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Abstract Simulation models are widely used in practice to facilitate decision making in a complex,
dynamic and stochastic environment. But they are computationally expensive to execute
and optimize because of a lack of analytical tractability. Simulation optimization is con-
cerned with developing efficient sampling schemes—subject to computational budgets—
to solve such optimization problems. To mitigate the computational burden, surrogates
are often constructed using simulation outputs to approximate the response surface of
the simulation model. In this tutorial, we provide an up-to-date overview of surrogate-
based methods for simulation optimization with continuous decision variables. Typical
surrogates, including linear basis function models and Gaussian processes, are introduced.
Surrogates can be used as either local approximations or global approximations. Depend-
ing on the choice, one may develop algorithms that converge to either a local optimum or
a global optimum. Representative examples are presented for each category. Recent ad-
vances in large-scale computation for Gaussian processes are also discussed.
Funding: L. J. Hong was supported in part by the Natural Science Foundation of China
[Projects 72091211 and 71991473]. X. Zhang was supported in part by the Hong Kong
Research Grant Council [Projects 16211417 and 17201520].
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1. Introduction
Simulation optimization (SO) concerns a class of optimization problems whose objective func-
tions and/or constraints do not possess an analytical form and can be evaluated only based
on noisy simulation samples. The simulation model is usually expensive to execute; thus, the
number of evaluations that one is allowed to perform is limited, subject to one’s computation-
al budget. Specifically, we consider in this tutorial problems of the form

max
x∈X

{ f (x) :� E[F(x)]}, (1)

where x is the decision variable, X is the feasible set, and F(x) is a real-valued random variable,
representing the stochastic response of a simulation model evaluated at x. The distribution of
F(x) is an unknown function of x, but its samples can be generated from running simulation
experiments.

Depending on the nature of the feasible set, Problem (1) demands a distinct treatment and
principle for designing algorithms. When X is a set of a relatively small number of feasible sol-
utions with no inherent ordering defined, the problem is known as ranking and selection
(R&S). For example, X may represent feasible system configurations with regard to how
many and what redundant components to use to design a reliable system.
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Another common setting is that X is integer-ordered, that is, X �Ω ∩ Z
d, where Ω ⊂ R

d is
a convex set, and Z

d is the set of d-dimensional integer vectors. In this setting, X usually has
a very large or even infinite number of elements, and Problem (1) is called discrete optimiza-
tion via simulation (DOvS). For example, a retailer may need to make stocking decisions for d
products to minimize operational costs, x may represent the numbers of units to order for
these products, and X may be formed by capacity constraints.

In this tutorial, we assume that x is a d-dimensional real vector and X ⊆ R
d is a continuous

set, and refer to Hong et al. [35] for a recent tutorial on R&S and DOvS problems. However,
our concentration on continuous decision variables does not limit the scope of this tutorial. In
general, algorithms designed for the continuous setting can be applied to DOvS, although the-
oretical analyses may need to be adjusted.

A variety of strategies have been proposed to solve continuous SO problems, including sample
average approximation (Kim et al. [43]), stochastic approximation (Chau and Fu [19]), and ran-
dom search (Andradóttir [1]). This tutorial focuses on surrogate-based methods—another class of
strategies—which have gained increasing interest in recent years, despite their long history. The
popular use of surrogates in SO may be attributed to (i) the flexibility to capture complex surface
shapes and (ii) the capability to predict surface values where no simulation samples are observed.
The latter reason is of particular importance in light of the fact that computational budget is gen-
erally regarded as a scarce resource relative to the cost of simulation experiments.

Finally, we note that in contrast to earlier articles on surrogate-based methods (Barton [7],
Barton and Meckesheimer [8]), the present tutorial aims to bring the readers up to date on the
fast developments in the area. One featured discussion is on recent advances in coping with the
computational challenges associated with the use of surrogates for large-scale problems.

The rest of this tutorial is organized as follows. Section 2 introduces surrogates that are wide-
ly used in practice. Section 3 and Section 4 present SO methods that use surrogates as local ap-
proximations and global approximations, respectively. Section 5 discusses recent advances in
handling computational issues that arise when using surrogates for large data sets. Section 6
highlights current research challenges and potential opportunities.

2. Surrogates
A surrogate—also known as a metamodel—is an approximation to the response surface, that
is, the simulation input–output relationship. The main purpose of using a surrogate is to miti-
gate the computational burden of running expensive simulation experiments. Although any
supervised learning (Hastie et al. [32]) model may, in principle, be used, one typically has sev-
eral considerations to keep in mind when choosing a surrogate to cope with computational
budget constraints:

i. It should possess a simple structure and does not require “big data” to fit, because simu-
lation samples are expensive to acquire.

ii. It should be computationally easy to fit, because it often needs to be updated in a se-
quential fashion as more simulation samples become available.

iii. It should give rise to a predictor in explicit form, so that predictions can be computed
efficiently, theoretical analysis can be facilitated, and the surrogate can be optimized easily.

Three classes of surrogates that satisfy the above criteria have been widely adopted in prac-
tice: low-order polynomials, linear basis function models, and Gaussian processes (GPs). We
introduce them in Sections 2.1, 2.2, and 2.3, respectively. The first—including linear and qua-
dratic functions—are normally viewed as local approximations from the perspective of Taylor
expansion, whereas the last two are global approximations thanks to their nonparametric na-
ture. Nevertheless, as we demonstrate in Section 2.4, they can be unified through the lens of
ridge regularization. In Section 2.5, we present recent approaches to enhancing the prediction
capability of a surrogate if additional information is available.
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Before formally presenting the surrogates, we state the common setup. Suppose that the
simulation model is executed at {xi : i � 1, : : : ,n}, where xi � (xi,1, : : : ,xi,d) for each i. For
each xi, the number of replications is ri ≥ 1; each replication generates a realization of the ran-
dom variable F(xi) in Equation (1), denoted by yi,ℓ for ℓ � 1, : : : , ri. Let yi,ℓ � f (xi) + εi,ℓ,
where εi,ℓ is independent Gaussian noise with mean zero and variance σ2(xi). We are interest-
ed in approximating f via the regression equation

ȳ i � f (xi) + ε̄i, i � 1, : : : ,n, (2)

where ȳ i :� ri−1
∑ri

ℓ�1yi,ℓ and ε̄i :� ri−1
∑ri

ℓ�1εi,ℓ. Clearly, Var[ε̄i] � σ2(xi)=ri.

2.1. Polynomials
Because of the explosion in the number of terms in the representation of a polynomial in mul-
tiple dimensions, polynomials with orders higher than two are seldom used to approximate a
response surface. Low-order polynomials are suitable for situations where we are interested in
a localized region of the feasible set (or design space) X. A second-order polynomial (i.e., qua-
dratic function) is

f (x) � β0 +
∑d
j�1

βjxj +
∑d
j�1

∑d
k�1

βjkxjxk, (3)

where x � (x1, : : : ,xd). This surrogate may be appropriate if we expect the response surface f
has substantial curvature. In contrast, a first-order polynomial (i.e., linear function), to which
Equation (3) is reduced by setting βjk � 0 for all j and k, may be a better fit in the presence of
little curvature.

The parameters β0,βj ,βjk can be estimated via ordinary least squares (OLS):

min
β0,βj,βjk

1
n

∑n
i�1

ȳ i − β0 −
∑d
j�1

βjxi,j −
∑d
j�1

∑d
k�1

βjkxi,jxi,k

( )2
: (4)

The solution is given in Section 2.2 in a more general setting. Then, one can predict the re-
sponse at any arbitrary location x by plugging the OLS estimates β̂0, β̂j, β̂jk in Equation (3),
that is,

f̂ (x) � β̂0 +
∑d
j�1

β̂jxj +
∑d
j�1

∑d
k�1

β̂jkxjxk:

2.2. Linear Basis Function Models
If low-order polynomials do not provide a good fit, a natural extension uses linear basis func-
tion models that express f as a linear combination of basis functions,

f (x) � β�/(x) � ∑p
k�1

βkφk(x), (5)

where β � (β1,: : : ,βp)� is a vector of unknown parameters, and /(x) � (φ1(x),: : : ,φp(x))� is a
vector of chosen basis functions, such as the truncated power basis and the Fourier basis, etc.;
see Bishop [13, chapter 3] and Hastie et al. [32, chapter 5].

A particular popular class, among others, is radial basis functions (RBFs), meaning
that the value of / depends on x only through the distance between x and some fixed
point, say, c ∈ R

d; that is, an RBF has the form φ(‖x− c‖) for some function φ : R 
→ R.
Typical examples include the Gaussian RBF φ(x) � exp (−x2=2η2) and the thin plate spline
φ(x) � x2ln (x).
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The parameters β can be also estimated via OLS:

β̂ � arg min
β

1
n

∑n
i�1

(ȳ i − β�/(xi))2

�U�(UU�)−1ȳ, (6)

where U is the n-by-p matrix with the ith row being /(xi)� for all i � 1, : : : ,n. The prediction
is then given by

f̂ (x) � β̂
�
/(x) � (U/(x))�(UU�)−1ȳ: (7)

2.3. Gaussian Processes
Gaussian processes (a.k.a. Gaussian random fields) have remarkable success in numerous re-
search areas. Using them as surrogates originated in geostatistics, where the method was
named kriging (Krige [46], Matheron [54]). Later, they were applied to the design and analysis
of (deterministic) computer experiments (Sacks et al. [65]). The adoption of GPs to approxi-
mate response surfaces in stochastic simulation literature, where the method is often called
stochastic kriging, was popularized by Ankenman et al. [4]. The same method was referred to
as GP regression in the machine learning literature (Rasmussen and Williams [62]).

Whereas linear regression with basis functions is a frequentist approach, GPs represent
a Bayesian viewpoint. A GP with domain X is fully characterized by its mean function μ :
X 
→ R and covariance function K : X × X 
→ R. To use a GP as a surrogate, we start by im-
posing a GP prior on the unknown function f, denoted by f ~GP(μ,K). Some may prefer to
state the assumption in a different way—with a somewhat less Bayesian flavor—namely, f is
a sample path (i.e., realization) of the GP. Both mean the following: for any finite set
{x1, : : : ,xn} ⊂ X of any size n ≥ 1, (f (x1), : : : , f (xn)) has a multivariate normal distribution
with mean vector µ � (μ(x1),: : : ,μ(xn))� and n-by-n covariance matrixK � (K(xi ,xi′ ))ni,i′�1.

2.3.1. Mean Functions. From a modeling point of view, the mean function μ is used to
encode one’s prior knowledge about the overall shape of the response surface f. It is usually
chosen in one of the following ways.

i. Set μ(x) ≡ c for some constant c representing the overall surface mean. This is possibly
the most common treatment in practice. One may even set c � 0 if little prior knowledge is
available.

ii. Set μ(x) � β�/(x), where /(x) is a vector of known basis functions and β is a vector of
hyperparameters of compatible dimension.

iii. Set μ(x) to be a function derived from a simplified, analytical model of the same sto-
chastic system that the original simulation model aims to describe. For example, if the origi-
nal simulation model is a complex queueing model, μ may be derived in closed form based
on a highly stylized queueing model; see Section 2.5 for details.

2.3.2. Covariance Functions. We first introduce two popular classes of covariance func-
tions: the Gaussian class and the Matérn class. They are both stationary, meaning that
Cov[f (x), f (x′)] depends on x and x′ only through the difference (x−x′). We then present a
class of covariance functions that permits a different level of differentiability in each dimension.
More examples of covariance functions can be found in Rasmussen andWilliams [62, chapter 4].

Example 1 (Gaussian Covariance Functions). For positive constants τ and η, a Gaussian co-
variance function is defined by

KGaussian(x,x′) � τ2exp − ‖x − x′‖2
2η2

( )
, x,x′ ∈ R

d : (8)

It is also called a squared exponential covariance function.
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Example 2 (Matérn Covariance Functions). For positive constants τ, η, and ν, a Matérn co-
variance function is defined by

KMate
′
rn(x,x′; ν) � τ2

Γ(ν)2ν−1
����
2ν

√ ‖x − x′‖
η

( )ν
Kν

����
2ν

√ ‖x − x′‖
η

( )
, x,x′ ∈ R

d, (9)

where Γ(·) is the gamma function, and Kν(·) is the modified Bessel function of the second kind
of order ν. The parameter ν is usually set to be half-integer, that is, 1=2, 3=2, 5=2, : : : , in which
case the expression of KMatern(x,x′;ν) can be simplified substantially. For instance,

KMate
′
rn(x,x′;ν) �

τ2exp
−‖x− x′‖

η

( )
, if ν � 1=2,

τ2 1+
��
3

√ ‖x−x′‖
η

( )
exp −

��
3

√ ‖x− x′‖
η

( )
, if ν � 3=2,

τ2 1+
��
5

√ ‖x−x′‖
η

+ 5‖x−x′‖2
3η2

( )
exp −

��
5

√ ‖x−x′‖
η

( )
, if ν � 5=2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
A general formula can be found in Rasmussen and Williams [62, p. 85].

Note that both the expressions in (8) and (9) are in the form of τ2ρ(‖x− x′‖) for some
function ρ : R≥0 
→ (0, 1]. Thus, the parameter τ2 represents the marginal variance of the as-
sociated GP, and ρ(‖x− x′‖) represents the correlation.

The parameter ν of the Matérn covariance functions is called the smoothness parameter,
for it controls the order of differentiability of the sample paths of the induced GP; see Stein
[78, section 6.5]. It can be shown (Stein [78, p. 50]) that

lim
ν→∞KMate

′
rn(x,x′; ν) � KGaussian(x,x′), x,x′ ∈ R

d :

This suggests that the sample paths induced by the Gaussian covariance functions are infi-
nitely differentiable—an overly strong property that may not be reasonable for some response
surfaces.

Being controlled by a single parameter ν, the differentiability of the GPs associated with
the Matérn covariance functions are homogeneous in each dimension. Motivated by the need
for flexibility to control differentiability separately in different dimensions, Salemi et al. [66]
propose a new class of covariance functions, and the corresponding GPs are called general-
ized integrated Brownian fields (GIBFs). Unlike the Gaussian and Matérn classes, the GIBF
covariance functions are nonstationary and possess a tensor product form.

Example 3 (GIBF Covariance Functions). For each j � 1, : : : ,d, let mj ≥ 0 be an integer and
θj � (θj,0,θj,1, : : : ,θj,mj+1) ∈ R

mj+2
>0 . A GIBF covariance function is defined by

KGIBF(x,x′;m,θ) �∏d
j�1

Kj(xj ,xj ′;mj ,θj), x,x′ ∈ R
d
≥0,

Kj(xj,x′j ;mj,θj) �
∑mj

ℓ�0
θj,ℓ

(xjx′j)ℓ
(ℓ!)2 +θj,mj+1

∫ ∞

0

(xj − u)mj+ (x′j − u)mj+
(mj!)2

du, (10)

wherem � (m1, : : : ,md) and θ � (θ1, : : : ,θd), and (x)+ �max (x, 0) for x ∈ R.
A notable property, among others, of anm-GIBF is that its sample path ismj times differen-

tiable along the jth coordinate, for each j � 1, : : : ,d. Moreover, if mj ≥ 1, then the derivative of
anm-GIBF with respect to the jth coordinate is a (m1, : : : ,mj − 1, : : : ,mj + 1, : : : ,md)-GIBF.

2.3.3. GP Regression. If the simulation noise εi,ℓ is independent of the GP prior and has
a Gaussian distribution with a known variance, then the posterior distribution of f is also a
GP. Let Dn :� {(xi, ȳ i) : i � 1, : : : ,n} denote the simulation data. The posterior mean function
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and covariance functions are given by

μn(x) :� E[f (x) |Dn] � μ(x) +k(x)�(K+R)−1(ȳ −µ), (11)

Kn(x,x′) :� Cov[f (x), f (x′) |Dn] �K(x,x′) − k(x)�(K+R)−1k(x′), (12)

where k(x) � (K(x,x1),: : : ,K(x,xn))�, ȳ � (ȳ1,: : : ,ȳn)�, and R is the n-by-n diagonal matrix
with the ith diagonal element being σ2(xi)=ri. Then, one can simply use μn(x) to predict the
response surface, that is,

f̂ (x) � μ(x) + k(x)�(K+R)−1(ȳ −µ): (13)

Furthermore, being the conditional expectation given the observations, f̂ (x) is the best pre-
dictor that minimizes the mean squared prediction error; see Rice [63, p. 153].

2.3.4. Selection of Hyperparameters. A hyperparameter is a parameter of a prior distri-
bution in Bayesian statistics. In the context of GP regression, hyperparameters are those used
to specify the mean function μ and the covariance function K. For example, if we choose μ(x) �
β�/(x) and K(x,x′) � τ2exp (−‖x− x′‖2=2η2), then the hyperparameters are (β,τ,η).

Let θ denote the collection of hyperparameters. Let X denote the n-by-d matrix whose ith
row is x�

i for all i � 1, : : : ,n. A usual approach to selecting θ is to maximize the following log
“likelihood”:

lnp(ȳ |X) � −1
2
(ȳ −µ(θ))�(K(θ) +R)−1(ȳ −µ(θ)) − 1

2
ln |K(θ) | − n

2
ln (2π), (14)

where | · | denotes the determinant of a square matrix, and we write µ(θ) and K(θ) to stress
the dependence of µ and K on θ. This is a nonlinear optimization problem with possibly
multiple local optima. Gradients of lnp(ȳ |X) with respect to θ can often be derived analyti-
cally and provided to numerical optimization algorithms such as the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm; see Ankenman et al. [4] for details.

A comment is warranted here regarding the notation of likelihood, however. In Bayesian sta-
tistics, the likelihood—also termed the sampling distribution—is referring to the distribution
of the observed data conditional on the data-generating process. In the context of GP regres-
sion, the likelihood is p(ȳ |X, f), where f � (f (x1),: : : ,f (xn))�. The conditioning on f is neces-
sary because f is a random function or sample path of the GP prior. Note that lnp(ȳ |X, f) is
not identical to Equation (14). Indeed,

lnp(ȳ |X, f) � ln
∏n
i�1

1

σ(xi)
����
2π

√ exp −(ȳ i −μ(xi))2
2σ2(xi)

( )
� −1

2

∑n
i�1

(ȳ −µ(θ))�R−1(ȳ −µ(θ)) − n
2
ln (2π):

Technically, p(ȳ |X) is called the log marginal likelihood in Bayesian statistics, because it is
the marginalization over f:

p(ȳ |X) �
∫

p(ȳ |X, f)p(f |X)df,

where p(f |X) is the prior of f, which is a multivariate normal distribution; see Rasmussen
and Williams [62, chapter 5] for more discussion.

2.4. A Connection via Ridge Regularization
We start with the linear basis function model (5) for the case that many basis functions are in-
cluded, even to the point of overparameterization p� n. In this case, the OLS solution (6) is
numerically unstable because the matrix UU� is nearly singular if p is smaller than but close
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to n and becomes singular if p ≥ n. As a result, ‖β̂‖—the Euclidean norm of β̂—would ex-
plode, and the prediction power of (7) would be poor.

We now add ridge regularization (Hastie [31]) to the least squares formulation to penalize
the magnitude in norm of the solution, resulting in the method of regularized least squares
(RLS):

min
β

1
n

∑n
i�1

(ȳ i − β�/(xi))2 + λ‖β‖2, (15)

where λ ≥ 0 is the regularization parameter that controls the level of penalization. The solu-
tion is

β̂λ �U�(UU� + nλI)−1ȳ, (16)

where I is the n-by-n identity matrix. The predictor for f is then

f̂ (x) � β̂
�
λ/(x) � (U/(x))�(UU� + nλI)−1ȳ: (17)

Note that

U/(x) �
/(x)�/(x1)

⋮

/(x)�/(xn)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and UU� �

/(x1)�/(x1) ⋯ /(x1)�/(xn)
⋮ ⋱ ⋮

/(xn)�/(x1) ⋯ /(xn)�/(xn)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠:

Thus, the predictor (17) depends on the basis functions / only through the product of the
form /(x)�/(x′) for some x and x′. If we define a bivariate function K(x,x′) � /(x)�/(x′),
then the predictor (17) can be written as

f̂ (x) � k(x)�(K+ nλI)−1ȳ, (18)

where k(x) � (K(x,x1),: : : ,K(x,xn))� andK � (K(xi ,xi′ ))ni,i′�1. Hence, the predictor (17) is for-
mally identical to the GP regression predictor (13), provided that μ ≡ 0 and R � nλI, that is,
σ2(xi)=ri � nλ for all i � 1, : : : ,n.

This connection implies that the RLS method on linear basis function models may be inter-
preted, from a Bayesian perspective, as GP regression. That is, we impose on f a GP prior with
mean zero and covariance function K(x,x′) � /(x)�/(x′); moreover, the observation noise ε̄i
is Gaussian with variance nλ. In particular, with λ � 0, we obtain an equivalence between the
predictor (7) and the noise-free GP regression, which is also known as GP interpolation.

The converse way of interpretation—GP regression as RLS—is also available, but it in-
volves the theory of reproducing kernel Hilbert spaces, which is beyond the scope of this tuto-
rial. We refer interested readers to Kanagawa et al. [41].

2.5. Enhancing Surrogates with Auxiliary Information
So far we have treated the simulation model as a black box that performs nothing but transform-
ing inputs to (noisy) outputs. By doing so, we have implicitly assumed that the only data avail-
able when constructing a surrogate are simulation outputs. However, there possibly exists auxil-
iary information in practice that we can leverage, without much extra computational overhead,
to enhance the prediction capability of the surrogate.We present below two general approaches.

2.5.1. Enhancement with Stylized Models. Simulation models, by design, are used to
describe in detail the interactions between the components that constitute a complex stochas-
tic system. However, the main features of the same systemmay be captured by a stylizedmodel
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that yields analytical expressions for the performance measure of interest as a function of the
design variables, provided that sufficiently many simplifying assumptions are made.

Consider the following example in Shen et al. [73]. The patient flow through various medi-
cal units of a hospital is a complicated queueing network. The finite capacity of one medical
unit to accommodate patients often results in blocking patients from entering, making them
stay in the upstream medical units even if the service has been completed there, and possibly
creating further blocking. A stylized model—however crude it may appear—is to decompose
the network into isolated independent units by discarding the interactions and model each
unit as a multiserver queue. Performance measures such as mean length of stay can be derived
in closed form for the stylized model.

Stylized models are often used to gain insights into the inner workings of the stochastic sys-
tem of interest. But they can be easily incorporated to construct a surrogate for the simula-
tion model. Let ψ(x) denote the analytical expression derived from a stylized model. Then,
we may simply add ψ to the set of generic basis functions and use the augmented set either di-
rectly in linear basis function models or to construct the mean function for GPs.

The key idea here is that onemay use a crude—but computationally cheap otherwise—model
to capture the overall trend of the response surface. Conceivably, the residual after detrending
will have fewer variations, and thereby be easier to fit by a surrogate. Thus, the requirement for
ψ to possess an analytical expression can be relaxed as long as it can be computed sufficiently
fast, for example, from a low-fidelity simulationmodel. See Lin et al. [49] for more discussion.

2.5.2. Enhancement with Gradient Observations. Given simulation outputs for an in-
put value x, an estimate of the gradient of the response surface with respect to x can often be
obtained with a negligible additional computational burden. This kind of direct gradient esti-
mation—in contrast to finite-difference approximations—requires no resimulation and can be
achieved via infinitesimal perturbation analysis or the likelihood ratio/score function method
(L’Ecuyer [47]) in many simulation applications, including queueing systems (Fu [27]) and fi-
nancial engineering (Glasserman [30, chapter 7]).

Suppose that in addition to yi,ℓ, the observation of f (xi) for replication ℓ at point xi, we ob-
tain an unbiased estimate of ∂f (xi)

∂xj
, the partial derivative of f (xi) with respect to the jth coordi-

nate and denote it by gi,j,ℓ.
We first consider enhancing the linear basis function model with gradient observations. We

present below a formulation that generalizes the approach in Fu and Qu [28], which focuses
on linear regression models. By doing so, it can be unified with the approach in Chen et al.
[20] that enhances GP surrogates with gradient observations.

Assume f (x) � β�/(x) and /(x) is differentiable. Then, the gradient surface is
�f (x) � β��/(x). Furthermore, assume that for all i � 1, : : : ,n and ℓ � 1, : : : , ri,

yi,ℓ � β�/(xi) + εi,ℓ,

gi,j,ℓ � β� ∂/(xi)
∂xj

+ ζi,j,ℓ, j � 1, : : : ,d, (19)

where the vector of noise terms (εi,ℓ,ζi,1,ℓ, : : : ,ζi,d,ℓ) has a multivariate normal distribution
with mean vector 0 and covariance matrix V, but no dependence exists across i or ℓ. The
correlation between, say, εi,ℓ and ζi,j,ℓ stems from the fact that the gradient estimate gi,j,ℓ is
usually computed based on yi,ℓ. Moreover, we do not consider the use of common random
numbers here, which would introduce dependence across different design points.

Taking averages across replications in (19) results in

ȳ i � β�/(xi) + ε̄i,

ḡ i,j � β� ∂/(xi)
∂xj

+ ζ̄i,j , j � 1, : : : , d, (20)
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where ḡ i,j :� ri−1
∑ri

ℓ�1gi,j,ℓ and ζ̄i,j :� ri−1
∑ri

ℓ�1ζi,j,ℓ. Then, the system of equations (20) can be
viewed as a linear basis function model, with an augmented set of basis functions

/(x), ∂/(x)∂x1
, : : : , ∂/(x)∂xd

{ }
and a vector of outputs (ȳ i, ḡ i,1, : : : , ḡ i,d). Because of the existence of

correlations between the noise terms ε̄i, ζ̄i,1, : : : , ζ̄i,d, the OLS estimator of β is not statistically
efficient; that is, there exists another estimator with a smaller variance. Instead, it is recom-
mended to use the method of generalized least squares (GLS):

β̂GLS � arg min
β

(ȳ+ −U+β)�V−1(ȳ+ −U+)

� (U�
+V

−1U+)−1U�
+V

−1ȳ+,

where

ȳ+ �

ȳ1

ḡ1,1
⋮

ḡ1,d
⋮
ȳn

ḡn,1
⋮

ḡn,d

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

n(d+1) and Ū+ �

/(x1)�
∂/(x1)
∂x1

( )�
⋮

∂/(x1)
∂xd

( )�
⋮

/(xn)�
∂/(xn)
∂x1

( )�
⋮

∂/(xn)
∂xd

( )�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n(d+1)×p:

GP surrogates can also be enhanced with gradient observations. We briefly overview the ap-
proach proposed in Chen et al. [20], and refer to Qu and Fu [60] and Huo et al. [39] for further
developments.

Assume f (x) � β�/(x) +M(x), where M(x) is a zero-mean GP with covariance function
K(x,x′). Then, the observations of the response surface and its gradient satisfy

ȳ i � β�/(xi) +M(xi) + ε̄i,

ḡ i,j � β� ∂/(xi)
∂xj

+ ∂M(xi)
∂xj

+ ζ̄i,j, j � 1, : : : ,d, (21)

where the partial derivative of a GP ∂M(x)
∂xj

is defined in a mean-square sense. Under regularity

conditions, it can be shown that (M(x), ∂M(x)
∂x1

, : : : , ∂M(x)
∂xd

) forms a multioutput GP with mean
zero, and its covariance function can be derived explicitly by taking partial derivatives of
K(x,x′). The prediction can be made in closed form, but the formula is fairly involved so we
omit the details.

3. SO with Surrogates as Local Approximations
Based on convergence guarantees, SO algorithms may be classified into three categories: local-
ly convergent algorithms that converge to the set of local optimal solutions or stationary
points, globally convergent algorithms that converge to the set of global optimal solutions,
and heuristic algorithms that have no convergence guarantee. Although global convergence is
ideal, it is a global property; that is, it typically requires exploring the entire feasible region in
the limit. We will introduce many such algorithms in Section 4.

In many practical situations, however, the computational budget is limited and only allows
exploring a small proportion of the feasible region. In these situations, local convergence that
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requires only local information becomes more meaningful, and it may be practically tested
with a certain statistical guarantee; see, for instance, Bettonvil et al. [12] and Xu et al. [85].
One way to obtain the local information about a solution is through a local surrogate, which
allows the SO algorithm to check whether the solution is a local optimal solution and, if not,
identify a direction (or a region) where better solutions may be found.

For SO purposes, due to Taylor’s expansion, the most natural choices of local surrogates
are low-order polynomials (see Section 2.1), especially first- and second-order polynomials.
Response-surface methodology (RSM) is a collection of statistical methods that build on this
idea to solve stochastic optimization problems, which include SO problems. We review RSM
in Section 3.1. However, RSM often requires human involvement because it typically deals
with real experiments (such as agricultural or clinical experiments), so it is not particularly
suited for SO problems. The stochastic trust-region response-surface method (STRONG) of
Chang et al. [17] solves this problem by combing RSM with the trust-region method devel-
oped for deterministic nonlinear optimization. We review the STRONG and the related algo-
rithms in Section 3.2. Other than low-order polynomials, other types of local surrogates have
also been used in SO. We introduce the surrogate-based promising area search algorithm of
Fan and Hu [22] in Section 3.3.

3.1. Response-Surface Methodology
RSM was first developed by Box and Wilson [15] to optimize the operating conditions of a
chemical process. It has evolved into a major tool for optimizing real (i.e., nonsimulation) ex-
periments. According to Myers et al. [57, p. 1], RSM “is a collection of statistical and mathe-
matical techniques useful for developing, improving, and optimizing processes.” It typically in-
cludes two stages. In the first stage, it runs a number of experiments in a local region of the
current solution and builds a first-order surrogate in the form of

f (x) � β0 +
∑d
j�1

βjxj : (22)

Notice that Equation (22) implies that �f (x) � (β1,: : : ,βd)�. The surrogate essentially pro-
vides an ascent direction to allow RSM to find a better solution. Once it has a new solution, it
repeats the process to find a better solution iteratively until the first-order model is no longer
adequate. Then, RSM switches to the second stage, where it builds a second-order surrogate
in the form of Equation (3) to locate the optimal solution.

Because RSM is typically used for expensive real experiments (or simulation experiments
that are slow to run), large-sample properties, for example, convergence or rate of conver-
gence, are typically not considered in the literature, and the focus is mainly on statistical is-
sues, such as the design of experiments (DOE) to efficiently estimate the surrogates and the
tests of model inadequacy and optimality (Myers et al. [57]). For instance, there are d + 1 and
d(d + 1)=2+ 1 parameters in the first- and second-order models, respectively. Different DOE
schemes are proposed to reduce the required number of experiments to appropriately estimate
these parameters (Kleijnen [45]).

RSM has also become a popular heuristic tool for SO (Hood and Welch [36], Kleijnen [44]),
especially when the simulation experiments are time-consuming. Much has been developed to
understand how simulation experiments impact the statistical properties of RSM. For in-
stance, Schruben and Margolin [69] study how the use of common random numbers impacts
the fitting of polynomials; Angün et al. [3] consider stochastic constraints; and Bettonvil et al.
[12] develop tests of the Karush–Kuhn–Tucker conditions.

3.2. Stochastic Trust-Region Response-Surface Method
Although RSM is a popular tool for SO, it has several problems, especially when simulation
experiments are relatively fast (so that a large number of experiments may be conducted) and
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simulation noise is significant. First, it requires human involvement. For instance, in each it-
eration of the RSM, a surrogate needs to be optimized in a local region, but the local regions
are determined by experimenters based on their experience. Moreover, the transitions be-
tween first- and second-order models typically also depend on human experience, and it is not
clear whether a second-order model may transition back to a first-order model if it is found in-
adequate due to the simulation noise. Second, it is not clear whether the RSM algorithms
have any convergence guarantees. This is a relevant question, especially when the number of
simulation experiments becomes large.

Chang et al. [17] propose the STRONG algorithm, which combines the trust-region method
of deterministic nonlinear optimization with the RSM framework to solve the two problems
of RSM. In any iteration, say, iteration k, let xk and Δk denote the current solution and the
size of the trust region. STRONG conducts the following four steps:

Step 1. Construct a local model rk(x) around the current solution x. If Δk ≥ Δ̃, where Δ̃
is a threshold, rk(x) is a first-order model; otherwise, rk(x) is a second-order model.

Step 2. Solve x∗
k ∈ arg max{rk(x) : x ∈ B(xk,Δk)}, where B(xk,Δk) denotes a d-dimensional

ball centered at xk with a radius Δk, which is the trust region at iteration k.
Step 3. Simulate a number of observations at x∗

k and estimate f (x∗
k).

Step 4. Conduct the sufficient-reduction and ratio-comparison tests to update xk+1 and Δk.

In the algorithm, the sufficient-reduction test conducts new simulation experiments to test
whether x∗

k is statistically significantly better than xk. If it is not, then the current solution is
not updated, that is, xk+1 � xk, and the trust region shrinks, that is, Δk+1 � γ1Δk where 0 <
γ1 < 1 is a constant. If x∗

k passes the sufficient-reduction test, then the algorithm moves to the
ratio-comparison test, which computes

ρk �
f̄ k(x∗

k) − f̄ k(xk)
rk(x∗

k) − rk(xk) ,
where f̄ k(x∗

k) and f̄ k(xk) are the estimated objective values (using simulation experiments) at
x∗
k and xk, respectively. Notice that ρk denotes the ratio between the actual observed im-

provement and the predicted improvement. Let 0 < η0 < η1 < 1 be two thresholds. If ρk ≥ η1,
which implies that the local model works well, the algorithm then moves the current solution
to the new solution, that is, xk+1 � x∗

k, and enlarges the size of the trust region, that is, Δk+1 �
γ2Δk where γ2 > 1 is a constant. If η0 ≤ ρk < η1, which implies that the local model has some
predictive power, the algorithm updates the new solution, that is, xk+1 � x∗

k, but keeps the
size of the trust region, that is, Δk+1 � Δk. If ρk < η1, which implies that the local model works
poorly, the algorithm keeps the current solution, that is, xk+1 � xk, and shrinks the size of the
trust region, that is, Δk+1 � γ1Δk.

Notice that the STRONG algorithm uses the trust region as the local region and its size Δk

is adaptively updated based on the sufficient-reduction and ratio-comparison tests. Further-
more, the transitions between first- and second-order models are based on the size of the trust
region Δk. If it is larger than the threshold Δ̃, a first-order model is used; otherwise, a second-
order model is used. This transition rule allows the algorithm to transition between the two
models in both directions. Therefore, the algorithm gets rid of the human involvement that is
necessary for typical RSM algorithms. Furthermore, Chang et al. [17] show that, under cer-
tainly technical conditions on the estimated surrogates, the STRONG algorithm converges to
a stationary point of the original SO problem.

The use of the trust-region method in SO has also been studied by others. For instance,
Deng and Ferris [21] combine it with the sample-average approximation to solve SO prob-
lems; Shashaani et al. [72] integrate it into a derivative-free algorithm to solve SO problems;
and Mathesen et al. [55] use it with a restart approach to design a globally convergent SO al-
gorithm. The STRONG algorithm has also been extended by Chang et al. [18] to include a
screening stage so that it may solve large-scale SO problems with hundreds of dimensions.
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3.3. Surrogate-Based Promising Area Search
In Sections 3.1 and 3.2, we introduced the RSM and STRONG algorithms. Both of them
build low-order polynomials as local surrogates and use these models to guide the optimiza-
tion process. In this subsection, we introduce the surrogate-based promising area search
(SPAS) algorithm of Fan and Hu [22], which allows the use of any interpolation surrogates,
for example, kriging, splines, or radial basis functions.

Unlike RSM and STRONG, SPAS fits a global surrogate in each iteration. However, as
Fan and Hu [22, p. 678] pointed out, “the use of the surrogate model in our approach [i.e.,
SPAS] is not intended to provide a global fit of the underlying response surface, but rather
aims to accurately predict the objective function values at unsampled points within the cur-
rent search area.” That is why we also include SPAS in Section 3, which focuses on SO algo-
rithms with local surrogate approximations.

In each iteration, SPAS consists of the following four steps:

Step 1. Construct the most promising area (MPA), and sample a set of candidate solu-
tions from it.

Step 2. Estimate the objective values of all visited solutions using a shrinking-ball meth-
od, which averages the samples in a d-dimensional ball centered at the solution.

Step 3. Build a surrogate that interpolates all these solutions.
Step 4. Find the optimal solution of the surrogate within the MPA.

Besides the use of surrogates, SPAS also integrates several other critical ideas of SO. The
shrinking-ball method of estimating the function value at any solution was first introduced by
Baumert and Smith [9], and it has been studied and applied by Andradóttir and Prudius [2]
and Kiatsupaibul et al. [42]. The concept of the MPA was first proposed by Hong and Nelson
[33] in their COMPASS algorithm, which solves DOvS problems. Hong and Nelson [34] fur-
ther extend the idea into a general DOvS framework. By combining surrogate modeling, the
shrinking-ball method and the MPA, SPAS is proved to converge to the set of local optimal
solutions if the objective function is Lipschitz continuous.

4. SO with Surrogates as Global Approximations
There are mainly two strategies for using global surrogates such as linear basis function mod-
els and GPs to solve a continuous SO problem, depending on whether the design points X �
{x1, : : : ,xn} are chosen in a static fashion or a sequential one.

The former means that X is determined—once and for all—prior to any simulation experi-
ments. With no observations of the response surface being available, a primary design principle
of X is to cover the design space as much as possible so that most part of the response surface
can be recovered after the observations are obtained. Typical experimental designs include lat-
tice designs and space-filling designs, and we refer to Santner et al. [68, chapter 5] for details.
Given X , one runs simulation at each design point, possibly multiple times, fits a surrogate
with the observations, and then optimizes the predicted surface f̂ (x) induced by the surrogate.
Being a deterministic function, f̂ (x) can be optimized with any numerical optimization algo-
rithms (Nocedal and Wright [59]). We refer to Barton and Meckesheimer [8] for more discus-
sion on the use of global surrogates in conjunction with static experimental designs.

Recent advances in SO with surrogates as global approximations are dominated by sequen-
tial experimental designs—design points are determined one at a time after each new observa-
tion of the response surface is made. Each new design point is selected based on (i) the updated
surrogate reflecting the previous observations and (ii) certain criteria that balance exploration
and exploitation. By exploration, we mean searching the part of the design space that has
much uncertainty; by exploitation, we mean searching the area in the proximity of the current
best solution. The need for quantifying the uncertainty about the response surface renders
GPs the most popular class of surrogates. (Recall that posterior distributions of a GP can be
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derived in closed form and the computation is reduced to linear algebra.) This line of research
is closely related to Bayesian optimization (Frazier [25], Shahriari et al. [71]) in the machine
learning literature, where a primary motivation is hyperparameter tuning of sophisticated
machine learning algorithms/models (Feurer and Hutter [23]). We introduce below three rep-
resentative examples of such methods: knowledge gradient (KG; Scott et al. [70]), upper confi-
dence bound (UCB; Srinivas et al. [77]), and GP-based search (GPS; Sun et al. [79]). All three
methods share the following structure, procedure-wise:

Step 1. Impose a GP prior on f.
Step 2. Select the next batch of design points subject to a prescribed “criterion” that is

computed using the current belief about f.
Step 3. Run simulation experiments at each of the newly selected design points.
Step 4. Update the GP posterior given the new observations of f via Equations (11) and (12).
Step 5. Repeat Steps 2–4 until the simulation budget is exhausted.
Step 6. Optimize the posterior mean function and return the optimum as a solution to

Problem (1).

As demonstrated below, GP-based sequential methods for continuous SO problems mainly
differ in how to define the criterion in Step 2 for selecting new design points.

4.1. Knowledge Gradient
The knowledge gradient method was originally proposed to solve R&S problems (Frazier et al.
[24, 26]). The method was generalized in Scott et al. [70] to cover continuous SO problems.

Suppose that simulation experiments have been made at {x1, : : : ,xn} with one replication
each, generating observations yi � f (xi) + εi, i � 1, : : : ,n. We are interested in selecting the
next design point xn+1. Let Dn � {(xi,yi) : i � 1, : : : ,n}. Let μn and Kn be the posterior mean
and covariance functions of f conditional on D. Following Equations (11) and (12), it can be
shown that μn and Kn satisfy the following updating scheme:

μn+1(x) � μn(x) + δn(x,xn+1)Zn+1, (23)

Kn+1(x,x′) �Kn(x,x′) − δn(x,xn+1)δn(x′,xn+1), (24)

where

Zn+1 :� yn+1 −μn(xn+1)���������������������������������
Kn(xn+1,xn+1) + σ2(xn+1)

√ and δn(x,v) :� Kn(x,v)����������������������
Kn(v,v) + σ2(v)√ ;

moreover, Zn+1 is a standard normal random variable conditional on Dn.
The KG method selects xn+1 � arg maxx∈XKGn(x), where

KGn(x) :� E max
u∈X

μn+1(u) −max
u∈X

μn(u) |Dn,xn+1 � x
[ ]

: (25)

The interpretation of KGn(x) is as follows. If our simulation budget were exhausted after col-
lecting data Dn, then we would use maxuμn(u) to estimate the maximum value of f. However,
now that we are allowed to run one more simulation experiment at xn+1, the posterior mean
function will become μn+1(·) in Equation (23) after the new data point (xn+1,yn+1) is obtained.
Thus, the increment in the estimated maximum value of f is maxuμn+1(u) −max uμn(u). Be-
fore the simulation is run at xn+1, this increment is a random variable conditional on Dn, and
its distribution is determined by the standard normal random variable Zn+1 in Equation (23).

There are several approaches for the numerical maximization of KGn(x). Scott et al. [70]
propose maximizing

K̃Gn(x) :� E max
1≤i≤n+1μn+1(xi) − max

1≤i≤n+1μn(xi) |Dn,xn+1 � x
[ ]

,
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a discrete proxy of KGn(x), because K̃Gn(x) and its gradient with respect to x can both be
computed explicitly.

A second approach to solving maxxKGn(x) is to view it as a stochastic optimization prob-
lem, in which the only random variable involved is the standard normal Zn+1. Then, one may
apply sample average approximation (Kim et al. [43]) by simulating realizations of Zn+1.

Yet another approach, proposed in Wu and Frazier [84], is to apply stochastic approxima-
tion (Chau and Fu [19]). Note that under mild regularity conditions,

�xKGn(x) � �xE max
u∈X

μn+1(u) −max
u∈X

μn(u) |Dn,xn+1 � x
[ ]

� E �x max
u∈X

μn+1(u) |Dn,xn+1 � x
[ ]

:

Hence, �xmaxu∈Xμn+1(u) is an unbiased estimator of �xKGn(x), and it can be computed by
applying the envelope theorem (Milgrom and Segal [56]).

4.2. Upper Confidence Bound
Upper confidence bound methods are a celebrated class of methods for multiarmed bandit
(MAB) problems. Similar to R&S problems, MAB problems are also concerned with finding
the optimal among a finite set of alternatives with unknown performances/rewards. A key dif-
ference between the two classes of problems lies in the objective. Basically, the MAB problem
can be viewed as an online decision-making problem that aims to maximize the cumulative re-
wards collected over the entire time horizon; in contrast, R&S is more of an offline problem
and focuses on the final reward collected at the end of the time horizon. We refer to Slivkins
[75] and Auer [5] for introductions to MAB problems and UCB-type algorithms, respectively.

Srinivas et al. [77] generalize UCB to the setting of optimizing a GP sample path. The gen-
eral structure of the GP-UCB method is basically the same as that of the KG method, except
that the next design point is selected as xn+1 � arg maxx∈XUCBn(x), where

UCBn(x) :� μn(x) +
���������������
γnKn(x,x)

√
, (26)

and γn > 0 is a tuning parameter that should grow as a function of n. The form of UCBn(x)
clearly shows the trade-off between exploration and exploitation. A potential design point x
is favored if either μn(x) is large (exploitation) or Kn(x,x) is large (exploration).

Evidently, UCBn(x) is much easier to maximize than KGn(x), as the former involves no ex-
pectation. Nevertheless, a potential downside of the GP-UCB method is that its performance
depends critically on the choice of γn. It might be tempting to make γn grow at a rate of
ln (n), which is both a typical choice for MAB problems (Auer [5]) and the choice analyzed in
Srinivas et al. [77]. However, such a choice is recommended with the aim of maximizing the
cumulative reward of the form

∑n
i�1f (xi). There may conceivably exist a better guideline for

setting γn for Problem (1). This issue is yet to be addressed.

4.3. GP-Based Search
Random search algorithms are a general class of algorithms for SO that sample randomly a
number of design points in each iteration of the algorithm based a sampling distribution that
may be updated based on all information collected through the optimization process. Random
search algorithms are most popular for DOvS problems, but they have also been developed to
solve continuous SO problems; see, for instance, the recent reviews of Hong et al. [35] and
Andradóttir [1]. One of the critical issues in developing random search algorithms is how to
design a sampling distribution that automatically balances exploration and exploitation. As
pointed out earlier in this section, GP is capable of quantifying the uncertainty of the response
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surface. Therefore, it can be used to facilitate the design of good sampling distributions, which
is the basic idea of the GPS algorithm of Sun et al. [79].

Sun et al. [79] note that the posterior mean function μn(x) and the posterior variance func-
tion σ2n(x) �Kn(x,x) of Equations (11) and (12) provide information on exploitation and ex-
ploration, respectively. In particular, higher mean values indicate the region needs more ex-
ploitation, and higher variance values indicate the region needs more exploration. Therefore,
the GPS algorithm uses the following sampling distribution:

h(x) � Pr {Z(x) > c}∑
z∈XPr{Z(z) > c} ,

where X is a finite set of discrete solutions, c is set as the current estimated optimal value, and
Z(x) follows a normal distribution with mean μn(x) and variance σ2n(x) for any x ∈ X. Notice
that the sampling distribution combines both the mean and variance information and balan-
ces exploration and exploitation seamlessly.

To use the sampling distribution there are two remaining issues. The first is how to sample
from the distribution. Notice that the denominator of h(x) involves a summation that is typical-
ly difficult to compute. Sun et al. [79] solve the problem by developing an acceptance–rejection
algorithm and aMarkov chainMonte Carlo algorithm to sample from the distribution.

The second issue is the calculation of μn(x) and σ2n(x) using Equations (11) and (12). Notice
that the calculation involves a matrix inversion. When the number of design points is large, this
calculation is time-consuming. Furthermore, when the design points are close to each other
(which is common in later iterations of the algorithm when it focuses more on exploiting the
good regions), the matrix is often ill conditioned and the inversion becomes difficult. To solve
the problem, the GPS algorithm takes a very pragmatic view toward the GP. Instead of consid-
ering the objective value as a sample path from the GP, as in Bayesian optimization algorithms,
the GPS algorithm only treats it as a surrogate approximation that facilitates the generation of
good sampling distributions. It proposes the following GP to model the objective function:

f (x) �M(x) +λ(x)�(ȳ −M) +λ(x)�E, (27)

where M(x) is an unconditional GP, λ(x) � (λ1(x),: : : ,λn(x))� is a vector of weight functions,
M � (M(x1),: : : ,M(xn))� is a vector of M(x) evaluated at x1, : : : ,xn, and E � (ε1,: : : ,εn)� is
an n-dimensional random vector following a multivariate normal distribution with the mean
0 and covariance matrix R, which is the n-by-n diagonal matrix with the ith diagonal element
being σ2(xi)=ri. Furthermore, in Equation (27), M(x) and E are independent of each other
and ȳ is considered deterministic when building the model.

Let μ̃n(x) and σ̃2
n(x) denote the mean and variance functions of the new GP model. When

the weight function vector λ(x) is continuous in x and it satisfies λi(x) ≥ 0,
∑n

i�1λi(x) � 1
and λi(xj) � 1{xi � xj}, where 1{·} is the indicator function, Sun et al. [79] show that

μ̃n(x) � λ(x)�ȳ,
σ̃2
n(x) �K(x,x) − 2λ(x)�k(x) +λ(x)�(K+R)λ(x):

Then, both μ̃n(x) and σ̃2
n(x) may be calculated directly without matrix inversion. Further-

more, Sun et al. [79] show that μ̃n(x) interpolates all design points through their sample
means, that is, μ̃n(xi) � ȳ i for all i � 1, : : : ,n, and μ̃n(x) and σ̃2

n(x) capture the information of
exploitation and exploration and, therefore, can be used to construct the sampling distribu-
tion in the GPS algorithm.

The GPS algorithm has global convergence (Sun et al. [79]). However, it is designed to solve
DOvS problems. Sun et al. [80] extend it to solve continuous SO problems and proved its
global convergence. To further simplify the sampling process, Sun et al. [80] propose to ap-
proximate the sampling distribution by a Gaussian mixture model that can be sampled easily,
and show that the resulting algorithm is still globally convergent.
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5. Computation for Large Data Sets
We have taken it for granted thus far in this tutorial that surrogates are computationally
fast, and rightly so in light of their analytical tractability. However, this postulate is chal-
lenged when the number of design points is large because it usually involves numerically in-
verting a large matrix to process the simulation data {(xi, ȳ i) : i � 1, : : : ,n}; see, for example,
Equation (7) for linear basis function models, as well as Equations (11) and (12) for GPs. It is
well known that the time complexity for matrix inversion scales as O(n3) in general. As n
grows, surrogates are increasingly demanding in computation and eventually become even
more expensive than the simulation model that they aim to approximate in the first place
(Huang et al. [38], Salemi et al. [67], Sun et al. [79]).

The need for processing large data sets calls for approximation methods to reduce the com-
putational burden caused by numerical inversion of large matrices. There exists a huge litera-
ture on approximate computation for GP regression; see Liu et al. [51] for a recent survey. We
present two popular methods—the Nyström method and random features. Both methods
have drawn substantial interest in recent years.

5.1. The Nyström Method
A central idea to mitigate the challenge of computing (K+R)−1 is to find a low-rank approxi-
mation of K. In particular, consider a rank-m matrix of the form K̃ �UCV, where
U ∈ R

n×m, C ∈ R
m×m, and V ∈ R

m×n with m < n. If C is invertible, the Woodbury matrix
identity (Horn and Johnson [37, p. 19]) asserts that

(K+R)−1 ≈ (K̃ +R)−1 � R−1 −R−1U(C−1 +VR−1U)−1VR−1: (28)

Then, the computational bottleneck has been transformed to the inversion of smaller, m-by-m
matrices. (The inversion of R is easy because it is a diagonal matrix.)

For ease of presentation, let I � {1, : : : ,n} and A ⊂ I be a subset of size m, which is also
called the active set of indices. The Nyström method was originally devised to approximate
the eigenfunctions of a covariance function K(·, ·); see, for example, Williams and Seeger [83].
It suggests the following low-rank approximation of the covariance matrixK:

K̃ �Kn,mK−1
m,mKm,n, (29)

where Kn,m :� (K(xi ,xi′ ))i∈I ,i′∈A, Km,m :� (K(xi ,xi′ ))i∈A,i′∈A, and Km,n :� (K(xi ,xi′ ))i∈A,i′∈I .
Then, the posterior mean function in Equation (11) can be approximated by replacing K
with K̃:

E[ f (x) |Dn]
≈ μ(x) +k(x)�(K̃ +R)−1(ȳ −µ)
� μ(x) +k(x)�R−1(ȳ −µ) − k(x)�R−1Kn,m(Km,n +Km,nR

−1Kn,m)−1Km,nR
−1(ȳ −µ), (30)

where the last step follows from (28). Despite its long expression, the approximation (30) can
be computed in time O(m2n). In addition, the posterior covariance function in Equation (12)
can be approximated in a similar fashion:

Cov[f (x), f (x′) |Dn]
≈K(x,x′) −k(x)�(K̃ +R)−1k(x′)
�K(x,x′) −k(x)�R−1k(x′) + k(x)�R−1Kn,m(Km,n +Km,nR

−1Kn,m)−1Km,nR
−1k(x′), (31)

whose time complexity is also O(m2n).
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However, there is a caveat in the above use of the low-rank approximation (29); that is, us-
ing (31) to approximate the posterior variance Var[ f (x) |Dn] � Cov[f (x), f (x) |Dn] may yield
a negative value. A better implementation of the Nyström method is to construct a covari-
ance function K̃ (·, ·) to systematically replace the occurrences of K(·, ·).

Specifically, define K̃ (x,x′) :� km(x)�K−1
m,mkm(x′), where km(x) ∈ R

m is the vector com-
posed of K(x,xi) for all i ∈ A. It is easy to show that (i) K̃ is a covariance function and (ii)
the covariance matrix associated with evaluating K̃ at {x1, : : : ,xn} is identical to K̃ in Equa-
tion (29). Let f̃ denote a GP with mean function μ and covariance function K̃ . Then, we can
use the posterior distribution of f̃ to approximate that of f. This treatment is adopted by
Smola and Schölkopf [76] and Rudi et al. [64]; see also Lu et al. [52] for recent advances. It
contrasts the approximations (30) and (31), which simply replace the occurrences of K in the
posterior distribution of f with K̃.

In particular, it can be shown (see Appendix A) that

E[f̃ (x) |Dn] � μ(x) + km(x)�(Km,m +Km,nR
−1Kn,m)−1Km,nR

−1(ȳ − µ), (32)

Cov[f̃ (x), f̃ (x′) |Dn] � K(x,x′) − km(x)�(Km,m +Km,nR
−1Kn,m)−1km(x′), (33)

both of which can be computed with time complexity O(m2n). We stress, nonetheless, that
(32) and (33) are not identical to (30) and (31).

At last, we briefly comment on choosing m and A. Although theoretical analysis may relate
the accuracy of the approximation with the asymptotic order of magnitude of m relative to n,
in practice, m is usually viewed as a tuning parameter. One may gradually increase the value
of m, evaluate the resulting accuracy of the approximation, and stop when the marginal im-
provement falls below some prescribed threshold; see more discussion in Lu et al. [52]. Given
m, Amay be determined by random sampling from the entire set of indices {1, : : : ,n}.

5.2. Random Features
Random features represents a large class of algorithms for approximating covariance func-
tions (Liu et al. [50]). We introduce below the original version, called random Fourier features
(RFF). It was proposed in Rahimi and Recht [61]—the seminal work that gives rise to this re-
search direction.

Similar to the Nyström method, RFF also seeks to construct another covariance function
K̃ that yields a low-rank approximation to the covariance matrix K to accelerate computa-
tion. However, the approximation that RFF constructs is data independent; that is, it does
not depend on the design points {x1, : : : ,xn}. This is in contrast to the Nyström method, for
which the approximations are defined through the design points in the active set.

RFF applies particularly to stationary covariance functions, including both the Gaussian
and Matérn classes. If K is stationary covariance function, then Bochner’s theorem (Stein
[78, p. 24]) asserts that it can be represented as the Fourier transform of a nonnegative
finite measure:

K(x,x′) � K(0,0)
∫
R

d
ei ω

�(x−x′)p(dω), (34)

where p(·) is a probability measure on R
d. For example, if K is the Gaussian covariance func-

tion in Equation (8), then p(·) corresponds to the multivariate normal distribution with mean
vector 0 and covariance matrix η−2I. More examples of the (K,p) pair can be found in Liu
et al. [50].

Because K(x,x′) is real valued, we may discard the imaginary part on the right-hand side
of Equation (34). Thus,

K(x,x′) �K(0,0)
∫
R

d
cos ω�(x− x′)( )

p(dω):
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Furthermore, ifω ∈ R
d is a random vector having distribution p, then

K(x,x′) �K(0,0)Eω cos ω�(x− x′)( )[ ]
�K(0,0)Eω,b

��
2

√
cos ω�x+ b

( ) ��
2

√
cos ω�x′ + b

( )[ ]
, (35)

where b is an independent random variable uniformly distributed on (0, 2π). The proof of
Equation (35) is provided in Appendix B.

We then apply the standard Monte Carlo approximation:

K(x,x′) ≈ K(0,0) · 1
m

∑m
t�1

��
2

√
cos ω�

t x + bt
( ) ��

2
√

cos ω�
t x

′ + bt
( )

�
������������
2K(0,0)

m

√
cos ω�

1 x + b1
( )

⋯

������������
2K(0,0)

m

√
cos ω�

mx + bm
( )( )

������������
2K(0,0)

m

√
cos ω�

1 x
′ + b1

( )
⋮������������

2K(0,0)
m

√
cos ω�

mx
′ + bm

( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:� /m(x)�/m(x′) :� K̃ (x,x′),

where {ωt : t � 1, : : : ,m} are independent samples drawn from p, and {bt : t � 1, : : : ,m} are in-
dependent samples drawn from Uniform(0, 2π). It is easy to show that K̃ is a covariance
function.

Note that, in light of the discussion in Section 2.4, /m(x) can be view as a vector of basis
functions—also known as features in the machine learning literature—and they are con-
structed via random sampling, hence the method’s name, “random features.”

Let K̃ :� (K̃ (xi ,xi′ ))ni,i′�1. Then,

K̃ �
/m(x1)�

⋮
/m(xn)�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ /m(x1) ⋯ /m(xn)( ) :�UmU

�
m:

BecauseUm is an n-by-m matrix, K̃ is a low-rank approximation of the covariance matrix K,
provided thatm < n. In addition, let f̃ ~GP(μ, K̃ ). We prove in Appendix B that

E[f̃ (x) |Dn] � μ(x) +/m(x)�(I+U�
mR

−1Um)−1U�
mR

−1(ȳ −µ), (36)

Cov[f̃ (x), f̃ (x′) |Dn] �K(x,x′) −/m(x)�(I+U�
mR

−1Um)−1/m(x′): (37)

Similar to the Nyström approximations (32) and (33), the time complexity for computing
(36) and (37) is also O(m2n).

6. Concluding Remarks
We have introduced several common surrogates—low-order polynomials, linear basis function
models, and Gaussian processes—along with simple techniques to enhance their prediction ca-
pability with little additional computational overhead. With the use of these surrogates, we
have presented a number of approaches to solving SO problems with continuous decision vari-
ables, some of which (RSM, STRONG, SPAS) are locally convergent and others (KG,
GP-UCB, GPS) globally convergent. Moreover, we have discussed two widely popular meth-
ods—the Nyström method and random features—for dealing with computational challenges
associated with Gaussian processes in the presence of large data sets.
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Looking forward, we believe the following research directions are potentially fruitful and of
high impact. First, an ideal SO algorithm in our minds would be able to quickly identify most
local optima and then select the best among them. In contrast, it is often observed in practice
that globally convergent methods such as those introduced in this tutorial tend to
“overexplore”—direct sampling efforts away from the proximity of a local optimum without
realizing it. Lack of gradient information to provide local curvature of the response surface,
among others, is an important reason. It is of great interest to develop algorithms that inte-
grate local search and global search to ensure fast convergence to global optima.

Second, another plausible approach to accelerating convergence to global optima is to incor-
porate structural information—such as monotonicity, convexity, and level of differentiabili-
ty—provided that one can safely impose such assumptions on the response surface. Surrogates
that process such properties do exist (Lim and Glynn [48], Salemi et al. [66], Wang and Berger
[82]), but how to leverage them to develop fast SO algorithms is yet to be fully investigated.
See Zhang et al. [86] and Zhang et al. [87] for recent developments in this regard.

Third, most theoretical analyses of SO algorithms in the literature focus on proving conver-
gence to a local/global optimum as the computational budget grows. Such asymptotic analy-
sis can hardly explain the algorithms’ performance in finite time, nor can it provide accurate
guidance for performance tuning in practice. Little is known about their rates of convergence.
Notable exceptions include Bull [16] and Bouttier and Gavra [14]. The former establishes the
rate of convergence for efficient global optimization algorithms (Jones et al. [40]), and the lat-
ter for simulated annealing algorithms (Gelfand and Mitter [29]). In general, deeper theoreti-
cal understanding of SO algorithms is strongly needed to fill the gap, which may shed light on
critical attributes required for improving algorithm efficiency.

Fourth, in Section 3.2, we introduced the STRONG algorithm, which integrates low-order
polynomial surrogates with trust-region methods. Even though there are a number of papers
taking this approach, we think it is understudied and has a potential to solve large-scale SO
problems. To build a full quadratic model, one needs at least d(d + 1)=2+ 1 design points, and
each design point may need more than one replication of the simulation experiments in order
to take into consideration the simulation noise. If one needs to conduct these many experi-
ments in each iteration, it may be too costly. One way that may solve the problem is to use
L1-regularization, also known as LASSO, in the regression to select the most important pa-
rameters of the quadratic model with far fewer experiments (Tibshirani [81]). Notice that
these selected parameters include an important part of the ascent and curvature information
and one may use this partial information to guide the optimization process. Even though we
think the idea of adding L1-regularization into the trust-region framework has great potential
for SO, it is quite challenging to design efficient algorithms and to analyze their asymptotic
properties, for example, convergence and rate of convergence.

Fifth, running simulation experiments is often time-consuming. But different simulation
experiments are typically independent and they can be run on different processors. Therefore,
it is natural to think how to design SO algorithms that work well in parallel computing envi-
ronments. Recently, Luo et al. [53], Ni et al. [58], Zhong and Hong [88], and others have devel-
oped parallel algorithms for R&S problems. Wu and Frazier [84] also developed parallel
knowledge gradient algorithms for Bayesian optimization. However, we believe there are still
many opportunities in developing efficient surrogate-based parallel SO algorithms.

Last but not the least, in the present era of big data, an emerging decision-making para-
digm that has gained great popularity in recent years is optimization with covariates. That is,
the optimal decision is no longer constant, but varies as a function of the covariates that rep-
resent the additional contextual information available at the moment of making a decision;
see, for example, Ban and Rudin [6], Bertsimas and Kallus [10], and Bertsimas and Koduri
[11]. However, these articles focus on settings where the objective functions are analytically
tractable. Shen et al. [74] addresses the problem of R&S with covariates, assuming the
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response surface for each alternative is a linear function in the covariates. We expect much
more to be explored in the direction of SO with covariates for years to come.

Appendix A. Proofs Related to the Nyström Method

Let K̃ (x,x′) :� km(x)�K−1
m,mkm(x′), k̃(x) :� (K̃ (x,x1),: : : ,K̃ (x,xn))�, and Q :�Km,m +Km,nR−1Kn,m.

Then,

k̃(x)�(K̃ +R)−1 � km(x)�K−1
m,mKm,n(Kn,mK−1

m,mKm,n +R)−1
� km(x)�K−1

m,mKm,n[R−1 −R−1Kn,m(Km,m +Km,nR
−1Kn,m)−1Km,nR

−1] (A.1)

� km(x)�K−1
m,m(Km,nR

−1 −Km,nR
−1Kn,mQ−1Km,nR

−1)
� km(x)�K−1

m,m(I−Km,nR
−1Kn,mQ−1)Km,nR

−1

� km(x)�K−1
m,m(Q−Km,nR

−1Kn,m)Q−1Km,nR
−1

� km(x)�Q−1Km,nR
−1, (A.2)

where Equation (A.1) follows from the Woodbury matrix identity.
Applying Equation (11) to f̃ ~GP(μ, K̃ ), we have

E[f̃ (x) |Dn] � μ(x) + k̃(x)�(K̃ +R)−1(ȳ −µ)
� μ(x) +km(x)�Q−1Km,nR

−1(ȳ −µ)
� μ(x) +km(x)�(Km,m +Km,nR

−1Kn,m)−1Km,nR
−1(ȳ −µ),

where the second equation follows from (A.2). This completes the proof of Equation (32).
Also by Equation (A.2),

k̃(x)�(K̃ + R)−1k̃(x′) � km(x)�Q−1Km,nR
−1k̃(x′)

� km(x)�Q−1Km,nR
−1Kn,mK−1

m,mkm(x′):
It follows that, after applying Equation (12) to f̃ ~GP(μ, K̃ ),

K(x,x′) −Cov[f̃ (x), f̃ (x′) |Dn] � k̃(x)�(K̃ +R)−1k̃(x′)
� km(x)�K−1

m,mkm(x) −km(x)�Q−1Km,nR
−1Kn,mK−1

m,mkm(x′)
� km(x)�(I−Q−1Km,nR

−1Kn,m)K−1
m,mkm(x′)

� km(x)�Q−1(Q−Km,nR
−1Kn,m)K−1

m,mkm(x′)
� km(x)�Q−1km(x′)
� km(x)�(Km,m +Km,nR

−1Kn,m)−1km(x′),
proving Equation (33).

Appendix B. Proofs Related to Random Features

Suppose b ~ Uniform(0,2π). Then, for any a ∈ R,

Eb[cos (a+ 2b)] �
∫ 2π

0

cos (a+ 2b)
2π

db � 1
2π

sin (a+ 2b)
∣∣∣2π
b�0

� 1
2π

[sin (a+ 4π) − sin (a)] � 0:

Thus,

Eω,b[cos (ω�(x + x′) + 2b)] � Eω[Eb[cos (ω�(x + x′) + 2b) |ω]] � 0:

It follows that

Eω,b[cos (ω�(x − x′))] � Eω,b[cos (ω�(x + x′) + 2b)] + Eω,b[cos (ω�(x − x′))]
� Eω,b[cos ((ω�x + 2b) + (ω�x′ + 2b))] + Eω,b[cos ((ω�x + 2b) − (ω�x′ + 2b))]
� Eω,b[2cos (ω�x + b)cos (ω�x′ + b)],

proving Equation (35).
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We now prove Equations (36) and (37), following the strategy in Appendix A. Let K̃ (x,x′) :�
/m(x)�/m(x′) and Q :� I+U�

mR
−1Um. The key is to derive k̃(x)�(K̃ +R)−1 as follows:

k̃(x)�(K̃ +R)−1 � /m(x)�U�
m(UmU

�
m +R)−1

� /m(x)�U�
m[R−1 −R−1Um(I+U�

mR
−1Um)−1U�

mR
−1]

� /m(x)�(U�
mR

−1 −U�
mR

−1UmQ−1U�
mR

−1)
� /m(x)�(I−U�

mR
−1UmQ−1)U�

mR
−1

� /m(x)�(Q−U�
mR

−1Um)Q−1U�
mR

−1

� /m(x)�Q−1U�
mR

−1:

The remaining calculations are essentially the same as those in Appendix A, so we omit them.
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