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Abstract. Robust optimization (RO) is a common approach to tractably obtain safe-
guarding solutions for optimization problems with uncertain constraints. In this paper, we
study a statistical framework to integrate data into RO based on learning a prediction set
using (combinations of) geometric shapes that are compatible with established RO tools
and on a simple data-splitting validation step that achieves finite-sample nonparametric
statistical guarantees on feasibility. We demonstrate how our required sample size to
achieve feasibility at a given confidence level is independent of the dimensions of both the
decision space and the probability space governing the stochasticity, and we discuss some
approaches to improve the objective performances while maintaining these dimension-free
statistical feasibility guarantees.
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1. Introduction
Many optimization problems in industrial applica-
tions contain uncertain parameters in constraints
where the enforcement of feasibility is of importance.
This paper aims to build procedures to find high-
quality solutions for these problems that are tractable
and statistically accurate for high-dimensional or
limited-data situations.

To locate our scope of study, we consider situations
where the uncertainty in the constraints is “stochas-
tic,” and a risk-averse modeler wants the solution to
be feasible “most of the time,” while not making the
decision space overly conservative. One common
framework to define feasibility in this context is via a
chance-constrained program (CCP); that is,

min f x( ) subject to P g x;ξ( ) ∈ !
( ) ≥ 1 − ε, (1)

where f (x) ∈ R is the objective function, x ∈ Rd is the
decision vector, ξ ∈ Rm is a random vector (i.e., the
uncertainty) under a probability measure P, and
g(x;ξ) : Rd × Rm → Ω with ! ⊂ Ω for some space Ω.
Using existing terminology, we sometimes call
g(x;ξ) ∈ ! the safety condition and ε the tolerance level
that controls the violation probability of the safety

condition. In this paper, we will consider g(x; ξ) ∈ !
as linear inequalities, which constitute the most com-
mon class of CCPs.
We focus on settings where ξ is observed via a finite

amount of data, driven by the fact that in almost every
application there is no exact knowledge about the
uncertainty and that data are increasingly ubiquitous.
Our problem target is to find a solution feasible for (1)
with a given statistical confidence (with respect to the
data, in a frequentist sense) that has an objective value
as small as possible.
First proposed by Charnes et al. (1958), Charnes

and Cooper (1959), Miller and Wagner (1965), and
Prékopa (1970), the CCP framework (1) has been
studied extensively in the stochastic programming
literature (see Prékopa (2003) for a thorough intro-
duction), with applications spanning across reservoir
system design (Prékopa and Szántai 1978, Prékopa
et al. 1978), cash matching (Dentcheva et al. 2004),
wireless cooperative networking (Shi et al. 2015), in-
ventory (Lejeune and Ruszczynski 2007), and pro-
duction management (Murr and Prékopa 2000).
Though not always proper (notably when the uncer-
tainty is deterministic or bounded; see e.g., Ben-Tal et al.
2009, pp. 28–29), inmany situations it is natural to view
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uncertainty as “stochastic,” and (1) provides a rigorous
definition of feasibility under these situations. More-
over, (1) sets a framework to assimilate data in a way
that avoids overconservativeness by focusing on the
“majority” of the data, as we exploit in this paper.

Our main contribution is a framework to integrate
data into robust optimization (RO) as a tool to obtain
high-quality solutions feasible in the sense defined
by (1). Instead of directly solving (1), which is known
to be challenging in general, RO operates by repre-
senting the uncertainty via a (deterministic) set, often
known as the uncertainty set or the ambiguity set, and
enforces the safety condition to hold for any ξwithin
it. By suitably choosing the uncertainty set, RO is well
known to be a tractable approximation to (1). We revisit
these ideas by studying a procedural framework to
construct an uncertainty set as a prediction set for the
data. This consists of approximating a high-probability
region via combinations of tractable geometric shapes
compatible with RO. As a key development, we propose
a simple data-splitting scheme to determine the size
of this region, which ensures rigorous statistical
performance. This framework is nonparametric and
applies under minimal distributional requirements.

In terms of basic statistical properties, our approach
satisfies a finite-sample confidence guarantee on the
feasibility of the solution in which the minimum re-
quired sample size in achieving a given confidence is
provably independent of the dimensions of both the
decision space and the underlying probability space.
Whereas finite-sample guarantees are also found in
existing sampling-based methods, the dimension-
free property of our approach makes it a suitable
resort for certain high-dimensional and limited-data
situations where previous methods break down.

The dimension-free property, which may appear
very strong, needs nonetheless to be complemented
with good approaches to curb overconservativeness
and maintain tractability. In particular, to reduce
conservativeness, a prediction set should accurately
trace the shape of the data. By contrast, to retain
tractability, the set should be expressible in terms of
basic geometric shapes compatible with RO tech-
niques. We present some techniques to construct
uncertainty sets that balance these two aspects while
simultaneously achieving the basic statistical prop-
erty.Nonetheless,we caution that these techniques tie
conservativeness to the set volume, although often the
former is more intricate and depends on the opti-
mization setting at hand (see, e.g., Lagoa and Barmish
2002). Along this line, we also discuss a method to
iterate the construction of uncertainty sets that in-
corporates updated optimality beliefs to improve the
objective performance.

Our approach is related to several existingmethods for
approximating (1). Scenario generation (SG), pioneered

by Calafiore and Campi (2005, 2006) and Campi and
Garatti (2008, 2011) and independently suggested in
the context ofMarkov decision processes byDe Farias
and Van Roy (2004), replaces the chance constraint
in (1) with a collection of sampled constraints. Related
works also include the sample average approxima-
tion (SAA) studied by Luedtke and Ahmed (2008),
Luedtke et al. (2010), and Luedtke (2014), which re-
stricts the proportion of violated constraints and re-
sembles the discarding approach of Campi and Garatti
(2011). SG provides explicit statistical guarantees on
the feasibility of the solution obtained in terms of the
confidence level, the tolerance level, and the sample
size. It directly approximates the chance-constrained
optimization without the need of a set-based repre-
sentation of the uncertainty and hence allows a high
geometric flexibility in the resulting set of violation
and leads to less conservative solutions. However, in
general, the sample size needed to achieve a given
confidence grows linearly with the dimension of the
decision space, which can be demanding for large-
scale problems (as pointed out by, e.g., Nemirovski
and Shapiro 2006, p. 971). Recent work reduces de-
pendence on the decision dimension (and its interplay
with the tolerance parameter) by, for instance, reg-
ularization (Campi and Carè 2013), tighter complexity
results in terms of the support rank (Schildbach et al.
2013), solution-dependent number of support con-
straints (Campi and Garatti 2018), one-off calibra-
tion schemes (Carè et al. 2014), sequential validation
(Calafiore et al. 2011, Chamanbaz et al. 2016, Calafiore
2017), and hybrid approaches between RO and SG
that translate scenario size requirements from deci-
sion to stochastic space dimension (Margellos et al.
2014). Among these, our proposed step to tune the set
size is closest to the calibration approaches. However,
instead of calibrating a solution obtained from a
randomized program, we calibrate the coverage of an
uncertainty set and control conservativeness and trac-
tability of the resulting RO through proper learning of
its shape.
A classical approach to approximating (1) uses safe

convex approximation (SCA), by replacing the in-
tractable chance constraint with an inner approxi-
mating convex constraint such that a solution feasible
for the latterwould also be feasible for the former (see,
e.g., Ben-Tal and Nemirovski 2000, Nemirovski 2003,
Nemirovski and Shapiro 2006). This approach is in-
timately related to RO, because the approximating
constraints are often equivalent to the robust coun-
terparts of RO problems with properly chosen un-
certainty sets (see, e.g., Ben-Tal et al. 2009, chapters 2
and 4, and Bertsimas et al. 2001, section 3.1). The
statistical guarantees provided by these approxi-
mations come from probabilistic deviation bounds,
which often rely on the stochastic assumptions and
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constraint structure on a worst-case basis (see, e.g.,
Nemirovski and Shapiro 2006; Ben-Tal et al. 2009,
chapter 10; Ben-Tal and Nemirovski 1998, 1999; El
Ghaoui et al. 1998; Bertsimas and Sim 2004, 2006;
Bertsimas et al. 2004; Chen et al. 2007; Calafiore and El
Ghaoui 2006). Thus, although the approach carries
several advantages (e.g., in handling extraordinarily
small tolerance levels), the bounds used can be re-
strictive to employ in some cases. Moreover, most of
the results apply to a single chance constraint; when
the safety condition involves several constraints that
need to be jointly maintained (known as a joint chance
constraint), one typically needs to reduce it to indi-
vidual constraints via the Bonferroni correction, which
can add pessimism (there are exceptions, however; see,
e.g., Chen et al. 2010). By contrast, these classical
results in SCA and RO are capable of constructing
uncertainty sets with well-chosen shapes without
directly using prediction set properties.

We mention two other lines of work in approxi-
mating (1) that can blend with data. Distributionally
robust optimization (DRO), an approach dating back
to Scarf (1958) and of growing interest in recent years
(see, e.g., Delage and Ye 2010, Wiesemann et al. 2014,
Goh and Sim 2010, Ben-Tal et al. 2013, Lim et al. 2006),
considers using a worst-case probability distribu-
tion for ξ within an ambiguity set that represents
partial distributional information. The two major
classes of sets consist of distance-based constraints
(statistical distance from a nominal distribution such
as the empirical distribution; see, e.g., Ben-Tal et al.
2013,Wang et al. 2016) andmoment-and-support-type
constraints—including moments, dispersion, covari-
ance, and/or support (see, e.g., Delage and Ye
2010, Wiesemann et al. 2014, Goh and Sim 2010,
Hanasusanto et al. 2017) and shape and unimodality
(see, e.g., Popescu 2005, Hanasusanto et al. 2015, Van
Parys et al. 2016, Li et al. 2019, Lam and Mottet 2017).
To guarantee statistical feasibility, these uncertainty
sets need to be properly calibrated from data, ei-
ther via direct estimation or using the statistical im-
plications from Bayesian (Gupta 2019) or empirical
likelihood (Lam and Zhou 2017, Duchi et al. 2016,
Blanchet and Kang 2016, Lam 2019) methods. An-
other line of work takes a Monte Carlo viewpoint
and uses sequential convex approximation (Hong
et al. 2011, Hu et al. 2013) that stochastically iter-
ates the solution to a Karush–Kuhn–Tucker point,
which guarantees local optimality of the convergent
solution. This approach can be applied to data-driven
situations by viewing the data as Monte Carlo samples.

Finally, some recent RO-based approaches aim to
use data more directly. For example, Goldfarb and
Iyengar (2003) calibrate uncertainty sets using linear
regression under Gaussian assumptions. Bertsimas
et al. (2018) study a tight value-at-risk bound on a

single constraint and calibrate uncertainty sets via
imposing a confidence region on the distributions that
govern the bound. Tulabandhula and Rudin (2014)
study supervised prediction models to approximate
uncertainty sets and suggest using sampling or re-
laxation to reduce to tractable problems. Our ap-
proach follows the general ideas in these works in
constructing uncertainty sets that cover the “truth”
with high confidence.
The rest of this paper is organized as follows. Section 2

presents our procedural framework and statistical im-
plications. Section 3 discusses some approaches to
construct tight and tractable prediction sets. Section 4
reports numerical results and comparisons with
existing methods. Additional proofs, numerical re-
sults, and useful existing theorems are presented in
the online appendix.

2. Basic Framework and Implications
This section lays out our basic procedural framework
and implications. First, consider an approximation
of (1) via the RO:

min f x( ) subject to g x;ξ( ) ∈ !, ∀ ξ ∈ 8, (2)
where8 ∈ Ω is an uncertainty set. Obviously, for any
x feasible for (2), ξ ∈ 8 implies g(x; ξ) ∈ !. Therefore,
by choosing 8 that covers a 1 − ε content of ξ (i.e., 8
satisfies P(ξ ∈ 8) ≥ 1 − ε), any x feasible for (2) must
satisfy P(g(x;ξ) ∈!) ≥P(ξ∈8) ≥ 1−ε, implying that
x is also feasible for (1). In other words, we have
the following.

Lemma 1. Any feasible solution of (2) using a (1 − ε)-
content set 8 is feasible for (1).

Note thatBen-Tal et al. (2009, p. 33, discussionpointB)
point out that it is not necessary for an uncertainty
set to contain most values of the stochasticity to in-
duce probabilistic guarantees. Nonetheless, Lemma 1
provides a platform to use a data structure easily and
formulate concrete procedures, as we describe.

2.1. Learning Uncertainty Sets
Assume a given independent and identically dis-
tributed (i.i.d.) data setD � {ξ1, . . . , ξn}, where ξi ∈ Rm

are sampled under a continuous distribution P. In
view of Lemma 1, our basic strategy is to construct
8 � 8(D), that is, a (1 − ε)-content prediction set for P
with a prescribed confidence level 1 − δ. In other words,

PD P ξ ∈ 8 D( )( ) ≥ 1 − ε( ) ≥ 1 − δ, (3)
where we use the notation PD(·) to denote the prob-
ability taken with respect to the data D. Using such
a8, any feasible solution of (2) is feasible for (1) with
the same confidence level 1 − δ. Namely, we have
the following:
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Lemma 2. Any feasible solution of (2) using 8 that sat-
isfies (3) is feasible for (1) with confidence 1 − δ.

Note that (3) only focuses on the feasibility guar-
antee for (1) but does not speak much about con-
servativeness. To alleviate the latter issue, we judi-
ciously choose 8 according to two criteria:

1. We prefer a 8 that has a smaller volume, which
leads to a larger feasible region in (2) and hence a less
conservative inner approximation to (1). Note that
with a fixed ε, a small 8 means a 8 that contains a
high-probability region (HPR) of ξ.

2. We prefer a 8 such that P(ξ ∈ 8(D)) is close to,
not just larger than, 1 − ε with confidence 1 − δ. We
also want the coverage probability PD(P(ξ ∈ 8(D)) ≥
1 − ε) to be close to, not just larger than, 1 − δ.

Moreover, 8 needs to be chosen to be compatible
with tractable tools in RO. Though this tractability
depends on the type of safety condition at hand and is
problem specific, the general principle is to construct
8 as anHPR that is expressed via a basic geometric set
or a combination of them.

This discussion motivates us to propose a two-
phase strategy in constructing 8. We first split the
dataD into two groups, denotedD1 andD2, with sizes
n1 and n2, respectively. Say thatD1 � {ξ11, . . . , ξ1n1} and
D2 � {ξ21, . . . , ξ2n2}. These two data groups are used
as follows.

2.1.1. Phase 1: Shape Learning. We use D1 to ap-
proximate the shape of an HPR. Two common choices
of tractable basic geometric shapes are the following:

1. Ellipsoid. Set the shape as 6 � {(ξ − μ)′Σ−1(ξ −
μ) ≤ ρ} for some ρ > 0. The parameters can be chosen
by, for instance, setting μ as the sample mean of D1
and Σ as some covariance matrix, for example, the
sample covariance matrix, diagonalized covariance
matrix, or identity matrix.

2. Polytope. Set the shape as6�{ξ : a′iξ≤bi, i�1, . . . ,k},
where ai ∈ Rm and bi ∈ R. For example, for low-
dimensional data, this can be obtained from a con-
vex hull (or an approximated version) of D1 or, al-
ternatively, of the data that leave out 
n1ε� of D1 that
are in the “periphery” (i.e., having the smallest Tukey
depth; see, e.g., Serfling 2002, Hallin et al. 2010). It can
also take the shape of the objective function when it is
linear (a case of interest when using the self-improving
strategy that we describe later).

We can also combine these two types of geometric
sets as follows:

1. Union of basic geometric sets.Given a collection of
polytopes or ellipsoids 6i, take 6 � ⋃

i 6i.
2. Intersection of basic geometric sets. Given a col-

lection of polytopes or ellipsoids 6i, take 6 � ⋂
i 6i.

The choices of ellipsoids and polytopes are moti-
vated from the tractability in the resulting RO, but

they may not describe an HPR of ξ to sufficient ac-
curacy. Unions or intersections of these basic geo-
metric sets provide more flexibility in tracking the
HPR of ξ. For example, in the case of multimodal
distribution, one can group the data into several
clusters (Hastie et al. 2009) and then form a union of
ellipsoids over the clusters as 6. For nonstandard
distributions, one can discretize the space into boxes
and take the union of boxes that contain at least some
data, inspired by the histogram method in the liter-
ature on learning minimum volume sets (Scott and
Nowak 2006). The intersection of basic sets is useful
in handling segments of ξ, where each segment ap-
pears in a separate constraint in a joint CCP.

2.1.2. Phase 2: Size Calibration. We useD2 to calibrate
the size of the uncertainty set so that it satisfies (3) and,
moreover, P(ξ ∈ 8(D)) ≈ 1 − ε with coverage ≈ 1 − δ.
The key idea is to use quantile estimation on a “di-
mension-collapsing” transformation of the data. More
concretely, first express our geometric shape obtained in
Phase 1 in the form {ξ : t(ξ) ≤ s}, where t(·) : Rm → R

is a transformation map from the space of ξ to R, and
s ∈ R. For the two geometric shapes that we consid-
ered, we have the following:
1. Ellipsoid. We set t(ξ) � (ξ − μ)′Σ−1(ξ − μ). Then

the 6 described in Phase 1 is equivalent to {ξ : t(ξ) ≤ ρ}.
2. Polytope. Find a point, say μ, in 6◦, the interior of

6 (e.g., the Chebyshev center (Boyd and Vanden-
berghe 2004) of 6 or the sample mean of D1 if it lies
in 6◦). Let t(ξ) � maxi�1,...,k(a′i (ξ − μ))/(bi − a′iμ), which
is well defined because μ ∈ 6◦. Then the 6 defined in
Phase 1 is equivalent to {ξ : t(ξ) ≤ 1}.
For the combinations of sets, we suppose that each

individual geometric shape 6i in Phase 1 possesses a
transformation map ti(·). Then we have the following:
1. Union of the basic geometric sets. We set t(ξ) �mini

ti(ξ) as the transformation map for
⋃

i 6i. This is be-
cause

⋃
i{ξ : ti(ξ) ≤ s} � {ξ : mini ti(ξ) ≤ s}.

2. Intersection of the basic geometric sets.We set t(ξ) �
maxi ti(ξ) as the transformation map for

⋂
i 6i. This is

because
⋂

i{ξ : ti(ξ) ≤ s} � {ξ : maxi ti(ξ) ≤ s}.
We overwrite the value of s in the representa-

tion {ξ : t(ξ) ≤ s} as t(ξ2(i∗)), where t(ξ2(1))< t(ξ2(2))< · · ·<
t(ξ2(n2)) are the ranked observations of {t(ξ2i )}i�1, ...,n2 , and

i∗ �min r :
∑r−1
k�0

n2
k

( )
1− ε( )kεn2−k≥1− δ, 1 ≤ r ≤ n2

{ }
. (4)

This procedure is valid if such an i∗ can be found or,
equivalently, 1 − (1 − ε)n2 ≥ 1 − δ.

2.2. Basic Statistical Guarantees
Phase 1 focuses on criterion 1 in Section 2.1 by
learning the shape of an HPR. Phase 2 addresses our
basic requirement (3) and criterion 2. The choice of s in
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Phase 2 can be explained by the elementary obser-
vation that for any arbitrary i.i.d. data set of size n2
drawn from a continuous distribution, the i∗th ranked
observation as defined by (4) is a valid 1 − δ confi-
dence upper bound for the 1 − ε quantile of the
distribution.

Lemma 3. Let Y1, . . . ,Yn2 be i.i.d. data in R drawn from a
continuous distribution. Let Y(1) < Y(2) < · · · < Y(n2) be the
order statistics. A 1 − δ confidence upper bound for the
(1 − ε)-quantile of the underlying distribution is Y(i∗), where

i∗ � min r :
∑r−1
k�0

n2
k

( )
1 − ε( )kεn2−k ≥ 1 − δ,1 ≤ r ≤ n2

{ }
.

If
∑n2−1

k�0
n2
k

( )(1−ε)kεn2−k<1−δ or, equivalently,1− (1−ε)n2 <
1−δ, then none of the Y(r) values is a valid confidence upper
bound. Similarly, a 1 − δ confidence lower bound for the
(1 − ε)-quantile of the underlying distribution is Y(i∗), where

i∗ � max r :
∑n2
k�r

n2
k

( )
1 − ε( )kεn2−k ≥ 1 − δ, 1 ≤ r ≤ n2

{ }
.

If
∑n2

k�1(n2k )(1− ε)kεn2−k < 1− δ or, equivalently, 1−εn2 <
1−δ, then none of the Y(r) values is a valid confidence
lower bound.

Proof of Lemma 3. Let q1−ε be the (1 − ε)-quantile, and
let F(·) and F̄(·) be the distribution function and tail
distribution function, respectively, of Yi. Consider

P Y r( ) ≥ q1−ε
( )
� P ≤ r − 1 of the data Y1, . . . ,Yn{ } are < q1−ε

( )

� ∑r−1
k�0

n2
k

( )
F q1−ε
( )kF̄ q1−ε

( )n2−k

� ∑r−1
k�0

n2
k

( )
1 − ε( )kεn2−k

by the definition of q1−ε. Hence, any r such that∑r−1
k�0(n2k )(1 − ε)kεn2−k ≥ 1 − δ is a 1 − δ confidence upper

bound for q1−ε, andwe pick the smallest one.Note that
if

∑n2−1
k�0 (n2k )(1 − ε)kεn2−k < 1 − δ, then none of the Y(r)

values is a valid confidence upper bound.
Similarly, we have

P Y r( ) ≤ q1−ε
( )
� P ≥ r of the data Y1, . . . ,Yn{ } are ≤ q1−ε

( )

� ∑n2
k�r

n2
k

( )
F q1−ε
( )kF̄ q1−ε

( )n2−k

� ∑n2
k�r

n2
k

( )
1 − ε( )kεn2−k,

by the definition of q1−ε. Hence, any r such that∑n2
k�r(n2k )(1 − ε)kεn2−k ≥ 1 − δ will be a 1 − δ confidence

lower bound for q1−ε, and we pick the largest one.
Note that if

∑n2
k�1(n2k )(1 − ε)kεn2−k < 1 − δ, then none of

the Y(r) values is a valid confidence lower bound. □

Similar results in the aforementioned simple order-
statistic calculation can be found in, for example,
Serfling (2009, section 2.6.1). A key element of our
procedure is that t(·) is constructed using only Phase 1
data D1, which are independent of Phase 2. Lemma 3
implies that conditional onD1, P(t(ξ) ≤ t(ξ2(i∗))) ≥ 1 − ε
with a (conditional) confidence 1 − δ. From this, we
can average over the realizations of D1 to obtain a
valid coverage for the resulting uncertainty set in the
sense of satisfying (3). This is summarized formally in
the following theorem.

Theorem 1 (Basic Statistical Guarantee). Suppose that D
is an i.i.d. data set drawn from a continuous distribution P
on Rm, and we partition D into two sets D1 � {ξ1i }i�1, ...,n1
and D2 � {ξ2i }i�1, ...,n2 . Suppose that n2 ≥ log δ/ log(1 − ε).
Consider the set 8�8(D) � {ξ : t(ξ) ≤ s}, where t : Rm →
R is a map constructed from D1 such that t(ξ), with ξ
distributed according to P, is a continuous random variable,
and s � t(ξ2(i∗)) is calibrated from D2 with i∗ defined in (4).
Then 8 satisfies (3). Consequently, an optimal solution
obtained from (2) using this 8 is feasible for (1) with
confidence 1 − δ.

Proof of Theorem 1. Because t(·) depends only on D1
but not on D2, we have, conditional on any realization
of D1,

PD2 P ξ ∈ 8 D( )( ) ≥ 1 − ε|D1( )
� PD2 P t ξ( ) ≤ t ξ2i∗( )

( )( )
≥ 1 − ε|D1

( )

� PD2 q1−ε ≤ t ξ2i∗( )
( )

|D1

( )
≥ 1 − δ,

(5)

where q1−ε is the (1 − ε)-quantile of t(ξ) (which de-
pends onD1). The first equality in (5) follows from the
representation of 8 � {ξ : t(ξ) ≤ t(ξ2(i∗))}, the second
equality uses the definition of a quantile, and the last
inequality follows from Lemma 3 using the condition
1 − (1 − ε)n2 ≥ 1 − δ or, equivalently, n2 ≥ log δ/ log
(1 − ε). Note that (5) holds given any realization ofD1.
Thus, taking expectation with respect to D1 on both
sides in (5), we have

ED1 PD2 P ξ ∈ 8 D( )( ) ≥ 1 − ε|D1( )[ ] ≥ 1 − δ,

where ED1[·] denotes the expectation with respect to
D1, which gives

PD P ξ ∈ 8 D( )( ) ≥ 1 − ε( ) ≥ 1 − δ.

We therefore arrive at (3). Finally, Lemma 2 guar-
antees that an optimal solution obtained from (2)
using the constructed 8 is feasible for (1) with con-
fidence 1 − δ. □
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Theorem 1 implies the validity of the approach in
giving a feasible solution for CCP (1) with confidence
1 − δ for any finite sample size as long as it is large
enough that n2 ≥ log δ/ log(1 − ε). The reasoning of
the latter restriction can be seen easily in the proof or,
more apparently, from the following argument: in
order to get an upper confidence bound for the
quantile by choosing one of the ranked statistics, we
need the probability of at least one observation to
upper-bound the quantile to be at least 1 − δ. In other
words, we need P(at least one t(ξ2i ) ≥ (1−ε)-quantile) ≥
1−δ or, equivalently, 1 − (1 − ε)n2 ≥ 1 − δ.

We also mention the convenient fact that condi-
tional on D1,

P ξ ∈ 8( ) � P t ξ( ) ≤ t ξ2i∗( )
( )( )

� F t ξ2i∗( )
( )( ) d�U i∗( ), (6)

where F(·) is the distribution function of t(ξ),U(i∗) is the
i∗th-ranked variable among n2 uniform variables on
[0, 1], and d� denotes equality in distribution. In other
words, the theoretical tolerance level induced by
our constructed uncertainty set P(ξ ∈ 8) is distrib-
uted as the i∗th-order statistic of uniform random
variables or, equivalently, Beta(i∗,n2 − i∗ + 1), a beta
variable with parameters i∗ and n2 − i∗ + 1. Note that
P(Beta(i∗,n2−i∗+1)≥1−ε)�P(Bin(n2,1−ε)≤i∗−1), where
Bin(n2, 1 − ε) denotes a binomial variable with num-
ber of trials n2 and success probability 1 − ε. This
informs an equivalent expression of (4) as

min r : P Beta r,n2 − r + 1( ) ≥ 1 − ε( ){
≥ 1 − δ, 1 ≤ r ≤ n2}
� min r : P Bin n2, 1 − ε( ) ≤ r − 1( ){
≥ 1 − δ, 1 ≤ r ≤ n2}.

To address criterion 2 in Section 2.1, we use the fol-
lowing asymptotic behavior as n2 → ∞.

Theorem 2 (Asymptotic Tightness of Tolerance and Confi-
dence Levels). Under the same assumptions as in Theorem 1,
we have the following, conditional on D1:

a. P(ξ ∈ 8) → 1 − ε in probability (with respect to D2)
as n2 → ∞;

b. PD2(P(ξ ∈ 8) ≥ 1 − ε|D1) → 1 − δ as n2 → ∞.

Theorem 2 confirms that 8 is tightly chosen in the
sense that the tolerance level and the confidence level
are held asymptotically exact. This can be shown by
using (6) together with an invocation of the Berry–
Essen theorem (Durrett 2010) applied on the normal
approximation to a binomial distribution. Online
Appendix EC.1 shows the details of the proof, which
use techniques similar to those of Li and Liu (2008)
and Serfling (2009, section 2.6). In fact, one could
further obtain that our choice of i∗ satisfies

̅̅̅
n2

√ (i∗/n2 −
(1 − ε)) → ̅̅̅̅̅̅̅̅̅̅̅(1 − ε)ε√

Φ−1(1 − δ) as n2 → ∞. As a result,

the theoretical tolerance level P(ξ ∈ 8) given D1 con-
centrates at 1 − ε by being approximately (1−ε) +
Z/

̅̅̅
n2

√
, where Z ∼ N( ̅̅̅̅̅̅̅̅̅̅̅

ε(1 − ε)√
Φ−1(1 − δ), ε(1 − ε)). For

further details, see Online Appendix EC.1.
Note that because of the discrete nature of our

quantile estimate, the theoretical confidence level is
not a monotone function of the sample size, and there
is no guarantee on an exact confidence level at 1 − δ
using a finite sample (see Online Appendix EC.2). By
contrast, part (b) of Theorem 2 guarantees that as-
ymptotically our construction can achieve an exact
confidence level.
The idea of using a dimension-collapsing trans-

formation map t(·) resembles the notion of data depth
in the literature of generalized quantile (Li and Liu
2008, Serfling 2002). In particular, the data depth of
an observation is a positive number that measures
the position of the observation from the “center” of
the data set. The larger the data depth, the closer the
observation is to the center. For example, the half-
space depth is the minimum number of observations
on one side of any line passing through the chosen ob-
servation (Hodges 1955, Tukey 1975), and the sim-
plicial depth is the number of simplices formed by
different combinations of observations surround-
ing an observation (Liu 1990). Other common data
depths include the ellipsoidally defined Mahalanobis
depth (Mahalanobis 1936) and projection-based depths
(Donoho and Gasko 1992, Zuo 2003). Instead of mea-
suring the position of the data relative to the center as
in the data-depth literature, our transformation map
is constructed to create uncertainty sets with good
geometric and tractability properties.

2.3. Dimension-Free Sample-Size Requirement
Theorem 1 and the associated discussion state that we
need at least n2 ≥ logδ/ log(1−ε)observations in Phase
2 to construct an uncertainty set that guarantees a
feasible solution for (1) with confidence 1 − δ. From a
purely feasibility viewpoint, this lower bound on n2 is
the minimum total sample size we need: regardless of
what shape we generate in Phase 1, as long as we can
express it in terms of the t(·) and have log δ/ log(1 − ε)
Phase 2 observations, the basic feasibility guarantee
(3) is attained. This number does not depend on the
dimension of the decision space or the probability
space. It does, however, depend roughly linearly on
1/ε for small ε, a drawback that is also common
among sampling-based approaches, including both
SG and SAA, and gives more edge to using safe
convex approximation when applicable.
We should caution, however, that if we take n1 � 0

or choose an arbitrary shape in Phase 1, then the
resulting solution is likely extremely conservative in
terms of objective performance. To combat this issue,
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it is thus recommended to set aside some data for
Phase 1 with the help of established methods bor-
rowed from statistical learning (Section 3 and Sections
EC.4 and EC.5 in the online appendix discuss these).

2.4. Enhancing Optimality Performance via Self-
Improving Reconstruction

We propose a mechanism, under the framework in
Section 2.2, to improve the performance of an uncer-
tainty set by incorporating updated optimality belief.

2.4.1. An Elementary Explanation. As indicated at the
beginning of this section, the RO we construct is a
conservative approximation to the CCP. A question
is whether there is an “optimal” uncertainty set, in the
sense that it is a (1 − ε)-level prediction set and at the
same time gives rise to the same solution between
the RO and the CCP. As a first observation, the un-
certainty set 8 � {ξ : g(x∗;ξ) ∈ !}, where x∗ is an op-
timal solution to the CCP, satisfies both properties: by
the definition of x∗, this set contains (1 − ε)-content of P.
Moreover, when we use this 8 in (2), x∗ is trivially a
feasible solution. Because this RO is an inner ap-
proximation to CCP, x∗ is optimal for both the RO and
the CCP. The catch, of course, is that in reality we do
not know what is x∗. Our suggestion is to replace x∗
with some approximate solution x̂, leading to a set
{ξ : g(x̂, ξ) ∈ !}.

Alternatively, the conservativeness of the RO can be
reasoned from the fact that ξ ∈ 8, independent of
what the obtained solution x̂ is in (2), implies that
g(x̂;ξ) ∈ !. Thus, our target tolerance probability
P(g(x̂;ξ) ∈ !) satisfies P(g(x̂;ξ) ∈ !) ≥ P(ξ ∈ 8) and,
in the presence of data, makes the actual confidence
level (namely PD(P(g(x̂;ξ) ∈ !) ≥ 1 − ε)) potentially
overconservative. However, this inequality becomes
an equality if 8 is exactly {ξ : g(x̂;ξ) ∈ !}. This sug-
gests again that on a high level, an uncertainty set that
resembles the form g(x̂;ξ) ∈ ! is less conservative
and preferable.

Using this intuition, a proposed strategy is as fol-
lows. Consider finding a solution for (1). In Phase 1,
find an approximate HPR of the data (using some
suggestions in Section 3) with a reasonably chosen
size (e.g., just enough to cover 1 − εof the data points).
Solve the RO problem using this HPR to obtain an
initial solution x̂0. Then reshape the uncertainty set
as {ξ : g(x̂0; ξ) ∈ !}. Finally, conduct Phase 2 by tun-
ing the size of this reshaped set; say we get
{ξ : g(x̂0; ξ) ∈ !̃}, where !̃ is size tuned. The final
RO is

min f x( ) subject to g x,ξ( ) ∈!, ∀ ξ : g x̂0;ξ( ) ∈ !̃ . (7)

Evidently, if the tuning step can be done properly
(i.e., the set {ξ : g(x̂0;ξ) ∈ !} can be expressed in the
form {ξ : t(ξ) ≤ s} and s is calibrated using the method
in Section 2.1), then the procedure retains the overall
statistical confidence guarantees presented in Theorems 1
and 2. For convenience, we call the RO (7) created from
x̂0 and the discussed procedure a reconstructed RO.
More explicitly, consider the safety condition g(x;ξ) ∈

! in the form of linear inequalities Ax ≤ b, where A ∈
Rl×d is stochastic and b ∈ Rl is constant. After we
obtain an initial solution x̂0, we set the uncertainty set
as 8 � {A : Ax̂0 ≤ b + sk}, where k � (ki)i�1,...,l ∈ Rl is
some positive vector and s ∈ R. The value of s is
calibrated by letting t(A) � maxi�1,...,l{(a′i x̂0 − bi)/ki},
where a′i is the ith row ofA, bi is the ith entry of b, and s
is chosen as t(A2

(i∗)), the order statistic of Phase 2 data
as defined in Section 2.1. Using the uncertainty set 8,
the constraint Ax ≤ b ∀ A ∈ 8 becomes maxa′i x̂0≤bi+ski
a′i x ≤ bi, i � 1, . . . , l, via constraint-wise projection of
the uncertainty set, which can be reformulated into
linear constraints by using standard RO machinery
(see, e.g., Theorem EC.2 in the online appendix).

2.4.2. Properties of Self-Improving Reconstruction. We
formalize the discussion in Section 2.4.1 by showing
some properties of the optimization problem (7). We
focus on the setting of inequality-based safety conditions

min f x( ) subject to P g x;ξ( ) ≤ b
( ) ≥ 1 − ε, (8)

where g(x;ξ) � (gj(x;ξ))j�1,...,l ∈Rl and b � (bj)j�1,...,l ∈ Rl.
Suppose that x̂0 is a given solution (not necessarily
feasible). Suppose for now that there is a way to
compute quantiles exactly for functions of ξ, and
consider the reconstructed RO

min f x( ) subject to g x, ξ( ) ≤ b,

∀ ξ : g x̂0;ξ( ) ≤ b + ρk, (9)
where k� (kj)j�1,...,l ∈Rl is a positive vector, and ρ �
ρ(x̂0) is the (1 − ε)-quantile of maxj�1,...,l{(gj(x̂0; ξ)−
bj)/kj}. A useful observation is the following.

Theorem 3 (Feasibility Guarantee for Reconstruction).
Given any solution x̂0, if ρ is the (1 − ε)-quantile of
maxj�1,...,l{(gj(x̂0;ξ) − bj)/kj}, then any feasible solution
of (9) is also feasible for (8).

Proof of Theorem 3. Because {ξ : g(x̂0;ξ) ≤ b + ρk} is
by construction a (1 − ε)-content set for ξ under P,
Lemma 1 concludes the theorem immediately. □

Note that Theorem 3 holds regardless of whether x̂0
is feasible for (8). That is, (9) is a way to output a
feasible solution from the input of a possibly infea-
sible x̂0. What is more, in the case that x̂0 is feasible, (9)
is guaranteed to give a solution at least as good.
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Theorem 4 (Monotonic Objective Improvement). Under
the same assumption as Theorem 3, an optimal solution x̂ of
(9) is feasible for (8).Moreover, if x̂0 is feasible for (8), then x̂
satisfies f (x̂) ≤ f (x̂0).
Proof of Theorem 4. Note that if x̂0 is feasible for (8),
then we must have ρ ≤ 0 (or else the chance constraint
does not hold), and hence x̂0 must be feasible for (9). By
the optimality of x̂ for (9), we must have f (x̂) ≤ f (x̂0).
The theorem concludes by invoking Theorem 3, which
implies that x̂ is feasible for (8). □

Together, Theorems 3 and 4 give a mechanism to
improve any input solution in terms of either feasi-
bility or optimality for (8): if x̂0 is infeasible, then (9)
corrects the infeasibility and gives a feasible solution;
if x̂0 is feasible, then (9) gives a feasible solution that
has an objective value at least as good.

Similar statements hold if the quantile ρ is only
calibrated under a given statistical confidence. To link
our discussion to the procedure in Section 2.1, sup-
pose that a solution x̂0 is obtained from an RO for-
mulation (or, in fact, any other procedures) using only
Phase 1 data. We have the following corollaries.

Corollary 1 (Feasibility Guarantee for Reconstruction
Under Statistical Confidence). Given any solution x̂0 obtained
using Phase 1 data, suppose that ρ is the upper bound of the
(1 − ε)-quantile of maxj�1,...,l{(gj(x̂0;ξ) − bj)/kj} with confi-
dence level 1 − δ generated under Phase 2 data. Any feasible
solution of (9) is also feasible for (8) with the same confidence.

Corollary 2 (Improvement from Reconstruction Under
Statistical Confidence). Under the same assumptions as
Corollary 1, an optimal solution x̂ of (9) is feasible for (8)
with confidence 1 − δ. Moreover, if ρ ≤ 0, then x̂ sat-
isfies f (x̂) ≤ f (x̂0).

The proofs of Corollaries 1 and 2 are the same as
those of Theorems 3 and 4, except that Lemma 2 is
invoked instead of Lemma 1. Note that ρ ≤ 0 in
Corollary 2 implies that x̂0 is feasible for (8) with
confidence 1 − δ. However, the case ρ > 0 in Corollary 2
does not directly translate to a conclusion that x̂0 is
infeasible under confidence 1 − δ because ρ is a con-
fidence upper bound, instead of a lower bound, for
the quantile. This implies a possibility that x̂0 is fea-
sible and close to the boundary of the feasible region.
There is no guarantee of objective improvement un-
der the reconstructedRO in this case, but there is still a
guarantee that the output x̂ is feasible with confi-
dence 1 − δ.

Our numerical experiments in Section 4 show that
when applicable, such reconstructions frequently lead to
notable improvements. Nonetheless, we caution that
dependingon the constraint structure, the reconstruction
step does not always lead to a significant or a strict

improvement even if ρ ≤ 0, and in these cases, some
transformation of the constraint is needed. For ex-
ample, in the case of a single linear chance constraint
in the form (8) with l � 1 and a bilinear g(x;ξ), the
reconstructed uncertainty set consists of one linear
constraint. Consequently, the dualization of the RO
(see Theorem EC.2 in the online appendix) consists of
one dual variable, which optimally scales x̂0 by a
scalar factor. When b in (8) (with l � 1) is also a sto-
chastic source, no scaling adjustment is allowed
because the “decision variable” associated with b
(viewing b as a random coefficient in the linear con-
straint) is constrained to be one. Thus, the proposed
reconstruction will show no strict improvement. How-
ever, this behavior could be avoided by suitably re-
expressing the constraint. When b is, say, positively
distributed (or very likely so), one can divide both
sides of the inequality by b to obtain an equivalent
inequality with the right-hand side fixed to be one.
This equivalent constraint is now improvable by our
reconstruction (and the new stochasticity now com-
prises the ratios of the original variables, which can
still be observed from the data).

3. Constructing Uncertainty Sets
Our proposed strategy in Section 2 requires con-
structing an uncertainty set that is tractable for RO
and recommends tracing the shape of anHPRasmuchas
possible. Regarding tractability, linear RO with the un-
certainty set shapes mentioned in Section 2.1 can be
reformulated into standard optimization formula-
tions. For convenience, we document some of these
results in Section EC.3 in the online appendix, along
with some explanation on how to identify t(·) for the
size calibration in our procedure.
Because taking unions or intersections of basic sets

gives more capability to trace HPR, we highlight the
following two immediate observations. First is that
unions of basic sets preserve the tractability of the
robust counterpart associated with each union com-
ponent, with a linear growth of the number of con-
straints against the number of components.

Lemma 4 (Reformulating Unions of Sets). The constraint

g x;ξ( ) ∈ !, ∀ ξ ∈ 8,

where 8 � ⋃k
i�1 8i is equivalent to the joint constraints

g x;ξ( ) ∈ !, ∀ ξ ∈ 8i, i � 1, . . . , k.

Second, in the special case of intersections of sets
where each intersection component is on the portion
of the stochasticity associated with each of multiple
constraints, the projective separability property of
uncertainty sets (see, e.g., Ben-Tal et al. 2009) gives
the following.
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Lemma 5 (Reformulating Intersections of Sets). Let ξ ∈
Rm be a vector that can be represented as ξ � (ξi)i�1,...,k,
where ξi ∈Rmi

, i� 1, . . . ,k, are vectors such that
∑k

i�1mi �m.
Suppose that 8 � ∏k

i�1 8i, where each 8i is a set on the
domain of ξi. The set of constraints

g x;ξi
( ) ∈ !i, i � 1, . . . , k, ∀ ξ ∈ 8,

is equivalent to

g x;ξi
( ) ∈ !i, ∀ ξi ∈ 8i, i � 1, . . . , k.

Note that in approximating a joint CCP, all the8i in
Lemma 5 need to be jointly calibrated statistically to
account for the simultaneous estimation error (which
can be conducted by introducing a max operation for
the intersection of sets). Intuitively, with weakly
correlated data across the constraints, it fares better to
use a separate 8i to represent the uncertainty of each
constraint rather than using a single8 and projecting
it. Section EC.4 in the online appendix provides a formal
statement to support this intuition by arguing a lower
level of conservativeness in using individual ellipsoids
rather than a single aggregated block-diagonal ellipsoid.

In addition, we can borrow the following statistical
tools to more tightly trace an HPR, that is, a smaller-
volume prediction set:

1. When data appear in multimodal form, we can
use clustering. Label the data into different clusters
(using k-means, Gaussian mixture models, or any
other techniques), form a simple set8i like a ball or an
ellipsoid for each cluster, and use the union

⋃
i 8i as

the final shape.
2. If the high-dimensional data set has an intrinsic

low-dimensional representation, we can use dimension-
reduction tools such as principal component analysis.
Suppose that ξ̃ � Mξ +N, where M ∈ Rr×m and N ∈ Rr

is a low-dimensional representation of a raw random
vector ξ ∈ Rm. Then we can use an uncertainty set in
the form

8 � Mξ − μ
( )′Σ−1 Mξ − μ

( ) ≤ s
{ }

, (10)
where μ is the sample mean of ξ̃, and Σ is a covariance
estimate of ξ̃. Tractability is preserved by a straight-
forward use of existing RO results (see Theorem EC.4
in the online appendix).

3. In situations of unstructured data where clus-
tering or dimension-reduction techniques do not apply,
one approach is to vieweachdata point as a “cluster” by
forming a ball surrounding a data point, followed by
taking a union of those balls. Intriguingly, this scheme
coincides with the one studied in Erdoğan and Iyengar
(2006) to approximate an ambiguous CCP where the
underlying distribution is within a neighborhood of
some baseline measure.

We provide further illustrations of these tools in Sec-
tion EC.5 of the online appendix.

4. Numerical Examples
We present numerical examples to illustrate the per-
formance of our RO approach:
1. We set ε � 0.05 and δ � 0.05.
2. For each setting, we repeat the experimental run

1,000 times, each time generating a new independent
data set.
3. We define ε̂ to be the estimated expected vio-

lation probability of the obtained solution. In other
words, ε̂ � ÊD[Pviolation], where ÊD[·] refers to the em-
pirical expectation taken among the 1,000 data sets,
and Pviolation denotes the probability P(g(x̂(D); ξ) /∈ !).
For single linear CCPs with Gaussian-distributed ξ,
Pviolation can be computed analytically. In other cases,
Pviolation is estimated using 10, 000 new independent
realizations of ξ. For approaches that do not depend
on data, for example, SCA,we set ε̂ � Pviolation directly.
4. We define δ̂ � P̂D(Pviolation > ε), where P̂D(·) refers

to the empirical probability with respect to the 1, 000
data sets, and Pviolation is similarly defined as for ε̂.
For approaches that do not depend on data, the
chance constraint is always satisfied, and therefore,
we have δ̂ � 0.
5. We denote “Obj. Val.” as the average optimal

objective value of the 1,000 solutions generated from
the independent data sets.
6. When the reconstruction technique described in

Section 2.4 is applied, the initial guessed solution is
obtained from an uncertainty set with size calibrated
to be just enough to cover 1 − ε of the Phase 1 data.
Recall that d is the decision-space dimension, n is

the total sample size, and n1 and n2 are the sample
sizes for Phases 1 and 2. These numbers differ across
the examples for the purpose of illustration.
Moreover, we compare our RO approaches with

several methods:
1. Scenario approaches, including the classical SG

(Campi and Garatti 2008) described in the Intro-
duction and its variant Fast Algorithm for the Sce-
nario Technique (FAST; Carè et al. 2014). FAST was
introduced to reduce the sample-size requirement of
the classical SG. It consists of two steps, each step
using n1 and n2 samples, respectively (the notations
are unified with our method for easy comparisons).
The first step of FAST is similar to SG, which solves a
sampled program with n1 constraints and obtains a
tentative solution. The second step is a detuning step
to adjust the tentative solution with the help of a
robust feasible solution, that is, a solution feasible for
any possible ξ. The adjusted solution is a convex
combination of the tentative solution and the robust
feasible solution so that the final solution satisfies the
other n2 sampled constraints. In our comparison, we
use the minimum required sample sizes in the detuning
step suggested in Carè et al. (2014) so that the total
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required sample size is precisely the given overall
size. We compare with FAST here because the latter
elicits a small sample size requirement with the help
of a validation-type scheme that is similar to our
approaches applied to the RO setting.

2. DRO with first- and second-moment informa-
tion, where the moments lie in an ellipsoidal joint
confidence region. First, supposing that we are given
exact first and secondmoments, we can reformulate a
distributionally robust linear chance constraint into
a quadratic constraint as suggested in El Ghaoui et al.
(2003). By contrast, using the delta method suggested
in Marandi et al. (2019), we can construct ellipsoidal
confidence regions for the vectorized mean and co-
variance matrix. Combining the quadratic constraint
in El Ghaoui et al. (2003) and the ellipsoidal set in
Marandi et al. (2019), we can use theorem 1(II) and
example 4 in Marandi et al. (2019) to reformulate the
DRO with an ellipsoidal moment set into a semi-
definite program. We provide further details of this
reformulation in Section EC.6 in the online appendix.

3. DRO with an uncertainty set defined by a neigh-
borhood surrounding a reference distribution measured

by a φ-divergence. We use the reformulation in Jiang
and Guan (2016) that transforms such a distributionally
robust chance constraint into an ordinary chance con-
straint, under the referencedistribution,withanadjusted
tolerance level ε∗, which then allows us to resort to SG
or SAA using Monte Carlo samples (as we will see
momentarily; whichever method to resort to does
not quite matter in our experiments). We use the
Kullback–Leibler (KL) divergence and construct the
reference distribution using kernel-density estima-
tion (with Gaussian kernel). We set the size of the KL-
divergence ball by estimating the divergence using
the k-nearest-neighbor (k-NN) estimator, a provably
consistent estimator proposed in Wang et al. (2009)
and Póczos et al. (2012) (other related estimators and
theoretical results are found inMoon andHero (2014),
Liu et al. (2012), Pál et al. (2010), and Póczos and
Schneider (2012). We use k � 1 in our experiments
because the experimental results indicate that the
bias increases significantly as k increases. Moreover,
to estimate the divergence properly, we split the
data into two portions, n1 and n2—the first portion is
used to construct the reference kernel density, and the

Table 1. Optimality and Feasibility Performances on a Single d � 11-Dimensional Linear CCP with
Gaussian Distribution for Several Methods, Using Sample Size n � 120

Method RO Recon SG FAST DRO Mo DRO KL SCA

n 120 120 120 120 120 120 —
n1 60 60 — 61 — 60 —
n2 60 60 — 59 — 60 —
Obj. Val. −1,189.31 −1,194.87 −1,196.60 −1,193.53 −1,187.35 0 −1,195.07
ε̂ 1.34×10-5 0.0164 0.090 0.0164 2.55×10-8 0 0.0072
δ̂ 0 0.048-5 0.957 0.043 0 0 0

Notes. The true optimal value is −1,196.7. RO, robust optimization; Recon, reconstructed RO; SG, scenario
generation; FAST, Fast Algorithm for the Scenario Technique; DRO Mo, distributionally robust
optimization (DRO) with ellipsoidal moment set; DRO KL, DRO with KL-divergence set; SCA, safe convex
approximation; Obj. Val., average optimal objective value of the 1,000 solutions generated from the independent
data sets.

Table 2. Optimality and Feasibility Performances on a Single d � 100 Dimensional Linear
CCP with Gaussian Distribution for Several Methods, Using Sample Size n � 120

Method RO Recon SG FAST DRO Mo DRO KL SCA

n 120 120 120 120 120 120 —
n1 60 60 — 61 — 60 —
n2 60 60 — 59 — 60 —
Obj. Val. −832.12 −1112.11 Unbounded Unbounded −1,193.21 0 −1,193.0
ε̂ 0 0.0158 — — 0.195 0 0.0072
δ̂ 0 0.041 — — 1 0 0

Notes. The true optimal value is −1,195.3. Results on moment-based DRO are based on 30 replications
because of the high computational demand. RO, robust optimization; Recon, reconstructed RO; SG,
scenario generation; FAST, Fast Algorithm for the Scenario Technique; DROMo, distributionally robust
optimization (DRO) with ellipsoidal moment set; DRO KL, DRO with KL-divergence set; SCA, safe
convex approximation; Obj. Val., average optimal objective value of the 1,000 solutions generated from
the independent data sets.
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second portion is used for the k-NN divergence es-
timation. The reason for this split is that otherwise the
estimation of the reference distribution and the di-
vergence would depend on and interfere with each
other, leading to estimation accuracy so poor that the
divergence estimate becomes negative all the time. We
provide further implementation details in Section EC.7.3
of the online appendix.

4. SCA. We will state the underlying a priori dis-
tributional assumptions in using the considered SCA,
which differ case by case.

When applying moment-based DRO and SCA to
joint CCPs, we use the Bonferroni correction (more
details in the relevant examples). We also make two
additional remarks. First, when comparing the ob-
jective values from different methods, because we can
always translate or scale the problem by adding/
multiplying constants to distort the apparent mag-
nitudes, we mostly focus our comparisons on the
direction (bigger or smaller), which is invariant under
the aforementioned distortions. Second, even though
we report only the point estimates of the mean ob-
jective values and ε and δ, our conclusions in com-
paring the objective values and constraint violation

probabilities remain unchanged, even if we consider
the 95% confidence intervals of these estimates (from
the 1, 000 experimental repetitions), and we do not
report the confidence intervals for the sake of suc-
cinctness. Finally, our codes are available at https://
github.com/zhyhuang/Learningbased-RO.

4.1. Test Case 1: Multivariate Gaussian on a Single
Chance Constraint

We consider a single linear CCP

min c′x subject to P ξ′x ≤ b( ) ≥ 1 − ε, (11)
where x ∈ Rd is the decisionvector, and c ∈ Rd and b ∈ R

are arbitrarily chosen constants. The random vector
ξ ∈ Rd is drawn from a multivariate Gaussian distri-
bution with an arbitrary mean (here we set it to −c)
and an arbitrarily chosen positive-definite covariance
matrix. Because (11) is exactly solvable when the
Gaussian distribution is known, we can verify that it
has a bounded optimal solution.
We consider d � 11 and 100 as the dimension of the

decision vector. Tables 1 and 2 show these two cases
with a small sample size n � 120, whereas Tables 3
and 4 show these cases with a bigger sample size

Table 3. Optimality and Feasibility Performances on a Single d � 11-Dimensional Linear
CCP with Gaussian Distribution for Several Methods, Using Sample Size n � 336

Method RO Recon SG FAST DRO Mo DRO KL SCA

n 336 336 336 336 336 336 —
n1 212 212 — 318 — 168 —
n2 124 124 — 18 — 168 —
Obj. Val. −1,190.33 −1,195.82 −1,195.67 −1,195.14 −1,188.48 0 −1,195.07
ε̂ 3.47×10-6 0.0247 0.0331 0.0259 2.19×10-8 0 0.0072
δ̂ 0 0.04 0.056 0.043 0 0 0

Notes. The true optimal value is −1,196.7. RO, robust optimization; Recon, reconstructed RO; SG,
scenario generation; FAST, Fast Algorithm for the Scenario Technique; DROMo, distributionally robust
optimization (DRO) with ellipsoidal moment set; DRO KL, DRO with KL-divergence set; SCA, safe
convex approximation; Obj. Val., average optimal objective value of the 1,000 solutions generated from
the independent data sets.

Table 4. Optimality and Feasibility Performances on a Single d � 100-Dimensional Linear
CCP with Gaussian Distribution for Several Methods, Using Sample Size n � 2331

Method RO Recon SG FAST DRO Mo DRO KL SCA

n 2,331 2,331 2,331 2,331 2,331 2,331 —
n1 1,318 1,318 — 2,326 — 1,166 —
n2 1,013 1,013 — 5 — 1,165 —
Obj. Val. −1,168.35 −1,194.76 −1,194.13 −1,193.85 −1,175.48 0 −1,193.0
ε̂ 0 0.0395 0.0428 0.0386 8.76×10-14 0 0.0072
δ̂ 0 0.051 0.039 0.052 0 0 0

Notes. The true optimal value is −1,195.3. Results on moment-based DRO are based on 30 replications
because of the high computational demand. RO, robust optimization; Recon, reconstructed RO; SG,
scenario generation; FAST, Fast Algorithm for the Scenario Technique; DROMo, distributionally robust
optimization (DRO) with ellipsoidal moment set; DRO KL, DRO with KL-divergence set; SCA, safe
convex approximation; Obj. Val., average optimal objective value of the 1,000 solutions generated from
the independent data sets.
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(336 and 2,331, respectively) so that the classical SG
provides provable feasibility guarantees. In each ta-
ble, we show the results for our RO using an ellip-
soidal uncertainty set (“RO”), our reconstructed RO
(“Recon”), SG (“SG”), FAST (“FAST”), DRO with
ellipsoidal moment set (“DROMo”), DRO with KL-
divergence set (“DRO KL”), and SCA (“SCA”). The
last approach does not need the data and instead
assumes partial a priori distributional information.

For our RO approaches, we use ellipsoidal uncer-
tainty sets with estimated covariance matrices for the
case d � 11 (Tables 1 and 3) and diagonalized ellip-
soidal sets (i.e., using only variance estimates) for
d � 100 (Tables 2 and 4) to stabilize our estimates
because n1 is smaller than d in the latter case. The
tables show that the solutions from our plain RO tend
to be conservative, because δ̂ � 0. Nonetheless, the
reconstructed RO is less conservative across all set-
tings, reflected by the better average optimal values
and δ̂ close to the target confidence level 0.05. In all
cases, both the plain RO and the reconstructed RO
give valid (i.e., confidently feasible) solutions.

We compare our ROs with scenario approaches.
When the sample size is small (Tables 1 and 2), SG
cannot obtain a valid solution. In the case d � 11, it
gives δ̂ much greater than 0.05. Furthermore, in the
case d � 100, SG gives unbounded solutions in all

1,000 replications because the number of sampled
constraints is very close to the decision dimension.
For FAST, because b is chosen to be positive, we
can use the origin to be the robust feasible solution.
Table 1 shows that when d � 11, FAST gives confi-
dently feasible solutions. The average optimal value
from reconstructed RO (−1,194.87) is (slightly) better
than the value from FAST (−1,193.53), whereas RO
using ellipsoidal sets is more conservative (−1,189.31).
However, when d � 100 (Table 2), the first-step prob-
lem of FAST is unbounded in all 1, 000 replications.
When the sample size is adequate (Tables 3 and 4),

the values of δ̂ from SG being less than or close to 0.05
confirms the validity of the solutions. Note that in
these cases, FAST gives more conservative solutions
than SG. (This is a general consequence of the con-
struction of FAST, which is designed to have a smaller
feasible region than SG under the same data set.) RO
with ellipsoidal sets obtains more conservative so-
lutions than SG, as shown by the zero δ̂ values and
worse average objective values. By using reconstruction,
however, the δ̂ values become very close to the desired
confidence level δ � 0.05, and the average objective
values are almost identical to (and slightly better
than) those obtained from SG.
These results reveal that when the sample size is

large enough, SG can perform better than our RO

Table 5. Optimality and Feasibility Performances on a Single d � 10-Dimensional Linear
CCP with the Beta-Perturbation Model for Several Methods, Using Sample Size n � 120

Method RO Recon SG FAST DRO Mo DRO KL SCA

n 120 120 120 120 120 120 —
n1 60 60 — 61 — 60 —
n2 60 60 — 59 — 60 —
Obj. Val. −988.78 −1,087.85 −1,114.57 −1,071.77 −968.30 0 −815.06
ε̂ 1.02×10-5 0.0161 0.0643 0.0171 0 0 0
δ̂ 0 0.037 0.723 0.063 0 0 0

Note. RO, robust optimization; Recon, reconstructed RO; SG, scenario generation; FAST, Fast Algorithm
for the Scenario Technique; DRO Mo, distributionally robust optimization (DRO) with ellipsoidal
moment set; DROKL, DROwith KL-divergence set; SCA, safe convex approximation; Obj. Val., average
optimal objective value of the 1,000 solutions generated from the independent data sets.

Table 6. Optimality and Feasibility Performances on a Joint Linear CCP with Gaussian
Distribution for Several Methods, Using Sample Size n � 120

Method RO Recon SG FAST DRO Mo DRO KL SCA

n 120 120 120 120 120 120 —
n1 60 60 — 61 — 60 —
n2 60 60 — 59 — 60 —
Obj. Val. −6,956.49 −7,920.12 −9,283.35 −8,925.74 −3,996.87 0 −8,927.71
ε̂ 3.46×10-5 0.0161 0.0581 0.0169 0 0 0.026
δ̂ 0 0.044 0.607 0.045 0 0 0

Note. RO, robust optimization; Recon, reconstructed RO; SG, scenario generation; FAST, Fast Algorithm
for the Scenario Technique; DRO Mo, distributionally robust optimization (DRO) with ellipsoidal
moment set; DROKL, DROwith KL-divergence set; SCA, safe convex approximation; Obj. Val., average
optimal objective value of the 1,000 solutions generated from the independent data sets.

Hong, Huang, and Lam: Learning-Based Robust Optimization
Management Science, 2021, vol. 67, no. 6, pp. 3447–3467, © 2020 INFORMS3458



using basic uncertainty sets. By contrast, our RO can
provide feasibility guarantees in small sample situ-
ations where SG may fail. FAST is valid in small
sample situations but is more likely to have unbounded
solutions in high-dimensional problems than our RO.
Thus, generally, our RO appears most useful for small
sample sizes when compared with scenario approaches,
a benefit postulated in previous sections. It also appears
that using reconstruction can boost our performance to a
level comparable to that of SG (and hence also FAST)
in situations where the latter is applicable in the shown
examples. Note that our reconstruction by design can
improve the objective performance comparedwith plain
RO, whereas FAST is used primarily to reduce the
sample size requirement and is necessarily more con-
servative than SG in terms of achieved objective value.
Finally, we note that unbounded solutions in SG can
potentially be avoided by adding artificial constraints.
In this regard, we show in Section EC.7.1 of the online
appendix the same example but with additional non-
negativityconstraints to illustrate thecomparisonsfurther.

Next, we compare with moment-based DRO. In
low-dimensional cases with d � 11, moment-based
DRO gives solutions that are more conservative than
RO using ellipsoidal sets, as shown by the larger ob-
jectivevalues, that is,−1,187.35 (DRO) versus −1,189.31

(RO) in the small sample case (Table 1) and −1,184.48
(DRO) versus −1,190.33 (RO) in the large sample case
(Table 3). The conservativeness of moment-based
DRO is also revealed in the small ε̂ and δ̂ � 0 in
both cases. Forhigh-dimensional problemswithd � 100,
we present the performance of moment-based DRO
with only 30 replications (instead of 1,000) because
of the large program size and consequently the de-
manding computational effort when solving the refor-
mulated semidefinite programs (although the replica-
tion size is smaller, conclusions can still be drawn
rigorously; i.e., the confidence intervals of the estimated
ε̂ and δ̂ turn out to either lie completely under or above
0.05). In the small sample size case (Table 2), moment-
based DRO fails to provide feasible solutions (δ̂ � 1;
i.e., obtained solutions violate the chance constraint
in all 30 replications). This can be attributed to a poor
estimation of the moment confidence region with
small data and high dimension. (Note that forming an
ellipsoidal first- and second-moment set for moment-
basedDRO requires estimating a covariancematrix of
size (3d + d2)/2 × (3d + d2)/2 because it uses the esti-
mation variances of the first and secondmoments that
involve even higher-order moments, in contrast to a
size of d × d in our ellipsoidal RO.) When the sample
size is larger (Table 3), moment-based DRO provides

Table 7. Optimality and Feasibility Performances on a Joint Linear CCP with Gaussian
Distribution for Several Methods, Using Sample Size n � 336

Method RO Recon SG FAST DRO Mo DRO KL SCA

n 336 336 336 336 336 336 —
n1 212 212 — 318 — 168 —
n2 124 124 — 18 — 168 —
Obj. Val. −7,146.54 −8,029.83 −9,130.95 −9,081.81 −4,209.86 0 −8,927.71
ε̂ 7.32×10-5 0.0235 0.0223 0.0185 0 0 0.026
δ̂ 0 0.038 0.005 0.002 0 0 0

Note. RO, robust optimization; Recon, reconstructed RO; SG, scenario generation; FAST, Fast Algorithm
for the Scenario Technique; DRO Mo, distributionally robust optimization (DRO) with ellipsoidal
moment set; DROKL, DROwith KL-divergence set; SCA, safe convex approximation; Obj. Val., average
optimal objective value of the 1,000 solutions generated from the independent data sets.

Table 8. Optimality and Feasibility Performances on a Joint Linear CCP with Beta
Distribution for Several Methods, Using Sample Size n � 120

Method RO Recon SG FAST DRO Mo DRO KL SCA

n 120 120 120 120 120 120 —
n1 60 60 — 61 — 60 —
n2 60 60 — 59 — 60 —
Obj. Val. −1,241.05 −1,796.74 −2,105.77 −1,732.73 −230.74 0 −361.079
ε̂ 6.90×10-5 0.0138 0.0577 0.0170 0 0 0
δ̂ 0 0.022 0.576 0.045 0 0 0

Note. RO, robust optimization; Recon, reconstructed RO; SG, scenario generation; FAST, Fast Algorithm
for the Scenario Technique; DRO Mo, distributionally robust optimization (DRO) with ellipsoidal
moment set; DROKL, DROwith KL-divergence set; SCA, safe convex approximation; Obj. Val., average
optimal objective value of the 1,000 solutions generated from the independent data sets.
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valid feasible solutions (δ̂ � 0). The average objective
(−1,175.48) is less conservative than our plain RO
(−1,168.35) but is more conservative than our recon-
structed RO (−1,194.76).

These observations show that when the moment
information is well estimated (i.e., the sample size is
sufficient relative to the dimension), moment-based
DRO provides solutions with a similar conserva-
tive level as our RO using ellipsoidal sets. However,
when the sample size is too small to get reasonable
estimates for the moments, moment-based DRO
can fail to obtain feasible solutions. Reconstructed
RO appears to outperform moment-based DRO
generally. The benefits of our RO approaches in
small samples and the boosted performance of
reconstructed RO compared with moment-based
DRO are in line with our comparisons with sce-
nario approaches.

DRO with an estimated KL-divergence set suffers
from general setbacks in the experiments. In all cases
we considered, the kernel-density estimator cannot
provide a good enough reference distribution f0, so
the size of the divergence ball is too big and

subsequently results in conservative solutions. The
construction of f0 is poor because of the curse of di-
mensionality in kernel-density estimation, whose accu-
racy deteriorates exponentially with the dimension,
because we have a relatively high dimension compared
with the data size. By contrast, the performance of DRO,
which relies on using the adjusted tolerance level ε∗,
appears sensitive to the divergence ball size and
demands a high accuracy in estimating f0. Subse-
quently, the big divergence ball size leads to a zero ε∗
in all replications, which, in turn, forces us to choose a
solution x that satisfies the safety condition ξ′x ≤ b for
all ξ ∈ Rd. The origin is then output as the only such
feasible solution, and the objective is zero, as shown in
Tables 1–4. This indicates that DRO with KL diver-
gence, calibrated using a density estimator and the
divergence estimation technique suggested in the
literature, gives overly conservative solutions for our
considered problems.
Lastly, we compare with SCA. Consider a pertur-

bation model for ξ given by ξ � a0 +∑L
i�1 ζiai, where

ai ∈ Rd for all i � 0, 1, . . . , L, and ζi ∈ R are independent
Gaussian variables with mean μi and variance s2i such

Table 9. Optimality and Feasibility Performances on a Joint Linear CCP with Beta
Distribution for Several Methods, Using Sample Size n � 336

Method RO Recon SG FAST DRO Mo DRO KL SCA

n 336 336 336 336 336 336 —
n1 212 212 — 318 — 168 —
n2 124 124 — 18 — 168 —
Obj. Val. −1,304.89 −1,911.36 −1,881.69 −1,828.98 −251.69 0 −361.079
ε̂ 1.20×10-4 0.0199 0.0229 0.0192 0 0 0
δ̂ 0 0.023 0.004 0.003 0 0 0

Note. RO, robust optimization; Recon, reconstructed RO; SG, scenario generation; FAST, Fast Algorithm
for the Scenario Technique; DRO Mo, distributionally robust optimization (DRO) with ellipsoidal
moment set; DROKL, DROwith KL-divergence set; SCA, safe convex approximation; Obj. Val., average
optimal objective value of the 1,000 solutions generated from the independent data sets.

Table 10. Optimality and Feasibility Performances on a Single d � 11-Dimensional Linear
CCP with t-Distribution for Several Methods, Using Sample Size n � 120

Method RO Recon SG FAST DRO Mo DRO KL

n 120 120 120 120 120 120
n1 60 60 — 61 — 60
n2 60 60 — 59 — 60
Obj. Val. −1,112.75 −1,166.52 −1,182.20 −1,158.27 −1,134.38 0
ε̂ 0.000252 0.0161 0.0910 0.0172 0.000461 0
δ̂ 0 0.046 0.961 0.064 0 0

Note. RO, robust optimization; Recon, reconstructed RO; SG, scenario generation; FAST, Fast Algorithm
for the Scenario Technique; DRO Mo, distributionally robust optimization (DRO) with ellipsoidal
moment set; DRO KL, DRO with KL-divergence set; Obj. Val., average optimal objective value of the
1,000 solutions generated from the independent data sets.
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that μi ∈ [μ−
i , μ

+
i ] and s2i ≤ σ2i . A safe approximation

of (11) is in Ben-Tal et al. (2009):

min c′x subject to a′0x − b
( )

+∑L
i�1

max a′i xμ
−
i , a

′
i xμ

+
i

[ ]

+ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log 1/ε( )√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑L

i�1
σ2i a′i x
( )2

√
≤ 0.

To apply this SCA to (11), we set ζi to be independent
N(0, 1) variables, a0 � μ and ai to be the ith column of
Σ1/2, and μ−

i � μ+
i � 0 and σ2i � 1 for i � 1, . . . , d. This,

in fact, assumes knowledge on the mean and co-
variance of the Gaussian vector ξ, thus giving an
upper hand to SCA.

Tables 1–4 all show that the optimal objective
values obtained from SCA (−1,195.07 and −1,193.0,
respectively, for d � 11, 100) are close to the true op-
timal values (−1,196.7 and −1,195.3) compared with
other methods. Our ROs using ellipsoidal sets obtain
more conservative solutions generally. The relative
conservativeness also shows up in reconstructed ROs
with small sample sizes (Tables 1 and 2), but with
more samples (Tables 3 and 4), our reconstructed RO
outperforms the considered SCA.

Note that in this example, the normality and mean
and covariance information used in the SCA makes
the latter perform very well. Our RO using estimated
ellipsoidal sets does not achieve this level of pre-
ciseness. However, the reconstructed RO can still
outperform this SCA when the sample size is large
enough. Note that the performance of SCA depends
on the true distribution (because it is related to the
tightness of the SCA constraint in approximating the
chance constraint). In the next example, we consider
an alternative underlying distribution where SCA
does not perform as well.

4.2. Test Case 2: Beta Models on a Single
Chance Constraint

We consider the single linear CCP in (11), where each
component of ξ is now bounded. We use a pertur-
bation model for ξ given by ξ � a0 +∑L

i�1 ζiai, where
ai ∈ Rd for all i � 0, 1, . . . , L, and ζi ∈ R are independent
random variables, each with mean zero and bounded
in [−1, 1], where d � 10, L � 10, and ai ∈ R10 are known
arbitrarily chosen vectors. This allows the use of an
SCA. In particular, we set each ζi to be a beta dis-
tribution with parameters α � 10 and β � 10 that are
multiplied by two and shifted by one. Similar to

Table 11. Optimality and Feasibility Performances on a Single d � 11-Dimensional Linear
CCP with t-Distribution for Several Methods, Using Sample Size n � 336

Method RO Recon SG FAST DRO Mo DRO KL

n 336 336 336 336 336 336
n1 212 212 — 318 — 168
n2 124 124 — 18 — 168
Obj. Val. −1,126.66 −1,175.64 −1,175.04 −1,170.35 −1,137.19 0
ε̂ 0.00023 0.024 0.0334 0.0259 0.000407 0
δ̂ 0 0.055 0.069 0.04 0 0

Note. RO, robust optimization; Recon, reconstructed RO; SG, scenario generation; FAST, Fast Algorithm
for the Scenario Technique; DRO Mo, distributionally robust optimization (DRO) with ellipsoidal
moment set; DRO KL, DRO with KL-divergence set; Obj. Val., average optimal objective value of the
1,000 solutions generated from the independent data sets.

Table 12. Optimality and Feasibility Performances on a Single d � 100-Dimensional Linear
CCP with t-Distribution for Several Methods, Using Sample Size n � 120

Method RO Recon SG FAST DRO Mo DRO KL

n 120 120 120 120 120 120
n1 60 60 — 61 — 60
n2 60 60 — 59 — 60
Obj. Val. −1,077.56 −1,184.45 Unbounded Unbounded −1,190.70 0
ε̂ 6.00×10-14 0.0156 — — 0.22 0
δ̂ 0 0.045 — — 1 0

Notes. Results on moment-based DRO are based on 30 replications because of the high computational
demand. RO, robust optimization; Recon, reconstructed RO; SG, scenario generation; FAST, Fast Al-
gorithm for the Scenario Technique; DRO Mo, distributionally robust optimization (DRO) with el-
lipsoidal moment set; DRO KL, DROwith KL-divergence set; Obj. Val., average optimal objective value
of the 1,000 solutions generated from the independent data sets.
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Section 4.1, we set c to be the negative of themean of ξ,
and b ∈ R is an arbitrarily chosen positive constant.

Regarding the comparison with SCA, this problem
is supplementary to the Gaussian cases in Section 4.1
in that it presents performances of SCA when we use
less information about ξ. Suppose that we have
chosen a correct perturbation model in the SCA
(i.e., knowledge of d,L, ai and the boundedness on
[−1, 1]). We use the Hoeffding inequality to replace
the chance constraint with

η

̅̅̅̅̅̅̅̅̅̅̅̅∑L
i�1

(a′i x)2
√

≤ b − a′0x,

where η ≥ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log(1/ε)√

. This SCA is equivalent to an
RO imposing an uncertainty set 8 � {ζ : ‖ζ‖2 ≤ η},
where ζ � (ζi)′i�1,...,L is the vector of perturbation random
variables (Ben-Tal et al. 2009, section 2.3).

Table 5 shows the results fromdifferent approaches
with sample size n � 120. Our RO performs better
than SCA in terms of achieved objective values (−988.78
versus −815.06), the latter appearing more conser-
vative than the example in Section 4.1, as shown by
ε̂ � 0. Also, as in the preceding example, reconstruc-
tion boosts further our RO performance (from −988.78
to −1,087.85). Our RO here performs better than SCA

because the latter, derived on a worst-case basis,
does not tightly apply to the “truth” in this example;
that is, the Hoeffding bound does not lead to tight
performance guarantees on the scaled beta distribu-
tion (putting aside the assumed knowledge of d, L, ai
and the boundedness on [−1, 1] when applying the
SCA). Note that because SCA also has an RO inter-
pretation, our observations show the superiority of
our geometry or size selection of the uncertainty set.
Our fully nonparametric approach shows a full-
fledged advantage over SCA in this example.
We also report the outcomes of SG, which breaks

down as shown by δ̂ being much bigger than 0.05
because 120 observations are not enough to achieve
the needed feasibility confidence. FAST obtains valid
solutions and outperforms our RO with ellipsoi-
dal sets but underperforms our reconstructed RO in
terms of achieved objective value. Moment-based
DRO also obtains valid solutions but is conserva-
tive, as shown by δ̂ � 0 and ε̂ � 0. Its objective value
underperforms our RO approaches. For divergence-
based DRO, the poor construction of a reference
distribution again leads to a large divergence ball
size, which renders the adjusted tolerance level ε∗ to
be zero in all but one of 1,000 replications (for the one
replication, where ε∗ is nonzero, it is ε∗ � 1.10 × 10−11)

Table 14. Optimality and Feasibility Performances on a Joint d � 11-imensional Linear
CCP with t-Distribution for Several Methods, Using Sample Size n � 336

Method RO Recon SG FAST DRO Mo DRO KL

n 336 336 336 336 336 336
n1 212 212 — 318 — 168
n2 124 124 — 18 — 168
Obj. Val. −5,778.44 −7,562.60 −7,387.98 −7,173.97 −3,891.83 0
ε̂ 0.00248 0.0133 0.0144 0.0126 3.97 × 10−4 0
δ̂ 0 0 0 0 0 0

Note. RO, robust optimization; Recon, reconstructed RO; SG, scenario generation; FAST, Fast Algorithm
for the Scenario Technique; DRO Mo, distributionally robust optimization (DRO) with ellipsoidal
moment set; DRO KL, DRO with KL-divergence set; Obj. Val., average optimal objective value of the
1,000 solutions generated from the independent data sets.

Table 13. Optimality and Feasibility Performances on a Joint d � 11-Dimensional Linear
CCP with t-Distribution for Several Methods, Using Sample Size n � 120

Method RO Recon SG FAST DRO Mo DRO KL

n 120 120 120 120 120 120
n1 60 60 — 61 — 60
n2 60 60 — 59 — 60
Obj. Val. −4,229.6 −6,499.93 −8,313 −7,220.37 −3,888.63 0
ε̂ 0.00108 0.00847 0.0404 0.0152 4.17×10-4 0
δ̂ 0 0.002 0.284 0.048 0 0

Note. RO, robust optimization; Recon, reconstructed RO; SG, scenario generation; FAST, Fast Algorithm
for the Scenario Technique; DRO Mo, distributionally robust optimization (DRO) with ellipsoidal
moment set; DRO KL, DRO with KL-divergence set; Obj. Val., average optimal objective value of the
1,000 solutions generated from the independent data sets.
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and essentially outputs the origin as the solution all
the time. In this example, our reconstructed RO
performs the best among all considered approaches.

4.3. Test Case 3: Multivariate Gaussian on Joint
Chance Constraints

We consider a joint CCP with d � 11 variables and
l � 15 constraints in the form

min c′x subject to P Ax ≤ b( ) ≥ 1 − ε, x ≥ 0, (12)
where c ∈ R11 and b ∈ R15 are arbitrary constants, and
b is positive in each element. The random vector ξ �
vec(A) is generated from a multivariate Gaussian
distribution with mean vec(Ā) and covariance ma-
trix Σ, where Ā ∈ R15×11 is arbitrary, and Σ ∈ R165 × 165

is also an arbitrary positive-definite matrix.
Tables 6 and 7 present the experimental results

using twodifferent sample sizes on the same problem.
We use diagonalized ellipsoids in our RO and con-
duct reconstruction with scaling parameters ki de-
scribed in Section EC.4.3 of the online appendix. To
use DRO and SCA, we apply the Bonferroni correc-
tion to decompose the joint CCP by evenly divid-
ing the tolerance level into ε/m to create individual
chance constraints. For each individual chance con-
straint, we construct DRO and SCA constraints fol-
lowing the scheme in Section 4.1.

Comparing with scenario approaches, we see that
much like the examples in Sections 4.1 and 4.2, SG
fails with a small sample size (confirmed by δ̂ much
larger than 0.05 in Table 6) but obtains valid solutions
as the sample size grows (confirmed by δ̂ < 0.05 in
Table 7). Although reconstruction improves the op-
timal values for RO in both cases, SG (and FAST as
well) gives better optimal value (−9,130.95) than the
reconstructed RO (−8,029.83) under a big sample size.
Moment-basedDRO appears very conservative for both
small and large sample cases because the obtained
average objective values (−3,996.87 and −4,209.86) are
much greater than other approaches, including our
ROs, and the associated ε̂ and δ̂ are zero. As in the
preceding experiments, divergence-based DRO out-
puts the origin as the solution and gives objective
value zero because of oversized uncertainty sets. By
contrast, SCA obtains a better solution than our ROs,
thanks to the tightness of the approximation for
Gaussian distributions.

4.4. Test Case 4: Beta Models on Joint
Chance Constraints

We consider the joint CCP in (12) with a bounded
random vector ξ. We use the perturbation model
described in Section 4.2, where d � 165 and L � 165,
and ai ∈R165, i� 1, . . . ,L, are arbitrarily chosen vectors,

Table 15. Optimality and Feasibility Performances on a Single d � 11-imensional Linear
CCP with Log-Normal Distribution for Several Methods, Using Sample Size n � 120

Method RO Recon SG FAST DRO Mo DRO KL

n 120 120 120 120 120 120
n1 60 60 — 61 — 60
n2 60 60 — 59 — 60
Obj. Val. −294.00 −588.58 −784.27 −510.38 −418.30 0
ε̂ 1.45×10-4 0.0164 0.0902 0.0159 5.11×10-4 0
δ̂ 0 0.041 0.961 0.048 0 0

Note. RO, robust optimization; Recon, reconstructed RO; SG, scenario generation; FAST, Fast Algorithm
for the Scenario Technique; DRO Mo, distributionally robust optimization (DRO) with ellipsoidal
moment set; DRO KL, DRO with KL-divergence set; Obj. Val., average optimal objective value of the
1,000 solutions generated from the independent data sets.

Table 16. Optimality and Feasibility Performances on a Single d � 11-Dimensional Linear
CCP with Log-Normal Distribution for Several Methods, Using Sample Size n � 336

Method RO Recon SG FAST DRO Mo DRO KL

n 336 336 336 336 336 336
n1 212 212 — 318 — 168
n2 124 124 — 18 — 168
Obj. Val. −354.10 −685.01 −683.60 −646.83 −429.75 0
ε̂ 8.07×10-14 0.0243 0.0333 0.0261 3.33×10-14 0
δ̂ 0 0.057 0.052 0.033 0 0

Note. RO, robust optimization; Recon, reconstructed RO; SG, scenario generation; FAST, Fast Algorithm
for the Scenario Technique; DRO Mo, distributionally robust optimization (DRO) with ellipsoidal
moment set; DRO KL, DRO with KL-divergence set; Obj. Val., average optimal objective value of the
1,000 solutions generated from the independent data sets.
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and the same random variables for ζi are as in Sec-
tion 4.2. Again, we apply the Bonferroni correction to
invoke DRO and SCA as in Section 4.3 and the cor-
responding schemes for each individualized chance
constraint as in Section 4.2.

Tables 8 and 9 show our experimental results. The
major difference with Section 4.3 is that now our
reconstructed RO outperforms all other methods,
including SG and SCA. It gives smaller objective
values than FAST under both small and large sample
sizes. It also gives smaller objective values than SG
under a large sample size, whereas SG does not give
valid solutions under a small sample size. SCA is very
conservative in this case, and DROs (both moment
and divergence based) continue to be very conser-
vative and are significantly outperformed by our RO.

4.5. Test Case 5: t-Distributions and
Log-Normal Distributions

We consider problems with two heavier-tailed dis-
tributions, namely, t-distributions and log-normal
distributions. We test both the single CCP (11) and
the joint CCP (12) with different dimensions and

sample sizes. Because the considered SCA does not
apply to these distributions, we do not include it in
our comparisons here.
Tables 10–12 show the comparisons among dif-

ferent approaches for the single CCP, and Tables 13
and 14 show the counterparts for joint CCP when ξ
is generated from a multivariate t-distribution with
degree of freedom five and an arbitrary positive-definite
dispersion matrix. The comparisons are largely consis-
tent with the Gaussian and beta cases shown in previ-
ous subsections. Compared with SG, our ROs output
feasible solutions in the small sample case (n � 120),
whereas SG struggles to obtain feasible solutions
(δ̂ much greater than 0.05 in Tables 10 and 13). In the
large sample case (n � 336), SG gains enough feasi-
bility andoutperformsour plainRO in average objective
value (−1,175.04 versus −1,126.66 in the single CCP
case in Table 11 and −7,387.98 versus −5,778.44 in
the joint CCP case in Table 14) but underperforms
our reconstructed RO (−1,175.64 and −7,562.60 for
single and joint CCPs, respectively). FAST reme-
dies the infeasibility issue of SG in the small sample
cases and outperforms our plain RO. By contrast,
our reconstructed RO performs competitively against
FAST. Among all four cases where d � 11, the re-
constructed RO outperforms FAST in three cases but
underperforms in the case of the small sample joint
CCP (averageobjective values−1,166.52, −1,175.64, and
−7,562.60 versus −1,158.27, −1,170.35, and −7,173.97
in Tables 10, 11, and 14, respectively, and −6,499.93
versus −7,220.37 in Table 13). Note that when the
dimension is large (d � 100 in Table 12), SG and FAST
output unbounded solutions in all 1,000 experimental
replications, whereas plain and reconstructed RO
output feasible bounded solutions.
As in previous subsections, our reconstructed RO

outperforms moment-based DRO in all cases. When
the dimension is large (d � 100 in Table 12), moment-
based DRO fails to obtain feasible solutions in all 30
replications, attributed to the difficulty in estimating

Table 17. Optimality and Feasibility Performances on a Single d � 100-Dimensional Linear
CCP with Log-Normal Distribution for Several Methods, Using Sample Size n � 120

Method RO Recon SG FAST DRO Mo DRO KL

n 120 120 120 120 120 120
n1 60 60 — 61 — 60
n2 60 60 — 59 — 60
Obj. Val. −309.93 −784.24 Unbounded Unbounded −1,030.52 0
ε̂ 6.00×10-14 0.0174 — — 0.2772 0
δ̂ 0 0.063 — — 1 0

Notes. Results on moment-based DRO are based on 30 replications because of the high computational
demand. RO, robust optimization; Recon, reconstructed RO; SG, scenario generation; FAST, Fast Al-
gorithm for the Scenario Technique; DRO Mo, distributionally robust optimization (DRO) with el-
lipsoidal moment set; DRO KL, DROwith KL-divergence set; Obj. Val., average optimal objective value
of the 1,000 solutions generated from the independent data sets.

Table 18. Optimality and Feasibility Performances on a
Joint d � 11-Dimensional Linear CCP with Log-Normal
Distribution for Several Methods, Using Sample Size
n � 120

Method RO Recon SG FAST DRO Mo DRO KL

n 120 120 120 120 120 120
n1 60 60 — 61 — 60
n2 60 60 — 59 — 60
Obj. Val. −0.1284 −1.1166 −4.5359 −1.0369 −0.8360 0
ε̂ 0.00228 0.0157 0.0598 0.0165 0.0131 0
δ̂ 0 0.043 0.646 0.044 0.006 0

Note. RO, robust optimization; Recon, reconstructed RO; SG, sce-
nario generation; FAST, Fast Algorithm for the Scenario Technique;
DROMo, distributionally robust optimization (DRO)with ellipsoidal
moment set; DRO KL, DRO with KL-divergence set; Obj. Val., av-
erage optimal objective value of the 1,000 solutions generated from
the independent data sets.
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valid moment confidence regions. Compared with
our plain RO, moment-based DRO outperforms in a
single CCP (−1,134.38 and −1,137.19 versus −1,112.75
and −1,126.66 in Tables 10 and 11, respectively) but
underperforms in a joint CCP (−3,888.63 and −3,891.83
versus −4,229.6 and −5,778.44 in Tables 13 and 14,
respectively). Lastly, divergence-based DRO is once
again very conservative, resulting in zero objective
values all the time.

Next, we consider ξ generated from log-normal
distributions with arbitrarily chosen means and co-
variance matrices. Tables 15–17 show the results for
the single CCP, and Tables 18 and 19 show those for
the joint CCP. The comparisons are quite similar to the
t-distribution cases. SG in a small sample outputs
invalid solutions (δ̂ much greater than 0.05) and in a
large sample outputs solutions with average objec-
tive values (e.g., −683.60 in Table 16) better than our
plain RO (−354.10) but worse than our reconstructed
RO (−685.01). FAST remedies the infeasibility issue
of SG in the small sample cases but underperforms
our reconstructed RO in all cases. Moment-based
DRO outperforms our plain RO but underperforms
our reconstructed RO in all cases, and it continues
to struggle in obtaining feasible solutions for high-
dimensional problems (δ̂ � 1 in Table 17). Lastly,
divergence-based DRO continues to be conserva-
tive and outputs zero objective values. In all con-
sidered settings, reconstructed RO appears the best
among all compared methods in terms of feasibility
and optimality.

4.6. Summary of the Experiment Results
From the results in this section (and additional ones in
Section EC.7 of the online appendix), we highlight the
following situations where our method is the most
recommended. The competitiveness of our method
compared with scenario approaches is most seen in
small sample situations. Classical SG needs a much

larger sample size than ours to achieve feasibility.
FAST is capable of obtaining feasible solutions in
small sample cases but appears more susceptible than
RO in generating unbounded solutions. With re-
construction, our approach tends to work as well as
SG and FAST for large samples (when they are all
applicable). Moreover, our reconstruction has the
capability to improve the optimality over plain RO,
whereas FAST is by design always more conservative
than SG in terms of optimality. Nonetheless, we
should mention that some constraint-removal ap-
proaches such as sampling and discarding (Campi
and Garatti 2011) can improve SG performances in
large sample situations.
Compared with our ROs, moment-based DRO can

generate infeasible solutions when the problem di-
mension is high compared with data size (e.g., d �
100 and n � 120), which is attributed to the difficulty
in constructing valid moment confidence regions.
In cases where moment-based DRO generates valid
solutions, the solution performances seem to be
sometimes better, sometimes worse than our plain
RO, but in all considered instances, they perform
worse than our reconstructed RO. KL-divergence-
based DRO appears to perform poorly in the exper-
iments because of the challenge in obtaining a small
enough divergence ball size. (To get a further sense of
this behavior, we investigate a very low-dimensional
problem (d � 3) with a sufficient sample size in Sec-
tion EC.7.3 of the online appendix, where divergence-
based DRO provides nontrivial but still conserva-
tive solutions.)
Lastly, compared with SCA, our performance is

best seen when the data are nonnormal. In this case,
the approximate constraint in SCA may not tightly
approximate the original chance constraint and tends
to be significantly more conservative than our ap-
proach. Moreover, SCA generally requires at least
some partial distributional knowledge (e.g., moments,
support) in deriving the needed relaxing constraint, in
contrast to our approach, which is fully data driven
and nonparametric.
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