∞. Furthermore, if

̅̅
n

√
λn → 0 as n → ∞, then̅̅

n
√ (β̂λn

n − β0)→
d
N(0, J−1) as n → ∞.

Remark 1. Even though we attribute Lemma 1 to Fan
and Li (2001), we want to point out the lemma is an

Jiang, Hong, and Nelson: Online Risk Monitoring Using Offline Simulation
INFORMS Journal on Computing, 2020, vol. 32, no. 2, pp. 356–375, © 2019 INFORMS 363



adaptation of theorem 1 of Fan and Li (2001) to our
context. Therefore, for completeness, we also provide
the proof of the lemma in the online supplement.

Remark 2. Furthermore, we want to emphasize that
these asymptotic results are meaningful even though
the tuning parameter λn is chosen by cross-validation
in the actual implementation of lasso. We do expect
λn chosen by cross-validation to get smaller as n in-
creases because we have enough data to tell which
predictors matter without regularization.

Let p̂λn
u (Sr(u)) � g(Xr, β̂λn

n ) � exp(X�
r β̂

λn
n )/(1 + exp ·

(X�
r β̂

λn
n )) be the lasso estimator of the exceedance

probability at any time u ∈ (0, T) after observing Sr(u)
as well as Xr �X(Sr(u)). Similar to Corollary 1, based
on the consistency and asymptotic normality of the
lasso estimator (i.e., Lemma 1) by the continuous map-
ping theorem and the delta method (Van der Vaart
2000), we can prove the following theorem on the con-
sistency and asymptotic normality of p̂λu(Sr(u)). We
omit the proof here.

Theorem 3. Suppose that Assumptions 1, 2, and 5 hold. If
λn → 0 as n → ∞, then p̂λn

u (Sr(u)) → pu(Sr(u)) in prob-
ability as n → ∞. Furthermore, if

̅̅
n

√
λn → 0 as n → ∞,

then ̅̅
n

√
p̂λn
u (Sr(u)) − pu(Sr(u))[ ]→d N(0,D)

as n → ∞, where D � cXrJ−1X�
r and c � exp(2β0

�Xr)/
(1 + exp(β0

�Xr))4.
In the following theorem, we establish the large

deviation result for the lasso estimator β̂λn
n . Indeed, for

the theorem to hold, we need the Fisher information
matrix to be positive definite. Therefore, Assumption 2
is used. The proof of the theorem is included in the
online supplement.

Theorem 4. Suppose that Assumptions 1, 2, and 4 hold and
λn → 0 as n → ∞. Then, for any ε> 0, there exists a
positive constant c̄λ(ε) such that

lim
n→∞− 1

n
log Pr β̂λn

n − β0

⃦⃦⃦ ⃦⃦⃦
> ε

{ }
≥ c̄λ(ε).

Remark 3. Notice that, by Equations (9), (6), and (13),
β0�argmax

β∈	d L(β), β̂n�argmax
β∈	d Ln(β), and β̂λn

n �
argmax

β∈	d Lλn
n (β), where Lλn

n (β)�Ln(β)−λn‖β‖1. There-
fore, β0, β̂n, and Lλn

n (β) are all solutions to corre-
sponding optimization problems. The proofs of both
Theorems 1 and 4 depend critically on proposition 4.32
in Bonnans and Shapiro (2000), which bounds the
differences between the optimal solutions, that is, ‖β̂n−
β0‖ and ‖β̂λn

n −β0‖, by the differences between the
objective functions, that is, ‖Ln(β)−L(β)‖ and ‖Lλn

n (β) −
L(β)‖, respectively. For more details, refer to the online
supplement.

Similar to the proof of Theorem 2, we can prove the
following theorem on the probability of a large devi-
ation of the estimated exceedance probability from its
true value, that is, Pr p̂λn

u (Sr(u)) − pu(Sr(u))
⃒⃒ ⃒⃒

> δ
{ }

for
any δ> 0, and the probability of misclassification, that
is, Pr{Îλn 
� I}. We omit the proof here.

Theorem 5. Suppose that Assumptions 1, 2, and 4 hold. If
‖Xr‖ 
� 0, then, for any ε> 0, there exists c̃λ(ε)> 0 such that

lim
n→∞− 1

n
log Pr p̂λn

u (Sr(u)) − pu(Sr(u))
⃒⃒ ⃒⃒

> δ
{ } ≥ c̃λ(δ).

Furthermore, if ‖Xr‖ 
� 0 and pu(Sr(u)) 
� α, then there
exists a constant cλ0 > 0 such that

lim
n→∞− 1

n
log Pr I 
� Îλn

{ } ≥ cλ0 . (14)

Remark 4. We prove Theorems 4 and 5 in our context.
However, these results are of interest beyond online
risk monitoring because logistic regression and lasso
are widely used in other contexts as well.

5. Variance Reduction
Through Perturbation

So far in this paper, we have taken a data-analytics
approach to analyzing the simulation output through
logistic regression for risk estimation and classification.
However, there is a fundamental difference between
typical data- and simulation-analytics problems. In
simulation-analytics problems, the analysts know the
underlying data-generating processes (i.e., the sim-
ulation model) and, therefore, have much more in-
formation than their peers in solving other types of
analytics problems. In this section, we ask how we
might be able to use the information to develop more
efficient tools for risk estimation and classification. In
particular, we propose a method that perturbs the
sample paths generated by the simulation study and
then uses a first-order Taylor expansion to approximate
the portfolio value under the perturbed sample paths.
We show that the ML estimators of the logistic regres-
sion parameters using the perturbed sample paths have
smaller variances than those using the original sample
paths at least when the time is close to zero.

5.1. Basic Idea of the Perturbation Method
Notice that, for the logistic regression model to work,
we only need to ensure that the sample paths deliver
the correct default probabilities when conditioned on
S(u) (see Assumption 1). Therefore, we only need to
make sure that S(t) follows the correct dynamics
when t ∈ (u,T]. This motivates us to perturb the ini-
tial values S(0) of the sample paths so that the cor-
rect dynamics are used for all t ∈ (0,T], but the sample
paths are more spread out. We can then use the new
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sample paths to fit the logistic regression model for
any u ∈ (0,T).

Consider a simple example in which there is only
one risk factor that is modeled as a geometric Brownian
motion. In the left panel of Figure 2, we plot the gen-
erated sample paths. We color a path darker if it leads
to default and lighter otherwise, and we also plot the
95% range of the data. From the plot, we see that the
pathswith differentmarkers are easier to differentiate
when the time u is large because they are more sep-
arated but more difficult to differentiate when u is
small because they are more clustered together. Sup-
pose that, instead of simulating all sample paths of
the risk factor from the initial value S(0), we perturb
them by a small amount, say S(0)(1 + δU), where δ> 0
is the perturbation size and U ∈ (−1, 1) can be chosen
deterministically or randomly and simulate sample
paths from the new initial values. We can then eval-
uate the portfolio risk at T and color the sample paths

as in the right panel of Figure 2. From the plot, we see
that the sample paths with different markers are
more separated, especiallywhen u is small. Therefore,
intuitively, we would expect the perturbed sample
paths to lead to better risk estimation and classifica-
tion. In the left and right panels of Figure 3, we plot the
estimated risk boundaries for this one-dimensional
example using the original and perturbed sample
paths, respectively. From the plots, we see clearly that
the perturbed sample paths lead to better risk estima-
tion and classification.
The perturbation method can be extended easily to

multidimensional risk factors by perturbing Si(0) to
Si(0)(1 + δiUi) for any risk factor i � 1, 2, . . . ,m, where
U1, . . . ,Um ∈ (−1, 1). In Section 5.2, we show that, under
the assumption that the sample paths are simulated
from the perturbed initial values, the perturbation
method works well when u is small. In particular,
when u → 0, the variance reduction ratio, that is, the

Figure 2. (Color online) The Default Paths (Darker Color) and the Nondefault Paths (Lighter Color) Before and After
Perturbing the Initial Value

Figure 3. The Boundaries for Different α Values Using the Original (Left) and Perturbed (Right) Sample Paths

Note. The solid lines are the true boundaries, and the dashed lines are the estimated boundaries via logistic regression.
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variance of the original estimator over that of the new
estimator, goes to infinity. In Section 5.3, we show
how to implement the perturbation method using the
existing sample paths.

5.2. Analysis of the Perturbation Method
Let S′(u) � (S′1(u), . . . ,S′m(u))� denote the perturbed
samplepaths for anyu ∈ [0,T], where S′i (u) is simulated
from a randomly perturbed initial value Si(0)(1 + δiUi)
with δi > 0 and Ui ∈ (−1, 1) chosen determinsitcally or
randomly for all i � 1, 2, . . . ,m. Let X′(u) � X(S′(u)),
β̂′
n denote the ML estimator of β0 of the logistic re-

gression model (3) using the perturbed sample paths,
and J′(u) denote the Fisher information matrix when
using the perturbed data. By Lemma C.1 in the online
supplement, we have

̅̅
n

√ [β̂′
n − β0]→

d
N(0, J′−1(u)) as

n → ∞ for any u ∈ (0,T).
Notice that, for the original sample paths, all ob-

servations have the same S(0) value and, thus, the
same X(S(0)) value at time zero. Then, intuitively, the
logistic regression model cannot be fitted if X has more
than one dimension, that is, d ≥ 2. For the perturbed
data, however, all observations have different S′(0)
values and, thus, different X′(0) values. Therefore, the
logistic regression model may be fitted if there are
enough observations. This intuitively explains why the
perturbation method works well when u is close to
zero. In the rest of this section, we prove this intuition
in a rigorous way.

To simplify the notation, we let X(u) � X(S(u)) and
let X(0) � x to denote that it is a deterministic vector.
Furthermore, let J−1ii (u) and J′−1ii (u) denote the ith di-
agonal elements of J−1(u) and J′−1(u), respectively, for
any u ∈ (0,T). Notice that they are the asymptotic var-
iances of β̂i and β̂′i , respectively, for all i � 1, 2, . . . , d.
Let ri(u) � J−1ii (u)/J′−1ii (u) denote the asymptotic vari-
ance reduction ratio of the perturbation method for
estimating β0i for any u ∈ (0,T). The following theo-
rem shows that at least d − 1 terms of r1(u), . . . , rd(u) go
to infinity if u goes down to zero. Therefore, when u
is close to zero, the perturbation method leads to a
significant variance-reduction effect compared with
using the original sample paths. The proof is given
in the online supplement.

Theorem 6. Suppose that Assumptions 1 and 2 are satisfied
for any u ∈ (0,T). Furthermore, suppose that X(u) is right
continuous a.s. at u � 0, supu∈(0,T) E[‖X(u)‖2+ε]<∞ for
some ε> 0, and J′(0) is of full rank. Then, ri(u) → ∞ as
u → 0+ for at least d − 1 values of i ∈ {1, 2, . . . , d}, where
u → 0+ means u goes to zero from the positive side.

5.3. Implementation of the Perturbation Method
To implement the perturbation method, we need to
construct the sample paths from randomly perturbed
initial values using the original sample paths and also

evaluate the portfolio loss for each newly constructed
sample path. In some cases, these tasks can be done
exactly. But, in general cases, these can only be done
approximately. First, we consider how to construct
sample paths. In many models of risk factors, includ-
ing the geometric Brownian motion model, Heston’s
stochastic volatility model, Merton’s jump diffusion
model, and others (see Hull 2014), Sj(u)/Sj(0) is not
a function of Sj(0). For these models, one can con-
struct the new sample path of risk factor j exactly by
setting

S′j (u) �
Sj(u)
Sj(0) S

′
j (0) � Sj(u) 1 + δUj

[ ]
(15)

for any u ∈ (0,T]. For more general models of risk fac-
tors, we assume that the derivative process dSj(u)/dSj(0)
is available along with the sample path Sj(u). Notice
that dSj(u)/dSj(0) is known as the sample path de-
rivative. It is often very easy to simulate and requires
very little additional effort when it is simulated along
with S(u) (Broadie and Glasserman 1996). Then we
may apply Taylor’s first-order approximation and
approximate S′(u) by

S′j (u) ≈ Sj(u)+ dSj(u)
dSj(0) S′j (0) − Sj(0)

[ ]

� Sj(u)+ dSj(u)
dSj(0) Sj(0)δUj

(16)

for any u ∈ (0,T].
Second, we consider how to reconstruct the portfolio

loss. By Equation (1), the portfolio loss satisfies L(T)�
Φ(0)−Φ(T)�Φ(0)−w�V(T)�Φ(0)−∑k

i�1wiVi(T). Then, to
reconstruct the portfolio loss for the new sample
paths, we need to compute V′(T), which includes the
values of the financial products at time T. Notice that
V′(T) depends on S′(T). If there exist closed-form
expressions, for example, Black–Scholes formula for
European call and put options, then V′(T) may be
computed analytically. Otherwise, we assume that
the price sensitivities of Vi(T) with respect to Sj(T),
that is, ∂Vi(T)/∂Sj(T), are available for all i � 1, 2, . . . , k
and j � 1, 2, . . . ,m. Indeed, dVi(T)/dSj(T) are known as
the Greeks in financial risk management, and they
are typically calculated when evaluating Vi(T) (see, for
instance, Broadie and Glasserman 1996 and Liu and
Hong 2011 on simulating the Greeks). Then we may
apply Taylor’s first-order approximation to approxi-
mate V′

i (T) by

V′
i (T) ≈ Vi(T) +

∑m
j�1

∂Vi(T)
dSj(T) S′j (T) − Sj(T)

[ ]
,

where S′j (T) − Sj(T) may be computed using either
Equation (15) or (16) by setting u � T.
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Finally, we discuss how to generate the initial
values S′(0). Based on our current construction,
S′j (0) � Sj(0)[1 + δUj], where U � (U1, . . . ,Um)� is uni-
formly distributed in the hyperbox (−1, 1)m. However,
the randomness in U also introduces additional vari-
ance in the estimation of β̂′

n. This motivates us to use
low dispersion sequences to spread out the obser-
vations of U more evenly in the hypercube to reduce
the variance of the ML estimator. In our implementa-
tions, we use the Sobol sequence (Niederreiter 1988).
In the online supplement, we compare the uniformness
of a two-dimensional uniform random vector and the
Sobol sequence.

6. Additional Simulation
In previous sections, we assumed that all sample
paths are generated at time 0. In some practical sit-
uations, one may be able to simulate more sample
paths at some time point between 0 and T. For in-
stance, when there is a weekend, one may decide to
add more sample paths simulated from the current
values of the risk factors. In this section, we consider
how to incorporate the additional data into the analysis
to improve the quality of the risk estimators and
classifiers. In particular, we consider two methods. In
the first method, we use the two sets of data to generate
two estimators separately and then combine the two
estimators; and in the second method, we combine the
two sets of data together and use logistic regression on
the combined data set to obtain a new estimator. We
prove that both methods lead to estimators that have
smaller variances than the one without using the addi-
tional data. The numerical experiments conducted in
Section 7.2 show that both methods have comparable
performance in both risk estimations and classifi-
cations. However, compared with the first method,
the second one is easier to extend to the situations in
which there are multiple sets of additional data (sim-
ulated at different time points) and is easier to imple-
ment. Therefore, we prefer and recommend the second
method.

6.1. Combining Estimators
Let {S̃(t),u′ ≤ t ≤ T} be the additional sample paths
generated from the time point u′ ∈ (0,T) and Ỹ be the
corresponding exceedance indicator, defined simi-
larly as in Equation (2). For any u ∈ [u′,T], one may
obtain two estimators, denoted as p̂0u and p̂1u, based
on the original data and the additional data, respec-
tively. Then we may use the combined estimator p̃u �
ν0p̂0u + ν1p̂1u, where ν0>0 and ν1>0 are the correspond-
ing weights with ν0+ν1 � 1.

Notice that the original sample paths and the ad-
ditional sample paths are independent. Therefore,

Var p̃u
[ ] � Var ν0p̂0u + ν1p̂1u

[ ] � ν20Var p̂
0
u

[ ] + ν21Var p̂
1
u

[ ]
.

We propose to find the optimal weights ν∗0 and ν∗1 to
minimize the variance of the combined estimator, that
is, to solve the following optimization problem:

min
ν0,ν1

ν20Var p̂
0
u

[ ] + ν21Var p̂
1
u

[ ]
,

s.t. ν0 + ν1 � 1,
0 ≤ ν0, ν1 ≤ 1.

It is easy to see that the optimal weights are

w∗
0 �

Var p̂1u
[ ]

Var p̂0u
[ ] + Var p̂1u

[ ] and w∗
1 �

Var p̂0u
[ ]

Var p̂0u
[ ] + Var p̂1u

[ ] .
(17)

In addition, it is clear that the combined estimator
with the optimal weights has a smaller variance than
both p̂0u and p̂1u have. Therefore, by adding additional
sample paths, one can improve the quality of the orig-
inal estimator p̂0u. To use the combined estimator in
practice, one first estimates the variances of p̂0u and p̂1u
using the corresponding sample paths and then uses
these variance estimates to approximate the optimal
weights and to calculate the combined estimator.

6.2. Combining Data
Notice that the original sample paths {S(t), 0 ≤ t ≤ T}
and the additional sample paths {S̃(t),u′ ≤ t ≤ T}
follow the same simulation model from u′ to T, con-
ditioned onS(u′) and S̃(u′), respectively. Then, for any
u ∈ [u′,T], given S(u) � s and S̃(u) � s, the probability
mass functions of Y and Ỹ are the same. Based on the
logistic regression model, we have

Pr{Y � 1|S(u) � s} � Pr{Ỹ � 1|S̃(u) � s} � eβ
�
0 X(s)

1 + eβ
�
0 X(s)

.

Therefore, the likelihood functions of these two data sets
are the same, and we may conduct logistic regression
on the combined data set. In the rest of this section, we
show that, by combing the two data sets together, we
may estimate the exceedance probabilities with smaller
asymptotic variances compared with the original esti-
mator without adding the additional sample paths.
Recall that X denotes X(S(u)). For the convenience

of notation, we also use X̃ to denote X(S̃(u))when u ∈
[u′,T] is fixed. By Corollary 1, we know that the
asymptotic variance of the estimator

̅̅
n

√
p̂0u is D �

cX�
r J

−1Xr, where n is the original sample size, c �
exp(2β0

�Xr)/(1 + exp(β0
�Xr))4 with Xr � X(Sr), and

J � E[exp(β�
0 X)/(1 + exp(β�

0 X))2XX�]. So we can use
D/n to approximate the variance of the estimator
p̂0u. Similarly, let p̂1u denote the estimator derived
from the additional simulation data; then its variance
is approximately D̃/ñ, where ñ is the sample size of
the additional data and D̃ � cX�

r J̃
−1Xr with J̃ � E ·

[exp(β�
0 X̃)/(1 + exp(β�

0 X̃))2X̃X̃�]. Let p̃u denote the es-
timator derived from the combined data set.
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Consider the likelihood function on the combined
data set

ln+ñ(β) � ∏
n

i�1
g(Xi,β)Yi 1 − g(Xi,β)( )1−Yi∏

ñ

j�1
g X̃j,β
( )Ỹj

· 1 − g X̃j,β
( )( )1−Ỹj

,

and recall that g(X,β) � exp(β�X)/(1 + exp(β�X)), so
the averaged log likelihood function is

Ln+ñ(β) � 1
n + ñ

∑n
i�1

Yiβ
�Xi − log 1 + exp β�Xi

( )( )[ ]{

+∑̃n
j�1

Ỹjβ
�X̃j − log 1 + exp β�X̃j

( )( )[ ]}
.

Suppose that there is a sampling regime that makes
the additional simulation data size ñ � ñ(n), which is
related to the original simulation data size n, and
limn→∞ ñ(n)/n → r. Under this regime, we only need
to focus on the asymptotic analysis with n → ∞.

Notice that (Xi,Yi), i � 1, 2, . . . , n are independent
and identically distributed (i.i.d.), and (X̃j, Ỹj), j �
1, 2, . . . , ñ are i.i.d.; then according to theorems 1 and 2
in Hoadley (1971), the Fisher information matrix is
given by

J̄ � 1
1 + r

J + r
1 + r

J̃. (18)

Then, the variance of p̃u is approximated by D̄/(n + ñ),
where D̄ � cX�

r J̄
−1Xr.

To compare the the asymptotic variance of p̃u with
those of p̂0u and p̂1u, we need the following lemma,
whose proof is provided in the online supplement.

Lemma 2. Suppose that Σ1 and Σ2 are both d × d positive
definite matrices, and Σ � Σ1 + Σ2. For every nonzero col-
umn vector Xr ∈ 	d,

X�
r Σ

−1Xr <X�
r Σ

−1
i Xr, i � 1, 2. (19)

Based on Lemma 2, we have the following proposi-
tion that shows D̄/(n + ñ) is smaller thanD/n and D̃/ñ,
where D/n and D̃/ñ approximate the variances of p̂0u
and p̂1u, respectively. The proof is given in the online
supplement.

Proposition 1. Let r � ñ/n. If J and J̃ are positive definite,
then D̄/(n + ñ) <min{D/n,D̃/ñ}.

7. Numerical Examples
In this section, we conduct a sequence of numerical
experiments to study the behavior of our proposed
methods in online risk estimation and classification
and to compare their performance. Notice that, in this
paper, we focus on designing simulation methods.
Therefore, we assume that simulation models are
valid models without misspecification errors. For cali-
brating simulation models and discussions on model

misspecification, readers are referred to Alexander
(2001), Belomestny and Reib (2006), andWhite (1982).
In Sections 7.1–7.3, we use only the linear basis

functions in logistic regression, and in Section 7.4, we
use both linear and individual quadratic basis func-
tions. In all these examples, let λn � λ/n, and we use
fivefold cross-validation to determine the tuning
parameter λ when implementing lasso and use the
perturbation size δ � 5% when implementing the
perturbation method. Furthermore, for all examples,
there are 10,000 simulated sample paths, and for each
sample path, 100 inner-level simulation replications
are used to determine the values and the Greeks of
the derivatives in the portfolio. Some of the results
reported in Sections 7.1 and 7.3 are also available in
Jiang et al. (2016). We add more results on the use of
the enhancing techniques and the comparisons.

7.1. A Portfolio with Five Underlying Assets
Consider a portfolio that longs three call options and
two put options based on five different underlying
assets, which are mutually independent and driven
by geometric Brownian motions (GBMs). Specifically,
let S(t) � (S1(t), . . . ,S5(t))� and the portfolio Φ(t) �
Vc

1(t) + Vc
2(t) + Vc

3(t) + Vp
4(t) + Vp

5(t). At time T, if the
portfolio Φ(T) ≤ Q, that is, the loss Φ(0) −Φ(T) ≥
Φ(0) −Q, we consider the portfolio in default. Let the
initial values of the five underlying assets be S(0) �
(50, 50, 60, 60, 70)�, the drifts of the GBMs be µ �
(0.05, 0.06, 0.07, 0.06, 0.05)�, the volatilities be σ � (0.1,
0.1, 0.1, 0.1, 0.1)�, and the strikes of the options be
K � (40, 40, 45, 80, 85)�. Let the risk-free interest rate
be rf � 0.02 and the portfolio loss evaluation time
T � 0.3. Notice that there are two probability mea-
sures in our problem. The price dynamics of S(t)with
0 ≤ t ≤ T are simulated under the real probability
measure where µ are used as the drifts of the GBMs,
and the options are evaluated under the risk-neutral
measure where rf is used as the drift of the GBMs.
Suppose that [0,T] is discreted into N � 30 equal-
length intervals; we denote them by 0 � t0 < t1 < · · · <
tN � T. Let the maturities of all the options be the
same τ � 1, and let Q � 65.
Even though the option prices and their deltas

(i.e., price sensitivities with respect to S(T)) may be
calculated easily by the Black–Scholes formula, we
still use simulation to price them to mimic the more
complicated situations. In our logistic regression model,
we choose the basis function X(S(t)) � (1,S(t))�. Fur-
thermore, when applying the perturbation method,
we use Equations (15) and (16) to approximate the
perturbed risk factors and the corresponding options
prices, respectively.
Because the distribution of S(T) is directly avail-

able given Sr(t) and the portfolio value Φ(T) may be
calculated easily using the Black–Scholes formula
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given S(T), we may evaluate the true value p(Sj(t))
accurately using a large number of scenarios (e.g., 104

in our calculation) conditioning on any Sr(t). We can
then use the true value as the benchmark to evaluate
the performance of our proposed methods.

We plot the standard deviations of all six param-
eter estimators in the logistic regression model with
and without the perturbation method in Figure 4. We
see that the perturbation method clearly reduces the
variances. However, variance reduction diminishes
as t increases. Furthermore, we see that the variances
of the estimators of both methods may increase as t
approaches T. This is because, when t is close to T, the
exceedance probabilities are likely to be close to ei-
ther zero or one, leading the parameters of the lo-
gistic regression models to very large values, thus
increasing the variances of the estimators. Indeed, this
phenomenon exists not only in this example; it exists

in all three examples that we consider. In Figure 4, we
did not give the standard deviations of the lasso and
lasso+perturbation estimators because the number of
risk factors in this example is small and lasso does not
provide benefits.
Figure 4 provides useful insight. However, it does

not tell us how good our proposed method is for risk
estimation and classification. To evaluate the quality
of risk estimation (e.g., predicting exceedance prob-
abilities), we use the root-mean-square error (RMSE)
as the criterion for the estimated probabilities at dif-
ferent time points. The RMSE is calculated as

RMSE(t) �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
L

∑L
l�1

1
J

∑J
j�1

p̂l(Sj(t)) − p(Sj(t))[ ]2√√
,

where L is the number of training sets and J is the
number of testing sets for each training set; that is, for

Figure 4. (Color online) Standard Deviations of the ML and Perturbation Estimators in Example 1

Figure 5. (Color online) RMSE (Left Panel) and PCC (Right Panel) of the ML and Perturbation Estimators in Example 1
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each training set l, we get an estimated probability
function p̂(·), and we generate J testing sets with M
sample paths to calculate the RMSE for this esti-
mated probability throughout ti, i � 1, . . . ,N − 1 and
then we replicate L times to calculate the average.
The RMSE basically tells us the average errors of the
probability estimates. To evaluate the quality of risk
classification, we use the probability of correct clas-
sification (PCC) as the criterion. In the numerical
study, we set L � J � 10 and M � 500 and plot the
RMSEs and PCCs in Figure 5. From the figure, we see
that the RMSEs are small (about 0.01) and the PCCs
are large (mostly greater than 0.95) for all proposed
methods, indicating that the risk estimations and
classifications may be done precisely. Moreover, the
perturbation method can improve the quality of
risk estimation and classification, especially when t
is small.

7.2. Additional Simulation
We consider the same example as in Section 7.1. In
addition, we generate some new sample paths S̃(u),u ∈
[u′,T] from u′ ∈ (0,T) based on the observed values
of S̃(u′). We let ñ � 1,000, which is 10% of the origi-
nal sample size n.

We first consider the case in which u′ � 0.16 and u �
0.20 with all other parameters remaining the same as
in Section 7.1. Notice that u>u′, which means the
additional data were generated before the prediction
time u. We plot the results in Figure 6. In this figure,
the left, middle, and right box plots of both panels are
from the estimators of the original data, the combining-
estimators method, and the combining-data method,
respectively. This figure shows that, with only 10%
additional sample paths, the qualities of risk estimators
are significantly improved, and the qualities of risk
classifiers are slightly improved. Moreover, the esti-
mators of the two methods with additional data have
comparable performances.

Further, we study the improvement at different
prediction times u with u′ � u − 0.04 and summarize
the results in Table 1. In this table, we see that both
of the estimators with additional data have similar
performances, and both outperform the one with only
the original data, especially in risk estimations.
Next, we consider the case u � u′. By setting different

values of u, we report the results in Table 2. Similar
to the results in Table 1, both of the estimators with
additional data have similar performance, and both sig-
nificantly outperform the one with only the original data.
These numerical results show that both methods

with additional data have comparable performance
in risk estimations and classifications. However,
the method of combining data is, in general, easier to
implement than the method of combining estimators.
Moreover, it can be extended easily to situations in
which multiple batches of data are added at different
time points as we only need to combine all data together
and conduct logistic regression once. Therefore, we
prefer and recommend the method of combining data.

7.3. Adding Perfectly Hedged Positions
In this example, we add another 20 underlying as-
sets to Example 1 in Section 7.1. For each of the new
underlying assets, we long one call option and short
one put option and the corresponding underlying

Figure 6. (Color online) Box Plots of RMSEs and PCCs for the Estimators of the Original Data, the Combining-Estimators
Method, and the Combining-Data Method Based on 40 Replications

Note. u � 0.20, u′ � 0.16.

Table 1. RMSE and PCC for Different Parameter u with
u′ � u − 0.04

Original
Combining
estimators

Combining
data

RMSE PCC RMSE PCC RMSE PCC

u � 0.05 0.0098 0.962 0.0087 0.965 0.0087 0.965
u � 0.10 0.0119 0.974 0.0093 0.977 0.0090 0.976
u � 0.15 0.0130 0.982 0.0096 0.984 0.0091 0.985
u � 0.20 0.0120 0.988 0.0089 0.990 0.0084 0.990
u � 0.25 0.0112 0.988 0.0083 0.989 0.0074 0.989
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asset. Then, by put–call parity (Hull 2014), the newly
added positions are perfectly hedged and have a
deterministic value. We further add a proper position
of cash so that the value of the new portfolio is the
same as that of Example 1. Therefore, the exceedance
probability in this example is exactly same as that in
Example 1, and it is not affected by the newly added
underlying assets. We apply our proposed methods
on all underlying assets, old and new, and our goal is
to test the performance of the lasso and lasso+
perturbation estimators.

We model the dynamics of all underlying assets as
GBMs.More specifically,wenowcall thefive assets used
in Example 1 as S1(t) and the new assets as S2(t), and
Φ(t) � Φ1(t) +Φ2(t). The parameters of S2(t) (the initial
values, drifts, volatilities, and correlations) and the strike
prices K2,i are given in Table A.1 in the online supple-
ment. All other parameters remain the same as that
in Example 1. Therefore, the exceedance probabilities

remain the same. In this example, we let the basis
function X(S(t)) � (1,S(t))� � (1,S1,1, . . . ,S1,5(t),S2,1(t), . . . ,
S2,20(t))�.
In Figure 7, we plot the standard deviations of the

estimators of β1, . . . , β6, and in Figure 8, we plot the
RMSEs of β7, . . . , β26 because we know their true values
are zero. From these figures, we see that the pertur-
bation method reduces variances of all estimators.
However, lasso reduces the variances of the intercept
β1 and βi, i� 7, . . . ,26 without reducing the variances
of β2, . . . , β6.
We also plot the RMSEs and PCCs in Figure 9.

When compared with Figure 5, we find that the
RMSEs and PCCs of the ML estimators are higher in
this example than in Example 1, indicating that the
added risk factors introduce more noise and make the
risk estimation and classification more difficult. How-
ever, lasso, perturbation, and lasso+perturbation esti-
mators can all improve the RMSEs and PCCs. In par-
ticular, the lasso+perturbation estimators perform
very well, making the RMSEs and PCCs almost as
good as those in Example 1.

7.4. A Portfolio with 80 Risk Factors
In this example, we consider a portfolio with 60 un-
derlying assets, and some of them are correlated. The
portfolio has two groups of products. The first group
longs one call option and one put option for each of
the first 40 underlying assets, which are modeled
by GBMs. The second group longs one share of the

Table 2. RMSE and PCC for Different u

Original
Combining
estimators

Combining
data

RMSE PCC RMSE PCC RMSE PCC

u � 0.05 0.0096 0.964 0.0063 0.971 0.0063 0.969
u � 0.10 0.0105 0.979 0.0062 0.981 0.0063 0.981
u � 0.15 0.0131 0.983 0.0066 0.987 0.0066 0.986
u � 0.20 0.0109 0.987 0.0057 0.988 0.0059 0.987
u � 0.25 0.0107 0.990 0.0066 0.988 0.0068 0.989

Figure 7. (Color online) Standard Deviations of the ML, Lasso, Perturbation, and Lasso+Perturbation Estimators of β1, . . . , β6
in Example 2

Jiang, Hong, and Nelson: Online Risk Monitoring Using Offline Simulation
INFORMS Journal on Computing, 2020, vol. 32, no. 2, pp. 356–375, © 2019 INFORMS 371



asset for each of the remaining 20 underlying assets,
which are modeled by Heston’s stochastic volatility
models, that is, the asset price S(t) is modeled by

dS(t) � μS(t)dt + ̅̅̅̅̅
v(t)√

S(t)dW1(t)
dv(t) � κ(θ − v(t))dt + η

̅̅̅̅̅
v(t)√

dW2(t)
dW1(t)dW2(t) � ρ′dt,

where W1(t) and W2(t) are standard Brownian mo-
tions,κ is the rate ofmean reversion,θ is the long-term
mean of variance, η is the volatility of the volatility, μ
is the drift of the stock, and ρ′ is the correlation of
two Brownian motions. Notice that, to make sure
the volatility is always positive, we need the condi-
tion 2κθ> η2. Specifically, let S1(t) � (S1,1(t), . . . ,S1,40(t))
and S2(t) � (S2,1(t), . . . ,S2,20(t)) denote the underlying

Figure 8. (Color online) RMSEs of the ML, Lasso, Perturbation, and Lasso+Perturbation Estimators of β7, . . . , β26 in Example 2
(Legends Are in Figure 7)
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assets in the first and second groups, respectively.
Let Φ1(t) �∑40

i�1{Vc
i (t) +Vp

i (t)}, and Φ2(t) �∑20
i�1S2,i(t).

Similar to the previous two examples, we let T� 0.3
and the number of discretization points N � 30. Other
parameters are given in Table A.2 in the online supple-
ment, and the maturity times of all the options are τ� 1.

This is a challenging example because there are 80
risk factors and only 10,000 sample paths. We want to
use this example to test the performance of the pro-
posed methods for high-dimensional problems.

We evaluate the true exceedance probabilities by
running 10,000 observations at each time point as in
the first two examples and use them as the bench-
mark to evaluate the RMSEs and PCCs, based on
100 testing paths with L � J � 10 andM � 100. At any
time t, notice that there are two groups of risk factors,
denotedbyS(t) and v(t), where v(t) � (v1(t), . . . , v20(t))�
are the volatilities in Heston models at time t. We
first include all the linear terms in the basis func-
tion, that is,X(S(t)) � (1,S(t),v(t))�, and plot the RMSEs
and PCCs in Figure 10. From the left panel, we see
that the risk estimation is not as precise as in the
previous two examples, especially when the time is

close to T. This may be because the number of risk
factors is quite large in this example and the logistic
regression model with only linear terms may be in-
sufficient, that is, having a high level of bias. How-
ever, from the right panel of the figure, we see that the
quality of risk classification is still quite good, which
also supports our argument that risk classification is
typically an easier problem than risk estimation. In
this example, the logistic model with only the linear
terms of risk factors appears inadequate in approxi-
mating the real exceedance probability, especially for
large t. This is a misspecification problem, which is a
common issue for many statistical learning tools. To
alleviate the problem, we add the square terms of the
individual risk factors, that is, X(S(t)) � (1,S(t),v(t),
S2(t),v2(t))�, where S2(t) � (S21,1(t), . . . ,S21,40(t),S22,1(t), . . . ,
S22,20(t))� and v2(t) � (v21(t), . . . ,v220(t))�, and plot the
RMSEs and PCCs in Figure 11. The results show that
the risk estimators are more precise (i.e., the RMSEs are
smaller) and the risk classifications remain the same
(i.e., the PCCs are similar). In both cases, we see that
the lasso+perturbation works the best. This example
demonstrates that the proposed estimators, especially

Figure 9. (Color online) RMSE (Left Panel) and PCC (Right Panel) of the ML, Lasso, Perturbation, and Lasso+Perturbation
Estimators in Example 2

Figure 10. (Color online) RMSE (Left Panel) and PCC (Right Panel) of the ML, Lasso, Perturbation, and Lasso+Perturbation
Estimators in Example 3
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the lasso+perturbation estimator, work well even for
high-dimensional problems (notice thatX(S(t)) is of 161
dimensions) with a reasonable sample size (n� 10,000).

8. Conclusions and Future Research
In this paper, we consider how to use retained sim-
ulation sample paths to estimate the exceedance prob-
abilities and classify risk levels of a financial portfolio
in real time. We propose various methods to solve
the problem, study their asymptotic properties, and
test their performance numerically on realistic ex-
amples. These methods belong to a new class of tech-
niques, known as simulation analytics, which apply
data mining and data analytics tools to estimate con-
ditional statements. We also show that knowing the
simulationmodel gives us advantages and allows us to
develop methods, such as the perturbation method,
that are more efficient than typical data-analytics tools.

The perspective of simulation analytics creates
many opportunities in financial risk management.
For instance, we may consider how to simulate from
different S(0) instead of perturbing a single initial
value so that the online risk-monitoring problems
may be solved more effectively or how to conduct
online risk monitoring if the sample paths are sim-
ulated using importance sampling, a tool often used
for variance reduction in risk measurement. We may
also consider how to handle portfolios that have path-
dependent derivatives, such as Asian options and
barrier options, and investigate how to use nonlinear
statistical learning tools, such as tree-based methods
and neural networks, to improve the accuracy of the
risk estimators and classifiers.

Endnotes
1A preliminary version of this work appeared in the Proceedings of
the 2016 Winter Simulation Conference (Jiang et al. 2016), which only
outlines the basic logistic regression approach without detailed
analysis. Parts of Sections 2 and 3, including Corollary 1 and Theorem 2,
originally appeared in the conference paper. In this paper, we add the
full technical analysis of the logistic regression approach in Sections 2

and 3. More importantly, we propose three performance-enhancing
techniques—that is, lasso, perturbation method, and additional
simulation—with full technical analysis (including Theorems 3–6
and Proposition 1), and provide abundant numerical examples to
illustrate all the methods in Sections 4–7.
2Notice that one may estimate the risk measures in the desired time
frame (at least in theory) if parallel computing is used and there is
sufficient computational resource. However, its cost may be quite high
as the resource needs to be readily available whenever it is needed.
3The Markov property is important for the methods proposed in the
paper. It allows us to build the logistic regression model only based
on S(u). Otherwise, we have to consider the entire history of the
sample path before time u, which makes the logistic regression ap-
proach infeasible. In some cases, however, we may relax the as-
sumption if we can summarize the history into a small number of
additional risk factors to keep the Markov property. In the online
supplement, we provide a numerical example on the Asian option to
illustrate the approach.
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