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Sampling-based motion planning (SBMP) is a major algorithmic trajectory planning approach in autonomous
driving given its high efficiency and outstanding performance in practice. However, driving safety still calls
for further refinement of SBMP. In this article we organically integrate algorithmic motion planning with
learning models to improve SBMP in highway traffic scenarios from the following two perspectives. First,
given the number of points to be sampled, we develop a new model to sample “important” points for SBMP
by predicting the intention of surrounding vehicles and learning the distribution of human drivers’ trajectory.
Second, we empirically study the relationship between the number of sample points and the environment,
which is largely ignored in conventional SBMP. Then, we provide a guideline to select the appropriate num-
ber of points to be sampled under different scenarios to guarantee efficiency. The simulation experiments are
conducted based on the vehicle trajectory dataset NGSIM. The results show that the proposed sampling strat-
egy outperforms existing sampling strategies in terms of the computing time, traveling time, and smoothness
of the trajectory.
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1 INTRODUCTION

In the past decade, both academia and industry put a large amount of effort into autonomous
driving. There have been autonomous vehicles put into commercial practice, for example, the
taxi service provided by Google’s driverless car, Waymo [54]. Meanwhile, an increasing amount
of autonomous driving accidents have emerged, which should remind us that big challenges
still remain — such as seeing surroundings robustly, perceiving objects in real time, and acting
safely — to achieve full autonomy.

Motion planning plays a key role in acting safely, which means generating a collision-free tra-
jectory from the current location to the immediate destination. In the literature, there are four
main categories of motion planning algorithms: graph search-based planners [4, 26, 43], sampling-
based planners [27, 33], interpolating curve planners [17, 34], and numerical optimization
approaches [57]. Among them, sampling-based motion planning (SBMP) has recently become a
mainstream motion planner [3, 38, 40] given its capability of potentially finding global optimal
paths and solving high-dimensional motion planning problems in a shorter time using advanced
algorithms [25]. Moreover, SBMP does not need precise obstacle geometry required in many other
methods [46].

In order to consistently capture the dynamically changing environment, sensors equipped on
the autonomous vehicle usually are synchronized at a fixed updating frequency, for example, 10
Hz [32]. This requires the motion planner to finish its decision in 100 ms in order to be responsive
to the surrounding environment changes. However, SBMP runs longer than 100 ms in complex
environments according to the authors of [40]. To shorten this gap, on the one hand, SBMP needs to
find a collision-free trajectory with fewer sample points. Thus, identifying necessary and sufficient
sample points becomes the key to reducing computation time. On the other hand, predicting the
future situation around the ego vehicle in a short time window accurately shall gain more time for
SBMP to make the decision as the planned trajectory can be valid for a longer time period.

In current works [33, 40], the number of sample points is fixed and predefined for all surrounding
environments. However, when the surrounding environment is simple, with few adjacent vehicles,
sampling more points than necessary will prolong the computation time. Thus, the number of
points to be sampled should be determined by the environment scenario to further reduce the
computation time.

In this article, we design a novel learning-based SBMP framework to solve the aforementioned
issues in highway traffic scenarios. We first predict the intention of surrounding vehicles to allow
motion planning to “see” ahead. Prediction information enables a motion planner to generate the
trajectory with (1) a longer valid time period and (2) smooth velocity over a longer time period.
Then, we design a new sampling model by integrating prediction and learning from the human dri-
vers’ trajectory, which contributes to generating a smooth and collision-free trajectory in a shorter
time. Given this well-trained sampling model and environment scenarios, we design a strategy to
dynamically determine the number of sample points. Our main contributions are summarized as
follows:

e We propose a new automatic labeling strategy for data preprocessing to correctly label and
extract useful driving scenarios, and design the first 2-stage prediction model that greatly
improves the accuracy of prediction on vehicles’ intentions.

e We design a new bias sampling model by integrating the prediction of surrounding vehicles
and imitation learning. Specifically, we train a CVAE model to generate collision-free sample
points only near the human-driving trajectory through learning from the trajectory dataset.
Given the number of points to be sampled, the proposed sampling model will lead to faster
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motion planning and help generate a smooth collision-free trajectory that is on par with and
even better than that generated by human drivers.

e We propose a new approach to adaptively determine the number of sample points for motion
planning. We empirically study the relationship between the number of sample points and
the environment scenario. The selected number of points to be sampled can further reduce
the computation time while guaranteeing a feasible and safe solution.

e We design an online planning strategy to mitigate the time lag problem caused by the imple-
mentation aspects. We estimate the shifted initial state and use its estimation as the initial
state in both the sampling model and the planning algorithm to calibrate the time lag issue.
Our proposed method can not only perform independently but can also cooperate with the
existing mitigation schemes.

e We evaluate our sampling model from the perspectives of prediction accuracy, success rate of
finding a collision-free trajectory, computation time of planning, and quality of trajectory by
comparing it with other state-of-the-art sampling models. We also validate the performance
improvement brought by the prediction and imitation learning modules individually.

Compared with our conference paper [56], the new contributions in this extension include (1) de-
veloping an adaptive approach to determine the number of sample points for a given environment
scenario so that the proposed solution can be practically adopted in autonomous driving; (2) de-
signing a new online planning strategy to mitigate the time lag problem; and (3) comparing the
performance of the proposed model with more baseline models and validating the performance
improvement brought by the prediction and imitation learning modules individually.

The rest of the article is organized as follows. In Section 2, we review the general process of
the SBMP algorithm and briefly introduce our framework. We present our 2-stage intention pre-
diction model in Section 3 and evaluate its performance. In Section 4, we leverage prediction and
imitation learning to design a new sampling model. In Section 5, we introduce our empirical study
on determining the number of sample points. In Section 6, we evaluate our sampling strategy.
We introduce the related works of motion planning in Section 7. In Section 8, we present our
conclusions.

2 THE BACKGROUND AND NEW FRAMEWORK

In this section, we explain the basic modules of SBMP and then present the proposed learning
framework for it.

In this article, we consider that a vehicle’s state at any given time can be described by
[px» Py Vs 0], where p, and py are the coordinates of the center of the vehicle’s rear axle, v is
the instantaneous velocity, and 6 is the heading angle of the vehicle with respect to the road direc-
tion (y-axis). These four features represent the state and dynamic of a vehicle well. Here we note
that, although we consider a 4-dimensional state space, our approach can be adopted to other sce-
narios that define states in higher-dimensional spaces. SBMP aims to find the best trajectory that
connects a vehicle’s initial state, x;,;;, to any possible goal state, x4/, in a goal region, Xyo4;. To
this end, there are many intermediate states being sampled, x;, which are on feasible trajectories.
Each of such intermediate states is defined as a sample point. A state space C consists of x;,;¢,
Xyoal, and all sample points. We further define Cr.. C C as the collision-free state space. SBMP
generally consists of a sampling phase and planning phase introduced as follows.

e Sampling phase: This procedure discretizes the state space to generate the sample points.
Although the uniform sampling strategy is commonly used, many bias sampling strategies
have been proposed, such as goal biasing [35], bias Gaussian sampling [33], and informed
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Fig. 1. Framework of proposed motion planning.

Environment

sampling [16]. The key advantage of bias sampling is that, by eliminating unnecessary
sample points, a bias sampling scheme may reduce the search space and speed up the plan-
ning algorithm.

e Planning phase: Given the sample points, obstacle information, and differential constraints,
this procedure generates a collision-free roadmap [28] or tree [25] connecting x;,;; and xgoa;-
To make sure that the generated trajectory between two points satisfies the vehicle kinematic
constraints, we apply the most general car-like kinematic model to represent its differential
constraints. If a tree is constructed in this phase, the algorithm stops because the final tra-
jectory can be obtained directly. If a roadmap is constructed where there are several feasible
trajectories, graph search algorithms — such as Dijkstra [11], A* [19], and D* [51] — can be
applied to find the optimal one connecting x;n;; and xgoq1-

The sampling strategy in the sampling phase is the key to finding a trajectory quickly and
effectively. Therefore, in this article, we mainly focus on designing a better sampling strategy that
can reduce the computation time and improve the trajectory smoothness in the planning phase.
As shown in Figure 1, our proposed SBMP includes three modules: a prediction module, imitation
learning-based sampling module, and planning module. We make contributions to the first two
modules.

2.1 Framework

As mentioned, our proposed framework consists of three modules: a prediction module, sampling
module, and planning module. The first two modules are based on various learning approaches
and provide more accurate and useful inputs to the third module. We give a brief introduction of
these three modules as follows.

e Prediction module. In this module, we predict surrounding vehicles’ intentions based on their
history trajectories with high accuracy by improved the labeling method and training model.

e Sampling Module. In this module, given the environment scenario, the number of sample
points is determined as an input to the sampling model. The sampling model generates sam-
ple points near the human-driving trajectory given the current and predicted environment
information, the initial state, and the goal state.
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e Planning Module. This module takes the set of sampling points, the initial state, and the goal
state to generate a collision-free and smooth trajectory. Planning algorithms in [25, 27] can
be applied in this module.

3 PREDICTION OF VEHICLE’S INTENTION

In this section, we introduce the prediction module to allow the planning algorithm to see ahead
and prolong the valid period of the trajectory. We first briefly present the architecture of the
prediction module in Section 3.1. Next, in Section 3.2, we analyze existing automatic labeling
schemes and propose a more advanced scheme. In Section 3.3, we present details of our predic-
tion module, involving network structure, training strategy, and the post-processing algorithm to
predict accurate intentions of surrounding vehicles. Finally, in Section 3.4, we conduct numerical
experiments to validate our model.

3.1 Overview of the Prediction Module

Many learning models have been proposed for intention prediction in the past few years [39, 52].
In general, existing learning models take a vehicle’s neighbor information and its past features
as inputs, including position, velocity, acceleration, and so on. These models usually output the
probabilities of different future intentions, including car-following, lane-changing-left, and lane-
changing-right [52]. However, in our framework, we aim to predict the intention of a vehicle
merely based on its history trajectory since it is not always available to acquire the neighboring
information (such as obstacle positions) of adjacent vehicles in real driving scenarios.

In addition, despite the promising results of utilizing learning-based prediction models, we note
that the accuracy of lane-changing is usually below 90% in recent work [52] (and with different
traditional models in Table 1), which could compromise motion planning in autonomous driving.
This is because unexpected lane-changing behavior may affect the safety of neighboring vehicles
and may interfere with the planned path of other vehicles. To improve accuracy, we refine the
prediction module as follows:

e We improve the existing automatic labeling scheme to precisely identify the start point as
well as the end point of lane-changing, assign the correct class label to each frame, and
extract meaningful driving patterns, which will be utilized to develop the intention predic-
tion algorithm.

e To improve the accuracy of intention prediction, we first propose to predict vehicles’ inten-
tions with different stage models based on our analysis on trajectory datasets. Specifically,
we classify the history trajectory of a vehicle into different stages (e.g., before, during, and
after changing lanes) and use one learning model to predict the intention in each stage. To
train each stage model, we further separate the labeled data into different sets, each contain-
ing different patterns.

In this article, we propose a novel prediction module comprising two stages: (1) regular and
(2) after-crossing-line (vehicle crosses the line in previous 2 seconds). As shown in Figure 2, three
scenarios will be included in the Stage 1 Model: (1) typical car-following, (2) car-following before
lane changing (BLC), and (3) lane changing pattern I (i.e., before crossing the line between two
lanes). For the second stage, we consider the frames in a certain period after the vehicle crosses the
line. In this stage, the model will consider four possible scenarios: (1) typical car-following, (2) car-
following after lane changing (ALC), (3) lane changing pattern II (i.e., immediately after crossing
the line), and (4) driving on line. In the next subsection, we will discuss how to automatically assign
labels to vehicles with different time epochs in a dataset.
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Fig. 2. Overview of (a) the training process and (b) the testing process of our prediction model. The model
architecture is shared by both single-stage models, which is illustrated in detail in Figure 8. Each single-stage
model is trained individually with a different training set of interesting driving patterns.

(b)

Fig. 3. lllustration of three types of automatic labeling schemes: (a), (b), and (c) illustrate labeling schemes
in [10, 44, 49, 52], respectively. Positions of vehicle between two red vertical line segments are labeled as
lane-changing.

3.2 Automatic Labeling

Given a large trajectory dataset, which contains detailed trajectory information of each vehicle
over a long period, it is crucial to apply an automatic labeling scheme to classify the driving
behaviors of vehicles at each time epoch and extract useful patterns for further learning. Cur-
rently, there are three major automatic labeling schemes in the field [10, 44, 49, 52], as illus-
trated in Figure 3. Nevertheless, they are not able to cover all of the cases in which some time
points are wrongly labeled. We extract some cases from the NGSIM dataset to illustrate that the
aforementioned schemes cannot handle them correctly, as shown in Figure 4. In addition, all ex-
isting automatic labeling schemes will skip the cases in which a vehicle is driving along the line
during lane changing, as shown in Figure 4(f), which is a common situation.

The first type of scheme [10] identifies the time that a vehicle takes in crossing the line between
two lanes and then specifies the behavior of the vehicle as lane-changing if and only if the vehicle
is within ¢ seconds before or after the crossing event, where ¢ is a predefined threshold as shown
in Figure 3(a). A major problem with this type of scheme is that, with a fixed t, some car-following
cases may be wrongly labeled as lane-changing, as shown in Figure 4(a).

The second type of scheme [44, 49] assumes that a vehicle starts lane-changing if its lateral
velocity towards an adjacent lane exceeds a threshold v, in N consecutive timesteps before line
crossing, and it ends lane-changing if it crosses the line or its lateral velocity is lower than v,
after line-crossing, as shown in Figure 3(b). Its main issues are that a vehicle may continue lane-
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Fig. 4. Some cases in real trajectory data. Each scatter point indicates a position in the trajectory. Each red
line indicates the tangent line from -2 s before lane-changing to +2 s after lane-changing, which is utilized
to label critical points by previous work. Two green lines in each figure are the tangent lines found by our
method. Each yellow line segment indicates positions with possible wrong labels in previous methods. Red
dots indicate the positions where the vehicle is closest to the lane line.

changing after the cross-over or change its steering angle several times during lane-changing, as
shown in Figure 4(b) and 4(c).

A recent study in [52] proposed a third type of scheme, which first identifies two positions of
a vehicle, corresponding to 2 seconds before and after line-crossing, respectively. Next, the two
points will be used to create a straight line whose angle with the line is 6, shown as a yellow
line in Figure 3(c). Finally, it attempts to find two parallel tangent lines that have the nearest
tangent points to the crossing point and will use these two points as the starting and end points for
lane-changing. Although this scheme leads to better prediction performance, it also suffers from
the inaccurate labeling issue when a vehicle changes its steering angle multiple times during lane-
changing, as shown in Figure 4(b) and 4(c). Moreover, this scheme cannot find the desired tangent
line in some cases, as shown in Figure 4(d) and 4(e).

To assign a correct label to each case and improve the performance of intention prediction,
we propose a novel automatic labeling scheme as follows. Similar to the scheme in [52], we first
identify two points A and B corresponding to t seconds before and after line-crossing, respectively.
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(a) (b)

Fig. 5. Illustration of our proposed automatic labeling method on lane-changing cases. (a) Regular lane-
changing. (b) Lane-changing with on-line driving.

Next, we link the two points to the line-crossing point C, as shown in Figure 5(a). Starting from
the point A, we can find the first point D on the trajectory, whose tangent line is parallel to the line
AC. For this point D, we regard it as the starting point of this lane-changing behavior. Similarly,
from the other side, we can find another tangent point E closest to B, whose tangent line is parallel
to the line BC. We regard this point as the end point of lane-changing behavior.

Based on the procedures presented earlier, our automatic labeling scheme provides two levels
of labels. The first-level label specifies the category of future behavior for each vehicle at each
position. In the second level, we provide an additional label to each case for training purposes.
Specifically, in a regular lane-changing case, such as Figure 5(a), we give a car-following label to
positions before D and after E, and a lane-changing-right label to positions between D and E as
their first-level labels, which represent their future intentions in the short term. In the second level,
we label positions between A and D as BLC, positions between D and C as lane-changing pattern
I, between C and E as lane-changing pattern II, and between E and B as ALC. These second-level
labels will be utilized when we assign the extracted driving patterns to train the corresponding
stage models. For the on-line driving case, we adopt a slightly different strategy to derive the two
levels of labels. We first specify the second-level label as on-line driving if (1) the vehicle crossed
a line multiple times in a short period t, and (2) the maximum distance to the line is smaller
than a threshold d,. For example, in Figure 5(b), positions between U and Y are labeled as on-line
driving. Next, we identify some turning points and determine the first-level labels. For example,
in Figure 5(b), positions before V and after X are labeled as lane-changing-right, and the positions
between V and X are labeled as lane-changing-left.

3.3 2-Stage Model, Training Strategy, and Intention Prediction Algorithm

Based on the data labeled by the new labeling scheme, we design the prediction module, which
consists of two learning models as shown in Figure 2. We choose Multi-layer Long Short-Term
Memory (LSTM) architecture for both, each following the network design of baseline model II
in Figure 8 with hidden dimension 128. The prediction module will take the lateral and longitude
positions, velocity, acceleration, heading angle, and lane_ID of the past 10 frames as input for each
of the adjacent vehicles and output their intentions.

To train the two models, we use 6 sequences of trajectory data in two datasets: NGSIM US-101
[14] and I-80 [13]. NGSIM (Next Generation Simulation) is a publicly available trajectory dataset
containing real traffic data from four different places. Both NGSIM US-101 and I-80 contain
45 minutes of trajectory data (three sequences) from a highway with five lanes. Each sequence
comprises trajectories of multiple vehicles from 15 minutes. We use data from the first 12 min-
utes for training and the last 3 minutes for testing, with all data labeled by our automatic labeling
scheme. As shown in Figure 2, we train the Stage-1 model with three cases, and the Stage-2 model
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ALGORITHM 1: Intention Prediction Algorithm

1: data < EXTRACTATTRIBUTES(Local_X, Local_Y,Vehicle_Velocity, Vehicle_Acceleration, Lane_ID,
Theta)

2: if vehicle changes lane in previous 2 s then
3: tag «AsSIGNTAG(“Model_A”)

4: else

5: tag < AsSIGNTAG(“Model_B”)

6: end if

7: pred_label, dx «—PrEDICT(data)

8: if tag == “Model_B” then

9: decision « pred

10: else

11: if dx > 0 then

12: if pred == “Lane-changing-right” then
13: decision < pred

14: else if dx < threshold then

15: decision « “On line”

16: else

17: decision « pred

18: end if

19: else

20: if pred == “Lane-changing-left” then
21: decision « pred

22: else if dx < threshold then

23: decision < “On line”

24: else

25: decision < pred

26: end if

27: end if

28: end if

29: return decision

with four cases. While extracting these training cases from datasets, the frequencies of these cases
are not the same and the car-following case is the dominating one in a common traffic scenario.
To deal with the data-imbalance problem and improve the performance of the neural network, we
increase the proportion of BLC and lane-changing pattern I cases by randomly sampling the same
number of pieces from each data pool (lane-changing-left, lane-changing-right, and car-following,
respectively). In this way, the Stage-1 model can learn more about lane-changing. The same strat-
egy is also applied to train the Stage-2 model. To train both models, we set the learning rate to be
0.00125 in the first 60 epochs, 0.000625 in the second 60 epochs, and we use softmax cross-entropy
as the loss function. Intermediate cells of the single-stage model can be either Bidirectional LSTM
(Bi-LSTM) or LSTM Cell, as illustrated in Figure 8. While the former produces slightly higher ac-
curacy, the latter is simpler and more efficient for training and testing.

We will now briefly explain how to use the well-trained model to predict the intention of vehicles
inreal time. The algorithm is presented in Algorithm 1. After checking whether the vehicle changes
lanes in the previous 2 seconds, we assign the testing data to the corresponding stage model for
prediction. For the before-lane-changing model, the intention of the vehicle simply equals the
category with the highest probability. As for the after-lane-changing model, however, the situation
is much more complex. For a given state, it is necessary to compare its current dx to a threshold
derived from statistics analysis (Figure 6). dx is a variable that describes the lateral moving distance
of a vehicle after lane-changing, as depicted in Figure 6. dx > 0 indicates a lane-changing-right
while dx < 0 implies a lane-changing-left. If |dx| is in the range of the threshold and the predicted
label does not match the orientation of dx, it is highly likely that the vehicle is fluctuating along
the line. In this case, we tend to assign it with the car-following label. Otherwise. the predicted
behavior of the vehicle belongs to the category with the highest probability.
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Table 1. Comparison Results on Test Set with Each Testing Scenario Randomly Selected
in all Testing Scenarios

Method Real Label - Predict Label -
Following | Left \ Right
Following 95.07% 1.83% 3.10%
Baseline Model I Left 13.91% 85.17% 0.92%
Right 11.06% 0.99% 87.95%
Baseline Model IT Eoiltowmg ??32? 82%40307;' ?'S;Z
(LSTM) e . 0 . 0 . 0
Right 8.99% 1.33% 89.68%
. Following 96.85% 1.31% 1.84%
Baseline Model II
(Bi-LSTM) Lf}ft 9.04% 89.24% 1.72%
Right 10.68% 0.84% 88.49%
Following 96.93% 1.36% 1.71%
CS-LSTM [10] Left 9.84% 88.40% 1.76%
Right 11.47% 1.51% 87.02%
2-Stage Model Following 96.67% 1.33% 2.00%
Left 7.77% 91.78% 0.45%
(LSTM) )
nght 7.56% 0.50% 91.94%
2-Stage Model | | SRR BOE iyt
(Bi-LSTM) ¢ oo po o
nght 7.45% 0.61% 91.94%

3.4 Numerical Results

To evaluate the performance of our 2-stage model, we conduct extensive experiments. For a fair
comparison, we compare the performance of our 2-stage models with different baseline models us-
ing the same labeled set for training and testing. In the first experiment, we utilize the test set with
all vehicles randomly selected, each at a random time epoch. The results are summarized in Table 1,
in which we can see that all models achieve relatively high accuracy in these three classification
tasks. Baseline Model I is similar to the LSTM model utilized in [52] but without neighbor features
as input, which achieves the lowest performance in lane-changing prediction. In contrast to Base-
line Model I, Baseline Model II is designed with multiple LSTM layers, as shown in Figure 8. The
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Fig. 7. (a) Red and yellow boxes show that there are the same driving patterns assigned to different behavior
labels. (b) Yellow box shows that there are different driving patterns assigned to the same behavior label.
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Fig. 8. Visual illustration of different baseline models, also used as single-stage model. (a) Baseline model I:
single LSTM layer (same as LSTM model in [52] without neighbor features as input). (b) Baseline model Il:
Multiple LSTM layers. Intermediate cell can be either Bi-LSTM or LSTM. If Bi-LSTM is selected, the message
is communicated in both directions.

accuracy of Baseline Model Il is improved while applying a more complicated network structure Bi-
LSTM (i.e., Baseline Model II (Bi-LSTM)). However, the accuracy of lane-changing is still below 90%.
We also investigate the effect of neighboring information by utilizing social pooling [10]. The pro-
posed CS-LSTM [10] achieves high accuracy (96.93%) on predicting lane-following behavior, but it
sacrifices the accuracy of lane-changing cases. Compared with the CS-LSTM model and Baseline
Model II (Bi-LSTM), our 2-stage models, including 2-stage model (LSTM) and 2-stage model (Bi-
LSTM), achieve about 3% higher accuracy in predicting lane-changing cases since our model can
handle the differences in driving patterns of different stages well, as illustrated in Figure 7. Such
differences may confuse the single-stage models discussed earlier. Moreover, our 2-stage model
(LSTM) is as efficient as the single-stage Baseline Model II (LSTM) in terms of computation time.
Due to the complicated network structures of Baseline Model II (Bi-LSTM) and CS-LSTM, these
two models are more time-consuming than our 2-stage model (LSTM).

Since the prediction of before and after lane-changing is more important to our framework,
we conduct a second experiment in which we choose test cases randomly but only at the time
epoch when the vehicle is 4 seconds before or after the line-crossing. As shown in Table 2, in
such a more challenging scenario, the accuracy of the single-stage model (Baseline Models I and
1) as well as CS-LSTM decreases considerably, especially for the accuracy of the car-following
case. By comparison, our 2-stage models can still achieve high accuracy for all three cases, which
demonstrates the advantages and potentials of the proposed method. Also, compared with the
first two baseline models, the baseline model with Bi-LSTM as intermediate cells significantly
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Table 2. Comparison Results on Test Set with Each Testing Scenario Randomly Selected
in +£4 s Interval of Cross-over

Method Real Label - Predict Label -
Following | Left \ Right
FOHOWing 75.91% 14.62% 9.47%
Baseline Model I Left 14.46% 84.16% 1.38%
Right 12.29% 1.34% 86.36%
. FOllOWing 76.67% 15.62% 7.71%
Baseline Model II
(LSTM) L?ft 10.64% 87.69% 1.67%
Right 12.54% 2.86% 84.60%
. FOllOWing 80.74% 11.47% 7.79%
Baseline Model II
(Bi-LSTM) Le}ft 9.26% 88.21% 2.53%
Right 11.22% 1.87% 86.91%
Following 79.61% 12.84% 7.55%
CS-LSTM [10] Left 10.01% 87.49% 2.50%
Right 11.51% 2.42% 86.07%
2-Stage Model Following 83.03% 10.36% 6.61%
Left 7.73% 90.97% 1.30%
(LSTM) )
nght 8.32% 1.60% 90.08%
T L I
€ . o . o . °
Bi-LSTM
(Bi ) Right 7.80% 1.87% 90.33%

boosts overall performance, particularly in the accuracy of the car-following cases. However, this
distinction is eliminated for the 2-stage models in that the 2-stage model (LSTM) achieves nearly
the same performance as the 2-stage model (Bi-LSTM). As a result, we utilize the 2-stage model
(LSTM) given its higher efficiency and high accuracy.

4 SAMPLING WITH IMITATION LEARNING AND PREDICTION

In this section, we design a new sampling model by integrating the prediction result from Section 3
and imitation learning. Through leveraging prediction results, some potential collision spaces can
be eliminated from the state space and the generated trajectory can be valid for a longer time.
Imitation learning [31, 37] can further help reduce the useless sample points while keeping the
sample points near the human driving trajectory. Given these “important” sample points, a safer
and human-like trajectory with smoother velocity and longer valid time period can be generated by
the planning module. To achieve this goal, we need to design and train a unified model to generate
sample points that are collision-free in the given scenario with any predicted environment, initial
state, and goal state as input. We apply Conditional Variational Autoencoder (CVAE), which is
good at learning from the given data and generating new data, to learn this sampling distribution.

In the rest of this section, we first introduce the basics of CVAE. Then, we describe how to apply
the CVAE model to our problem and its training process. Finally, we present how to integrate the
prediction module and the well-trained CVAE model to generate sample points.

4.1 Basics of CVAE

Variational Autoencoder (VAE) [29] is a mainstream generative model. It can generate new samples
that follow the same distribution as the training data. In this article, we choose CVAE [50], an
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Fig. 9. Architecture of our model applying CVAE.

extension of VAE, as the generative model. With sampled data x, we denote the latent variable of x
as z. Conditioned on ¢, we train CVAE to maximize the objective function [50] for a given sample x:

Eg,(z1x.c)log py (x1z. ¢)] — Dxrlgy(zlx, ) llpy (zlc)], (1)

where ¢ and ¢ are parameters of encoder and decoder functions, respectively. Given sample x,
we first utilize an encoder to capture the distribution of its latent variable z conditioned on ¢ and
approximate the distribution to a function py (z|c). After decoding the latent variable z conditioned
on ¢, we hope to maximize the expectation of log-likelihood log py (x|z, c) in order to regenerate x.
Following [50], we train the CVAE model with two objectives: (1) given the input data x and
condition c, the output of the encoder (i.e., the latent variable z) follows a probability distribution
N(u, 0?) that is close to N (0, I), and (2) the output of the decoder (i.e., the reconstructed x) must be
close to the input x. To achieve the first objective, we define that the encoder can produce the mean
and variance of a Gaussian distribution, that is, y and 2. Therefore, we can use the KL divergence
between N(u, o%) and N(0,1) as the first part of the loss function to optimize CVAE. To achieve
the second objective, we sample random variable z from normal distribution N(u,o?) and then
use ¢ and z as the inputs of the decoder to reconstruct x. Consequently, the second part of the loss
function is defined as ||x — %||*>. Once trained, given ¢, we can sample from N(0,) to generate %.

4.2 Our Training Model

The network architecture used for training and sampling of CVAE is shown in Figure 9. In addition
to the encoder and decoder networks, we need another convolutional neural network (CNN) to
preprocess our 3D environment information, which involves current and future environment in-
formation. The surrounding environment contains only the neighboring vehicles in a fixed range
of distance. In the training phase, we use the ground truth to describe the future environment.
Now, we introduce c, x, loss function, and the training process.

Condition c. In our model, the condition ¢ includes the environment information, the initial
state x;,i;, and the goal state x4,4;. We define the environment information in every 100 ms as a
frame. For each frame, we encode it into an occupancy grid map as follows. Let the width of the
lane be w, let the lateral distance of the ego vehicle to the lane center be d, let the ego vehicle
position be [py, py], and let the neighboring range be r. Considering the camera and Lidar sensing
ability, we set r = 250 feet. If the ego vehicle is in the right of the center lane, d is negative and
vice versa. We draw a map with a length of 2 = r and width 3 = w. The center of this map is
[px — d,py], which represents the relative position of the ego vehicle. This map is divided evenly
into several small grids. As the vehicle size is usually around 9 feet * 16 feet, the size of a grid
is set as 4 feet * 6 feet, which is smaller than the vehicle size, to make it sensible to the vehicle
movement even in a short time period. Therefore, the whole occupancy grid map is divided into

3’;‘” % 50 grids. Let (pos;, pos;), i < 31‘”, J < 50 be the center of each grid. Given the 1 s (10 frames)
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predicted trajectory of surrounding vehicles, the raw information is encoded in a 3D occupancy
matrix Mep, € R™10 a5 follows:

Mono[1111[] = {(1), lf (posi, pos;) l:S occupied .at time t
, if (posi,pos;) is free at time t,
where m = 3’;”", n = 50.

This 3D occupancy grid matrix is input to the CNN model for contextual feature extraction.
The output is a k-dimension feature vector ve,, € R¥. Therefore, the condition variable can be
represented as a (k + 8)-dimension vector which contains veno, Xinir» Xgoar as shown in the left
part of Figure 9.

Variable x. Variable x contains the ego vehicle’s states, which are extracted from the trajectory
that starts with x;,;; and ends with x,,4;. As the environment information in ¢ has the temporal
dimension, x also needs to have time-sequential sample points corresponding to the frames in
the 3D environment matrix. The variable x is a vector x € R1%4+1*4 \which contains 10 states
corresponding to the 10 future frames and 1 random state out of the predicted range. Therefore,
x can be represented as x = [x1, X2, ..., X190, Xs), Where x; is the state of the ego vehicle in the ith
predicted frame and x; is a state out of the predicted range but before the goal state. This additional
state x; helps our model generate sample points from xj to x40q; rather than only in the next 1
s since the planning trajectory is usually longer than 1 s. Thus, the objective of finding a feasible
trajectory from x;,;; to Xyoq; can be guaranteed.

We take the trajectory with a length of 40 frames (4 s) and its corresponding environment as a
training case, which means that the human driver finishes the trajectory in 4 s. Lots of training
cases of different lane-changing scenarios are retrieved evenly. If we use these training cases to
train our model directly, the model can be applied only to the cases in which the travel time must
be around 4 s. Obviously, this is unpractical. To handle this problem and augment the training
data, one lane-changing trajectory is used to generate multiple training cases with different initial
states but the same goal state. In other words, the time intervals between the initial state and goal
state of the augmented training cases are different.

Loss function. We use the KL divergence, an important term of the CVAE objective function,
as one part of the loss function. Another part is the reconstruction error between the input x and
the output of the decoder x. The loss function is:

1 = x| + > Dicelgq (zilx, )llpy (zil0)]. )

We model the prior distribution of the latent variable at each future time epoch py (z;|c) as an
isotropic Gaussian with unit-variance. The loss function penalizes the large divergence between
the distribution of each latent variable N (y;, 01.2) and N (0, I) for approximating N (y;, 0'1.2) to N(0,1I),
where pi; and o7 are output by encoder for the ih latent variable. In addition, it encourages X to be
similar with x as much as possible, which indicates that the time-sequential sample points should
be sampled near human driving trajectories.

Training process. The training process is illustrated in Figure 9. The 3D environment matrix is
transformed to a 1D vector by the CNN. This vector is concatenated with the initial and the goal
states to constitute the condition c. Then, the sample point x is concatenated by the condition ¢
and mapped to the latent space by the encoder. The encoder outputs two values for each latent
variable at each future time point: one is mean value y; and the other is logarithmic variance log o2.
Then, we can sample each latent variable z; from N (y;, O'iz) and concatenate them to form the latent
variable z. After that, we concatenate z with the same condition c. The decoder projects this vector
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ALGORITHM 2: Position Prediction of Surrounding Vehicles

¢ Prights Protiows Pleft < PredictModule

N MAX(Prighta Pfollmw Pleft)

Ps «— SECONDMAX(Prights Pfﬂllowv Pleft)
:if P, > 80% & 6 € [0,,—, 01,4 ] then
Onew < 0

: elseif P, >80% & 6 ¢ [60,,—, 0,,1] then
Onew — 9+6,,,

: elseif P, < 80% & 0 ¢ [0, 0,,+] then
9: Orerw — 9“9"’ + 1% 0

10: else

11: Onew < 0+ 10

12: end if

13: for v € SurroundingVehicles do

14: for ¢t € next 1 second do

15: posy « [xg +vel? -t -sinOpeyy, Yy +vel? -t - cos Opew]
16: end for

17: end for

18: return pos

X[V DYRBPN

from the latent space to get x. The loss value is calculated using Equation (2) to optimize the CNN,
encoder network, and decoder network.

4.3 Our Sampling Model

After training, the decoder is capable of using N (0, I) and c to generate x as shown in the sampling
stage in Figure 9, where ¢ can be obtained by the same way introduced in the training process for
given environment information, initial state, and goal state. The initial and goal states can be
obtained from the localization system and higher decision layer, respectively. Therefore, to obtain
¢, an input of the decoder in the sampling stage, we need to predict only the position of surrounding
vehicles in the next 1 s and construct the 3D environment matrix.

For each future frame, we need every surrounding vehicle’s position and size to complete the
corresponding occupancy grid map. The size of each surrounding vehicle can be obtained by the
perception system in the autonomous vehicle. The position of a surrounding vehicle in each future
frame is calculated using the velocity and heading angle. We can use the current instantaneous
velocity to estimate the velocity in the next 1 s. The future heading angle may change a lot in
the next 1 s, especially, when this vehicle changes lane. We leverage the output of our prediction
module to estimate the future heading angle. Since our prediction module can provide probabil-
ities of lane-changing-left Pj.r;, lane-changing-right P,;s5;, and car-following Pf,ji0,, for each
surrounding vehicle, we sort these three probabilities and define the largest one as P,,, where the
subscript m represents the major intention. The second largest one we define as Ps, where the
subscript s represents the secondary intention. We define the normal range of heading angle for
lane-changing-left, lane-changing-right, and car-following as [0fo110w-» Ofotiow+]> [Orefi—» Otefe+],
and [0righs—, Orighs+] respectively, according to the statistics of NGSIM real data [13, 14]. For fur-

0 _+0 (7 +0,
ther estimation, let 0070w = M Orefr = M and O,ign; =

Denote the current heading angle as 0, estimated future heading angle as Ope., the current Veloc-
ity of vehicle i as vel’, and the position of vehicle i at time ¢ as pos} = [x},y}]. The algorithm used
to estimate the position of surrounding vehicles in the next 1 s is presented in Algorithm 2.

We encode their future positions into occupancy grid maps and then input them to the CNN to
extract the environment features. Then, the vector of environment features is concatenated with
the initial and goal state to construct the condition variable ¢ as shown in the left part of Figure 9.

erlght +9rzght+
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Finally, the well-trained decoder can generate sample points using the aforementioned condition
variable ¢ and the points sampled from N(0, I).

5 SELECTION OF THE NUMBER OF SAMPLE POINTS

In the conventional SBMP, the number of sample points is a given input without regard to the envi-
ronment, which may lead to unnecessarily prolonged sampling time for some simple environment
scenarios or insufficient number of sample points to find a feasible trajectory in some complex envi-
ronment scenarios. In this section, we aim to design a strategy to determine the number of sample
points sufficient to find a feasible collision-free trajectory for any given environment scenario so
that SBMP does not sample more than necessary or an insufficient number of sample points. To
achieve this goal, we need to explore and quantify the relationship among the environment sce-
nario, the number of sample points, the computation time, and the success rate. With such a built
relationship, we can find the right number of sample points for each environment scenario that
can achieve the lowest computation time while ensuring a similar performance using less sample
points.

We focus on the highway traffic scenarios in which the complexity of the environment scenario
is mainly characterized by two factors: the number of surrounding vehicles, Nsy, and the Euclidean
distance between the initial state and goal state, d;;. The former can capture the complexity of the
surrounding environment and the latter indicates the size of the state space, which is represented
as follows.

dl'g = |Xinir — xgoal“Z
2 2 . : 2
= ((mei, _ngoal) + (Pym“ _Pygogl) + (Vinir * sin Oppip — Ugoal * SIN Ggoal)

2\ 1
+ (Vinit * cos Ojpir — Ugoal * COS egoal) )2

In the rest of this section, we first present the general approach to determine the number of
sample points empirically. We then discuss how to choose the initial value and step value while
applying our approach.

5.1 General Approach

We design an online approach to explore and quantify the relationship between the number of
sample points and the environment scenario while running SBMP. The number of sample points
is denoted as n and the environment scenario is described using a tuple (Nsy, d;4). It is noted that
the d;4 here is discretized to several intervals; otherwise, all cases will have different d; . Their re-
lationships, (Nsv, dig, n), are stored in a table, AdaptiveNumber, where (Nsv, d;4) can be regarded
as the key and n here is the value of key (Nsy, di4), which represents the recommended number
of sample points in this environment scenario. As the objective is to achieve lower computation
time while ensuring a similar success rate, one more table is required to store the average com-
putation time for different n under the same (Nsy,d;;), which helps update the value n in table
AdaptiveNumber according to the lowest computation time. This table is denoted as T, where the
key is (Nsy, dig, n) and the value, ¢, is the average computation time used for planning with n sam-
ple points in the environment scenario (Nsy, d;y). We briefly explain how to create and maintain
these two tables.

e Initialization. We initialize table AdaptiveNumber and table T as empty tables.

® Query. Given the environment scenario (Nsy, d;4) as key, retrieve the corresponding value
from table AdaptiveNumber. If the retrieved n is not empty, run SBMP to find a feasible
trajectory. Otherwise, run the insert process.
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e Insert. For a new environment scenario (Nsy, d;4) that has not been encountered before, n
is initialized as a large number to guarantee that a feasible trajectory can be found. We run
SBMP and record the computation time 7. Insert (Nsv, di4, n) into table AdaptiveNumber,
then insert (Nsy,d;4, n, 7) into table T.

e Update T. When finishing SBMP and recording the computation time 7, update the average

computation time (Nsy, dig, n, W) in table T, where ¢ is the current average computa-
tion time and k is the counter for calculating the average computation time.

o Update AdaptiveNumber. Table AdaptiveNumber is updated in the following cases: (1) If
this environment scenario has been encountered several times and the success rate of finding
a feasible trajectory is 100%, decrease the value n of key (Nsv, diy) by a predefined step value.
(2) In case it fails to find the feasible trajectory using the selected n, let the vehicle follow the
current trajectory and increase the value n of key (Nsv,d;y) by a predefined step value.
(3) Let T(Nsv,dig,n) be the retrieved value t of key (Nsy,dig,n) in table T. If
T(Nsy,dig,n’) < T(Nsy,di4,n), update the value n to n’ for key (Nsy,d;4) in table
AdaptiveNumber, that is, n = argmin,, T(Nsy, dig, n). In the case of (1) and (2), after updat-
ing, we randomly recalculate a number of cases under the same (Nsy, d;4) using the current
adaptive number n to test offline the feasibility of it. If there is no failure, we keep the current
number n. Otherwise, we further increase it and retest it until it succeeds.

We note that the step value for updating table AdaptiveNumber and the initial value of n can be
set empirically according to different road, weather, light, and other conditions. In the following
subsection, we will show how to set the step value empirically.

5.2 Empirical Study on Initial Value and Step Value

As motion planning is usually used for lane-changing to avoid collisions, we extract all of the
lane-changing cases from NGSIM US-101 [14] and I-80 [13] datasets for analysis, where the US-101
dataset is used for empirical study and the I-80 dataset is used for verification of the results (dataset
introduction is available in Section 3.3). Specifically, we leverage the empirical result obtained from
US-101 and apply it on I-80 to show that the initial value and step value could be the same in the
same type of environment. Each extracted case is a lane-changing case of a 4-s human-driving
trajectory, including a 2-s trajectory before lane-changing and a 2-s trajectory after lane-changing.
In addition to the trajectory of the lane-changing vehicle, surrounding vehicles’ trajectories are
included in each lane-changing case. The lane-changing vehicle is the subject vehicle in the rest
of this section.

For empirical study, we first cluster these lane-changing cases into different clusters according
to the numbers of surrounding vehicles. Define C; as the cluster in which there are i surrounding
vehicles for all cases. Define n as the number of sample points and set n as to be 1,000, 500, and 100.
For each case in C;, we apply the planning algorithm FMT* [25] with our sampling model presented
in Section 4 to complete the motion planning task for the subject vehicle given the initial state and
goal state from the ground truth.

After running all US-101 lane-change cases, we can obtain the average computation time table
T. We denote { as the average computation time, calculating the average distance, Jig, and the
number of cases that fail to find a feasible solution in each cluster as shown in Table 3. In general,
we can observe that only 100 sample points are needed to achieve 100% success rate in the clusters
where Ngy < 9 or Jl-g < 116.08 since the surrounding environment is simple or the state space is
small. We note that a feasible trajectory cannot be found in some clusters where both Ngy and J,-g
are moderate, that is, Ngy > 8 and J,»g >= 137.46 due to insufficient sample points, that is, 100 in
our experiment. Such cases are referred to as failed cases.
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Table 3. Computation Time Using Different Numbers of Sample Points in
Different Environment Scenarios

Ngy 3 4 5 6 7 8 9 10
dig 221.74 | 211.88 | 198.18 | 185.78 | 176.31 | 174.85 | 164.03 | 151.85
£ (ms) 83.58 111.54 | 115.90 | 118.80 | 136.97 | 131.52 | 134.90 | 145.10
(n = 1,000)
f (ms)
42.83 53.66 58.30 65.50 79.55 78.74 82.44 87.65
(n = 500)
£ (ms) 12.44 13.74 15.38 17.28 20.38 22.81 23.531 | 25.15%
(n = 100)
Ny 11 12 13 14 15 16 17 18
dig 137.46 | 141.80 | 116.08 | 114.24 | 103.24 | 102.83 90.56 81.99
£ (ms) 147.52 | 159.43 | 165.66 | 161.70 | 178.35 | 185.58 | 184.81 | 185.64
(n = 1,000)
t (ms)
90.80 96.05 98.85 98.53 105.83 | 106.40 | 105.10 | 100.61
(n = 500)
£ (ms) 26.51 28.713 30.10 30.10 30.93 33.51 34.36 33.23
(n = 100)

13 cases fail to find feasible trajectory.
21 case fails to find feasible trajectory.
31 case fails to find feasible trajectory.

According to the experiment result, these failed cases occur due to insufficient sample points.
While setting up the initial value of n and the step value for updating table AdaptiveNumber, we
need to avoid such failed cases as much as possible.

e We first discuss the initial value of n. From Table 3, we analyze the value of d;; and Nsy in the
failed cases and find that d;, is greater than 140 in all of these failed cases, and Nsy in these
failed cases is greater than 8. Combining these two thresholds, when Nsy > 8 & d;4 > 140,
the initial value of n should be 500 to ensure the success rate. Otherwise, the initial value of
n could be 100.

e As for the step value, it is set to be 50 for those cases with 500 as the initial value. Similarly,
the step value is set to be 10 for other cases in which the initial value of n is 100.

Given the aforementioned initial value and step value, we apply our proposed approach on the
I-80 dataset and there is no failed case using the predefined initial value.

6 IMPLEMENTATION AND EXPERIMENTS

Given the aforementioned sampling strategy, including the imitation learning-based sampling
model and the strategy for selecting the number of sample points, we first present the online
planning strategy from the implementation aspects. Then, we evaluate our sampling strategy
through conducting extensive data-driven simulations. The code can be found at https://github.
com/Yifanny/Integrate- Algorithmic-Sampling-based-Motion-Planning-with-Learning.

6.1 Online Planning Strategy

When the motion planner is put into practice, the motion planner is called at a fixed frequency,
for example, 10 Hz [32], to update the planned trajectory. While replanning the trajectory, the ego
vehicle is not static. It moves along the current trajectory while replanning the new one, which
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leads to the disparity between the initial state used for the replanning process, denoted as x;,¢,
and the initial state of executing the replanned trajectory, denoted as x’. This problem is referred
to as a time lag problem, which may make the replanned trajectory suboptimal or even infeasible
in practice. Some methods have been proposed in [5, 6] to mitigate this problem by estimating the
initial state. In such methods, some leading time is allocated to represent the reserved computation
time of the motion planner and then predict the initial state using the speed command of the
ego vehicle. Although these existing schemes can be applied in some scenarios, their assumption
that the computation time is fixed is not valid for our framework. As shown in Table 3, it takes
different amounts of time for a motion planner to calculate a collision-free path depending on
the surrounding environment, distance between the initial and goal position, and the number of
sample points. To tackle this issue, we propose a new scheme to estimate the initial state, which
aims to mitigate the time lag problem and can cooperate with existing mitigation schemes.

We estimate the shifted initial state X" and use it as the initial state in both the sampling model
and the planning algorithm. Leveraging table T in Section 5, the average computation time ',
is used to estimate the computation time ¢ given (Nsv, d;y) and n. As the ego vehicle follows the
current reference trajectory until the new one is obtained, given the estimated computation time
t, we can calculate X’ based on the current trajectory. Denote 7(7) as the current trajectory and ,
as the current time epoch. x” can be estimated as x” = 7 (ty + t/,,,). X is used as the initial state in
both the sampling model and the planning algorithm in the following evaluation experiments.

6.2 Experiments and Numerical Results

To evaluate our sampling strategy, we adopt FMT* [25] as the planning algorithm and conduct
data-driven simulations in which we apply the cost function and trajectory-generation method
suggested in [55]. Specifically, to evaluate and compare our sampling strategy with other sampling
strategies, we focus on the success rate of finding a collision-free trajectory, computation time of
the planning algorithm, the travel time of driving over the trajectory, and the acceleration variation.
The inference of neural networks that are applied in the sampling model is very time-efficient,
that is, less than 10 ms using our personal computer equipped with one GeForce RTX 2080Ti.
Moreover, with advances in technology, future computing units in autonomous vehicles can be
more powerful [45]. Thus, we compare the computation time of the planning algorithm. Here, the
acceleration variation represents the smoothness of the trajectory [57], and a smaller value implies
that passengers feel more comfortable. Due to limited space, we compare our scheme with three
strategies: uniform sampling, bias Gaussian sampling [33], and critical sampling [24].

Besides comparing with the three models mentioned, we conduct two more experiments to
illustrate and validate the improvement obtained by prediction and imitation learning modules
individually. In the first experiment, we do not apply the imitation learning module. In the second
experiment, we do not apply the prediction module. We conduct these two experiments as follows.

e In the first experiment, we remove the imitation learning module and keep the prediction
module. The prediction module helps to identify the potential collision-free space and, thus,
reduces the state space. The predicted positions of surrounding vehicles in the next 1 s are
regarded as potential collision-free space.

o In the second experiment, we design the imitation learning model without considering the
prediction. For a fair comparison, we also apply CVAE to learn the distribution of the human
trajectory. In our final complete model, the input of the model includes ten future frames to
represent the environment variable. For comparison, in this model, we take only the current
frame as the environment variable. We also use a CNN to extract the environment feature
from the environment variable. As is done for the final model, we concatenate the initial
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Table 4. Success Rate Versus Replanning Time Interval

Replanning time interval 200 ms | 400 ms | 600 ms | 800 ms | 900 ms
Uniform 0% 0% 0% 0% 0%
Bias Gaussian 70% 60% 30% 0% 0%
Critical sampling 100% 100% 100% 80% 50%
Partial model without imitation learning 100% 100% 100% 90% 70%
Partial model without prediction 100% 100% 100% 70% 30%
Complete model with imitation learning and prediction | 100% 100% 100% 90% 70%

state, the goal state, and the extracted environment feature to constitute the condition vari-
able. Since there is only the current frame representing the environment variable, we define
variable x as a state between the initial state and the goal state. The other network structure
is designed the same as the final complete model. The loss function also contains the KL di-
vergence and the reconstruction error. After training, similar to the complete model, it can
generate sample points given the points sampled from N(0,I) and the condition variable.
The condition variable contains the extracted environment feature, the initial state, and the
goal state.

In our complete sampling model, the CNN is designed using 16 kernels with size 5. The encoder
and decoder have the same architecture, which contains two fully connected layers, where the first
one has 512 hidden units and the second one has 128 hidden units. They share the CNN with the
same weights to extract environment features. As the NGSIM US-101 dataset [14] includes 3 sub-
datasets, we use two for training and one for testing. We utilize an Adam optimizer with a learning
rate 0f 0.0001 and a batch size of 256 to train the model for 500 epochs. Since both prediction module
and imitation learning module are trained with the NGSIM dataset, we select lane-changing cases
from the intersection of test datasets to evaluate the performance. While applying the critical
sampling strategy [24] for comparison, we generate the critical samples by training a three-layer
fully connected neural network using the same training dataset. The criticality of each sample
point in the training dataset is computed via the betweenness centrality as outlined in [24].

The data-driven simulation experiments are conducted as follows. We randomly extract several
lane-changing scenarios from the testing dataset, where each lane-changing scenario includes a
lane-changing vehicle (i.e., the ego vehicle) and several surrounding vehicles. Thus, we can have
the whole lane-change trajectory of the human driver, in which the state of the vehicle 2 s before
it crosses the line between two lanes is set as the initial state of the ego vehicle, and its goal
state is the state 2 s after it crosses the line. We let our motion planner control the ego vehicle to
change lane, and other surrounding vehicles keep traveling according to the ground truth. Once
the motion planning is triggered, we generate a set of sample points using our sampling model,
given 1 s predicted information. Then, we use the FMT* [25] algorithm to plan the path and, finally,
generate the trajectory for the ego vehicle using the method developed in [55]. We apply a different
replanning time interval as shown in Table 4. Since [55] utilizes a fixed-final-state-free-final-time
controller, we skipped further discussions on the impacts of different controllers and assume that
the ego vehicle can travel on the generated trajectory. Figure 10(a) shows an example of generated
sample points and the ground-truth trajectory in the next 1 s using these points. To illustrate
that our model is not overfitting, we test on not only the US-101 dataset but also the I-80 dataset.
The randomly selected test cases from the I-80 dataset in Figure 10(b) show that our model also
performs well on the I-80 dataset. Note that the surrounding environments in these images are
drawn according to the occupancy grid matrix. Thus, the same vehicle in different frames may
occupy a different number of grids.
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(b)

Fig. 10. Several test cases of US-101 and [-80 applying our sampling model. The red grids represent surround-
ing vehicles and the green zone represents the collision-free space. The top image shows the final generated
sample points. The blue points are the sample points in the next 1s and the orange ones are the sample points
in the next 1-4 s. (a). An example of US-101 using our sampling strategy. The black line is the ground-truth
trajectory in the next 1s. Bottom images show the separated next 1-s sample points according to different
time epochs, which illustrates that the generated sample points are collision-free at the corresponding time
epoch. (b). Randomly selected several lane-change cases from 1-80 dataset. The black line is the ground-truth
trajectory in the next 4 s.

In the rest of the section, we randomly select one lane-changing case for illustration. The initial
state is before lane-changing and the goal state is after lane-changing. The travel time for the
human driver is 4 s. There are 11 surrounding vehicles at the initial state. As it is difficult to find
a feasible solution using a small number of sample points generated by uniform sampling, we set
the number of sample points as 1,000 by default for a fair comparison. Here, we repeatedly run the
replanning process until the vehicle arrives at the goal region or collision occurs.

We first compare the success rate using different sampling strategies under different replanning
time intervals. In this experiment, if the ego vehicle arrives at the goal region without any colli-
sion, it is regarded as a success. The number of sample points is set as 1,000. We run the FMT*
algorithm under each sampling strategy with 10 randomly selected lane-changing cases from the
test dataset. From Table 4, we can see that our sampling strategy performs much better than the
others. The critical sampling strategy is designed for the static environment without considering
the movement of surrounding obstacles. Thus, the success rate decreases with the increase of the
replanning time interval. In the model without the imitation learning module, the success rate is
not decreased since the potential collision-free space is removed by the prediction module. The
results in Table 4 show that the prediction module highly affects the success rate. With the predic-
tion module, our sampling strategy has a higher chance to provide sample points which lead to a
collision-free trajectory.

Then, we consider the travel time and computation time when FMT* succeeds under bias Gauss-
ian, critical sampling, and our sampling strategies. We first compare the performance among the
partial model without the imitation learning module, the partial model without the prediction
module, and the complete model to validate the impact of each individual module on the over-
all performance. We set the replanning time interval as 300 ms and select the trajectory with the
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Table 5. Computation Time in Different Replanning Steps
Time step Bias Gaussian Critical P artlal_ mo dgl Partia I model Complete
(ms) (ms) sampling (ms) w1th0ut~ imitation Wlthom model (ms)
learning (ms) prediction (ms)
0 158 61 472 280 19
300 199 232 65 271 254
600 217 120 243 129 236
900 945 215 599 568 235
1200 279 258 743 351 180
1500 203 175 76 102 167
1800 76 197 596 92 199
2100 55 52 31 2 34
2400 8 19 54 4 32
2700 11 1 77 1 2
3000 5 arrived arrived 2 arrived
3300 arrived - - arrived -
Average time 196 133 296 164 136

shortest travel time for each sampling strategy. As illustrated in Table 5, the computation efficiency
is low in the partial models, especially the one without the imitation learning module. The main
reason behind this is the existence of some useless sample points in the partial models. In the rest
of this section, we mainly compare our complete model with other baseline models. The results in
Table 5 show that both the critical sampling strategy and our strategy take less time (3 s) than a
human driver (4 s) and bias Gaussian (3.3 s) to reach the goal state. Table 5 shows that the compu-
tation time for all of them first increases and then decreases as the ego vehicle approaches the goal
state, which is mainly caused by the varying of search space over time. The results show that the
average computation time of replanning with the bias Gaussian sampling strategy is much longer
than the two other strategies. Our sampling strategy achieves almost the same performance as
critical sampling in terms of computation efficiency. Moreover, our computation time is always
less than the replanning time interval of 300 ms. This experiment demonstrates that our method
is capable of producing a safe trajectory with high efficiency.

Our sampling strategy is capable of generating a smoother trajectory, which is measured by
the acceleration variation as shown in Figure 11. To compare the smoothness of the generated
trajectory under each given replanning time interval, we first choose the test cases in which the
ego vehicle arrives at the goal region without any collision under all three sampling strategies
then choose the test case of the trajectory with the shortest travel time for comparison. We calcu-
late the acceleration for each trajectory to represent the smoothness of the trajectory. As shown
in Figure 11, the acceleration variation of the trajectory generated by our sampling strategy is
always smaller than that of the bias Gaussian sampling strategy and critical sampling strategy
for all replanning time intervals, which demonstrates that our sampling strategy helps generate
a smoother trajectory than the others. Moreover, we find that a longer replanning time interval
leads to a smaller variance for the bias Gaussian and our sampling strategies, which implies that a
longer replanning time interval alleviates the jerky velocity problem and brings more comfort to
passengers.

7 RELATED WORKS

Trajectory and intention prediction has become an increasingly significant topic in the field of
autonomous driving. Understanding the future movements of adjacent vehicles will contribute
to better motion planning for the ego vehicle. Trajectory forecasting [10, 21, 36, 42] and inten-
tion prediction algorithms [39, 52] are introduced as follows. The former directly generates fu-
ture trajectories of nearby vehicles, while the latter focuses on the intention (e.g., lane-changing
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Fig. 11. Acceleration variation with different replanning time intervals.

behavior) of each neighbor. Among trajectory forecasting algorithms, some studies [21, 36] try
to model on-road uncertainty with advanced techniques (e.g., Bayesian neural network), while
others [10] utilize well-designed modules (e.g., social pooling, graph neural network) to model
social interaction. Although these algorithms may help to produce more accurate trajectories and
give multimodal results, these models are relatively more complex, requiring more information
that may not always be available, and the computational time is much longer when compared
with intention prediction methods. Intention prediction algorithms [39, 52] produce very accurate
prediction results regarding driver’s intention (around 90%). In the highway scenario, where the
behavior is predictable given the intention, intention prediction is an efficient and reasonable way
to forecast future situations.

Motion planning has been studied in the robotic domain for decades. There are four main types
of motion planning algorithms: graph search-based methods [15, 43], numerical optimization ap-
proaches [30, 57], interpolating curve methods [17, 34], and sampling-based methods [27, 33].

Graph search-based methods: Algorithms in this category will first discretize the config-
uration space into lattices [15], handcrafted lane graphs, or cell-grids [41], and then apply the
searching algorithm to find the shortest path, such as Dijkstra, A*. Many teams apply this type of
algorithm for autonomous driving motion planning [15, 43] because of its capability of searching
the optimal path in a short time. It can fulfill the real-time requirement for the driverless vehicle

well. The main issue with this type of method is that it cannot guarantee the continuity of the
resulting path.

Numerical optimization: The motion planning problem can be formulated as a numerical op-
timization problem that aims to minimize or maximize the predefined objective function subject to
some constraints. Usually, the objective function encourages a shorter travel time, a more smooth
path, and penalizes the jerky velocity. The kinematic constraints, collision-free requirements, and
the vehicle’s physical limits (e.g., velocity, acceleration, and steering angle) are considered to be
the constraints. Given such an optimization problem, many algorithms can be applied to solve it,
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for example, sequential quadratic programming (SQP) [57]. However, it is time-consuming and
cannot guarantee finding a feasible solution.

Interpolating curves: Given a set of waypoints and a parametric interpolating curve, it can
construct a smooth trajectory that passes these waypoints and avoids obstacles. There are several
commonly used interpolating curves, including lines and circles [48], clothoid curves [34], poly-
nomial curves [17], Bézier curves [18], and spline curves [12]. This kind of method is simple for
implementation and does not require high computational power. The problem is that the shape
of the curve is completely controlled by parameters. In addition, the generated trajectory totally
depends on the given waypoints, which is not robust enough.

Sampling-based methods: We have introduced this kind of method in Section 2. It is capable
of finding the solution in the higher-dimensional configuration space while maintaining the opti-
mality of the solution. RRT and PRM are two of the most famous sampling-based algorithms. RRT
samples one point at a time; thus, it needs multiple rounds of sampling and planning. PRM samples
n points at the same time and plans once. Many extensions of RRT and PRM have been developed
for practical usage [33, 40]. Some work has been proposed to accelerate SBMP by integrating ma-
chine learning [2, 9, 23, 24]. However, some studies [2, 9] are designed specifically for RRT [1]
and Augmented CL-RRT [8]. The authors of [23, 24] do not consider the dynamic environment.
The work proposed in this article can be applied to any sampling-based algorithm that samples all
points at the same time. Moreover, our framework is adaptive in the dynamic environment with
the prediction of the environment.

Artificial potential fields (APF) methods: The APF method is also used to solve this problem
[7, 22, 47]. It assumes that the vehicle moves in a field that consists of an attractive field, that is,
the goal state, and several repulsive fields, that is, surrounding obstacles and road boundaries. The
potential gradient descent algorithm is used to determine the feasible path. The main limitation of
this method is that the solution may be trapped in local minima. Also, it is very hard to accurately
model the potential field in a complex environment.

Many deep learning—based methods, called imitation learning, are proposed to solve this tradi-
tional problem. Reinforcement learning [20, 37], behavioral cloning [53], and generative adversar-
ial networks [31] are the main techniques used in this domain. This kind of method aims to learn
from human drivers and teach the driverless vehicle how to drive. Similar to most of the deep
learning techniques, it requires a huge amount of data and powerful computational hardware to
support it. Furthermore, the training data are usually collected by normal driving cases so that
the final learned driving policy may not be able to handle some abnormal emergency cases. In-
stead of learning driving policy, our proposed framework leverages imitation learning to learn the
sampling distribution and applies the algorithmic method to find a feasible trajectory, which can
guarantee a collision-free trajectory with shorter computation time.

8 CONCLUSION AND FUTURE WORK

In this article, we integrate imitation learning and algorithmic motion planning to develop a new
SBMP framework. It inherits the strength of algorithmic motion planning in finding a collision-
free trajectory. Meanwhile, it adopts different learning models to supply more accurate input to
algorithmic motion planning so that a smooth human-like trajectory can be generated. In partic-
ular, by predicting surrounding vehicles’ intention, accurate future environment information can
be supplied to motion planning. Meanwhile, through imitation learning, points near the human-
driving trajectory will be sampled, which helps to find a collision-free and smooth trajectory
in shorter time. To make the proposed framework more practical, we also conducted an empir-
ical study on adaptively choosing the number of points to be sampled and designed an online
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planning strategy. Data-driven experiments show that our sampling strategy not only accelerates
the computation but also alleviates the jerky velocity. Moreover, our sampling strategy can gener-
ate a trajectory that leads to less driving time than that by human drivers. The proposed framework
can be widely applied on top of any existing sampling-based motion planning algorithms that sam-
ple all points at the same time.

Our framework can be further explored in more general traffic scenarios, such as urban road
areas where the behavior of traffic participants is typically disordered and hard to predict. To
this end, we count on not only the prediction algorithm but also the sampling model to prolong
the valid prediction period and handle a higher degree of uncertainty. We believe that studies
on making better use of road information and modeling social interaction will jointly improve
the performance of our sampling model. Moreover, in addition to the lane-changing behavior of
vehicles, the intention of vulnerable road users and the intention of vehicles in junction scenarios,
that is, turning behavior, are equally important and worth of further investigation.
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