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Meaningful sensitivities: A new family of simulation sensitivity measures
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ABSTRACT
Sensitivity analysis quantifies how a model output responds to variations in its inputs. However,
the following sensitivity question has never been rigorously answered: How sensitive is the mean
or variance of a stochastic simulation output to the mean or variance of a stochastic input distri-
bution? This question does not have a simple answer because there is often more than one way
of changing the mean or variance of an input distribution, which leads to correspondingly differ-
ent impacts on the simulation outputs. In this article we propose a new family of output-property-
with-respect-to-input-property sensitivity measures for stochastic simulation. We focus on four use-
ful members of this general family: sensitivity of output mean or variance with respect to input-
distribution mean or variance. Based on problem-specific characteristics of the simulation we iden-
tify appropriate point and error estimators for these sensitivities that require no additional simula-
tion effort beyond the nominal experiment. Two representative examples are provided to illustrate
the family, estimators and interpretation of results.
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1. Introduction

Stochastic simulations can be regarded as functions mapping
inputs into outputs. With very high confidence we know
that a computer model is an imperfect representation of
reality. The field of verification and validation provides best
practices for good model building; see for instance Robinson
(2014). The field of uncertainty quantification, on the other
hand, attempts to deliver numerical measures of model sen-
sitivity and risk that are actionable, as described below.

This article addresses uncertainty quantification of stochas-
tic simulation models via local sensitivity analysis. The value
of local sensitivity analysis to the analyst arises in at least
three ways:

1. Establishing robustness, or lack of robustness, of the
simulation-based estimates in the sense that small
changes in some aspects of the model do not, or do,
lead to large changes in the simulation outputs.

2. Establishing for which aspects of the model additional
research to reduce uncertainty might yield the most
benefit in improved model accuracy.

3. Establishing where management effort to alter the real
system’s inputs might provide the most impact.

The new local sensitivity measures introduced in this
article can be used to address all three goals. The term
“sensitivity analysis” begs the question: sensitive to what? In
industrial engineering stochastic simulation the primary
answers are: (i) sensitivity to structural aspects of the model

that are directly controllable (e.g., number of servers in a
queue); and (ii) sensitivity to the input probability distribu-
tions that make it a “stochastic simulation.” The former is
primarily addressed by design of experiments; the latter is
the topic of this article.

Stochastic input distributions may be obtained from subject-
ive judgment (“expert knowledge”), underlying process physics,
or fit to historical data; in all cases they are subject to uncer-
tainty that propagates (whether measured or not) through the
simulation model to the outputs. That is exactly why the sensi-
tivity to, say, the mean and variance of the input distributions
is useful: it shows which measure of which input has the biggest
influence on the output performance measure of interest.
Further, sensitivity analysis can be used early in a modeling
project to help determine the time or money to expend to col-
lect real-world observations for stochastic inputs. Understanding
the sensitivity of outputs to inputs facilitates addressing 1 to 3
above, which is why commercial simulation software products
support measuring such sensitivity.

What we have in mind is to be able to make statements
like the following for, say, a hypothetical semiconductor
wafer fab simulation:

When considering the variability of the steps in our fabrication
process, our mean cassette cycle time is most sensitive to the
variance of the Developer step, and therefore our improvement
effort should be put on stabilizing the Developer time.

However, we want to do more than just ranking the
input-distribution sensitivities; we also want to quantify how
much reduction in, say, mean cycle time we should expect
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for a one unit decrease in the Developer variance without
running separate experiments to assess it. More generally,
we want to estimate all input sensitivities from the same
nominal simulation experiment.

Surprisingly, defining the seemingly intuitive sensitivity
described above is not easy, and in fact there are an infinite
number of correct answers. In this article we define a new
family of output-property-with-respect-to-input-property sensi-
tivity measures whose members are interpretable, can be esti-
mated using well-established technology for stochastic gradient
estimation, and any member of the family can be obtained
from the nominal simulation experiment.

This article is organized as follows: The next section con-
tains a broad overview of “sensitivity analysis” in computer
experiments and describes where our contribution fits. We
define our new family of sensitivity measures in Section 3,
followed by two representative examples of stochastic simu-
lations to which they apply in Section 4. The sensitivity esti-
mators are established in Section 5. Section 6 summarizes
results from an empirical study employing the two examples,
followed by conclusions in Section 7. The online supplemen-
tal material describes supporting gradient-estimation meth-
ods, some additional empirical evaluation, variance
estimation methods and some technical results.

2. Background

Computer models, including stochastic simulations, can be
regarded as functions mapping inputs, denoted generically
by X ¼ ðXð1Þ ,Xð2Þ , :::,XðKÞÞ>, into one or more outputs,
denoted generically by Y, via a collection of rules and algo-
rithms that mimic the features of interest: Y ¼ gðXÞ:
Sensitivity analysis investigates how the output of a com-
puter model responds to variations in its inputs. Sensitivity
analysis is of critical importance for identifying the relative
contributions of the inputs to output uncertainty, assessing
model risk, designing robust systems, calibrating the model,
and quantifying the interactions among inputs (Saltelli
et al., 2000).

Based on the type of uncertainty inherent in the inputs,
and the purpose of the model-based analysis, there are two
broad categories of sensitivity analysis: global and local.
Global sensitivity analysis is applicable when the input is a
random variable naturally varying within its range, XðiÞ �
Fi, such as the daily temperature or the wind speed at a site
during a specific season, and also when the input is believed
to be a constant but we have less-than-complete knowledge
of its value, such as the failure rate of an electronic compo-
nent or the stress tolerance of a material. The goal in global
sensitivity analysis is to apportion the overall output uncer-
tainty to each of the inputs as a measure of their
contribution.

Whereas measures of global sensitivity attempt to discern
the inputs that drive the output uncertainty across each
input’s overall range, measures of local sensitivity focus on
the influence of the inputs near a nominal setting. Local
sensitivity analysis makes sense when the input is some par-
ameter or property of a random variable, such as its mean,

and we have some confidence in its nominal value. The goal
of local sensitivity analysis is to measure the impact on the
output of small perturbations of an input around this value.
A local sensitivity measure is conceptually (and in our new
family, precisely) a partial derivative of the output property
with respect to the input property. The “sensitivity analysis”
we consider in this article is local.

In the context of stochastic simulation when the simula-
tion is driven by parametric input probability distributions —
denoted by XðiÞ � Fið�jhðiÞÞ — then the parameters of each
distribution are one type of input, denoted here by hðiÞ:
Output variability depends on both the input probability
distributions themselves (i.e., the inherent randomness of
the system), and possibly uncertainty about the parameter
values (e.g., if hðiÞ is estimated by bhðiÞ). When the distribu-
tions’ parameters are estimated from historical data, then
this additional output variability is referred to as “input
uncertainty” in the simulation literature; see for instance,
Barton et al. (2002), Barton et al. (2014), Song et al. (2014)
and Lam et al. (2016). Thus, there is both sensitivity of the
performance measures to the nominal values of these input-
distribution parameters, and also statistical uncertainty as to
their nominal values. In this article we focus on the former:
the local sensitivity of simulation output properties to input-
distribution properties, and not input uncertainty. Thus, our
measures are useful even if distribution parameters are
obtained from experience, subjective judgment, process
physics, or guesses, as well as from data.

The reason we emphasize “input-distribution properties”
is that sensitivity of the simulation output to the natural
input-distribution parameters themselves is often difficult to
interpret; this can be true even when the mean or variance
of the distribution is one of the parameters. For example, a
common sensitivity measure implemented in commercial
software (e.g., SimioVR ) is simply the slope coefficient of a
linear regression relating simulation output Y to the sample
mean of the input variates. This measure quantifies how
much Y would change per unit change in the sample mean

of the input random variable, say �XðiÞ, but cannot necessar-
ily be interpreted as the partial derivative of EðYÞ with
respect to EðXðiÞÞ: Of course, the mean and variance are not
the natural parameters of many distributions, such as the
Weibull which is usually parameterized by shape and scale.
Local sensitivities to such parameters are rarely meaningful
to the simulation user; however, there are good methods for
estimating them that we exploit.

In this article we reach beyond the partial derivative of
the output mean with respect to the natural input-distribu-
tion parameters, to the partial derivative of an output prop-
erty with respect to an input property. This can be
represented conceptually as @HOðYÞ=@HIðXðiÞÞ, where Hð�Þ
is an operator yielding a property of a random variable, and
the subscripts O and I are for the “output” and “input,”
respectively. Here we consider input distributions that are
parametric, having parameters such as mean, variance,
shape, scale, rate, etc. Thus, their properties can be repre-
sented as functions of their distribution parameters:
HIðXðiÞÞ ¼ rðhðiÞÞ: We focus on Eð�Þ and Varð�Þ here due to
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their practical usefulness, but our family is more general, a
point we return to the Section 7. Stated directly, we estimate
the sensitivity of the mean or variance of the simulation out-
put to the mean or variance of each input distribution
around a nominal value of its parameters, hðiÞ0 : To achieve
our goal, we propose a new family of local sensitivity meas-
ures that enable us to quantify @HOðYÞ=@rðhðiÞ0 Þ along a
meaningful direction in the input-parameter space.

Our new sensitivity measures require the estimation of a
stochastic gradient of the output property with respect to the
natural input-distribution parameters, denoted by
r

h
ðiÞ
0
HOðYÞ: This is a well-studied problem, and our meth-

ods apply to any output property for which they exist.
Simulation-based gradient estimators can be categorized into
two groups: indirect and direct methods. Indirect methods
estimate an approximation of the true gradient by running
additional simulations beyond the nominal setting; they
require no knowledge of the underlying mechanics of the
simulation model (Fu, 2008, 2015). The direct methods,
which do require additional knowledge, lead to estimators
that are often unbiased. We also employ the less-well-known
method of Wieland and Schmeiser (2006) that is particularly
appropriate for estimating output gradients with respect to
input-distribution parameters. However, an appropriate sto-
chastic gradient estimator depends on characteristics of the
specific problem. Therefore, we describe three methods that
apply to distinct situations that we expect to encounter in
practice and provide practical advice as to how to choose
and use them to obtain point and error estimators of our
sensitivity measures in the online supplemental material.

Jiang et al. (2019) first introduced the idea of using direc-
tional derivatives in conjunction with standard gradient esti-
mators. The focus of that paper is a tractable example —
specifically the M=G=1 queue — to illustrate the impact
and intuition behind choosing different directions. They also
present an illustration using a semiconductor wafter fab
simulation, as described earlier. However, Jiang et al. (2019)
contains no theory, no recommendation on the choice of
gradient estimator, and no standard error estimators for the
sensitivity point estimators. Jiang et al. (2021) applies our
local sensitivity estimators to clinical trial planning. An
interesting feature of Jiang et al. (2021) is that for some
outputs a direction that is not the steepest-ascent or min-
imum-mean-change directions emphasized in this article
makes sense.

3. A new family of sensitivity measures

In this article we address the problem of local sensitivity of
the mean or variance of the simulation output with respect
to the mean or variance of its stochastic inputs. Some of the
background material in this section is based on Section 2 of
Jiang et al. (2019).

Consider a simulation model with K independent,

scalar, parametric input distributions denoted Fð1Þð�jhð1ÞÞ,
Fð2Þð�jhð2ÞÞ, :::, FðKÞð�jhðKÞÞ, having in total q � K
input parameters (for some distributions h is a vector). Let

H ¼ ðhð1Þ, hð2Þ, :::, hðKÞÞ be the vector of all input parameters,

where hðiÞ 2 Rpi , with pi � 1 the dimension of the param-
eter vector for input distribution i. The simulation output of
interest can be represented as YðHÞ ¼ gðHÞ þ eðHÞ where
gðHÞ is the expected value of the simulation output given
the input parameters, and eðHÞ is the corresponding sto-
chastic noise with mean 0 and finite variance. In this article
we consider the parameters H to be fixed at H0, so where
no confusion is possible we will simply write Y. We also let
XðiÞ represent a random variable with distribution FðiÞ,
whose mean li and variance r2i are differentiable with

respect to hðiÞ at the nominal setting h
ðiÞ
0 ; this is true for the

continuous-valued parameters of most standard distribu-

tions, provided that hðiÞ is in the interior of the feasible par-
ameter domain. Our local sensitivity is with respect to each
input distribution separately, so for ease of exposition we
focus first on a single input X � Fð�jhÞ with parameter h 2
Rp, having mean l ¼ lðhÞ, variance r2 ¼ r2ðhÞ and nom-
inal parameter value h0:

Suppose that we are interested in the effect of a unit
change in the variance of an input random variable X on
the variance of the output Y, which conceptually is
@VarðYÞ=@r2: However, this partial derivative is not well
defined when there are multiple ways to achieve a change in
r2: That is, different changes in the distribution parameters
that lead to the same change in the variance of the input
might result in a different change in the variance of the out-
put. This fact is obvious, once stated, but is not well known
or appreciated. Therefore, the meaning of @VarðYÞ=@r2 is
not clear, except for the special case of an input distribution
that belongs to the location-scale family X ¼ lþ rW,
where W has mean 0 and variance 1. Similar issues arise if
we want to estimate the impact on the variance of Y of
changing the mean of X, or the impact on the mean of Y of
changing the mean or variance of X. The key insight is that
the mean and variance of both the output and the input are
completely determined by h; therefore, by fixing the direc-
tion of change in the input-parameter space we obtain a
unique value for the desired sensitivity. We now formally
introduce our new family of sensitivity measures. Given an
output property HO, an input property HI, and a normed

direction ~d from the nominal parameter setting h0, we
define the sensitivity of HOðYÞ with respect to HIðXÞ as

~d
Trh0HOðYÞ

~d
Trh0HIðXÞ

(1)

where r is the gradient operator. This is simply an applica-
tion of the chain rule for directional derivatives. The only
requirements are that rh0HOðYÞ exists and can be esti-
mated, and that rh0HIðXÞ exists and can be computed.
These are mild conditions, the obvious exception being
when the input distribution has a discrete parameter, such
as the binomial distribution. In the special case of a loca-
tion-scale family X ¼ lþ rW our sensitivity measures with
respect to the input mean and variance reduce to the
@HOðYÞ=@l and @HOðYÞ=@r2, respectively.
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Remark. There are many possible ways to express
“sensitivity,” therefore, some sensible choices must be made
to create a well-defined measure. A key choice that we have
made is that the parametric family of the input distribution
does not change as it is perturbed. Given this restriction,
our definition is very flexible, as we illustrate later.

For practical reasons we focus on the four sensitivity
measures relating means (M) and variances (V); we discuss
percentile sensitivities in Section 7. We call the sensitivity of
the mean of the output, EðYÞ ¼ gðhÞ, with respect to the
mean of the input EðXÞ ¼ lðhÞ, the mean sensitivity to the
mean (MSM). In the definitions below the first letter indi-
cates the property of the output Y of interest and the final
letter indicates sensitivity with respect to what property of
the input X:

MSM~d ¼ @EðYÞ
@l~d

¼
~d
Trh0EðYÞ
~d
Trh0l

(2)

MSV~d ¼ @EðYÞ
@r2~d

¼
~d
Trh0EðYÞ
~d
Trh0r2

(3)

VSM~d ¼ @VarðYÞ
@l~d

¼
~d
Trh0VarðYÞ
~d
Trh0l

(4)

VSV~d ¼ @VarðYÞ
@r2~d

¼
~d
Trh0VarðYÞ
~d
Trh0r2

: (5)

For many input distributions the gradient of the mean or
variance of X with respect its parameter h at h0, rh0l or
rh0r

2, is available in closed form or easily computed
numerically. The unknowns in (2)–(5) are rh0EðYÞ
and rh0VarðYÞ:
Remark. For clarity, we will use the terms “gradient” and
“gradient estimators” when referring to rh0EðYÞ and
rh0VarðYÞ and estimators of them, and we use the terms
“sensitivity” and “sensitivity estimators” to refer to the right-
hand side of (2)–(5) and estimators of them. Obviously,
rh0EðYÞ and rh0VarðYÞ themselves could also be consid-
ered sensitivities.

Estimating rh0EðYÞ has been studied extensively
(L’Ecuyer, 1990; Fu, 2008, 2015). There exist many simula-
tion-based techniques to estimate this gradient and we
extend some of them to estimate rh0VarðYÞ: However, gra-
dient estimation for the mean is not our contribution, and
our extension to the variance is straightforward. The inter-
ested reader should see the cited references for conditions
under which the various estimators exist, as well as their
properties. What we do instead is to identify gradient esti-
mators that fit our needs based on different practical situa-
tions described in Section 4; see the online supplemental
material. Then in Section 5 we obtain point and error esti-
mators of our proposed sensitivity measures; these are new.
Although we focus on the sensitivity of the mean and vari-
ance, other properties such as quantiles also fit into this
framework (see Section 7).

3.1. Choosing a meaningful direction

The proposed sensitivity measures can be computed along
any direction ~d chosen by the analyst, but our definition
will only be valuable if there are practically meaningful
directions. We address the choice of direction here. Before
doing so, we point out that no additional simulation effort
is required to compute the output sensitivity in one, two or
more meaningful directions, and therefore every direction of
interest can be evaluated.

The key to choosing a direction is how the analyst wants
the input property to change. To be conservative, it will
often make sense to choose the steepest-ascent direction,
which is also the gradient direction, because in this direction
the input property will change the fastest. Steepest ascent
will be the best case or worst case, depending on whether
change is good or bad. Any input property that has a gradi-
ent has a steepest-ascent direction. For instance, for sensitiv-
ity with respect to the variance of the input, the steepest-
ascent direction along which r2 increases the fastest is ~d ¼
rh0r

2=jjrh0r
2jj: In industrial engineering applications, vari-

ance is often a problem, so rapidly increasing variance is a
pessimistic direction.

Another class of directions is to allow the input property
of interest to change subject to constraints on other proper-
ties of the input. For instance, the minimum-mean-change
direction of the input variance tries to maintain the mean of
the input while increasing its variance:

Minimize :
~d2Rp

~d
>rh0lðhÞ

��� ���
subject to : ~d

>rh0r
2ðhÞ > 0

jj~djj ¼ 1:

For many distributions the mean can be held constant
(no change). This direction makes sense in applications
when we expect to be able to reduce variability without
compromising the central value.

We have illustrated steepest-ascent and constrained direc-
tions for output variance with respect to input variance, but
the mean can play the role of output or input property as
well. It is also possible that the analyst has a direction that
makes particular sense for their application; perhaps the
basic physics of the process suggests that when this input
changes it changes in a particular way. In addition, a prob-
lem-specific choice is needed when there are shifted distri-
butions or alternative parameterizations; we address those
scenarios in the next two subsections.

3.2. Shifted distribution

Many useful distributions have their support on ½0,1Þ,
including the exponential, gamma, log-logistic, lognormal,
Rayleigh and Weibull. Thus, a “shift” parameter is often
needed when, say, the lower bound of the physical process
is greater than zero. Notice that the minimum-mean change
direction of the input variance may not be unique for input
distributions with p> 2 parameters. Here we address the
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special case of a three-parameter distribution obtained by
shifting the lower bound of a two-parameter distribution.

Consider the shifted gamma distribution as an example,
X0 ¼ X þ n where X � gammaða,bÞ, a is the shape param-
eter, b is the rate parameter, and n is the shift parameter
(i.e., h ¼ ða, b, nÞ). Notice that n does not affect the variance.
Thus, the steepest-ascent direction for sensitivity with
respect to the variance of X0 is

~d ¼ rh0r
2

jjrh0r2jj
¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a2 þ b2
p , � 2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a2 þ b2
p , 0

 !
(6)

where ðb=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4a2 þ b2Þ

q
, � 2a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ b2

p
Þ is the direction

that most rapidly increases the variance of the X.
As n can compensate any change in the mean, there are

multiple ways to do a minimum-mean-change direction
unless we fix n. We argue that fixing n is typically the most
relevant case in practice because it defines the support of
the distribution; if sensitivity with respect to the support is
the goal then it should be assessed directly, rather than
indirectly through a change in the mean or variance. With
the lower bound n fixed, the minimum-mean-change direc-
tion for sensitivity with respect to the variance of X0 is given
by

~d ¼ � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p , � bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p , 0

 !
where �a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
, � b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p� �
is the minimum-

mean-change direction for X.

3.3. Alternative parameterizations

Another issue of note is that even for sensitivity measures
from the same family along conceptually the same direction,
a different parametrization of the input distribution might
result in a different sensitivity value. Consider again the
gamma distribution that has two parameterizations in com-
mon use: gammaða, bÞ for which l ¼ a=b, r2 ¼ a=b2, and
gammaðk, hÞ for which l ¼ kh and r2 ¼ kh2: Thus, a ¼ k
and b ¼ 1=h: The corresponding unit-norm steepest-ascent
directions of the variance of the gamma distribution under
these two parameterizations are

~d1 ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ b2

p , � 2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ b2

p !
, and

~d2 ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ 4k2

p ,
2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ 4k2
p !

(7)

respectively, and the minimum-mean-change directions are

~d1 ¼ � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p , � bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p !
, and

~d2 ¼ � kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2

p ,
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ k2
p !

(8)

respectively.

Does it matter? Suppose that the service-time distribution of
an M=G=1 queue is gamma, and the output performance
of interest, Y, is the number of customers in the system in
steady state. Let k be the rate parameter for the interarrival-
time distribution. Then EðYÞ ¼ ka=b ¼ kkh: Thus, along
the steepest ascent directions in (7), the corresponding
MSV~d ’s are given by

MSV~d1
¼ kb3 þ 2ka2b

b2 þ 4a2

MSV~d2
¼ kh2 þ 2kk2

h3 þ 4k2h
¼ kbþ 2kab3

1þ 4a2b2
:

Apparently, MSV~d1
6¼ MSV~d2

, which can be explained by
the different rates of change of the output mean and the
input variance while increasing b vs. h. The MSV~d along the
two minimum-mean-change directions in (8), on the other
hand, are both equal to zero, which makes sense because
EðYÞ does not depend on the variance of the service-time
distribution, only the mean.

What should be done in practice? We suggest employing
the parameterization that was originally chosen for the input
distribution. However, within our family the user can pick
any, or multiple, directions ~d that they find meaningful
without affecting our definition, or the point and error esti-
mators presented below.

4. Two examples

In Section 3 we defined four members of our family of sen-
sitivity measures and noted that the key to applying them is
estimating rh0EðYÞ and rh0VarðYÞ; in the online supple-
mental material we review the Finite-Difference (FD),
Likelihood-Ratio (LR), and Wieland-and-Schmeiser (WS)
gradient estimators. In brief, FD provides a biased gradient
estimator by executing simulations at the nominal and at
perturbed parameter settings and taking differences; LR pro-
vides an unbiased estimator of the entire gradient from the
nominal experiment by reweighting the output using the
input distributions’ score functions; and WS provides an
estimator of the entire gradient from the slope coefficients
of a least-squares regression of the simuation outputs on the
inputs, and is unbiased under a multivariate nor-
mal assumption.

An appropriate gradient estimator depends on character-
istics of the input and the output; all gradient-estimation
methods use observed outputs Y, and possibly observed
inputs X, but in different ways. We employ the following
two examples to illustrate three distinct contexts that arise
frequently in practice: An M=G=1 queue with gamma-dis-
tributed service time illustrates the situation when there are
within-replication estimators of both the input-distribution
parameter and the output property. A Stochastic Activity
Network (SAN) illustrates two further cases: (i) when nei-
ther the input parameter nor the output property can be
estimated within each replication (so multiple replications
are essential); and (ii) when only an estimator of the output
property, but not of the input-distribution parameter, is
observed within each replication. As we will show, FD is
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always applicable but expensive; WS is natural for the
M=G=1 queue; whereas LR is ideal for situations like the
SAN example.

4.1. M=G=1 queue

An M=G=1 queue with gamma-distributed service time has
K¼ 2 input distributions and q¼ 3 parameters: the interar-
rival time following an exponential distribution with hð1Þ ¼
k, and the service time following a gamma distribution with
hð2Þ ¼ ða, bÞ: To execute the simulation we set the value of
these parameters to h

ð1Þ
0 and h

ð2Þ
0 , respectively. Among a

total of n replications, the jth replication generates m inde-
pendent and identically distributed (i.i.d.) interarrival times,
Xð1Þ
ij , i ¼ 1, 2, :::,m, and m i.i.d. service times, Xð2Þ

ij , i ¼
1, 2, :::,m, where m> 1.

Since multiple input variates are observed within each
replication, the input parameter H0 can be estimated, for
instance via maximum likelihood. Denote the estimators of
the input parameters from within the jth replication asbHj ¼ ðbhð1Þj , bhð2Þj Þ: We define this estimator even though H0

is known, because one of the gradient estimators exploits an
internally generated estimate of this known parameter.

Replication j also generates m outputs, W‘j, ‘ ¼ 1, 2, :::,m:
Suppose W‘j is the waiting time of the ‘th of a total of m
customers arriving to the system after a sufficient warm-up
period and before the stopping time within the jth replica-
tion. Then one key output from the jth replication is Yj ¼Pm

‘¼1 W‘j=m, an estimator of the steady-state mean waiting
time of customers in the system. If the performance measure
of interest is the steady-state variance of the waiting time of
customers in the system, then the key output is Yj ¼Pm

‘¼1 ðW‘j � �WjÞ2=ðm� 1Þ where �Wj ¼
Pm

‘¼1 W‘j=m: Thus,
the M=G=1 queue illustrates a setting in which we observe
i.i.d. pairs ðYj, bHjÞ, j ¼ 1, 2, :::, n:

4.2. A SAN

This example is based on a problem created by Burt and
Garman (1971). A small instance of a project planning prob-
lem is modeled as a SAN. The network is shown in Figure 1
where the nodes (circles) represent project milestones and
the arcs (arrows) are activities to be completed. The project
starts from the source node a and is completed when the
sink node d is reached, with the rule that all outgoing activ-
ities from a node begin when all of the incoming activities
to that node are completed. The duration of the ith activity
is a random variable XðiÞ: Thus, the time to complete the
project, Y, will be the longest path through the net-
work: Y ¼ max Xð1Þ þ Xð4Þ,Xð1Þ þ Xð3Þ þ Xð5Þ,Xð2Þ þ Xð5Þ� �

:
In this example, there are K¼ 5 inputs whose distribu-

tions and parameters in our numerical illustration are given
in Table 5 (in a later section). To execute the simulation we
set the values of these parameters to their nominal values
and run a total of n replications. Notice that for this simula-
tion each replication generates exactly one sample from each
input variate and one output value. Let XðiÞ

j be the sample

generated from the distribution of the ith activity and Yj be
the output, both from the jth replication. Due to the single
input variate from each input distribution within each repli-
cation, there is no natural within-replication estimator of
hð3Þ, hð4Þ and hð5Þ:

If the output property of interest is the mean time to
complete the project, then Yj returned from replication j is
the corresponding estimator. However, if the property of
interest is the variance of the time to complete the project,
then no estimator of this output is observed within each
replication. In this case we need a method to obtain the gra-
dient of the variance of Y with respect to input parameters;
we provide such a method in the online supplemental
material, which is a small extension to the existing literature
on gradient estimation. Thus, the SAN example illustrates a
setting in which we observe i.i.d. pairs ðYj,XjÞ:

5. Sensitivity measures and their variances

From here on h and bh are p� 1, denoting the parameter
and its estimator of a single input distribution with nominal
value h0; and H and bH are q� 1, containing the parameters
across all K input distributions with nominal value H0:

For the four families of sensitivity measures introduced
in Section 3, the corresponding point estimator is obtained
by plugging the appropriate gradient estimator into
Definitions (2)–(5), i.e.,

dMSM~d¼ ~d
> brh0EðYÞ ~d

>rh0l
� ��1

dMSV~d ¼ ~d
> brh0EðYÞ ~d

>rh0r
2

� ��1

dVSM~d ¼ ~d
> brh0VarðYÞ ~d

>rh0l
� ��1

dVSV~d ¼ ~d
> brh0VarðYÞ ~d

>rh0r
2

� ��1

: (9)

All of these are linear functions of a gradient estimatorbrh0 : Thus, if brh0 is unbiased or consistent, then so is the
corresponding sensitivity estimator.

Notice that the only uncertain quantities in these expres-
sions are the gradient estimators; therefore, their variances
are

Var dMSM~d

� �
¼ ~d

>
Var brh0EðYÞ
� �

~d ~d
>rh0l

� ��2

Var dMSV~d

� �
¼ ~d

>
Var brh0EðYÞ
� �

~d ~d
>rh0r

2
� ��2

Var dVSM~d

� �
¼ ~d

>
Var brh0VarðYÞ
� �

~d ~d
>rh0l

� ��2

Var dVSV~d

� �
¼ ~d

>
Var brh0VarðYÞ
� �

~d ~d
>rh0r

2
� ��2

:

(10)

The key to estimating the variance of our sensitivity
measure is estimating the variance of the corresponding gra-
dient estimator brh0 , where the situations we consider can
be categorized into the following three settings:

� Setting 1 (FD, LR): The gradient estimator with respect
to the parameters of a single input distribution, brh0 , is
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the average of i.i.d. observations of the basic gradient
estimator, br1, br2, . . . , brn: Thus, the variance-covariance
matrix of the gradient estimator can be estimated bybV ¼ bR=n, where bR ¼ ðn� 1Þ�1Pn

j¼1ðbrj �
�rÞðbrj � �rÞ> and �r ¼Pn

j¼1
brj=n ¼ brh0 :

� Setting 2 (WS):
The gradient estimator across all K distributions, brH0 ¼
ðbr>

h
ð1Þ
0

, br>
h
ð2Þ
0

, :::, br>
h
ðKÞ
0
Þ> is the ordinary least squares esti-

mator of the slope coefficient brH0 ¼ bb1, OLS, where

bbOLS ¼ ðX>XÞ�1X>Y ¼
bb0,OLSbb1,OLS

" #

with Y ¼ ½Y1,Y2, :::,Yn�> and

X ¼
1 x>1
1 x>2
..
. ..

.

1 x>n

266664
377775

with xj the predictor variables from the jth replication.
Assuming the joint distribution of ðYj, xjÞ is multivariate nor-
mal, the variance-covariance matrix of the slope coefficients is

V ¼ r2e
n� q� 2

R�1
x, x (11)

where r2e is the conditional variance of Y given x:
Therefore, we can estimate it by

bV ¼ s2e
n� q� 2

bRx, x

� ��1

(12)

where s2e ¼ SSE=ðn� q� 1Þ, SSE is the sum of squared
errors of the multiple linear regression of Y on x, andbRx, x is the sample variance-covariance matrix of x: The

estimator of the variance-covariance matrix of br
h
ðiÞ
0
is the

ith pi � pi submatrix on the diagonal of bV: The complete
derivation of this variance-covariance matrix and its esti-
mator are found in Jiang et al. (2019).

� Setting 3 (LR): The gradient estimator with respect to the
parameters of a single input distribution, brh0 , can be
expressed as the average of Wj þ blUj, j ¼ 1, 2, :::, n,
where (Wj, Uj) are i.i.d. observations of the basic gradient
estimator pairs, and

bl !a:s:
n!1l:

As n gets larger Setting 3 behaves like Setting 1, withbrj ¼ Wj þ blUj: Thus, we treat Setting 3 as Setting 1
with a plug-in estimator for l; however, the small-sample
properties of this variance estimator cannot be obtained.

In the online supplemental material we provide variance
estimators for the FD, LR, and WS methods separately by
categorizing each situation into one of the three set-
tings above.

6. Empirical analysis

In this section we illustrate the estimation and interpretation
of the proposed sensitivity measures, and evaluate our point
and variance estimators, using the two examples introduced
in Section 4; a less-controlled illustration for a wafer fabrica-
tion simulation may be found in Jiang et al. (2019).

Since the true gradients (and therefore sensitivity meas-
ures) are not known for either example, but the systems are
computationally inexpensive to simulate, we employ inten-
sive simulation to precisely estimate the true gradients for
each output property with respect to each input parameter
using the FD method; this in turn yields a “true” value of
the corresponding sensitivity measures. To evaluate our sen-
sitivity estimators using LR and WS, which is what we
would do in practice, we compare to these “true” values. We
also evaluate our variance estimators by observing whether
the estimated standard error captures the difference between
our sensitivity point estimate and the true value of the sensi-
tivity measure.

Notice that we are not presenting an evaluation or a
comprehensive study of the LR and WS gradient estimators
themselves, as these are studied in the gradient-estimation
literature. Rather, we demonstrate how these gradient esti-
mators can be combined with our new family of sensitivity
measures to yield useful and interpretable point and error
estimators in typical settings. If and when better gradient
estimators are invented, our sensitivity measures will benefit
from them.

There is no obvious competitor for our sensitivity meas-
ures unless the gradient with respect to the input parameters
itself is meaningful to the analyst. However, an alternative
way to estimate our measures is by running the nominal
experiment and then running a second experiment at a
finite step along the desired parameter direction. This
approach inherits all of the problems of FD — deciding how
large a step to take, and the need for an additional simula-
tion for each input and each direction of interest — so we
focus on exploiting gradient estimators like LR and WS that
obtain the entire gradient at once.

Recall that the proposed sensitivity measures reveal the
change in the output mean or variance per unit change in
the mean or variance of an input distribution along a mean-
ingful direction. When we refer to “per unit change” for the
mean it is in the natural units, whereas for the variance it in
the natural units squared. Stating sensitivities as standard

Figure 1. A small SAN.
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deviation rather than variance is possible, and probably
more useful in practice.

6.1. M=G=1 queue

The output property of interest is the steady-state mean
waiting time of customers in an M=G=1 queue. We illustrate
estimating its sensitivity with respect to the mean of each
input distribution when the mean changes along the steep-
est-ascent direction, and with respect to the variance of each
input distribution when the variance changes along the
steepest-ascent and minimum-mean-change directions.

The waiting time is simulated via Lindley’s equation and,
to speed up the convergence to steady state, the system is
preloaded with one waiting time at the steady-state expected
value obtained from the Pollaczek–Khinchine formula. The
warm-up period is the first 200 customers; after that, the
waiting times of 4000 customers arriving to the system are
averaged to estimate the steady-state mean. The nominal
experiment ran 900 replications with the input distributions
specified in Table 1. For simplicity of notation, we use
“ARR” for the interarrival-time input and “SER” for the ser-
vice-time input. The intensive simulation to estimate the
true sensitivities ran 64,000 replications, ensuring the rela-
tive error of the gradient estimator to be less than 0.001.

Since multiple variates are observed from both the inter-
arrival-time and the service-time distributions within each
replication of the nominal experiment the WS gradient esti-
mator is particularly appropriate. Furthermore, because the
distributions of the MLEs of the distribution parameters, bH,
are asymptotically normal and the mean waiting time is the
average of the waiting times of a large number of customers
arriving to system within each replication, it is plausible to
approximate the distribution of ðY , bHÞ as multivariate nor-
mal and thus the relationship between EðYjbHÞ and bH as
approximately linear. Accordingly, we have the sufficient
conditions to apply the WS method — linear regression of
Y on bH — to obtain the gradient estimator, brH0EðYÞ, and
its variance-covariance matrix.

A summary of the fitted model is shown in Table 2,
where we see that although the adjusted R2 of 0.51 is low,

all predictors are significant. We also applied model diag-
nostics to validate assumptions including normality, homo-
scedasticity, and linearity. In summary, we conclude that the
linear model fits the data well. Thus, we can draw important
conclusions about how changes in the input distribution
parameters affect the mean waiting time from the fitted
model. For example, the coefficient associated with the
mean of the interarrival time is negative, which makes sense
because longer interarrival times will help mitigate the con-
gestion and reduce the expected waiting time. A similar
explanation applies to the positive (negative) sign of the
shape (scale) parameter of the service-time input distribu-
tion because increasing (decreasing) shape (scale) increases
the mean of the service time which is the main driver of
congestion in the queue.

After plugging the gradient estimates into (9) and their
variances into (10), we report the MSM and MSV estimates
and their Standard Errors (SEs) along with their “true” val-
ues in Tables 3 and 4. The two subscripts specifying the dir-
ection of sensitivity measures are “SA,” denoting the
steepest-ascent direction, and “MM,” denoting the min-
imum-mean-change direction. Notice for all MSM and MSV
estimates, the “true” value is included in the 62� SE inter-
val, indicating that the MSM and MSV are pretty well esti-
mated using the WS method with 900 simulation
replications.

In Table 3, the MSMSER, SA estimator suggests that the
steady-state mean waiting time is expected to increase by
about 16 time units per unit increase in the mean of the ser-
vice time at the fastest rate. The MSMARR, SA estimator, on
the other hand, implies that the steady-state mean waiting
time is expected to decrease by around 11 time units per
unit increase in the mean of the interarrival time. Thus, this
table suggests that the steady-state mean waiting time is
more sensitive to the mean service time at this nom-
inal setting.

In Table 4, the MSVSER, SA estimator implies that the
steady-state mean waiting time would increase by around 50
time units when the variance of the service time increases
by one unit at the fastest rate, which is about three times
the MSMSER, SA estimator. This can be explained by the fact
in the SA direction for the variance both the the mean and
the variance of the service time increase. The Dl column in
Table 4, where Dlðh0Þ ¼ ~d

Trh0l=~d
Trh0r

2, tells us approxi-
mately how much the mean of each input distribution,
lðhÞ, would change if the variance of the distribution r2ðhÞ
changes one unit. Notice that the MSVSER,MM estimator

Table 1. Experiment setup of M=G=1 queue example.

Input Distribution Parameter Nominal Value

Interarrival time (ARR) exponential mean h
ð1Þ
0 ¼ 1

Service time (SER) gamma (shape, scale) h
ð2Þ
0 ¼ ð4, 5Þ

Table 2. Regression results for M=G=1 queue example (	p< 0.05; 		p< 0.01;			p< 0.001; 				p < 2e� 16).

Parameter Coefficient Significance StdErr (SE)

ARRmean –10.6315 			 (0.3976)
SERshape 3.0695 			 (0.2145)
SERscale –2.5316 			 (0.1596)
Intercept 13.0264 			 (0.5100)
Observations 900
R2 0.514
Adjusted R2 0.5124
Residual Std. Error 0.1967 (df ¼ 896)
F Statistic 316				 (df ¼ 3; 896)

Table 3. MSM estimates for M=G=1 queue example.

MSMInput,Direction Estimator (WS) SE “True” value (FD)

MSMARR, SA �10.6315 0.3976 �9.9594
MSMSER, SA 15.5142 1.0243 14.6577

Table 4. MSV estimates for M=G=1 queue example.

MSVInput,Direction Estimator (WS) SE “True” value (FD) Dl

MSVARR, SA �5.3158 0.1988 �4.9797 0.5
MSVSER, SA 49.9413 3.2365 47.2310 3.2
MSVSER, MM 2.3815 1.9415 2.6760 0
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indicates that per unit increase in the variance of the service
time in the minimum-mean-change direction would lead to
only a 2 time unit increase in the mean waiting time.
Moreover, the 62� SE interval includes zero, implying this
sensitivity might not be statistically significant. This substan-
tial difference in MSVSER, SA and MSVSER,MM emphasizes the
critical importance of specifying a direction of change to be
able to interpret results.

6.2. SAN

In this example we measure the sensitivity of two output
performance measures of the SAN — the mean and the
variance of the time to complete the project — to the mean
and variance of each of the five input distributions along
meaningful directions. Specifically, for sensitivities with
respect to the input mean (i.e., MSM and VSM measures),
we consider the steepest-ascent direction of the mean of the
input, and for sensitivities with respect to the input variance
(i.e., MSV and VSV measures), the directions are the steep-
est-ascent and the minimum-mean-change directions.

The nominal setup of the experiment is specified in
Table 5. The three paths connecting the source node and
the sink node, Xð1Þ þ Xð4Þ,Xð1Þ þ Xð3Þ þ Xð5Þ, and Xð2Þ þ
Xð5Þ, have balanced means so that each path is approxi-
mately equally likely to be the longest path. The two output
properties of interest represent two different situations:
whether there is, or is not, a within-replication estimator of
the property of interest. We illustrate the estimation and
interpretation of the sensitivity measures to the mean time
to complete the project in the next subsections. Note that
results for sensitivity of the variance of the project comple-
tion time can be found in the online supplemental material.

Despite the simplicity of this problem, gradients with
respect to the activity time parameters are notoriously hard
to estimate with generic methods; this fact has nothing to
do with our sensitivity measures, it is simply a property of
this noisy problem. To guarantee the relative error of the
gradient estimator is less than 0.001, we ran 200,000 replica-
tions in the intensive simulation. The nominal experiment
was also run with 200,000 replications, which is larger than
we would expect to make in practice, but we wanted to have
a precise comparison of sensitivity measures obtained using
different gradient estimation methods. We also ran nominal
experiments with a more reasonable number of replications
(10,000) and report those results at the end of this subsec-
tion. A gradient estimator tailored specifically for this prob-
lem, perhaps employing variance-reduction techniques,
would also help our sensitivity measures.

The LR method is a good fit for the case when only one
input variate is generated within each replication. The gradi-
ent estimator with respect to each input parameter is then
an average of 200,000 corresponding LR gradient estimates.
The LR gradient estimator of EðYÞ with respect to the mean
of an exponential distribution (e.g., Xð1Þ,Xð2Þ), the shape and
scale of a Weibull distribution (e.g, Xð3Þ), and the shape and
rate of a gamma distribution (e.g.,Xð4Þ,Xð5Þ) are given in the
online supplemental material. The estimated values of the
gradients are shown in Table 6, along with the “true value”
estimated using FD.

We also applied the WS method because there are suffi-
cient replications to batch with a large enough batch size to
obtain precise MLEs of each input parameter, and at the
same time with enough batches for the subsequent regres-
sion. Specifically, we batched the observed input variates
from each input distribution with batch size b¼ 100 to esti-
mate the MLEs of each input distribution parameter and, to
be consistent, the observed output with the same batch size
to estimate its mean. Therefore, for the same reason as
stated for the M=G=1 queue example, it is reasonable to
approximate the joint distribution of the batch means of Y
and the MLEs of all input parameters, bH, as multivariate
normal and we can use the WS method to estimate the gra-
dient, brH0EðYÞ, and its variance-covariance matrix through
regressing �Y on bH: The summary of the fitted model is
shown in Table 7 where the coefficient column is the WS
gradient estimates. As can be seen from Tables 6 and 7,
both the LR and WS gradient estimates are consistent with
the “true” values and their SEs are small.

In Table 7 all predictors are significant except the shape
parameter of the distribution of Xð3Þ, which might be
because the rate of change in the mean of Xð3Þ with respect
to its shape is the smallest compared with that of the other
parameters at the nominal setting. The positive signs associ-
ated with the means of Xð1Þ and Xð2Þ are not surprising
because increasing the mean should increase the length of
the corresponding path, and accordingly, the probability of
being the longest. A similar explanation applies to the signs
associated with other predictors. The adjusted R2 is 0.88.
We also performed regression diagnostics to test the stand-
ard multiple linear regression assumptions and checked
multicollinearity and outliers. In summary, we conclude that
the linear model fits the data well.

After plugging the gradient estimates into (9) and their
variances into (10), the MSM and MSV estimators using the
LR and WS methods, their SEs, and their true values are
reported in Tables 8 and 9. For both MSM and MSV

Table 5. Experiment setup of SAN example.

Input Distribution Parameter Nominal value

Xð1Þ exponential mean hð1Þ0 ¼ 5

Xð2Þ exponential mean hð2Þ0 ¼ 15

Xð3Þ Weibull (shape, scale) h
ð3Þ
0 
 ð#ð3Þ

1 ,#ð3Þ
2 Þ ¼ ð5, 11Þ

Xð4Þ gamma (shape, rate) h
ð4Þ
0 
 ð#ð4Þ

1 ,#ð4Þ
2 Þ ¼ ð30, 2Þ

Xð5Þ gamma (shape, rate) h
ð5Þ
0 
 ð#ð5Þ

1 ,#ð5Þ
2 Þ ¼ ð20, 4Þ

Table 6. LR Gradient estimates of SAN example with output E(Y).

Parameter Gradient Estimator (LR) SE “True” value (FD)

Xð1Þmean 0.7284 0.0166 0.7385

Xð2Þmean 0.6886 0.0089 0.7015

Xð3Þshape �0.0465 0.0183 �0.0332

Xð3Þscale 0.3521 0.0310 0.3468

Xð4Þshape 0.1379 0.0123 0.1667

Xð4Þrate �2.2401 0.1844 �2.6337

Xð5Þshape 0.1745 0.0150 0.1752

Xð5Þrate �0.9087 0.0748 �0.8820
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measures estimated using either the LR or WS method, the
value of almost every estimator is close to the true value
obtained using the FD method and the SE is always smaller
than the estimate itself by at least one order of magnitude.
The only estimator that appears to have relatively large error
is the LR MSVXð5Þ ,MM estimator. This might be because the
estimation error of the LR gradient estimator with respect to
Xð5Þ
rate is magnified in the minimum-mean-change direction

and that the mean project completion time is relatively
insensitive to the change in the variance of Xð5Þ when hold-
ing its mean constant (as indicated by the “true value”).
Since the WS method slightly outperforms the LR method
in this setting, we use the corresponding estimates for illus-
trating the interpretation of MSM and MSV sensitivities.

In Table 8, the MSMXð1Þ, SA estimator is the largest, indi-
cating that a unit increase in the mean of Xð1Þ would lead to
an increase in the mean project completion time by about
0.76 units, which is larger than the case when the mean dur-
ation of any other activity increases at the fastest rate.
However, since the differences between MSMXð1Þ , SA,

MSMXð2Þ , SA, and MSMXð5Þ , SA are not significant, the mean
duration of all three activities should receive attention when
managing the mean project completion time.

In Table 9, the MSVXð1Þ , SA implies that the mean project
completion time is likely to increase around 0.076 time
units, i.e., one-tenth of the MSMXð1Þ , SA estimator, per unit
increase in the variance of Xð1Þ: This can be explained by
Dl, which suggests that every unit increase in the variance
along the steepest-ascent direction comes with 0.1 unit
increase in the mean, and that the mean is more influential
on the length of the longest path of the SAN. A similar
explanation applies to the difference between the MSMXðiÞ , SA
and the MSVXðiÞ , SA estimates for all of the other activities.
Additionally, throughout we see the sensitivity to the vari-
ance in the steepest-ascent direction is consistently larger
than in the minimum-mean-change direction, and in some
cases when the mean is held constant the sensitivity may
not be statistically significant, e.g., MSVXð5Þ, MM: This is
because the mean duration of activities is the primary deter-
minant of the longest path, and the steepest-ascent direction
of the variance also changes the mean, but the minimum-
mean-change direction does not, as shown in the Dl col-
umn. Comparing all the MSM and MSV estimates, the MSV
with respect to Xð5Þ along the steepest-ascent direction is the
largest, suggesting that the variance of Xð5Þ should receive
attention if we want to control the length of the lon-
gest path.

Applying the same estimation process to the nominal
experiment with 10,000 replications, we report the LR gradi-
ent estimates and the WS gradient estimates obtained with
batch size b¼ 20 in Table 10. The resulting MSM and MSV
estimates are reported in Tables 11 and 12. To assist with
comparison, we also include the true values of the gradients
and the corresponding sensitivity measures in these tables.

Comparing Tables 6 and 7 with Table 10, the WS gradi-
ent estimator obviously has the advantage because its SE
does not suffer as seriously as the LR gradient estimator
when the number of replications is smaller, even though
most of the LR estimates themselves are still relatively close
to true values. The big increase in the SE also explains the
discrepancy in the sign of the LR gradient estimator with
respect to Xð3Þ

shape:
In Table 11, the 62� SE interval for each LR MSM esti-

mator includes the true value, but in some cases wrongly

Table 7. Regression results for SAN example with output EðYÞ (“ ”p < 1; “	”
p < 0:05; “		” p < 0:01; “	 	 	” p < 0:001).

Parameter Coefficient Significance SE

Xð1Þmean 0.7620 			 (0.0182)

Xð2Þmean 0.7047 			 (0.0064)

Xð3Þshape �0.0231 (0.0246)

Xð3Þscale 0.3130 			 (0.0421)

Xð4Þshape 0.1381 			 (0.0163)

Xð4Þrate �2.2031 			 (0.2430)

Xð5Þshape 0.17801 			 (0.0200)

Xð5Þrate �0.8942 			 (0.0985)

Intercept 9.4142 			 (0.4690)

Observations 2000

R2 0.8765

Adjusted R2 0.876

Residual Std. Error 0.4144 (df ¼ 1991)

F Statistic 1767			 (df ¼ 8; 1991)

Table 8. MSM estimates of SAN example.

MSMInput,Direction

Estimator SE Estimator SE “True” value
(LR) (WS) (FD)

MSMXð1Þ , SA 0.7284 0.0166 0.7620 0.0182 0.7385
MSMXð2Þ , SA 0.6886 0.0089 0.7047 0.0065 0.7015
MSMXð3Þ , SA 0.3694 0.0322 0.3311 0.0440 0.3657
MSMXð4Þ , SA 0.2986 0.0246 0.2937 0.0324 0.3511
MSMXð5Þ , SA 0.7258 0.0598 0.7152 0.0788 0.7055

Table 9. MSV estimates of SAN example.

MSVInput,Direction

Estimator SE Estimator SE “True” value Dl
(LR) (WS) (FD)

MSVXð1Þ , SA 0.0728 0.0017 0.0762 0.0018 0.0738 0.1
MSVXð2Þ , SA 0.0230 0.0003 0.023 0.0002 0.0234 0.0333
MSVXð3Þ , SA 0.0896 0.0114 0.0722 0.0150 0.0832 0.1325
MSVXð3Þ , MM 0.0452 0.0096 0.0315 0.0128 0.0385 0
MSVXð4Þ , SA 0.2990 0.0246 0.2940 0.0324 0.3515 1.0011
MSVXð4Þ , MM 0.0459 0.0064 0.0350 0.0084 0.0357 0
MSVXð5Þ , SA 1.4671 0.1208 1.4447 0.1591 1.4250 2.0198
MSVXð5Þ , MM 0.1163 0.0379 0.0132 0.0507 0.0184 0

Table 10. Gradient estimates of SAN example with output EðYÞ and 10,000
observations.

Parameter
Gradient estimator

SE
Gradient estimator

SE
“True” value

(LR) (WS) (FD)

Xð1Þmean 0.7373 0.0736 0.7559 0.0366 0.7385

Xð2Þmean 0.6688 0.0384 0.7011 0.0121 0.7015

Xð3Þshape 0.0271 0.0781 �0.0423 0.0376 �0.0332

Xð3Þscale 0.2089 0.1364 0.6107 0.0842 0.3468

Xð4Þshape 0.1327 0.0545 0.1387 0.0274 0.1667

Xð4Þrate �2.0549 0.8202 �2.1011 0.4089 �2.6337

Xð5Þshape 0.1575 0.0658 0.1093 0.0345 0.1752

Xð5Þrate �0.7754 0.3301 �0.4936 0.1687 �0.8820
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includes zero, e.g., MSMXð3Þ , SA: On the other hand, for the
WS MSM estimates, their 62� SE interval might fail to
include the true value because of larger bias of the estimator
itself, e.g., MSMXð3Þ , SA and MSMXð5Þ , SA: Thus, when the num-
ber of observations is reasonable but still large, it is hard to
tell which method has an absolute advantage over the other
based on this experiment. Similar observations can be drawn
from those MSV estimates in Table 12. Notice the wrong
signs of the LR and WS MSVXð5Þ , MM estimates, which might
be due to the minimum-mean-change direction of Xð5Þ mag-
nifying the moderate estimation error of the gradi-
ent estimator.

In the online supplemental material we show that esti-
mating sensitivities for the project completion time variance
requires a much higher simulation budget no matter what
gradient estimation method is adopted. Nevertheless, the
results in the online supplemental material show that the LR
gradient estimators always outperform the WS gradient esti-
mators with the same simulation budget, because of the
smaller SE. Additionally, VSV is harder to estimate than
VSM, especially if using the WS method. However, neither
of the sensitivity estimates using LR or WS is uniformly
accurate and precise.

In summary, if we obtain a large enough number of rep-
lications, then both WS and LR can work for this example;
at smaller (but still large) sample sizes there are issues, espe-
cially when the output is VarðYÞ: The WS method is better
for estimating the sensitivity of the EðYÞ, even with a mod-
erate number of observations, and the LR method has obvi-
ous benefits for estimating the sensitivity of the VarðYÞ: As
noted earlier, gradient estimation is difficult for the SAN,
even with FD.

7. Conclusions

In this article we defined a new family of sensitivity meas-
ures for a simulation output property with respect to some
input property based on directional derivatives. Unlike gra-
dients with respect to the input-distribution parameters, our
sensitivity measures are easy to interpret and allow for the

selection of a direction that is meaningful for the problem
at hand.

Although we focused on sensitivities of the output mean
or variance with respect to the input mean or variance, the
only restriction is that the input and output properties must
be differentiable with respect to the input-distribution
parameters. For instance, we might be interested in the sen-
sitivity of an output quantile, or sensitivity with respect to
an input quantile, and this is possible in our framework. As
an example, if the input of interest has a Weibull distribu-
tion with parameters h ¼ ða, bÞ, then for any 0 < p < 1 the
pth quantile of this input is b½� ln ð1� pÞ�1a whose gradient
with respect to h is easily computed. Furthermore, both
Hong (2009) and Jiang and Fu (2015) provide methods for
estimating the gradient of output quantiles with respect to
input-distribution parameters. Therefore, our family of sen-
sitivity measures also applies to quantiles.

Nevertheless, identifying the inputs whose mean or vari-
ance has the greatest impact on output performance is often
of interest for system design and control (e.g., Schoemig
(1999) and Hopp and Spearman (2011)). For this case we
identified two specific directions that seem appropriate for
many applications, and by using existing gradient estimators,
both point and error estimators for any member of the fam-
ily were obtained solely using output data from the nom-
inal experiment.

Our definition of the family of sensitivity measures does
not depend on the gradient estimator used, but the statistical
properties of our estimators do. We illustrated estimation of
sensitivity in different contexts in Section 6. Although we
considered generic gradient estimation methods, specifically
FD, LR and WS, problem-specific approaches may also
be employed.

An open issue is that our family of sensitivity measure
exploit specifying a direction, but alternative parameteriza-
tions of an input distribution might lead to different values
of the sensitivity measure along conceptually the same direc-
tion. Although we suggested adopting whatever parameter-
ization was used in the simulation model, it makes sense to
search for a parameterization-free definition of “direction.”

Finally, in this article we only considered univariate input
distributions. Our framework extends naturally to the steep-
est-ascent direction of parameter change for multivariate
input distributions when gradients are available with respect
to the natural parameters. However, other meaningful direc-
tions are harder to specify and remain a topic for
future work.
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Table 11. MSM estimates of SAN example with 10,000 observations.

MSMInput,Direction

Estimator
SE

Estimator
SE

“True” value
(LR) (WS) (FD)

MSMXð1Þ , SA 0.7373 0.0736 0.7559 0.0366 0.7385
MSMXð2Þ , SA 0.6688 0.0384 0.7011 0.0121 0.7015
MSMXð3Þ , SA 0.2273 0.1419 0.6464 0.0889 0.3657
MSMXð4Þ , SA 0.2739 0.1094 0.2801 0.0545 0.3511
MSMXð5Þ , SA 0.6207 0.2639 0.3965 0.1350 0.7055

Table 12. MSV estimates of SAN example with 10,000 observations.

MSVInput,Direction

Estimator
SE

Estimator
SE

“True” value Dl
(LR) (WS) (FD)

MSVXð1Þ , SA 0.0737 0.0074 0.0755 0.0037 0.0738 0.1
MSVXð2Þ , SA 0.0223 0.0013 0.0234 0.0004 0.0234 0.0333
MSVXð3Þ , SA 0.0309 0.0490 0.1399 0.0252 0.0832 0.1325
MSVXð3Þ , MM 0.0009 0.0412 0.0602 0.0198 0.0385 0
MSVXð4Þ , SA 0.2743 0.1095 0.2805 0.0546 0.3515 1.0011
MSVXð4Þ , MM 0.0174 0.0285 0.0054 0.0119 0.0357 0
MSVXð5Þ , SA 1.2533 0.5332 0.7992 0.2726 1.4250 2.0198
MSVXð5Þ , MM �0.0389 0.1644 �0.1689 0.0668 0.0184 0
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