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W e study a dynamic pricing problem where the observed cost in each selling period varies from period to period, and the
demand function is unknown and only depends on the price. The decision maker needs to select a price from a menu

of K prices in each period to maximize the expected cumulative profit. Motivated by the classical upper confidence bound
(UCB) algorithm for the multi-armed bandit problem, we propose a UCB-Like policy to select the price. When the cost is a con-
tinuous random variable, as the cost varies, the profit of the optimal price can be arbitrarily close to that of the second-best
price, making it very difficult to make the correct decision. In this situation, we show that the expected cumulative regret of
our policy grows in the order of (log T)2, where T is the number of selling periods. When the cost takes discrete values from a
finite set and all prices are optimal for some costs, we show that the expected cumulative regret is upper bounded by a con-
stant for any T. This result suggests that in this situation, the suboptimal price will only be selected in a finite number of peri-
ods, and the trade-off between earning and learning vanishes and learning is no longer necessary beyond a certain period.

Key words: earning and learning; varing cost; multi-armed bandit; upper confidence bound; regret analysis
History: Received: September 2018; Accepted: January 2021 by Dan Zhang, after 3 revisions.
*Corresponding author.

1. Introduction

Pricing is often a very important decision for firms
that sell products or provide services. A major diffi-
culty in making pricing decisions is that the demand
changes with respect to the price, and the demand
function (of price) is often unknown. Therefore,
besides earning short-term profits, pricing decisions
often involve some type of learning mechanism that
changes price over different periods (or for different
customers) to learn the uncertain customer demands
in order to increase long-term profits. This type of
dynamic pricing problem is also known as the earn-
ing-and-learning problem to emphasize the key
trade-off between earning and learning. In the classi-
cal literature on this problem, one often assumes that
the cost of the product or service is constant and
mostly, without loss of generality, zero. Therefore,
there is often a single optimal price that one needs to
learn, if the demand function does not change over
time.
In many practical situations, however, the cost may

change from period to period or customer to cus-
tomer. We consider three examples.

• The first example is the sales of fresh products, for
example, fruits and vegetables, in supermarkets.
While customer demands may depend solely on
the price, a supermarket’s profit clearly depends
on the costs of these products which may change
from day to day. As reported by McLaughlin and
Perosio (1994), while the wholesaler may guaran-
tee that the wholesale prices charged will not
exceed certain levels (referred to as “lid” prices)
perhaps 2–4 weeks before the scheduled date of
delivery, the exact wholesale prices (and thus the
costs to the supermarket) will not be specified
until the date of shipment depending on the mar-
ket changes and prevailing prices in the market at
the time. Therefore, the supermarket may have
the incentive to change the price from day to day,
not only to learn the demands, but also to react to
the changes of the costs. In this example, the costs
of the products may vary continuously.

• The second example is the sales of foreign prod-
ucts, for example, French wine in American wine
stores. In this example, the costs of the products
are significantly tied to the volatile exchange rates
and thus causing the prices to fluctuate as well.
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• The third example is the sales of health insur-
ance products. In practice, an insurance com-
pany may use the results from health
examinations to classify customers into differ-
ent risk groups, and the customers from one
risk group may share the same demand func-
tion. However, the cost of the product within
the group may not be a constant. In the United
States, the cost of an insurance product can
vary from one state to another due to different
regulations or because the same regulation
may impact differently in different states. For
instance, the Affordable Care Act in the United
States reduces the costs of insurance products
in some states but raises the costs in others
because of technological issues or political rea-
sons (Keskin and Birge 2019). Therefore, even
for the same customer, the cost of an insurance
health product can be different as s/he buys
the product in different states. The insurance
company may offer the customer different
prices due to the difference in cost. In this
example, the cost of the product is not entirely
known. However, additional information (i.e.,
the results of health examinations and geo-
graphic locations) allows the company to have
a more accurate estimate of the conditional
expected cost of a customer.

In all three examples, the cost of the product varies
from period to period or customer to customer. The
dynamic pricing problem becomes more challenging
because the optimal price is no longer a constant and
it becomes a function of the cost (or the conditional
expected cost). One has to learn the optimal price
function of the cost in order to maximize the long-
term expected profits.
To analyze how varying costs affect the earning-

and-learning trade-off, we consider a firm that sells a
single product over T periods or customers, where T
is unknown. In each period, it first observes the real-
ized cost (or the conditional expected cost) of the pro-
duct and then selects the price from a menu of K
prices1 based on all of the accumulated information
up to the period. The demand of each period is a ran-
dom variable whose mean is unknown and depends
solely on the price of the product, and the demands of
different periods are independent of each other. The
firm’s objective is to maximize its expected cumula-
tive profit over all T periods, or equivalently, to mini-
mize its expected cumulative regret from the true
optimal expected profit.
It is easy to see that, if one sets the cost as a constant

(e.g., zero, without loss of generality), our problem
becomes the classical formulation of the earning-and-
learning problem considered by Rothschild (1974). It

is an example of a multi-armed bandit (MAB) prob-
lem, which has been studied extensively in the litera-
ture of statistics and machine learning since the
classical paper of Robbins (1952). A very important
theoretical result of the MAB problem, developed by
Lai and Robbins (1985), is that the expected cumula-
tive regret increases at least in the order of log T no
matter what algorithm is used. This asymptotic lower
bound is achieved by the upper confidence bound
(UCB) algorithm of Auer et al. (2002) among others.
Notice that, when the cost is a constant, the identity of
the optimal price is fixed. The UCB algorithm spends
only log T order of periods exploring non-optimal
prices and the rest on the optimal price. When the cost
varies over periods, however, the classical UCB algo-
rithm is not applicable, mainly due to the fact that the
identity of the optimal price becomes a function of the
cost. In this case, in order to choose the optimal price,
one needs to learn the profit functions of different
prices with respect to the cost. Earning and learning
with varying costs is thus much more challenging,
compared to the standard MAB problem.
However, as a distinct feature of our problem, we

find that without making additional assumptions,
there exists a linear relationship between the profit
and the cost, that is,

Profit¼Demand�ðPrice�CostÞ¼Revenue� 1� Cost

Price

� �
:

(1)

This structure suggests that learning the profit func-
tion (of the cost) boils down to learning the uncer-
tain revenue, which depends only on the price
choice and not on the cost. Therefore, the revenue
learned at one cost is also meaningful for other
costs. With this special structure, we propose a new
algorithm based on the UCB algorithm. In particu-
larly, in each period, we compute the UCBs of all
the revenues, and use them to construct the UCBs of
all the profit functions.
To analyze the expected cumulative regret of our

proposed algorithm, we consider two cases of the
cost, continuous and discrete. When the cost is a con-
tinuous random variable, for example, in the example
of selling fresh products or foreign products dis-
cussed earlier in this section, as the cost varies, the
profit of the optimal price can be arbitrarily close to
that of the second-best price, making it very difficult
to make the correct decision. We show that the regret
of our algorithm is of the order (log T)2. When the cost
is a discrete random variable, for example, in the
example of selling health insurance products where
customers are in different states, we prove that the
expected cumulative regret of our algorithm is
bounded above by a constant, if all prices are optimal for
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some realized costs. From a theoretical point of view,
a constant bound is the lowest order of the regret that
can be achieved. From a managerial point of view,
this result indicates that the suboptimal price will
only be selected in a finite number of periods, and
that learning is no longer necessary beyond a certain
period. To understand why we have such an interest-
ing result, we want to notice that there is a non-zero
minimal gap Δ between the best and all others for all
possible costs when the cost is discrete. This is similar
to the standard MAB problem, and this minimal gap
makes the learning of optimal prices easier and leads
to a bounded regret.
The rest of the article is organized as follows. We

conduct a thorough literature review and summarize
our contributions in section 2. We then formulate the
problem and propose a UCB-Like policy in section 3,
followed by its regret analysis in section 4. Numerical
study is provided in section 5, followed by conclud-
ing remarks in section 6. Lengthy proofs are post-
poned to the appendix.

2. Literature Review and Contributions

Our study is related to two lines of literature. One is
dynamic pricing with demand learning and the other
is the MAB problem.

2.1. Dynamic Pricing with Demand Learning
Dynamic pricing is a very important issue in revenue
management. Gallego and Van Ryzin (1994) first con-
sider a dynamic pricing problem with inventory con-
straint when demand is price sensitive and stochastic.
Since then, there has been a stream of research work
focusing on dynamic pricing with unknown demand
function that needs to be learned. For such problems,
the critical issue is to balance the trade-off between
earning and learning. A myopic pricing policy with-
out learning mechanism may permanently get stuck
at an uninformative choice which provides no quality
improvement on the underlying reward functions,
leading to poor performance. This is also called the in-
complete learning phenomenon, see Keskin and Zeevi
(2018) for a comprehensive summary about the situa-
tions where the phenomenon may appear and the sit-
uations where the myopic algorithm can be directly
applied without learning.
Most of the work in this area assumes the price is a

continuous decision variable, and there is a paramet-
ric model of the demand function, often linear in
price. In such contexts, Lobo and Boyd (2003) show
by numerical experiments that for a linear demand
model with Gaussian noise, one would benefit from
price-dithering in a myopic pricing policy and a convex
approximation has been used in that study to get a
better solution. Later, both den Boer and Zwart (2014)

and Keskin and Zeevi (2014) prove theoretically that
myopic pricing policy can lead to incomplete learning
and converge to sub-optimal prices.
To solve this problem, Broder and Rusmevichien-

tong (2012) propose the MLE-CYCLE algorithm and
den Boer and Zwart (2014) consider a taboo interval,
respectively. They show that the expected cumulative
regrets of their algorithms are upper bounded by
Oð ffiffiffiffi

T
p Þ and Oð ffiffiffiffi

T
p

logTÞ, respectively. Keskin and
Zeevi (2014) examine a special case where an incum-
bent price at which the decision maker knows the exact
expected demand exists. The incumbent price reduces
the model’s number of unknown parameters. As long
as the price does not converge to the incumbent price
the incomplete learning in myopic pricing can be
fixed and the resulted regret is upper bounded by
OðlogTÞ. Qiang and Bayati (2016) and Ban and Keskin
(2017) extend the results to a data-rich environment
where the price and other factors interactively affect
the demand function and thus the optimal price.
Notice that being different from these two studies, we
consider a situation where there are idiosyncratic
shocks driving the cost to change from period to per-
iod and thus the optimal price. In our setting, the cost
does not affect the expected demands at different
price levels. Nonparametric models of demand func-
tions have also been considered in the literature. For
instance, Besbes and Zeevi (2015) show that, by using
a linear approximation of the demand function, the
nonparametric approach can be almost as good as a
parametric one, obtaining a regret bound of
Oð ffiffiffiffi

T
p ðlogTÞ2Þ. Under the Bayesian framework, the

incomplete learning phenomenon still exists. Particu-
larly, Harrison et al. (2012) demonstrate several
instances that a myopic Bayesian policy may lead to
incomplete learning and propose modifications on
the myopic Bayesian policy to avoid such phe-
nomenon.
Another stream of research related to our work is

dynamic pricing in non-stationary environments. Bes-
bes and Zeevi (2011) and Keskin and Zeevi (2016)
study a setting with the parametric model for the
demand function that changes over time. Therefore,
besides learning the unknown demand function, one
also needs to detect the time points where it changes.
Our setting differs from theirs in that the change of
the optimal price is caused by the observable varying
cost that does not affect the demand function and no
parametric demand model is assumed in our work. In
the context of non-stationary cost, Keskin and Birge
(2019) consider a problem where the product has dif-
ferent quality levels, and the cost is stochastic in nat-
ure at each quality level. To maximize the expected
profit, the firm needs to learn the unknown functional
form between the expected cost and quality level and
then determine the best product offering scheme that
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assigns different price–quality pairs to customers
with different quality sensitivities. In their work, the
cost is realized after the decision is made in each per-
iod and mainly used to learn the unknown cost func-
tion (of the quality), and thus the optimal price is
invariant with respect to the cost and time. In our set-
ting, however, the cost is observed before the pricing
decision is made and the optimal price is changing
with the observed cost.
Dynamic pricing with discrete price choices has

also been studied in the literature, see for instance,
Gallego and Van Ryzin (1994) and Feng and Xiao
(2000). Rothschild (1974) was the pioneer of dynamic
pricing with demand learning. The author considers
two price choices and models the problem as a two-
armed bandit problem. By employing a discount fac-
tor on the rewards, the author carries out the analysis
over an infinite time horizon and shows that a deci-
sion maker pursuing optimal policies cannot be guar-
anteed to obtain the full information about the
demand. In this study, we exclude the discount factor
in the problem formulation and focus on minimizing
the expected cumulative regret.

2.2. The MAB Problem
Since the seminar study of Robbins (1952) rigorously
formulates the problem, the MAB problem has long
attracted attentions from multiple disciplines, for
example, operations research, computer science, eco-
nomics, and statistics. A very important theoretical
result of the MAB problem, developed by Lai and
Robbins (1985), is that the expected cumulative regret
increases at least in the order of log T no matter what
algorithm is used, when the expected rewards of all
choices are bounded. Numerous algorithms have
been proposed to solve the problem, see Bubeck and
Cesa-Bianchi (2012) for a recent review. Among these
algorithms, the UCB algorithm of Auer et al. (2002) is
probably the most famous one. In each period, the
algorithm selects the choice with the highest UCB of
the mean reward, constructed based on Hoeffding’s
Inequality. Auer et al. (2002) prove that the expected
cumulative regret increases in the order of log T,
making it optimal in terms of the asymptotic order.
In many situations, decision makers may have some

additional information to help them make choices in
each period. The MAB with covariates is a way to
incorporate this additional information (i.e., covariates).
It is also called bandits with side observations or con-
textual bandits. In such a context, the expected reward
of an arm depends on the observable covariates and
can change with the covariates. This type of problems
was first studied by Woodroofe (1979) and Sarkar
(1991) for the so-called one-armed bandit problem. To
simplify the analysis and improve the growth rate of
the expected cumulative regret, many papers assume

linear relationships between the expected rewards and
the covariates of the arms, that is, linear bandits. Then,
it is necessary to learn the unknown coefficients of the
linear functions. Several notable works studying linear
bandit algorithms include Mersereau et al. (2009), Rus-
mevichientong and Tsitsiklis (2010), Goldenshluger
and Zeevi (2013), Bastani and Bayati (2020), and Bastani
et al. (2020). The expected cumulative regrets of some
of these algorithms can grow in the order of log T.
However, to attain the log T growth rate, many exist-
ing linear bandit algorithms adopt a forced sampling
mechanism. They predetermine a sequence of time
points and forced-sample arms regardless of the
observed covariates at these points to guarantee
enough learning on each arm. The sequence of times
points is determined by input parameters (also known
as tuning parameters, see for example, Gabillon et al.
(2011) and Chen et al. (2019)), which assume one’s fore-
knowledge of the linear functions. In practice, correct
values for the input parameters are often unknown.
Setting inadequate values for the input parameters
may cause the algorithms to either spend too much
sampling effort on learning each arm which can lead to
poor finite-time performances or run without any sta-
tistical guarantees. Even though the recent work of Bas-
tani et al. (2020) shows that, with some modifications, a
forced sampling algorithm may achieve better perfor-
mance and is more robust to the change of input
parameters when there are no uniformly inferior arms,
this improvement may not be extended to other cases.
As previously mentioned, in Equation (1), there

exists a linear relationship between the profit and the
cost. It suggests that our problem may be alternatively
viewed as a linear bandit problem with one covariate,
that is, the cost. Therefore, some existing linear bandit
algorithms may be applied to solve our problem.
Compared to these linear bandit algorithms, because
of the special linear structure that appears in our
problem, it allows us to develop an algorithm without
using the forced sampling mechanism. Therefore, as a
distinct feature of our algorithm, it does not require
tuning parameters as many linear bandit algorithms
do.

2.3. Our Contributions
Compared to the literature, our paper makes three
contributions on the problem of dynamic pricing with
unknown demand and varying costs.

• First, based on our problem formulation, we
identify that the problem has an inherent linear
structure with a unique feature that only the
unknown revenue needs to be learned, which
does not depend on the cost covariate. We
want to emphasize that this important problem
structure is derived solely from the dynamic
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pricing problem and it is quite unique com-
pared to typical linear bandit problems.

• Second, based on the unique problem structure,
we develop a UCB-Like pricing policy that is
different from typical linear bandit algorithms
in two ways: (1) it does not need a tuning
parameter that is often required in general-pur-
pose linear bandit algorithms such as forced
sampling algorithms and (2) its regret increases
in a different order compared to forced sam-
pling algorithms. Numerical results show that
the UCB-Like policy may significantly outper-
form the forced sampling algorithms.

• Third, when the cost covariate is discrete, the
regret of the UCB-Like pricing policy is upper
bounded by a constant, under certain condi-
tions. This is an interesting result because it
shows that the traditional trade-off between
earning and learning vanishes in this problem.
While similar results have been shown in one-
arm bandit literature (Goldenshluger and Zeevi
2009), it is new and has significant implications
in dynamic pricing literature.

3. Problem Formulation and Pricing
Policy

Consider a firm that sells a single product over a time
horizon of T periods which is unknown to the deci-
sion maker. At the beginning of each period t ∈ {1, 2,
. . ., T}, the decision maker of the firm first observes a
cost of the product ct ≥ 0, and the cost does not
change within the period. Let Ft�1 denote the filtra-
tion generated by random price choices, demands,
and costs up to the time point immediately before
observing the cost ct, that is, Ft�1 ¼ σ c1, p1,D

1,
�

. . ., ct�1, pt�1,Dt�1Þ, where ps and Ds are the price
choice and the corresponding demand in period s
respectively. Then, we make the following assump-
tion on the cost.

ASSUMPTION 1. We assume that ct has a common known
support  for all t = 1, 2, . . ., T. Furthermore, depending
on whether  is continuous or discrete, there exists a pos-
itive constant F > 0 or F�>0 such that

f cjFt�1ð Þ ≥ F or  ct¼ cjFt�1ð Þ≥ F� 8c∈, t¼ 1, 2, . . ., T,

respectively, where f cjFt�1ð Þ is the probability density
function for ctjFt�1.

REMARK 1. Assumption 1 is a fairly weak assump-
tion. Besides the common known support, it only
requires ct to have a lower bound on the conditional

density if ct is continuous and a lower bound on the
conditional probability if ct is discrete. It allows ct,
for t = 1, 2, . . ., T, to be dependent. For the three
examples considered in the introduction, it is easy
to see that the costs are dependent in the examples
of fresh and foreign products and may be indepen-
dent in the example of health insurance. We assume
that Assumption 1 always holds in this study.

Upon observing the cost ct, the decision maker then
chooses a selling price from a menu of possible prices,
denoted by {p1, p2, . . ., pK}, where 0<p1<p2<⋯<pK
<∞. We use ¼f1, 2, . . .,Kg to index all the possible
selling prices. After choosing a price pk, where k∈,
in period t, the firm observes the random demand
Dk,t, which is given by

Dk,t ¼ dðpkÞþ εk,t,

where d(pk) is the expected demand of price pk, and
ϵk,t’s are unobserved independent and identically dis-
tributed (i.i.d.) noise terms with mean zero and a finite
variance. In our paper, d(pk) is allowed to take a general
form as a function of pk, that is, no parametric relation-
ship is assumed. In our setting, expected demand at
each price is learned independently, where we ignore
the possibility that adjacent prices may have similar
expected demands. This setting is appropriate for con-
texts where the number of selling prices, that is, K, is
not too large. This is often the case in many practical
pricing applications with discrete prices, as a firm often
changes prices by effecting markdowns and there is
often a limited number of markdown prices. For
instance, Caro and Gallien (2012) show that during the
clearance selling, the fashion retailer Zara only chooses
prices from a limited number of prices because it is
easy to control and implement.
In this study, we assume thatDk,t has a bounded sup-

port [l, u] for all k∈ and t = 1, 2, . . ., T, and the
observed demand can always be fulfilled by the firm,
that is, there is no supply shortage. The revenue of a
period depends on both the selling price pk and the cor-
responding demand, defined by Πk,t = pkDk,t. Without
loss of generality, we assume throughout the paper that
Πk,t has a bounded support in [0, 1] for all k∈ and t =
1, 2, . . ., T. This assumption is equivalent to working
with a normalized version of the revenue [Πk,t−lp1]/
(upK−lp1) that will not affect the analysis.
We let πk ¼ Πk,t½ � denote the expected revenue

associated with price pk. Notice that  Πk,t½ � ¼ pkdðpkÞ.
Then, the expected profit function μk(c) associated
with the price pk for a given cost c can be written as

μk cð Þ¼ dðpkÞðpk� cÞ¼ πk 1� c

pk

� �
, 8k∈:
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Notice that the profit for different prices depend on
the observed cost c in each period. As a conse-
quence, the optimal price to be set may vary from
period to period, depending on the observed out-
come of c in each period. The objective of the deci-
sion maker is to find a pricing policy such that the
expected cumulative profit over the course of selling
can be maximized. Ideally, if the index of the opti-
mal price

i� cð Þ¼ argmax
k∈

μk cð Þ,

is known for different values of c, the optimal price
in each period can then be identified, and the
expected profit can be maximized. Compared to the
classical MAB setting where the cost c is assumed to
be a fixed constant (usually zero), taking into
account of the effect of varying costs may lead to a
better decision. Specifically, in the classical MAB set-
ting, the cost in each period is assumed to be a con-
stant, that is, the average cost  ct½ �, the maximum
achievable expected profit in each period is
max k∈μk  ct½ �ð Þ, while the maximum achievable
expected profit in the setting of varying cost is
 max k∈μk ctð Þ½ �. As max k∈μkðcÞ is convex in c, Jen-
sen’s inequality implies that

max
k∈

μk  ct½ �ð Þ≤ ½max
k∈

μk ctð Þ�:

Therefore, accounting for the varying cost may lead
to higher expected profit.
To achieve the maximum expected profit, the deci-

sion maker seeks to find an optimal pricing policy
and learn the optimal price choice i*(c). Following the
standard notion in the MAB literature, maximizing
expected cumulative profit is equivalent to minimiz-
ing expected cumulative regret that is defined by

R Tð Þ¼ ∑
T

t¼1

½μi� ctð Þ ctð Þ�μIt ctð Þ ctð Þ�, (2)

where the function It(c) denotes the index of the
price chosen by a pricing policy upon observing a
cost c in period t, and the expectation is taken with
respective to the randomness in both ct and It ctð Þ.
To devise a good pricing policy to minimize the

expected cumulative regret, a major difficulty is that
profit functions fμkðcÞ, k∈g are unknown and have
to be learned by conducting price experiments. On
the other hand, price experimentations on suboptimal
prices lead to positive expected regrets. Therefore, a
good pricing policy needs to balance the trade-off
between earning and learning.
Before proposing a pricing policy, let us first inves-

tigate in greater detail the structure of the profit

functions. As an example, we consider a possible con-
figuration of the profit functions as in Figure 1. It
could be observed that, for every k∈, the profit func-
tion μk(c) is a straight line that always passes through
a fixed point (pk, 0) and intersects with y-axis at point
(0, πk). As (pk, 0) is known, learning the profit function
is equivalent to learning the expected revenue πk that
is independent of the cost c. This is a very critical
observation, which basically says that accurate esti-
mation of the scalar πk leads to accurate estimation of
the profit function μk(c).
Based on this observation, we focus on learning of

the expected revenue πk, which is similar to the objec-
tive of the classical MAB algorithms. This motivates
us to develop a pricing policy based on the well-
known UCB algorithm for the classical MAB problem.
We briefly review the UCB algorithm as follows. In
the classical MAB problem, the cost c is assumed to be
a constant (and set to be zero without loss of general-
ity). Then, the objective of the decision maker is to
choose in each period the price that gives the maxi-
mum revenue. In the UCB algorithm, let Tk t�1ð Þ
denote the number of times price pk has been chosen
up to period t−1. Then, at the beginning of period t,
the expected revenue πk can be estimated by

�πk,t ¼ 1

Tk t�1ð Þ ∑
Tk t�1ð Þ

i¼1

Πi
k,

where Πi
k denotes the realization of the revenue for

the period in which price pk is chosen for the ith time.

Figure 1 Configuration of Profit Functions

Zhong, Hong, and Liu: Earning and Learning with Varying Cost
2384 Production and Operations Management 30(8), pp. 2379–2394, © 2021 Production and Operations Management Society



The classical UCB algorithm (i.e., Algorithm 1) pro-
poses to balance the earning and learning via choos-
ing a price pk either with a small Tk(t−1) or with a
large estimated revenue �πk,t. When Tk(t−1) is small for
some price pk, the decision maker has incentive to
conduct price experimentations on pk to learn more
accurately the associated expected revenue. When the
estimated revenue �πk,t is large, pk may lead to large
revenue, and thus the decision maker tends to choose
pk. The trade-off between price experimentation and
revenue maximization is balanced via the incorpora-
tion of an UCB of the revenue estimates. Essentially,
the UCB algorithm ensures that the suboptimal prices
will be chosen with a sufficiently large amount of
times (in a logarithmic order) so that the optimal rev-
enue and the suboptimal ones are distinguishable
based on the resulting revenue estimates.
In our problem setting, the introduction of varying

cost leads to more complicated forms of profit func-
tions. However, the expected revenue πk remains the
same as that in the classical MAB setting. Therefore,
we borrow the idea of the classical UCB algorithm to
devise a pricing policy for our setting. More specifi-
cally, in period t, we consider a UCB of the expected
revenue πk for each k:

�πk,tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logt

Tk t�1ð Þ

s
:

Then, we obtain an estimate of the profit function
μk(c):

μ̂k,t cð Þ¼ �πk,tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logt

Tk t�1ð Þ

s !
1� c

pk

� �
, k∈:

Intuitively, μ̂k,t cð Þ can be viewed as an UCB for
profit function μk(c), for any values of c. Following the
spirit of the UCB algorithm, we propose a pricing pol-
icy that chooses at the beginning of period t the price
with the index It ctð Þ¼ argmaxk∈ μ̂k,t ctð Þ upon observ-
ing the cost ct. The pseudo-code for this policy is pro-
vided in Algorithm 2.

In a nutshell, the pricing policy proposed in Algo-
rithm 2 chooses in each period t the price that leads to
the maximum UCB among all profit functions upon
observing the outcome of the cost ct. The chosen price
depends on the observed realizations of ct and varies
from period to period. It should be emphasized that
this pricing policy is a natural extension of the UCB
algorithm to the setting with varying cost. In a special
case where the cost in each period is a constant (and
set to be zero without loss of generality), it can be
easily checked that Algorithm 2 is exactly the same as
Algorithm 1.
By counting the number of times the suboptimal

prices can be chosen, one can derive that the expected
cumulative regret of the UCB algorithm for the classi-
cal MAB problem is of an order of log T, where T is
the total number of selling periods. The regret analy-
sis for the pricing policy in Algorithm 2 is, however,
much more challenging, due to the introduction of
the varying cost ct. In the following section, we ana-
lyze the expected cumulative regret of the proposed
pricing policy and provide insights on how the policy
works.

4. Regret Analysis

In this section, we establish an upper bound for the
expected cumulative regret R(T), defined in Equation
(2), of the UCB-Like pricing policy. In particular, we
are interested in developing an upper bound of the
growth rate of R(T) as T increases. In the pricing liter-
ature, these upper bounds are often used to compare
policies, and policies with slower growth rates are
often more preferred.
Notice that R(T) can be divided into regrets

incurred by choosing different prices, that is,

RðTÞ¼ ∑
K

k¼1

RkðTÞ,

where

Rk Tð Þ¼ ∑
T

t¼1

½ðμi� ctð Þ ctð Þ�μk ctð ÞÞ It ctð Þ¼ kð Þ�,

with ðAÞ being an indicator function, which is equal
to 1 if event A occurs and 0 otherwise. In the regret
analysis, we often focus on analyzing RkðTÞ for all
k = 1, . . ., K and sum them up to obtain the overall
regret R(T).
To start the regret analysis, we define a pair of com-

plementary events as follows.

DEFINITION 4.1. Let At ¼ �πk,t∈CIk,t, 8k∈f g, where
CIk,t is an interval defined by
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CIk,t ¼ πk�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logt

Tk t�1ð Þ

s
,πkþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logt

Tk t�1ð Þ

s" #
:

The event At basically states that in period t, the estimated
revenue for every price pk falls into the interval CIk,t. Then,
we have the following lemma, which shows that μ̂k,tðcÞ is an
upper bound of μk(c) for all k∈ and all c∈ if At occurs.

LEMMA 1. If At occurs in period t, then μ̂k,t cð Þ≥ μk cð Þ
for all k∈ and c∈.

Let Ac
t denotes the complement of At. Notice that

Ac
t means that at least one of the estimated revenues

are not in the interval CIk,t in period t. In the next
lemma we show that Ac

t occurs with a very small
probability. Its proof is based on Hoeffding’s inequal-
ity and is provided in the appendix.

LEMMA 2. (Probability bound for Ac
t ).

∑T
t¼1 Ac

t

� �
≤ 3:6K.

Lemma 2 implies that the expected number of
occurrences of events Ac

t during the T periods is
upper bounded by a constant. Combined with the fact
that regret in a single period is at most 1, the total
expected cumulative regret incurred due to the occur-
rences of Ac

t is bounded by a constant. Therefore, in
what follows we mainly analyze the expected cumu-
lative regret incurred when At occurs.

4.1. Inferior Prices and their Regrets
In our setting, different costs may correspond to dif-
ferent optimal prices. Among all possible prices {p1,
. . ., pK}, some of them may be optimal for some costs
in , while others may never be optimal for any cost
in . We call the latter inferior prices and define them
as follows.

DEFINITION 4.2. A price pj is called an inferior price if
there does not exist a nonempty set  j⊆ such that
μ j cð Þ>max i∈∖ jf gμi cð Þ for all c∈ j.

To facilitate analysis, we make the following regu-
larity condition on inferior prices.

ASSUMPTION 2. (Arm optimality). If price pj is infer-
ior, there exists a constant r > 0 such that
maxi≠jμi cð Þ>μ j cð Þþ r for all c∈.

Assumption 2 rules out the case where μj(c) may be
arbitrarily close to max i≠jμi cð Þ, which makes it diffi-
cult to identify its inferiority. This assumption is also
commonly used in the literature of the MAB with
covariate, for example, Assumption 3 in

Goldenshluger and Zeevi (2013) and Assumption 3 in
Bastani and Bayati (2020).
To analyze the expected cumulative regret, we first

consider the regret incurred by choosing an inferior
price. In the classical MAB problem, the total amount
of times that an inferior price is chosen grows linearly
in log T. It turns out that, with the results in Lemmas 1
and 2, we can prove that our UCB-Like pricing policy
also inherits this important property. We further note
that when an inferior price is chosen, the resulting
regret is bounded by 1, because supi≠j jμiðcÞ�μ jðcÞj≤ 1
for all c∈ due to the assumption that πk takes values
in [0, 1]. As a result, the total regret incurred by an infe-
rior price is of the order log T. Since this analysis is a
direct application of the regret analysis of the UCB
algorithm, we summarize this result in the following
proposition and the proof is provided in the appendix.

PROPOSITION 1. Suppose that pj is an inferior price and
Assumption 2 holds. Then,

R j Tð Þ≤ 3:6Kþ1þ8logT

r2

for any T = 1, 2, . . ., where r is defined in Assumption
2.

Proposition 1 shows that the expected cumulative
regret incurred by choosing an inferior price grows
linearly in log T. Note that, in our pricing policy, we
do not explore the smoothness of the demand func-
tion. In practice, the demand function may satisfy a
certain smoothness condition. For example, if the
demand is Lipschitz continuous, the revenue infor-
mation we collect at one price may also reveal some
revenue information on other prices. Then it is possi-
ble that as long as we have good estimations on some
non-inferior prices, we do not need to choose an infe-
rior price many times to conclude that it is inferior.
Incorporating such information in the policy design
may help us avoid unnecessary learning on some
inferior prices and reduce the expected cumulative
regret incurred by choosing these inferior prices. In
the rest of this section, the analysis is focused on non-
inferior prices.

4.2. Continuous Cost
In this subsection, we assume that the cost of the pro-
duct ct is a continuous random variable in . We
make the following assumption on the distribution of
ctjFt�1.

ASSUMPTION 3. (Finite density). There exists a con-
stant ξ > 0 such that the probability density function
f cjFt�1ð Þ≤ ξ, for all c∈ and t = 1, 2, . . ., T.
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One of the most crucial parts of the regret analysis
for our pricing policy is that, when the cost (or covari-
ates) falls in the vicinity area of the decision bound-
ary, the pricing policy (or algorithms) is very likely to
choose a suboptimal price. In the meantime, the
amount of regret incurred is relatively small in this
situation. Thus, simply counting the number of times
the policy (or algorithms) chooses suboptimal prices
without considering the amount of regret incurred in
each time may overestimate the upper bound on the
expected cumulative regret. In what follows, we show
how to derive a tight upper bound on the expected
cumulative regret of our pricing policy.

4.2.1. The Case with K = 2. We first consider the
case with two prices, that is, K = 2, to illustrate the
main idea of the regret analysis. Without loss of gen-
erality, we assume that both prices are non-inferior.
For the case where one of them is inferior, the result
in Proposition 1 implies that the expected cumulative
regret incurred by choosing the inferior price grows
linearly in log T, and thus the total regret R(T) also
grows linearly in log T.
In what follows, we provide insights into the analy-

sis of our main result (i.e., Theorem 1), while postpon-
ing its rigorous proof to the appendix. We mainly
discuss the expected cumulative regret incurred by
choosing p1 (i.e., R1ðTÞ), while analysis of that incurred
by choosing p2 follows in the same manner. Notice that
by Lemma 2, the regret incurred due to the occurrences
of Ac

t is negligible. We focus on analyzing R1ðTÞ when
At holds. Thus, we can write R1ðTÞ as,

Therefore, it is critical to analyze

Figure 2 shows a possible configuration of the true
profit functions and their UCB functions for both p1
and p2 conditioned on At and T1(t−1) = s. By Lemma
1, the straight lines μ̂1,t cð Þ and μ̂2,t cð Þ lie above μ1(c)
and μ2(c), respectively for all c∈. Furthermore, since
At holds, one can deduce that μ̂1,tðcÞ lies below the

dotted line. Therefore, both the points O and �O are
on the left hand side of the line segment EE

0
, that is,

xO ≤ xE and x�O ≤ xE. Then, it is clear that the UCB-
Like policy chooses p1 if the cost ct ≤ x�O and p2 other-
wise. A positive regret incurs only when xO ≤ ct ≤ x�O

(i.e., falsely choosing p1), and the regret is μ2(ct)−μ1(ct).
Notice that in our analysis, we assume that x�O>xO
and ignore the case where x�O ≤ xO because no regret
would be incurred by choosing p1 in this case.
In the circle of Figure 2, we zoom in the area

(marked as grey) where the regret incurs. From the
figure, the first result we can derive is that, when At

holds and T1(t−1) = s,

μ2 ctð Þ�μ1 ctð Þ≤ �EE0,

where �EE0 denotes the length of the line segment
EE

0
. Hence,

r1,t sð Þ≤ �EE0 � falsely choose p1jIt ctð Þ¼ 1,At, T1 t�1ð Þ¼ s
� �

:

(4)

To analyze the probability in Equation (4), we
notice that falsely choosing p1 happens when ct falls
in the interval xO,x�O½ �. By Assumptions 1 and 3, the
probability that ct falls in an interval is proportional to
the length of the interval. We use the fact that the
length of xO,x�O½ � is upper bounded by xE−xO and
prove the following result,

 falsely choose p1jIt ctð Þ¼ 1,At, T1ðt�1Þ¼ s
� �

≤ xE�xOð Þ ξ
κ1
,

(5)

where κ1 is a constant and ξ is defined in Assump-
tion 3. Then, by elementary geometry,

xE�xO ¼ xO
π1�π2

�EE0: (6)

R1 Tð Þ ≈ ∑
T

t¼1

 μi� ctð Þ ctð Þ�μ1 ctð Þ
� �

 It ctð Þ¼ 1,Atð Þ
h i

¼ ∑
T

s¼1

∑
T

t¼1

 μi� ctð Þ ctð Þ�μ1 ctð Þ
� �

 It ctð Þ¼ 1,At, T1 t�1ð Þ¼ sð Þ
h i

¼ ∑
T

s¼1

∑
T

t¼1

 μ2 ctð Þ�μ1 ctð Þð Þ falsely choose p1
� �jIt ctð Þ¼ 1,At, T1 t�1ð Þ¼ s

	 
�
 It ctð Þ¼ 1,At, T1 t�1ð Þ¼ sð Þ,

(3)

r1,tðsÞ¼ μ2 ctð Þ�μ1 ctð Þð Þ falsely choose p1
� �jIt ctð Þ¼ 1,At, T1 t�1ð Þ¼ s

	 

:
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Combining Equations (4)–(6) yields

r1,t sð Þ≤ xOξ

κ1 π1�π2ð Þ
�EE02 ≤

xOξ

κ1 π1�π2ð Þ
8logt

s
≤

8xOξlogT

κ1 π1�π2ð Þs ,

(7)

where the second inequality holds because �EE0 is
less than the length of the bold line segment on y-
axis. Therefore, we have,

R1 Tð Þ≈ ∑
T

s¼1

∑
T

t¼1

r1,t sð Þ It ctð Þ¼ 1,At, T1 t�1ð Þ¼ sð Þ

≤
8xOξlogT

κ1 π1�π2ð Þ∑
T

s¼1

1

s
∑
T

t¼1

 It ctð Þ¼ 1,At, T1 t�1ð Þ¼ sð Þ

≤
8xOξ

κ1 π1�π2ð Þ logT
� �2

,

where the last inequality follows from the fact that
the event It ctð Þ¼ 1, T1 t�1ð Þ¼ sf g can occur at most
once from t = 1 to T.
To summarize, the expected cumulative regret

incurred by choosing p1 grows linearly in ( log T)2. The
analysis for the expected regret incurred by choosing
p2 follows in the same manner. We summarize this

result in the following theorem. The detailed proof of
the theorem is provided in the appendix.

THEOREM 1. Suppose that Assumption 3 holds, K = 2
and both prices are non-inferior. Then,

R Tð Þ≤ 8ξxO
π1�π2

1

κ1
þ 1

κ2

� �
logT
� �2þ 8logT

π1�π2ð Þ2
& ’

þ14:4

for all T = 1, 2, . . ., where κ1 > 0 and κ2 > 0 are two
constants.

4.2.2. The Case with General K ≥ 2. The regret
analysis for the case with K = 2 may be extended to
cases with K ≥ 2. In what follows we provide a gen-
eral discussion on how the analysis may be extended
and give a theorem to characterize the bound of the
expected cumulative regret.
In order to characterize the growth rates of func-

tions, we first introduce two notations: 1)
h nð Þ¼O g nð Þð Þ means that |h(n)| is bounded above by g
(n) asymptotically, that is, there exist two constants
β > 0 and n0 > 0 such that

h nð Þj j≤ β �g nð Þ,

Figure 2 Configuration of μ1(c) and μ2(c) [Color figure can be viewed at wileyonlinelibrary.com]
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for any n ≥ n0; 2) h(n) = Θ(g(n)) stands for the fact
that h(n) grows in the same order with g(n), that is,
there exist constants β1>0, β01>0 and n1 > 0 such
that

β1 �g nð Þ≤ h nð Þ≤ β01 �g nð Þ,
for any n ≥ n1.
One of the key insights we can derive from the anal-

ysis of the K = 2 case is that the expected number of
times a non-inferior price is selected by period t by
the UCB-Like policy grows linearly in t. Otherwise,
the sub-linear growth rate on the expected cumulative
regret cannot be attained. We prove in the appendix
that this is also true for the case with K ≥ 2, and the
result is summarized in the following lemma.

LEMMA 3. (Linear growth rate). If price pk is not an
inferior price, then  Tk t�1ð Þ½ � ¼Θ tð Þ.

Lemma 3 implies that the expected number of times
that any non-inferior price is chosen grows linearly
with time t. However, only the result on ½Tkðt�1Þ� is
not enough, we also need to ensure that, at every time
t, Tk t�1ð Þ does not deviate significantly from its
expectation. For that, we need the following concen-
tration inequality (Lemma 4). To prove it, we con-
struct a martingale process that enables us to use
Azuma’s Inequality (Azuma 1967). The detailed proof
is provided in the appendix.

LEMMA 4. (Concentration inequality). For any λ > 0,

 Tk t�1ð Þ≥  Tk t�1ð Þ½ �þ λð Þ≤ exp �λ2

2t

� �
,

 Tk t�1ð Þ≤  Tk t�1ð Þ½ �� λð Þ≤ exp �λ2

2t

� �
:

With Lemmas 3 and 4, the growth rate of the
expected cumulative regret can be established, which
is summarized in the following theorem. The proof of
the theorem is provided in the appendix. Unlike the
result of K = 2 in Theorem 1, we are unable to estab-
lish a finite-time bound for the expected cumulative
regret. The result in Theorem 2 is only asymptotic.

THEOREM 2. Suppose that Assumptions 2 and 3 hold.

Then, R Tð Þ¼OððlogTÞ2Þ

Compared to the case where the cost is a constant,
when the cost is a continuous random variable, as the
cost varies, the profit of the optimal price can be arbi-
trarily close to that of the second-best price, making it
very difficult to make the correct decision. Theorems
1 and 2 show that, our UCB-Like pricing policy has an

expected cumulative regret growing in the order of
(log T)2 in this situation.
We are aware of that as there exists a linear relation-

ship between the profit and the cost, our problem can
be alternatively viewed as a linear bandit problem with
one covariate, that is, the cost, and existing linear ban-
dit algorithms may be applied to solve our problem.
Some of them have expected cumulative regrets that
grow linearly in log T. Therefore, in terms of the
growth rate of the expected cumulative regret, our
UCB-Like policy performs slightly worse than these
linear bandit algorithms do. However, to attain the log
T growth rate, these algorithms often require one’s
prior knowledge on the profit functions. For example,
in the classical work of Goldenshluger and Zeevi
(2013), the authors develop an ordinary least square
(OLS) algorithm. In contrast to selecting prices based
on the UCBs of different profit functions used by our
UCB-Like policy, it directly uses the OLS method to
estimate the profit functions and select prices. Because
OLS estimators are unbiased estimators and better con-
verge to the true profit functions, it may lead to lower
regret. However, choosing the prices only based on
OLS estimators may lead to insufficient learning of
some prices and cause the incomplete learning phe-
nomenon. Therefore, some forced sampling is added to
the algorithm to ensure sufficient learning. A sequence
of time points, where certain prices are forced selected
regardless of the observed costs, is predetermined at
the beginning of the algorithm. To determine these
time points, one must know some structure informa-
tion about the profit functions, for example, the maxi-
mum distance between the profit of a price and the
profits of the others in the region where the price is
optimal. As we shall see in section 5, due to the lack of
such information, the performance of the algorithm
may not be satisfactory in practice. Moreover, because
positive regret is always incurred at forced sampling
time points, the growth rate of the expected cumulative
regret in the OLS algorithm remains the same when the
cost is discrete. In the next subsection, we show that
when the cost is discrete, the expected cumulative
regret of our UCB-Like policy may be upper bounded
by a constant.
We close this subsection with a remark that, in the

appendix, motivated by the OLS algorithm of Golden-
shluger and Zeevi (2013), we propose a forced sampling
(FS) policy of ours. We show that the expected cumula-
tive regret of our FS policy also grows linearly in log T.
Compared to the OLS algorithm in which the forced
sampling is static and predetermined at the beginning
of the algorithm, our FS policy dynamically conducts
forced sampling when insufficient learning is detected.
We add the performance of our FS policy while com-
paring the numerical performances of our UCB-Like
policy and some linear bandit algorithms in section 5.
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4.3. Discrete Cost
We now consider the situations where the cost has a
finite discrete distribution. We make the following
assumption.

ASSUMPTION 4. (Finite cost set). The support of the
cost ct is a finite set, that is, j j<∞.

Notice that Assumption 4 often holds in practical
applications. For instance, customers buying the same
insurance product in different states can lead to dif-
ferent expected costs. The cost is discrete in this situa-
tion. In the example of selling fresh products, the cost
of the product may also be quoted from a menu of a
finite number of wholesale prices. Then, the cost is
also discrete. Indeed, one may even argue that most
practical applications have a discrete cost, because costs
are typically set with a minimal unit, for example,
dollar or cent. Therefore, the discrete cost may be
arguably more realistic than the continuous one.
There is a fundamental difference between discrete

and continuous costs. Considering the case of K = 2
in Figure 2, we see that a positive regret occurs only if
the cost ct∈ xO, x�O½ �. When the profit functions μ̂1,tðcÞ
and μ̂2,tðcÞ are estimated accurate enough in period t,
the interval xO, x�O½ � may be so small that it does not
include any point in . Then, there will be no positive
expected cumulative regret in this period. This intu-
ition allows us to prove the following theorem and
the proof is included in the appendix.

THEOREM 3. Suppose that there are no inferior prices
and Assumption 4 holds. Then, there exists a constant
C1 > 0 so that RðTÞ≤C1 for all T = 1, 2, . . ..

Theorem 3 shows that the dynamic pricing problem
with varying cost may be easier to solve than that with
constant cost, even though the optimal is now a func-
tion of the cost. It also reveals that the earning and
learning trade-off no longer exists in the limit. To
explain this result, notice that when the cost is discrete,
we can always find a smallest positive profit gap
between the optimal price(s) and the suboptimal ones
for any c∈. In the presence of the gap, the UCB-Like
policy only conducts learning when a price is chosen
less than a log t order of times. By Lemma 3, all non-
inferior prices are chosen with a linear order of times
as they are optimal for some costs, and thus, sufficient
to meet the demand for learning. Therefore, no learning
is necessary beyond a certain time point and this leads
to a constant upper bound on the expected cumulative
regret.
In a more general case where inferior prices may

exist, it has been shown in Proposition 1 that the
expected cumulative regret incurred by choosing the

inferior price grows linearly in log T as T increases.
Adding this result to Theorem 3, we have the follow-
ing corollary.

COROLLARY 1. Suppose that there are inferior prices and
Assumptions 2 and 4 hold. Then, there exist constants
C2 > 0 and C0

2>0 so that RðTÞ≤ C2þC0
2logT for all

T = 1, 2, . . ..

5. Numerical Results

In this section, we use several numerical examples to
examine the performances of the proposed policy
under different cost settings. The objective of the
numerical studies is to demonstrate that the perfor-
mances of the UCB-Like policy indeed match the the-
oretical results in the previous sections and compare
the policy with the FS policy provided in the appen-
dix and some existing linear bandit algorithms
numerically, aiming to shed lights on which policy is
more preferred in practical settings.

5.1. Discrete Costs
In this subsection, we consider an example of two
prices. These two prices are non-inferior, and the cost
takes discrete values from a finite set. More specifi-
cally, suppose p1 = 4 and p2 = 7, and the correspond-
ing revenues following Bernoulli distributions with
mean π1 = 0.6 and π2 = 0.4 after normalization,
respectively. We let the cost observed in each period
be independent and identically distributed, taking
values {1, 2, 3, 4} with equal probabilities. For this
example, the optimal price is p1 = 4 if the observed
cost is equal to 1 or 2, and p2 otherwise.
To understand the benefit gained from considering

a varying cost and the performance of the UCB-Like
policy, we consider three situations: 1) the cost is ran-
dom, and we treat it as random; 2) the cost is random,
but we treat it as deterministic and use its mean value
2.5; and 3) the cost is deterministic, and it is 2.5. We
use the UCB-Like policy in the first situation, and the
UCB policy in the rest two. To compare the perfor-
mance, we estimated the expected cumulative regrets
of all three situations, based on 1000 independent
replications. The results are summarized in Figure 3.
We highlight the main findings from this set of

numerical studies as follows.

• Treating a random cost as deterministic results
in a fast growing expected cumulative regret
and the growth rate is linear in T (Situation 2,
dash line in Figure 3).

• Taking into consideration of the varying cost
leads to much smaller expected cumulative
regret (Situation 1, solid line in Figure 3). The
gap between Situations 1 and 2 can be very
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large, showing that considering varying cost
may bring a significant amount of profit for
firms.

• Comparing Situation 3 (dotted line in Figure 3)
to Situation 1, we find that, while introducing
the varying cost makes the problem more chal-
lenging, it also makes it possible to signifi-
cantly reduce the expected cumulative regret
and thus increase the profit.

• As T becomes large (e.g., larger than 3×104 in
Figure 3), the expected cumulative regret of the
UCB-Like policy (the solid line) tends to
become flat, and appears to be bounded above
as T increases. This observation matches the
theoretical result in Theorem 3.

5.2. Continuous Cost
In this subsection, we provide a comparison of the
UCB-Like policy, the FS policy proposed in the
Appendix, and two linear bandit algorithms, namely,
the classical ordinary least squares (OLS) algorithm
proposed by Goldenshluger and Zeevi (2013) and a
state-of-the-art algorithm, the Greedy-First algorithm
proposed by Bastani et al. (2020) for the continuous
cost setting.
The Greedy-First algorithm is recently proposed by

Bastani et al. (2020). It is an improvement of the tradi-
tional forced sampling algorithms for linear bandit
problems. The algorithm first tries a greedy algorithm
to conduct the selection. When the algorithm detects
that the learning speed of the underlying profit func-
tions is below a threshold, it will switch to a tradi-
tional forced sampling algorithm, for example, the
OLS algorithm. By doing so, the algorithm conducts
learning only when necessary and thus greatly

reduces the effort spent on forced sampling when
there is no inferior price in the system. Meanwhile, in
the presence of an inferior price, this algorithm is
equivalent to the traditional forced sampling algo-
rithm as the switch occurs with probability one.
In this example, all the settings are the same as

those in the previous example except that the cost
observed in each period is sampled from a distribu-
tion with the support [0, 4], and we consider two
types of distributions where the revenues are drawn:
Bernoulli distributions with means π1 and π2 and uni-
formly distributions with supports [π1−0.4, π1+0.4]
and [π2−0.4, π2+0.4]. Moreover, we assume that the
probability density function of ct depends on the cost
observed in the previous period, that is,

f cjct�1 ≤ 2ð Þ¼ 0:3, if 0≤ c≤ 2

0:2, if 2<c≤ 4

� �
and f cjct�1>2ð Þ

¼ 0:2, if 0≤ c≤ 2

0:3, if 2<c≤ 4

� �

It suggests that a large cost in the current period is
more likely to associate with a large cost in the fol-
lowing period. Initially, we let c0 = 2. For the FS
policy and the two linear bandit algorithms, they
require the users to input a parameter h to deter-
mine when the forced sampling should be con-
ducted. For the FS policy, h should be set strictly
less than 0.171 to guarantee statistical validity in this
case. We tried several different values for h and
found that in general, the larger h is, the better per-
formance the FS policy has. Thus, we set the param-
eter h = 0.17 for the FS policy in this experiment.
For consistency, in this numerical study, we imple-
ment the OLS algorithm and the Greedy-First algo-
rithm based on the pseudo-codes provided in
Bastani et al. (2020). Note that besides h, their per-
formances additionally depend on an input parame-
ter q. We set h = 0.1 and q = 300, at which both
algorithms perform relatively well. Moreover, for
the Greedy-First algorithm, the number of warm-up
periods2 t0 is set to be 20.
We apply all four policies in this example, and the

results are summarized in Figure 4. From the figure,
we observe that the UCB-Like policy has the smallest
expected cumulative regret and outperforms the other
three policies in both settings. The OLS algorithm per-
forms the worst in the setting of uniformly distributed
revenues for all T ≥ 1 and performs worse than the
other three policies when T ≥ 20,000 in the setting
where the revenues are drawn from Bernoulli distri-
butions. In terms of robustness, the change of revenue
distributions affects more on the FS policy than the
other three policies. Notice that the expected cumula-
tive regret of the FS policy comes mostly from the
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early stages in both settings, particularly T≤5000. This
phenomenon can be explained as follows. When
T = 5000 and h = 0.17, 8 log T/h2≈T/2. Because the
FS policy conducts forced sampling whenever it
detects Tk t�1ð Þ≤ 8logt

h2
for some k, it suggests that,

when t≤5000, the FS policy mainly conducts forced
sampling so that each price gets roughly the same
amount of samples to ensure sufficient learning.
Therefore, the regret incurred in the early stages is
considerably large. From this example, we may con-
clude that, even though, the growth rates of the FS
policy, the OLS algorithm, and the Greedy-First algo-
rithm are theoretically smaller than that of the UCB-
Like policy, in this particular example, we do not
observe that the theoretically superior performances
are translated into practical advantages for these three
policies for reasonable sizes of T. Even when we
resume the experiment and push T up to 106, the
expected cumulative regret of the UCB-Like policy
is still much smaller than those of the other three
policies.
Then, we test the performances of all four policies

when one of the prices is inferior. We interchange the
expected revenues of the two prices in the previous
example, that is, we let π1 = 0.4 and π2 = 0.6. There-
fore, p1 = 4 is an inferior price. Since except for the FS
policy, the performances of the other three policies do
not change much as we consider different types of
distributions for the revenues, in this example, we
only consider the situation where the revenues are
uniformly distributed. We run all four policies to
solve this problem and plot the results in Figure 5.
From Figure 5, we can draw the following conclu-

sions. First, in this example, we still observe that the

expected cumulative regret of the UCB-Like policy is
much smaller than those of the other three policies for
all T ≥ 1. Second, because one of the prices is inferior,
while solving this problem, the Greedy-First algo-
rithm would switch to the OLS algorithm with proba-
bility one. Therefore, the performances of the Greedy-
First algorithm and the OLS algorithm are almost the
same in this example. Third, in this example, because
the FS policy always needs to spend some sampling
effort on the inferior price which can incur positive
regret, we can observe that the expected cumulative
regret of the FS policy keeps increasing after a sharp
increase in the early stages.
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To summarize, our numerical results suggest that,
the UCB-Like policy may have a better practical per-
formance among all four policies. Therefore, we sug-
gest using the UCB policy even when the cost is
continuous.

6. Concluding Remarks

In this article, we study a dynamic pricing problem
where the demand function is unknown and the cost
varies from period to period. We develop a UCB-Like
policy to balance the earning and learning for this
dynamic pricing problem, and show that the expected
cumulative regret of the policy grows linearly in (log
T)2 when the cost is continuous, where T denotes the
number of selling periods. In a special case when the
cost takes a finite number of discrete values and there
are no inferior prices, we show that the expected
cumulative regret is bounded above by a constant as
T increases. Compared to some existing linear bandit
algorithms which can also be used to solve this prob-
lem and have expected cumulative regrets that grow
linearly in log T, the expected cumulative regret of
our policy grows slightly faster for the case of contin-
uous cost and slower for the case of discrete cost.
However, for these linear bandit algorithms, better
asymptotic results do not always translate into better
practical performances because to attain the log T
growth rate, they typically require foreknowledge of
the profit functions that is unknown in practice. Our
numerical studies reveal that the UCB-Like policy is
very competitive with existing linear bandit algo-
rithms for up to a reasonably large T. The numerical
results also confirm the theoretical growth rates
developed in this paper appear correct for the UCB-
Like policy.
There are two potential research directions of this

work. First, in this study, we consider the setting
where the cost of the product is the same at different
price levels in each period. In practice, however, a
firm may sell a product with different qualities at dif-
ferent price levels. For example, one may observe that
the higher the price, the lower its deductible (i.e.,
higher cost) for an insurance product. Under this set-
ting, the cost additionally depends on the chosen
price, and one may observe different costs at different
price levels. Even though the UCB-Like policy can
still be applied to this case by incorporating different
cost information at different price levels, the current
regret analysis for the proposed policy is no longer
applicable. It is of both practical and theoretical inter-
ests to develop efficient policies with sound theoreti-
cal guarantees for this setting, which is left as a topic
for future research. Second, in this paper, we conduct
the upper bound analysis on the expected cumulative
regret of our policy under different parameter

settings. In many similar works, lower bound analysis
is also an important part of regret analysis. It would
be equally valuable to conduct lower bound analysis
under these parameter settings in the future.
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Notes

1Sellers only select prices from a finite list of admissible
prices, maybe due to marketing purposes, industrial con-
sensus, or managerial considerations. The same finite-
choice setting is used commonly in the revenue manage-
ment literature, see for instance, Gallego and Van Ryzin
(1994) and Feng and Xiao (2000).
2For the Greedy-First algorithm, when revenues are drawn
from Bernoulli distributions, directly using a greedy algo-
rithm in warm-up periods can lead the algorithm to
switch to the OLS algorithm with high probability. To
avoid this issue, in this paper, we select the two prices
equal number of times in the warm-up periods for the
case where revenues are sampled from Bernoulli distribu-
tions.
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