
This article was downloaded by: [113.4.229.166] On: 07 February 2022, At: 04:27
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Knockout-Tournament Procedures for Large-Scale Ranking
and Selection in Parallel Computing Environments
Ying Zhong, L. Jeff Hong

To cite this article:
Ying Zhong, L. Jeff Hong (2022) Knockout-Tournament Procedures for Large-Scale Ranking and Selection in Parallel Computing
Environments. Operations Research 70(1):432-453. https://doi.org/10.1287/opre.2020.2065

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2021, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2020.2065
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Methods

Knockout-Tournament Procedures for Large-Scale Ranking and
Selection in Parallel Computing Environments
Ying Zhong,a L. Jeff Hongb,c,*
aSchool of Management and Economics, University of Electronic Science and Technology of China, Chengdu, 611731 China; bDepartment of
Management Science, School of Management, Fudan University, Shanghai, 200433 China; cSchool of Data Science, Fudan University,
Shanghai, 200433 China
*Corresponding author
Contact: yzhong4@uestc.edu.cn, https://orcid.org/0000-0002-8242-6966 (YZ); hong_liu@fudan.edu.cn, https://orcid.org/0000-0001-7011-4001 (LJH)

Received: February 16, 2019
Revised: December 11, 2019; April 21, 2020
Accepted: June 16, 2020
Published Online in Articles in Advance:
June 4, 2021

Area of Review: Simulation

https://doi.org/10.1287/opre.2020.2065

Copyright: © 2021 INFORMS

Abstract. On one hand, large-scale ranking and selection (R&S) problems require a large
amount of computation. On the other hand, parallel computing environments that provide a
large capacity for computation are becoming prevalent today, and they are accessible by ordi-
nary users. Therefore, solving large-scale R&S problems in parallel computing environments
has emerged as an important research topic in recent years. However, directly implementing
traditional stagewise procedures and fully sequential procedures in parallel computing envi-
ronments may encounter problems because either the procedures require too many simula-
tion observations or the procedures’ selection structures induce too many comparisons and
too frequent communications among the processors. In this paper, inspired by the knockout-
tournament arrangement of tennis Grand Slam tournaments, we develop new R&S proce-
dures to solve large-scale problems in parallel computing environments. We show that no
matter whether the variances of the alternatives are known or not, our procedures can theo-
retically achieve the lowest growth rate on the expected total sample size with respect to the
number of alternatives and thus, are optimal in rate. Moreover, common random numbers
can be easily adopted in our procedures to further reduce the total sample size. Meanwhile,
the comparison time in our procedures is negligible compared with the simulation time, and
our procedures barely request for communications among the processors.

Funding: This research was supported in part by the National Natural Science Foundation of China
[Grant NSFC 71991473].

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2020.2065.

Keywords: ranking and selection • parallel computing • optimal in rate

1. Introduction
Ranking and selection (R&S) aim to find the alternative
with the largestmean performance among afinite set of al-
ternatives, through conducting experiments and observing
the random performance on all alternatives. The problem
was first considered by Bechhofer (1954) and has since
then been studied extensively in the literature: see
Bechhofer et al. (1995), Chick (2006), and Kim and Nelson
(2006) for various reviews. In this paper, we consider
large-scale R&S problems where experiments are con-
ducted by running computer simulationmodels in paral-
lel computing environments, especially commercial
clouds. Despite that there are already some procedures
that are designed to handle this type of problems (see, for
instance, Luo et al. 2015 and Ni et al. 2017), in this paper,
we argue that we need a new mindset in order to break
through the limit of the existingR&S theory andpractice.

First, when solving large-scale R&S problems, we
argue that the computational complexity with respect

to the number of alternatives should be considered in
designing and comparing procedures. In the classical
R&S literature, procedures are typically designed to
handle problems with fewer than 500 alternatives, and
they are typically measured and compared by their em-
pirical performance (e.g., the total sample size) on a
few test problems. When there are a large number of
alternatives (for instance, Luo et al. (2015) and Ni et al.
(2017) considered problems with 104 and 10 6 alterna-
tives, respectively), it becomes theoretically important
to understand the growth rate of the computational ef-
fort of a procedure with respect to the number of alter-
natives because a procedure with a lower growth rate
tends to outperform a procedure with a higher rate as
the number of alternatives becomes sufficiently large.
Moreover, independent of any procedures, we can ana-
lyze the lower bound of the growth rate of all R&S pro-
cedures and ask whether we can design procedures
whose rates are close to or even attain the lower bound.

432

OPERATIONS RESEARCH
Vol. 70, No. 1, January–February 2022, pp. 432–453

ISSN 0030-364X (print), ISSN 1526-5463 (online)http://pubsonline.informs.org/journal/opre

mailto:yzhong4@uestc.edu.cn
https://orcid.org/0000-0002-8242-6966
mailto:hong_liu@fudan.edu.cn
https://orcid.org/0000-0001-7011-4001
https://doi.org/10.1287/opre.2020.2065
https://orcid.org/0000-0002-8242-6966
https://orcid.org/0000-0001-7011-4001
http://pubsonline.informs.org/journal/opre

This provides a theoretical challenge that matters espe-
cially for large-scale problems.

Second, when using parallel computing environ-
ments, we argue that the existing stagewise procedures
and fully sequential procedures are both inefficient, and
we need a new framework that takes a holistic view at
the total computation time, including the time spent on
simulation, comparison, and communication. Stagewise
procedures were first proposed to handle physical ex-
periments, and fully sequential procedures were more
suitable to handle computer experiments generated in a
single processor. Using themdirectly in parallel comput-
ing environments for large-scale problemswill cause too
many simulation observations, too many comparisons,
or too many communications among the processors.
In this paper, we propose new R&S procedures that
consider the total computation time and work well in
parallel computing environments, especially commer-
cial clouds.

1.1. Literature Review
There is a large body of literature on R&S. Based on the
statistical inference used, the existing procedures may
be classified into two categories: Bayesian procedures
(e.g., Chick and Inoue 2001, Chick and Frazier 2012)
and frequentist’s procedures (e.g., Paulson 1964, Rinott
1978, Kim and Nelson 2001). Bayesian procedures typi-
cally allocate a finite number of samples (i.e., experi-
ments) to maximize some performance measures based
on the posterior distributions (e.g., posterior probability
of correct selection (PCS) (Chen et al. 2000, Chick and
Inoue 2001) and expected value of information (Inoue
and Chick 1998, Chick and Gans 2009)) or treat the
problem as a dynamic program and solve it using some
approximations (e.g., the knowledge gradient approach
(Frazier et al. 2008, 2009) and the more recent approxi-
mations of Peng et al. (2018)). Frequentist’s procedures
typically aim to deliver a predefined probability of correct
selection under the so-called indifference zone (IZ) for-
mulation, first proposed by Bechhofer (1954), where the
mean performance of the best alternative is at least
δ > 0 better than those of the other alternatives. Re-
cently, there are some works on developing IZ-free
frequentist’s procedures (e.g., Fan et al. 2016, Zhong
and Hong 2017). In this paper, we still adopt the IZ
formulation.

Two types of procedures have been developed under
the IZ formulation, stagewise procedures and fully se-
quential procedures. Stagewise procedures typically de-
termine the total sample size of each alternative at the
beginning of the selection process or after collecting
some initial observations to estimate the variances and
collect all observations at once to identify the best (e.g.,
Bechhofer 1954, Dudewicz and Dalal 1975, Rinott 1978).

They were mainly developed in early days of the R&S
field, when problems were of small size (e.g., 100 or
fewer alternatives) and observations were often collect-
ed from physical experiments (e.g., clinical trials and
agricultural experiments). For these problems, it often
takes a long time to generate an observation, but one can si-
multaneously generate a large number of them at a time.
Stagewise procedures are naturally parallelizable (i.e., ex-
periments may be conducted simultaneously), and they fit
the problems very well. Fully sequential procedures collect
one observation at a time fromall surviving alternatives and
eliminate alternatives when there is enough evidence (e.g.,
Paulson 1964, Kim and Nelson 2001, Hong 2006). They be-
came popular with the fast development of computer tech-
nologywhen observations are increasingly collected from
running computer simulation models typically on a sin-
gle processor. In this situation, the time needed to gener-
ate an observation is significantly shortened, and the ob-
servations are collected one at a time. Therefore, fully
sequential procedures fit the situation well. They reduce
the total sample size and are capable of solving larger
problems (e.g., up to 1000 alternatives). For both types of
procedures, when observations are generated by comput-
er simulations, common random numbers (CRNs) are of-
ten used to introduce positive correlations among the ob-
servations from different alternatives and to reduce the
total sample size (Nelson and Matejcik 1995, Kim and
Nelson 2001).

Recently, with the growing needs to solve large-scale
R&S problems (with tens of thousands to even millions
of alternatives), some works start to look into the possi-
bilities of using parallel computing environments (e.g.,
commercial cloud services) with multiple processors to
solve R&S problems. The first work in this line of re-
search is done by Luo et al. (2015) (and their conference
version: Luo and Hong 2011). By distributing the simu-
lation experiments in a round-robin manner to all
available processors, they implement Procedure KN , a
well-known fully sequential procedure developed by
Kim and Nelson (2001), in a parallel computing envi-
ronment and successfully solve problems with more
than 20, 000 alternatives. However, they also observe
new issues. Procedure KN requires all pairwise com-
parisons among all surviving alternatives after collect-
ing each round of samples. The number of compari-
sons grows in a higher order than the total sample size
does, and they cannot be easily parallelized. Therefore,
the comparisons may become the bottleneck of the pro-
cedure, especially when the number of alternatives is
large. Ni et al. (2017) (and their conference version: Ni
et al. 2014) propose a “divide and conquer” approach
to address this issue so that the number of comparisons
in their procedure is negligible compared with the
overall computation. By doing so, their procedure

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS 433

dramatically increases the size of solvable problems.
Their procedure is capable of solving problems with
106 alternatives. However, because of frequent com-
munications among the processors, the performance of
their procedure is not satisfactory on some popular
parallel computing platforms (e.g., Apache Hadoop,
where the communication cost is considerably high). It
is also important to notice that both aforementioned
procedures do not support the use of CRNs.

In general, designing parallel R&S procedures is non-
trivial; see Hunter and Nelson (2017) for a comprehen-
sive summary about the challenges of designing paral-
lel procedures and the recent development of the field
in this direction. Parallel computing environments are
different from both physical experiments that are paral-
lel in nature and single-processor computing environ-
ments that are sequential in nature. They support run-
ning multiple experiments at the same time, but the
number of parallel experiments is limited by the num-
ber of processors, which is typically smaller than a few
hundred; the experiments conducted on each processor
are sequential in nature, and the communications among
processors are typically time consuming and inefficient.
Therefore, in this paper, instead of modifying the exist-
ing procedures that are inherently inefficient in parallel
computing environments, we design new R&S proce-
dures that are specifically fit for these environments.

1.2. Knockout Tournament
In this paper, we develop new R&S procedures in-
spired by the knockout-tournament arrangement of
tennis Grand Slam tournaments. A knockout tourna-
ment, also known as a single-elimination tournament,
is a type of elimination tournament where the loser
of each matchup is immediately eliminated from the
tournament, and the winner will move on to the next
round until the final matchup, whose winner becomes
the tournament champion (Kim et al. 2017). In Figure
1, we show the bracket of the 2018 French Open men’s
singles. There are several interesting observations of
the bracket. First, there are in total 128 players in the
bracket. To become the champion, a player does not
need to beat all other 127 players. Instead, he only
needs to win seven (i.e., log2 128) matches. Further-
more, there are in total 127 matches, and each player
plays an average of fewer than 2 matches. Second, the
players may be divided into several groups (e.g., four
quarters as shown in Figure 1). Technically, we can as-
sign each group a tennis court, and the matches
within the group may be conducted only on the
court until the winner of the group is identified. The
matches of all groups may be conducted simulta-
neously on all the courts, and no coordination
across groups is necessary.

Following the knockout-tournament scheme, we
develop R&S procedures that have a “match” between
two alternatives at a time. The winner goes on, and
the loser is knocked out. The procedures use Proce-
dure KN to conduct the matches to achieve the finite-
time statistical guarantee and to gain efficiency on the
total sample size. The procedures eliminate about half
of the alternatives at each round of the selection and
theoretically achieve the lowest growth rate on the ex-
pected total sample size no matter whether the varian-
cesofthealternativesareknownornot.Moreover,because
comparisons are only made within matches and no all-
pairwisecomparisonsareneeded,onecantriviallyshow
that the comparison time in the procedures is negligible
comparedwiththesimulationtime,andCRNscanbeeasi-
lyappliedinthissituationwithoutanyglobalsynchroni-
zations.Toimplementourproceduresinparallelcomput-
ing environments, the set of alternatives can be divided
into small subsets, and theselections indifferent subsets
canbeconductedondifferentprocessorssimultaneously.
Therefore, no communicationsarenecessary among the
processors until each processor produces a local best
alternative.

To further speed up the selection process in parallel
computing environments, we also investigate some
extensions on the procedures. First, if only two alter-
natives are allowed in a match, when both alternatives
are clearly inferior and have similar means, the proce-
dures tend to spend a significant amount of observa-
tions to distinguish them. This can cause efficiency
loss on the sample size and slow down the selection
process. To overcome this issue, we suggest properly
expanding the number of alternatives in a match. By
doing so, we lower the chance that all alternatives in
a match are equally “bad”. Second, when every pro-
cessor produces a local best alternative, keeping the
knockout-tournament selection structure can cause
processor idling because during the rest of the selec-
tion process, there are fewer alternatives than the
processors. To maximize the utilizations of the pro-
cessors, after a processor decides a local best alterna-
tive, we let it additionally simulate enough observa-
tions as suggested by a stagewise procedure for the
alternative. Then, after every processor finds a local
best alternative, we only need to compare the sample
means of these local best alternatives to select the fi-
nal best alternative. As we shall see, these modifica-
tions can significantly improve the empirical perfor-
mance of our procedures. In the meantime, they may
not affect the rates of theoretical upper bounds of
the procedures’ running times but will change the
constants on the upper bounds.

We close this section with a remark that, in the multi-
armed bandit field, there is a stream of research works

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
434 Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS

known as the best arm identification. It is very similar to
the context of R&S problems, except that they typically
consider the cases where the samples are drawn from
sub-Gaussian distributions with known variance proxies
(e.g., distributions with bounded supports). Many novel
procedures have been proposed in the literature (e.g., the
successive elimination procedure (Even-Dar et al. 2002),
the median elimination procedure (Even-Dar et al. 2002),
and the lil’UCB procedure where UCB stands for upper
confidence bound (Jamieson et al. 2014)). It is worth not-
ing that, similar to the knockout-tournament scheme, the
median elimination procedure also eliminates half of
the alternatives at each round of the selection by elim-
inating the alternatives whose sample means are be-
low the median. However, like all pairwise compari-
sons, finding the median of the sample means has a
high order of computational complexity, can only be
done on a single processor, and requires a large num-
ber of communications among the processors. Thus,
the procedure is not suitable for parallel computing
environments as well.

The rest of this paper is organized as follows. In
Section 2, we introduce the problem formulation and
conduct lower-bound analysis on the growth rate of
the expected total sample size for a general R&S pro-
cedure. In Section 3, inspired by the tennis knockout-
tournament scheme, we design a procedure under the
setting where the observations are normally distributed
with a common known variance, and we extend the
procedure to handle problems with unknown and un-
equal variances in Section 4. In Section 5, we further pro-
pose several modifications on the procedure to make it
more suitable for solving large-scale R&S problems in
parallel computing environments. In Section 6, we con-
duct a comprehensive numerical study to understand
the performance of our procedures and compare them
with existing procedures. We conclude in Section 7.

2. Lower-Bound Analysis on Expected
Total Sample Size

Traditionally, when the problem size (i.e., the number of
alternatives) is relatively small, numerical experiments

Figure 1. The 2018 French OpenMen’s Singles Bracket

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS 435

are often conducted to compare the total sample size of
different procedures. Meanwhile, with an increasing
number of alternatives, the growth rate of the expected
total sample size with respect to the number of alterna-
tives may become an important factor affecting the total
sample size of a procedure. Therefore, analyzing the
growth rate provides a theoretical framework to com-
pare various large-scale R&S procedures.

In the following subsections, we first give a mathe-
matical formulation of the R&S problem. We then es-
tablish a lower bound on the growth rate of the ex-
pected total sample size of a general R&S procedure,
as long as it can guarantee to select the best alternative
with the desired probability. In the later sections, we
use this lower bound as the benchmark to compare
the growth rates of different R&S procedures, includ-
ing ours.

2.1. Problem Formulation
Suppose that there are in total k alternatives in conten-
tion at the beginning of the selection process, and we
use K � 1, 2, : : : ,k{ } to index all the alternatives. For
each alternative i ∈K, it generates independent and
identically distributed (i.i.d.) simulation observations
Xi, 1,Xi, 2, : : : , from the normal distribution with mean
µi and variance σ2i . Furthermore, we use X̄i (t) � Rt

ℓ�1
Xi,ℓ=t to denote the sample average of alternative i
based on the first t observations. In this paper, we al-
low the use of CRNs (i.e., the observations generated
by different alternatives may be correlated). Without
loss of generality, we assume that the means are in an
ascending order throughout this paper (i.e., µ1 ≤
µ2

: : :≤ µk−1 ≤ µk) and alternative k is the best. Follow-
ing the convention in the ranking and selection litera-
ture, while developing the procedures, we adopt the
indifference zone formulation. We assume that there
exists a minimal gap δ > 0, which is also called the IZ
parameter and prespecified by the user, between the
means of the best alternative and the second-best al-
ternative (i.e., µk −µk−1 ≥ δ). Our objective is to design
procedures that can achieve, if µk −µk−1 ≥ δ,

P select alernative k() ≥ 1− α, (1)

where 1− α is called the probability of correct selection.
In this paper, we call the procedure satisfying Equa-
tion (1) the procedure with the PCS guarantee.

As pointed out by Ni et al. (2017), there is a theoretical
issue related to using a procedure with the PCS guar-
antee to solve large-scale problems. When the number
of alternatives gets large, it becomes increasingly diffi-
cult to ensure that the mean of the best alternative is at
least δ better than those of others. There may exist mul-
tiple alternatives lying within δ to the best. As a result,
the IZ assumption no longer holds in this situation.
To address this issue, Ni et al. (2017) adopt a stronger

selection guarantee, which requires a procedure to
select an alternative within δ to the best with proba-
bility at least 1−α even when the IZ assumption is
violated. It is called the probably approximately cor-
rect (PAC) guarantee. Let � denote the index of the
alternative that a procedure terminates with. The
PAC guarantee essentially requires the procedure to
achieve that

P µk −µ� ≤ δ
() ≥ 1− α:

The PAC guarantee does not make any assumptions
on the configuration of the means. In this paper, even
though we focus primarily on developing procedures
with the PCS guarantee, we show that, with some
slight modifications, our procedures can satisfy the
PAC guarantee as well, but with a significant efficien-
cy loss observed empirically.

2.2. The Lower Bound
Let N denote the total sample size of a general R&S
procedure, and N is a random variable. In this paper,
we study the growth rate of E [N] as a function of k.
Following the definitions in Cormen et al. (2001), we
first introduce the Big-Ω notation and Big-O notation
as follows.

Definition 1. For a set of constants yq, where q � 1,
2, : : : , and a corresponding set of constants bq where
there exists a constant Q > 0 such that bq > 0 for all
q >Q, the notation

yq �Ω bq
()

,

means that yq grows at least in the order of bq. That is,
there exist finite constantsM1 > 0 and Q1 > 0 such that
| yq |≥M1bq, for all q >Q1.

Definition 2. For a set of constants yq, where q � 1,
2, : : : , and a corresponding set of constants b′q where
there exists a constant Q′ > 0 such that b′q > 0 for all
q >Q′, the notation

yq �O b′q
()

means that yq grows at most in the order of b′q. That is,
there exist finite constantsM′

1 > 0 and Q′
1 > 0 such that

|yq | ≤M′
1b

′
q, for all q >Q′

1.
When yq �Ω (bq), we can view bq as the lower bound

of the growth rate of yq. Similarly, if yq �O(b′q), we can
view b′q as the upper bound of the growth rate of yq. If
sets bq and b′q are identical (i.e., bq � b′q for all q ≥ 1),
then we can conclude that yq grows in the exact same
rate as that of bq.

In order to proceed our lower-bound analysis, we
further make the following two assumptions on the
general R&S procedure that we consider. They basical-
ly state that, when the procedure allocates the obser-
vations, the alternatives with observations do not

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
436 Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS

provide any information on the alternatives without
any observations, and the procedure can only random-
ly pick an alternative as the best if it decides to select
the best from a set of alternatives with no observations.

Assumption 1. Let E denote the set of alternatives with-
out any observations when the procedure decides to stop.
If the procedure chooses to select the best from E, then, for
any alternative i ∈ E, the probability that the alternative
is selected is 1= | E |, where | E | denotes the cardinality of
the set E.

Assumption 2. Let Es denote the set of alternatives with-
out any observations when the procedure allocates the sth
observation. If the procedure chooses to allocate the sth ob-
servation to an alternative in Es, then for any alternative
i ∈ Es, the probability that the observation is allocated to i is
1= | Es |.

With the conditions stated in Assumptions 1 and 2,
we can prove that E [N] �Ω(k), summarized by the
following theorem.

Theorem 1. If Assumptions 1 and 2 hold, for any proce-
dure that can select the best alternative with probability at
least 1− α, where 1− α is the predefined PCS and
0 < α < 1=k, we have

E N[] �Ω k():

Proof. We prove Theorem 1 by contradiction. Let
K1 � 16=(3+ α)(1−α),C1 � (1− α)2=8, andC2 � 1− α=4.
Consider the case of k ≥ K1. If E [N] < C1 k, by Markov’s
Inequality, we have

P N ≥ C2 k() × C2 k ≤ E N[] < C1 k:

It further yields

P N ≥ C2 k() < C1

C2
: (2)

Then, for the procedure, we can decompose the proba-
bility of correctly selecting alternative k as

P
(
select alternative (alt:) k

)
� P ({select alt: k}∩{N ≥ C2 k})

+P ({select alt: k}∩{N < C2 k})

<
C1

C2
+P ({select alt: k}∩{N < C2 k}

∩{alt: k has an observation (obs:)}
)

+P ({select alt: k}∩{N < C2 k}
∩{alt:k does not have an obs:}),

(3)

where the first inequality follows directly from Equa-
tion (2). Next, we show that the second term in Equa-
tion (3) is upper bounded by C2. Let Q s denote the
event that the procedure does not allocate the s th ob-
servation to alternative k. Then, we have

P select alt: k{ }∩ N<C2 k{ } ∩ alt: k has an obs:{ }
()

≤P N<C2 k{ }∩ alt: k has an obs:{ }
()

≤1−P ∩
C2 k

s�1
Q s{ }

()

�1−P Q1()×
∏C2 k

s�2
P Q s|Q1,:::,Q s−1()

≤1 − k−1
k

×k−2
k−1×

:::× k−C2 k
k−C2 k+1

�C2:

(4)

For the third inequality, if events {Q1, : : : ,Q s−1} hold,
when the procedure allocates the s th observation, includ-
ing alternative k, there are at least k− s+ 1 alternatives
having no observations (i.e., | Es |≥ k− s+ 1). Then, by As-
sumption 2,P (Q s|Q1, : : : ,Q s−1) ≥ (k− s)= (k− s+ 1).

For the third term in Equation (3), if the total sample
size N < C2 k, then among all k alternatives, there are
at least k−C2 k alternatives having no observations.
Then, by Assumption 1, we can deduce that

P ({select alt: k}∩{N < C2 k}
∩{alt: k does not have an obs:})
≤ P ({select alt: k}
∩{at least k−C2 k alt s: do not have an obs:}
∩{alt:k does not have an obs:})

≤ 1
(1−C2)k

:

(5)

Plugging the results in (4) and (5) to Equation (3),
we have

P (select alt: k) < C1

C2
+ P ({select alt: k}

∩{N < C2 k}∩{alt: k has an obs:})

+P({select alt: k}∩{N < C2 k}

∩{alt: k does not have an obs:})

≤ C1

C2
+ C2 +

1
(1 − C2) k

< 1 − α, (6)

The last inequality holds by the definitions of C1, C2

and the assumption that k ≥ K1. Equation (6) contra-
dicts the fact that the procedure can guarantee to select
the best alternative with probability at least 1− α.
Thus, we have

E N[] ≥ C1 k, for all k ≥ K1:

Therefore, by Definition 1, we have E [N] �Ω(k). w
Theorem 1 applies to the procedures no matter wheth-

er CRNs are used or not. Also, the result in Theorem 1 is
developed without employing the IZ assumption. It is

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS 437

a universal lower bound for all procedures that can guar-
antee to select the best alternative with probability at
least 1− α, including IZ procedures as well as IZ-free
procedures where δ � 0. In the rest of this paper, we call
an R&S procedure with the PCS guarantee optimal in
rate if the growth rate of E [N] for the procedure is
upper bounded by the universal lower-bound rate (i.e.,
E [N] �O(k)).

3. Procedure for Common Known
Variance Case

In this section, we first introduce the traditional stage-
wise and fully sequential procedures, as they are the
building blocks of our procedures. We then consider
the simplest case, where the variances of all alterna-
tives are known and equal, to illustrate our main idea
on how to develop a procedure that is suitable for
solving large-scale R&S problems in parallel comput-
ing environments and is optimal in rate. We extend
the idea to the more realistic case with unknown and
unequal variances in Section 4.

Throughout this section, we make the following as-
sumption on the observations of all alternatives. It ba-
sically states that the observations generated from all
alternatives are normally distributed with a common
known variance and are independent.

Assumption 3. For each alternative i ∈K, it generates
i.i.d. observations Xi,ℓ, for ℓ � 1, 2, : : : , from the normal dis-
tribution with unknown mean µi and known variance σ2.
The observations generated by different alternatives are
independent.

Remark 1. In this section, for illustration purposes, we
consider a simple case where the observations gener-
ated by different alternatives are independent. All
analyses apply to the case where the observations gen-
erated by different alternatives are correlated. Howev-
er, the latter case requires one’s foreknowledge on the
variance of the difference between any two alterna-
tives instead of the variance of each alternative.

3.1. Traditional Stagewise and Fully
Sequential Procedures

In the R&S literature, two types of procedures with
the PCS guarantee have been developed. One is the
stagewise procedures (e.g., Bechhofer’s procedure and
Rinott’s procedure). A stagewise procedure typically
determines the total sample size of each alternative at
the beginning of the selection process (or after the first
stage that estimates the variances of all alternatives)
and collects all observations at once. Then, the proce-
dure calculates the sample means of all alternatives and
selects the one with the largest sample mean as the best.
The other one is the fully sequential procedures (e.g.,
Paulson’s procedure (Paulson 1964) and Procedure

KN). A fully sequential procedure typically models the
partial sum difference process {Zij (t) � t [X̄i (t) − X̄j (t)]=
σ2i j : t � 1, 2, : : : } between any two alternatives i and j as
a Brownian motion (BM) process, where σ2ij is the vari-
ance of Xi,ℓ −Xj,ℓ.1 As shown in Figure 2, after the
partial sum difference process exits the predetermined
triangular continuation region, one alternative can be
eliminated accordingly. The procedure stops when only
a single alternative is left and selects it as the best. Be-
cause fully sequential procedures allow early eliminations
of the clearly inferior alternatives, they typically have
smaller total sample size than stagewise procedures.

In order to satisfy the PCS guarantee, both types of
procedures decompose the original problem of select-
ing the best alternative into k− 1 subproblems in
which alternative k competes with all the alternatives
i, for i � 1, 2, : : : , k− 1. Alternative k needs to eliminate
all other k− 1 alternatives to be the best. These proce-
dures are typically designed to ensure that for each
competition between alternative k and any alternative
i, for i � 1, 2, : : : ,k− 1, false elimination of alternative k
happens with probability at most α= (k− 1), so that

P alt: k is eliminated() ≤
∑k−1
i�1

P alt: i eliminates alt: k()

≤ k− 1() × α

k− 1
� α: (7)

Equation (7) implies that, for the procedures de-
signed under this framework, as the number of alterna-
tives k increases, the desired false elimination probabili-
ty α=(k− 1) decreases. As a result, more observations
are needed for alternative k and every individual alter-
native i, for i � 1, 2, : : : , k− 1, that alternative k competes
with. Because the overall total sample size sums over

Figure 2. (Color online) Continuation Region (Gray Area) for
Zij (t) in ProcedureKN , Where a � log[(k− 1)=(2α)]=δ

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
438 Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS

all alternatives, the expected total sample size of these
procedures grows faster than the order of k. Therefore,
it is quite difficult to achieve the rate optimality under
the current R&S framework.2

Furthermore, these procedures were originally de-
veloped with the purpose of solving relatively small-
size problems. Directly implementing these proce-
dures in parallel computing environments to solve
large-scale R&S problems may not work well. For in-
stance, even though stagewise procedures are easy to
parallelize (i.e., no communications among processors
until the sample mean comparisons at the last step),
they are typically not efficient in total sample size. Fully
sequential procedures are efficient in sample size. How-
ever, they make comparisons between approximately
k (k− 1)=2 possible pairs of alternatives (i.e., all pairwise
comparisons) after each alternative in contention adds
an observation. It requires frequent communications
among the processors. Even worse, such comparisons
can only be done on a single processor and often require
an expected computational complexity of O(k2) each
time that is significantly larger than O(k), which is the
expected computational complexity needed to generate
an additional observation for each alternative in conten-
tion. When the number of alternatives is large, all pair-
wise comparisons may become the bottleneck of the
procedures and delay the time to solve the problems.

Recently, some efforts have been made to make ful-
ly sequential procedures more suitable for parallel
computing environments. As discussed in Hunter and
Nelson (2017) and Ni et al. (2017), to reduce the num-
ber of comparisons in the procedures, avoiding global
comparisons is critical. To achieve this, the authors
propose two methods. One can partition the alterna-
tives into small groups and only compare the alterna-
tives that belong to the same group (i.e., the “divide
and conquer” approach). In this case, by assigning dif-
ferent processors different groups of alternatives, the
comparisons become parallelizable, and the expected
computational complexity of comparisons in each pro-
cessor only relates to the number of alternatives assigned
to it. Alternatively, one can find high-precision estimates
of an apparently good alternative and let it screen out
inferior alternatives. In this case, the expected compu-
tational complexity of comparisons can be significantly
reduced from O(k2) toO(k) each time.

3.2. Procedure KT 0
In this subsection, motivated by the knockout tourna-
ment, we propose a new framework of developing pro-
cedures to solve large-scale R&S problems in parallel
computing environments. Conceptually, the procedure
proceeds in rounds. At the beginning of each round
r ≥ 1, we pair up the alternatives that are still in conten-
tion. For each pair of alternatives, we conduct a match
between the two alternatives using an existing R&S

procedure. The winner advances to the next round of
comparisons. Following such a selection scheme, about
half of the alternatives can be eliminated at each round,
and the procedure can stop in 	log2 k
 rounds, where 	·

is the ceiling function. Therefore, instead of competing
with all other k− 1 alternatives as in existing R&S pro-
cedures, the best alternative only needs to win at each
round or in total 	log2 k
 alternatives in the procedure.

KN 0(i, j{ },αr,δ,σ2)

Step 1 (Initialization). Compute

ar �
log 1= 2αr()

[]
δ

and Nr �
⌊
4σ2ar
δ

⌋
+ 1,

where �·� is the floor function. Simulate one observation Xi,1
and Xj,1 for alternatives i and j, respectively, and set t � 1.

Step 2 (Screening). Let

eli Condition 1 � Zi j t() − ar +
δt
4σ2

and

eli Condition 2 � Zj i t() − ar +
δt
4σ2

:

Step 3 (Stopping Rule).

• If eliCondition1 > 0, let the procedure return alterna-
tive i. If eliCondition2 > 0, let the procedure return alter-
native j.

• Else if t �Nr, stop and return the alternative that has
the larger X̄i (t).

• Otherwise, take an additional observation Xi, t+1 and
Xj,t+1 from alternatives i and j, respectively; set t � t+ 1;
and go to Step 2.

To satisfy the PCS guarantee, we allocate the probability
of incorrect selection (PICS) αr � α=2r to each round r.
The adopted procedure should ensure that for the
match between alternative k and its opponent at round
r, false elimination of alternative k happens with the
probability less than the allocated PICS αr. The reason
that we allocate more PICS to earlier rounds is because
there are more matches in the earlier rounds, and a
larger PICS can bring more benefit in total sample size.

In this paper, we use Procedure KN to conduct the
matches because it typically provides the tightest con-
tinuation region among the fully sequential procedures
and allows the early termination if one alternative is
clearly better than the other. Let KN 0 (i, j{ },αr,δ,σ2) de-
note the output of Procedure KN , which can correctly
select the best alternative between two alternatives i
and j with probability at least 1− αr if the difference in
means is at least δ, and the variances of the alternatives
are known and equal to σ2. We summarize the property
of KN 0 ({i, j},αr,δ,σ2) as follows.

Lemma 1. For any two alternatives i and j, where µi −µj
≥ δ, we have

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS 439

P KN 0 i, j{ },αr,δ,σ2
()

≠ i
()

≤ αr:

Remark 2. The original Procedure KN of Kim and
Nelson (2001) is designed for the case of unknown
and unequal variances. However, its statistical validi-
ty (i.e., Lemma 1) can be extended easily to the case of
a common known variance. Therefore, we omit the
proof of Lemma 1.

The detailed descriptions of the procedure are
listed, and we call it Procedure KT 0, where KT stands
for knockout tournament.

Procedure KT 0 (a common known variance)
Step 1 (Initialization). Select the PICS α (0 < α < 1=k).

Set parameter δ > 0. Let I r be the set of alternatives in con-
tention at the beginning of round r. Set r � 1 and
I r � 1, 2, : : : ,k{ }.

Step 2 (Pair up). Let I r+1 � ∅. Pair alternatives in I r. If
there is an odd number of alternatives in I r, directly advance
the leftover alternative to the next round of comparisons (i.e.,
include the index of the leftover alternative in I r+1).

Step 3 (Screening). For each pair of alternatives, namely,
i and j, let αr � α=2r. Then, compute

I r+1 � I r+1∪ KN 0 i, j{ },αr,δ,σ2
(){ }

: (8)

Step 4 (Stopping Rule). Set r � r+ 1. If | I r | � 1, stop
and select the alternative whose index is in I r as the best.
Otherwise, go to Step 2.

Remark 3. In this paper, when pairing alternatives at
each round, we randomly draw two alternatives at a
time without replacement either from the set I r if the
procedure is run on a single processor or as we will
show later, from a subset of I r if the procedure is run
in a parallel computing environment.

ProcedureKT 0 provides a general framework for con-
ducting the selection. To practically run Procedure KT 0
in a parallel computing environment, the implementation

details may vary from one parallel computing platform
to another. In what follows, we give an intuitive explana-
tion on how Procedure KT 0 can be implemented in a
parallel computing environment.

In Figure 3, we give an example of the selection of
eight alternatives by Procedure KT 0 in a parallel com-
puting environment with two processors. The underly-
ing mechanism works as follows. If there are m avail-
able processors in the parallel computing environment,
one can equally divide the set of alternatives into m
subsets at the very beginning of the selection process.
Without any prior knowledge on the mean configura-
tion, this division can be random. During the selection,
we only (randomly) pair the alternatives that belong to
the same subset. Then, similar to the tennis knockout-
tournament example, the selections in different subsets
can be independently conducted. Therefore, if each
processor handles the selection of one subset, no com-
munications and synchronizations are needed among
the processors, and at any time, different processors
can execute the matches at different rounds. After each
subset decides a local best alternative, one can either
continue the roundwise selection in a single processor
or use a more efficient way, which will be discussed in
Section 5, to finish the selection of these best alterna-
tives. Therefore, like stagewise procedures, Procedure
KT 0 only requests for a minimal number of communi-
cations among the processors (i.e., a one-to-all broad-
cast at the very beginning of the selection process and
an all-to-one reduction after every processor finds its
own best alternative). At the same time, Procedure
KT 0 largely maintains the fully sequential feature,
which allows the eliminations of the inferior alterna-
tives at any time during the selection process.

However, there is a potential issue associated with
this implementation scheme. As we assign the matches
to the processors all at once at the beginning of the

Figure 3. An Illustration of ProcedureKT 0 in a Parallel Computing Environment

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
440 Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS

selection process, because of the random completion
times of different matches, it can be the case that the
processors that find their local best alternatives earlier
need to wait for the last one to find. This can cause pro-
cessor idling and thus, efficiency loss. For the common
known variance case, to address this issue, one may
have some initial sampling on the alternatives to esti-
mate their means, rank and seed them based on the ini-
tial sample mean information (like typical tennis Grand
Slam tournaments), and schedule the matches accord-
ingly. By doing so, the procedure can better balance the
workloads of different processors and may even achieve
better practical performance on the total sample size.
However, when the variances of the alternatives are un-
known and unequal, and CRNs are used, not only the
means but also, the variance of the difference between
two alternatives can affect the time needed to conduct a
match. To schedule the matches, one additionally needs
to estimate the variance of the difference between any
two alternatives. When the number of alternatives is
very large, estimating these sample variances can take a
very long time because its computational complexity is
O(k2), and storing these sample variances is challenging
as well. Given these reasons, in this paper, we still
choose to randomly pair alternatives at each round. We
also want to note that for this implementation scheme,
processor idling only occurs when a processor finds its
local best alternative. It suggests that after a processor
finishes its jobs, it will no longer be occupied by the pro-
gram and can be used by other programs.

One may view the implementation scheme of Pro-
cedure KT 0 as a variant of the “divide and conquer”
approach because each processor handles the selection
of one subset of alternatives. However, one distinct
feature of Procedure KT 0 is that, within each subset,
the procedure still keeps the roundwise selection
structure to gain further reductions on the computa-
tional complexity of comparisons and achieve a lower
growth rate on the expected total sample size, instead
of using Procedure KN directly on all alternatives in
the subset. In the next subsection, we show that Proce-
dure KT 0 is statistically valid and optimal in rate.

3.3. Statistical Validity and Upper-Bound Analysis
In this subsection, we first show that Procedure KT 0

satisfies the PCS guarantee, summarized by the fol-
lowing theorem.

Theorem 2. If Assumption 3 holds and µk −µk−1 ≥ δ,
with probability at least 1−α, Procedure KT 0 can se-
lect alternative k as the best.

Proof. The proof of Theorem 2 is straightforward as
the overall PICS of Procedure KT 0 is simply a sum-
mation of the allocated PICS αr at each round r. Let kr,

where kr ≠ k, denote the index of the alternative that
competes with alternative k at round r.

With the result in Lemma 1, if µk −µk−1 ≥ δ, we have

P select alt: k() � P ∩
	log2 k

r�1
alt: k is selected at round r{ }

()

≥ 1−
∑	log2 k

r�1
P alt: k is eliminated at round r()

� 1−
∑	log2 k

r�1
P KN 0 k,kr{ },αr,δ,σ2

()
≠ k

()
> 1−

∑∞
r�1

α

2r
� 1− α:

It concludes the proof. w
We prove in the following theorem that Procedure

KT 0 is optimal in rate.

Theorem 3. Let N1 denote the total sample size that Proce-
dure KT 0 requires to identify the best alternative. Then, for
any k > 0,

N1 ≤
16σ2 log 2=α

()
δ2

+ 4
()

k,

and therefore, E [N1] �O(k).

Proof. Because at each round, about half of the alter-
natives are eliminated, it can be easily verified that the
number of alternatives in contention at the beginning
of round r i.e., | I r |, can be bounded as

2	log2 k
−r ≤ | I r | ≤ 2	log2 k
−r+1:

The equation also implies that the total number of
rounds is upper bounded by 	log2 k
 i.e., r ≤ 	log2 k
, be-
cause as long as |I r| ≤ 2, the procedure can produce the
best alternative at round r. As KN 0 (i, j{ },αr,δ,σ2) is
applied at each round to compare alternatives, then at
round r, for each alternative i ∈ I r, it can take at most

Nr �
⌊
4σ2ar
δ

⌋
+ 1 �

⌊
4σ2 r− 1() log2− logα

[]
δ2

⌋
+ 1,

observations, where Nr is the ending point of the con-
tinuation region of Procedure KN . Therefore, we can
upper boundN1 as follows:

N1 ≤
∑	log2 k

r�1

|I r |×Nr

≤
∑	log2 k

r�1

2	log2 k
−r+1

×
4σ2 r−1() log 2− logα

[]
δ2

+1

()
≤ 8σ2 log 2

δ2

∑∞
r�1

r−1
2r

−8σ2 log α
δ2

∑∞
r�1

1
2r
+2

∑∞
r�1

1
2r

()
×2	log2 k

≤ 8σ2 log 2=α
()

δ2
+2

()
× 2	log2 k

≤ 16σ2 log 2=α
()

δ2
+4

()
k:

Therefore, E[N1] �O(k). This concludes the proof. w

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS 441

The results in Theorems 2 and 3 show that Proce-
dure KT 0 is statistically valid and optimal in rate. It
suggests that in terms of the total sample size, the
procedure is competitive for solving large-scale R&S
problems, or at least, the total sample size of the pro-
cedure will not differ by orders of magnitude from
that of the best procedure.

In addition to the number of communications and
the total sample size, the number of comparisons is also
an important aspect on evaluating a procedure’s perfor-
mance in parallel computing environments. In Proce-
dure KT 0, for each match, generating two observations
(i.e., one for each alternative) is always coupled with
just a single comparison. Therefore, the number of com-
parisons is N1=2. Because the time to make a compari-
son is typically significantly less than that of generating
two observations, the total comparison time is negligi-
ble compared with the simulation time. Moreover, the
comparison is done right after collecting two observa-
tions on the same processor. Therefore, the compari-
sons are also distributed to different processors, which
is different from that of Luo et al. (2015) where all com-
parisons are done in a single processor.

3.4. Procedure KT 0 with the PAC Guarantee
As previously mentioned, the PCS guarantee may be-
come inappropriate when the number of alternatives
becomes large. In this subsection, inspired by the tech-
niques used to design the median elimination proce-
dure (Even-Dar et al. 2002) in the best arm identifica-
tion literature, we show that with a slight modification
on Procedure KT 0, it can satisfy the PAC guarantee,
and the procedure’s expected total sample size remains
to grow linearly in k. Let {δr > 0 : r � 1, 2, : : : , 	log2 k
}
denote a sequence of IZ parameters, which satisfy that

δr ≥ 1
3

(3
4

)r
δ, for r � 1, 2, : : : , 	log2 k
, and R

	log2 k

r�1 δr � δ.

We further define N′
1 as the total sample size of Proce-

dure KT 0 after the modification. We summarize the
modification in the following proposition, and its
proof is included in the e-companion.

Proposition 1. If one replaces the match in (8) by

I r+1 � I r+1 ∪ KN 0 i, j{ },αr,δr,σ2
(){ }

(9)

and Assumption 3 holds, then, with probability at least
1− α, Procedure KT 0 can guarantee to select an alternative
within δ to the best, andN′

1 satisfies that

N′
1 ≤

1152σ2 log 256=α
()

δ2
+ 4

()
k:

Therefore,N′
1 �O(k).

Proposition 1 suggests that in order to alter Proce-
dure KT 0 to satisfy the PAC guarantee, other than the
PICS α, we should allocate the tolerable error δ to

each round. By properly designing the allocation rule
for δ, we can ensure that the procedure’s total sample
size remains to grow linearly in k. However, to satisfy
the more strict PAC guarantee, smaller IZ parameters
are assigned to the matches. The procedure loses effi-
ciency on the total sample size. One can observe that
the constant on the upper bound of N′

1 is much larger
than that ofN1. In this paper, while allocating the toler-
able error, we let δr � 1

3

(3
4

)r, for r � 1, 2, : : : , 	log2 k
 − 1,

and δ	log2 k
 � δ−R
	log2 k
−1
r�1

1
3

(3
4

)r
δ.

4. Procedure for Unknown and Unequal
Variances Case

In practice, the variances of all alternatives are typical-
ly unknown in advance. In this section, we extend our
procedure to the case of unknown and unequal var-
iances and make the following assumption on the ob-
servations of all alternatives.
Assumption 4. For each alternative i ∈K, it generates i.i.d.
observations Xi,ℓ, for ℓ � 1, 2, : : : , from the normal distribu-
tion with unknown mean µi and unknown variance σ2i .

To allow the use the CRNs, in Assumption 4, we do
not particularly emphasize the independence between
the observations generated from different alternatives.
To revise Procedure KT 0 to handle the case of un-
known and unequal variances, we only need to adopt
the unknown variance version of Procedure KN to
conduct matches in (8).

Let KN (C,αr,δ,n0) denote the output of Procedure
KN with the first-stage sample size n0, which can cor-
rectly select the best alternative from the ones in set C
with probability at least 1−αr if the difference in
means between the best and the second-best alterna-
tives in C is at least δ, and the variances of the alterna-
tives are unknown. We summarize the property of
KN (C,αr,δ,n0) as follows.

Lemma 2 (Kim and Nelson (2001)). For a set of alterna-
tives C, if k ∈ C and the IZ assumption holds (i.e., µk−
maxi∈C, i≠k ≥ δ), then

P KN C,αr,δ,n0()≠ k
()

≤ αr:

The detailed descriptions of the procedure for the
case of unknown and unequal variances are listed,
and we call it Procedure KT .

KN (C,αr,δ,n0)
Step 1 (Initialization). For each alternative i ∈ C, simulate

n0 observations Xi, 1,Xi, 2, : : : ,Xi,n0 from alternative i. Let

h2r � n0 − 1() × 2αr

|C | −1

()− 2
n0−1

− 1

[]
, (10)

and for all j≠ i, compute

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
442 Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS

S2i j � 1
n0 − 1

∑n0
ℓ�1

Xi,ℓ −Xj,ℓ − X̄i n0() − X̄j n0()
()[]2

and

Nr, i, j �
h2r S

2
i j

δ2
: (11)

Let Nr, i �maxj≠iNr, i, j and Nr,max �maxi∈CNr, i. If n0 >
	Nr,max
, then stop and select the alternative with the
largest X̄i (t). Otherwise, set t � n0 and go to Step 2.

Step 2 (Screening). Set C old � C. Let

C �
{
i : i ∈ C old and t[X̄i (t) − X̄j (t)] ≥

−max
h2r S

2
i‘j

2δ
− δt

2
, 0

{ }
, ∀ j ∈ C old, j≠ i

}
:

Step 3 (Stopping Rule).
• If | C| � 1, stop and select the alternative whose index

is in C as the best.
• Else if t � �Nr,max� + 1, stop and select the alternative

whose index is in C having the largest X̄i (t).
• Otherwise, take an additional observation Xi, t+1 from

each alternative i ∈ C, set t � t+ 1, and go to Step 2.

Procedure KT (unknown and unequal variances)
Step 1 (Initialization). Select the PICS α (0 < α < 1=k).

Set parameter δ > 0 and first-stage sample size n0. Let I r be
the set of alternatives in contention at the beginning of round
r. Set r � 1 and I r � 1, 2, : : : ,k{ }.

Step 2 (Pair up). Let I r+1 � ∅. Pair alternatives in I r. If
there is an odd number of alternatives in I r, directly advance
the leftover alternative to the next round of comparisons (i.e.,
include the index of the leftover alternative in I r+1).

Step 3 (Screening). For each pair of alternatives, namely,
i and j, let αr � α=2r, C � i, j{ }. Then, compute

I r+1 � I r+1∪ KN C,αr,δ,n0()
{ }

: (12)

Step 4 (Stopping Rule). Set r � r+ 1. If | I r | � 1, stop
and select the alternative whose index is in I r as the best.
Otherwise, go to Step 2.

In the R&S literature, the use of CRNs is for the pur-
pose of generating positively correlated observations
for the alternatives that are compared. It requires one
to use one identical (pseudo-)random number stream
to generate these observations. There are two major
reasons that restrict existing parallel procedures from
using CRNs to solve large-scale problems. First, to use
CRNs, one has to calculate and store the sample vari-
ance information of the difference between any two
alternatives that are compared. If the comparisons in-
volve a large number of alternatives, it can incur a sig-
nificant amount of computation and is a burden to the
system’s memory as well. For example, if all pairwise
comparisons are conducted and k � 106, then the

variance matrix of the size 106 × 106 is needed. It is
difficult to compute and difficult to store in memory.
Second, because of random completion times of gener-
ating different observations, in parallel computing en-
vironments, it may be difficult to guarantee that every
alternative has the same number of observations when-
ever comparisons are conducted. The use of CRNs may
fail in this situation. Because of these reasons, the paral-
lel procedures proposed by Luo et al. (2015) and Ni
et al. (2017) do not support the use of CRNs.

Compared with existing parallel procedures, one
advantage of Procedure KT is that it allows the practi-
cal use of CRNs in parallel computing environments
to solve large-scale problems. In Procedure KT , only
the alternatives in a match are compared. Because we
use Procedure KN to conduct the matches’ and each
match is executed by one processor, the use of CRNs
in Procedure KT is essentially equivalent to the use of
CRNs in Procedure KN in single-processor computing
environments to solve small-scale problems. In Proce-
dure KT , to use CRNs, one can simply initiate a new
random number stream for each match and use the
random number stream to generate observations for
the alternatives in the match. It is easy to implement.

To satisfy the PCS guarantee, in Procedure KT , each
match is a newmatch (i.e., no previous sample informa-
tion can be used), and a first-stage sampling is always
required in each match. In total, there are about k− 1
matches before the procedure selects the best alterna-
tive. Therefore, on average, each alternative only en-
gages in approximately two matches.3 In Theorem 4,
we show that Procedure KT remains optimal in rate.
The proof of Theorem 4 is included in the e-companion.

Theorem 4. If Assumption 4 holds and µk −µk−1 ≥ δ, with
probability at least 1−α, Procedure KT can select alterna-
tive k as the best. Moreover, let N2 denote the total sample
size of Procedure KT . If σ2i j is upper bounded by a constant
σ2upper > 0 (i.e., σ2i j ≤ σ2upper) for all i≠ j ∈K and n0 ≥ 4,
then there exists a constant

κ1 �
16σ2upper n0 − 1()

α
2

n0−1 δ2
+ 4 n0 + 1(),

such that for any k > 0, E [N2] ≤ κ1 k.

Remark 4. Similar to Procedure KT 0, the communica-
tions in Procedure KT occur at the beginning of the
selection process and after every processor finds its
own best alternative. The number of comparisons in
the procedure isN2=2.

It is interesting to point out that our procedures are
optimal in rate no matter whether the variances of the
alternatives are known or not. As a comparison, for
some traditional procedures, the expected total sample
size grows faster for the case of unknown variances

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS 443

than that of known variances. For instance, in Procedure
KN , the expected total sample size of each alternative
grows proportionally to the ending point of the continu-
ation region, and the ending point grows in the order of
logk when the variances are known and in the order of
k 2=n0−1 when the variances are unknown.

In Proposition 2, we show that with the same modi-
fication as that of Procedure KT 0, we can alter Proce-
dure KT to satisfy the PAC guarantee and keep the
total sample size growing linearly in k. The proof of
Proposition 2 is included in the e-companion.

Proposition 2. Let N′
2 denote the total sample size of Pro-

cedure KT after the modification. If Assumption 4 holds
and one replaces the match in (12) by

I r+1 � I r+1∪ KN C,αr,δr,n0()
{ }

,

where δr is the IZ parameter assigned to the matches at round
r and satisfies that δr ≥ 1

3

(3
4

)r
δ for r � 1, 2, : : : , 	log2 k
, and

R
	log2 k

r�1 δr � δ, then, with probability at least 1−α, Procedure

KT can select an alternative within δ to the best. More-
over, if σ2i j is upper bounded by a constant σ2upper > 0, for
all i≠ j ∈K, and n0 ≥ 13, then there exists a constant κ′

1
such that for any k > 0, E [N′

2] ≤ κ′
1k.

5. Speeding up the Selection in Parallel
Computing Environments

In Section 3.2, we have demonstrated that the selection
structures of our knockout-tournament procedures fit
the parallel computing environments well. However,
to efficiently run the procedures in parallel computing
environments, some additional modifications are need-
ed. In this section, we propose two major modifications
on Procedure KT to make it more suitable for parallel
computing environments.

First, in Procedure KT , each match involves the
competition between two alternatives. As the selection
proceeds, it is possible that the two alternatives as-
signed to the same match are clearly inferior alterna-
tives that have similar or even equal means. In this situ-
ation, the procedure needs to take a very long time and
a large number of observations to distinguish them. It
can significantly slow down the selection process. To
resolve this issue, we suggest properly enlarging the
size of the match. By allowing more alternatives to par-
ticipate in a match, we lower the chance that all these
alternatives are equally bad. As long as there is a
“good” alternative, all other clearly inferior alternatives
can be quickly eliminated. However, with more alter-
natives in a match, the ending point of the continuation
region in Procedure KN becomes larger. Procedure
KN needs more observations to find the best alter-
native in the worst case scenario (i.e., worse perfor-
mance in the worst case scenario). Second, as we have

mentioned in Section 3.2, while implementing our pro-
cedures in parallel computing environments, we always
face the problem of selecting the best from m alterna-
tives in the final step. When the number of processors m
is relatively small, a single processor can quickly find
the final best. However, when the number of processors
m is very large, using a single processor to conduct the
selection can cause other processors to stay idle for a
long time. It could potentially make the procedure inef-
ficient. In the following Procedure KT +, we offer a way
to address this issue so that one can make full use of all
the processors in the final step selection. Basically, after
each processor finds a local best alternative, we use a
stagewise procedure (without CRNs) so that each local
best alternative simulates enough observations. We
then select the alternative with the largest sample mean
from this set of local best alternatives. In the following
procedure, we suggest using Rinott’s procedure for the
task.

5.1. The Procedure
In this subsection, we consider the case where there
are m processors in the parallel computing environ-
ments and present the detailed descriptions of the
procedure. We call it Procedure KT +.

Procedure KT + (parallel implementation)
Step 1 (Initialization). Select the PICS α (0 < α < 1=k).

Set parameter δ > 0, first-stage sample size n0, number of
processors m, and number of alternatives g ≥ 2 within a
match. Let I s

r be the set of alternatives in contention at the
beginning of round r in processor s for s � 1, 2, : : : ,m.

Step 2 (Assigning Alternatives). Equally allocate k al-
ternatives to m processors so that each processor handles the
selection of approximately k=m alternatives: for example, for
i � 1, 2, : : : , k, let

I i mod m()+1
1 � I i mod m()+1

1 ∪ i{ } :
Step 3 (Parallel Selection). Execute the selection in pro-

cessor s � 1, 2, : : : ,m: set r � 1,
a. Let I s

r+1 � ∅. Group alternatives in I s
r with the size

of g. In case of leftover ones, let them form a group. After
grouping, there are in total 	|I s

r | =g
 groups. Let I s
r,q denote

the set of the alternatives in group q for q � 1, 2, : : : , 	|I s
r | =g

of processor s at round r.
b. Let αr � α=2r. For each group q � 1, 2, : : : ,

	| I r
s | =g
, set C � I s

r,q, and compute

I s
r+1 � I s

r+1∪ KN C,αr,δ,n0()
{ }

: (13)

c. Set r � r+ 1. If | I s
r |� 1, let I s denote the index of the

alternative in I s
r. Otherwise, go to Step 3(a).

d. Take n0 observations from alternative Is. Calculate
its sample variance S2Is based on these n0 observations. Set
r � 	logg k

m
 + 1, αr � α=2r, and h(αr,m,n0), where h(αr,
m,n0) is the Rinott’s constant determined by αr, m, and n0.

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
444 Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS

Then, take additional

max 0,

⌈
h αr,m,n0()SI s

δ

()2⌉
− n0

⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭ (14)

observations from alternative I s.
Step 4 (Selecting the Best). Let I final denote the set of al-

ternatives containing all the best alternatives produced by m pro-
cessors. Select the alternative with the largest sample mean based
on all the observations we take in Step 3(d) as our final output.

It can be seen that, in Procedure KT +, each processor
performs the selection for a subset of alternatives. After
every processor produces a local best alternative, only
m alternatives are left. As in the final step selection, Ri-
nott’s procedure is applied; in Step 3(d), the procedure
generates enough observations for each local best alter-
native as Rinott’s procedure requires, and in Step 4,
one can simply pick up the alternative with the largest
sample mean as the best. In Procedure KT +, we still
define αr as α=2r instead of α=gr because if g > 2, a rela-
tively large amount of PICS is left unused.

5.2. Statistical Validity and Upper-Bound Analysis
To prove that Procedure KT + is statistically valid, we
first summarize the property of the Rinott’s procedure
as follows.

Lemma 3 (Rinott 1978). Suppose that k ∈ I final and µk −
µj ≥ δ for all j ∈ I final and j≠ k. If each alternative i ∈ I final
has more than

max n0,
⌈
h αr,m,n0()Si

δ

()2⌉{ }
observations, then with probability at least 1− αr, alterna-
tive k has the largest sample mean.

Then, we can show that Procedure KT + inherits the
statistical validity from Procedure KT .

Analyzing the growth rate of the expected total sam-
ple size of Procedure KT + is not straightforward be-
cause the constant h(αr,m,n0) used in Rinott’s proce-
dure is a solution to a function that can only be
numerically solved. It may be hard to quantify the be-
havior of h(αr,m,n0) with respect to the changes of αr,
m, and n0. In Lemma 4, we find an upper bound on the
constant h(αr,m,n0). The upper bound is of the same
order as that of the constant hr used in Procedure KN .

Lemma 4. Let h(αr,m,n0) be the constant in Rinott’s pro-
cedure determined by αr, m, and n0. Then,

h αr,m,n0() ≤ 2 n0 − 1() 2 m− 1()
αr

() 2
n0−1

− 1

[]{ }1=2

:

With the results in Lemma 4, we can proceed our
analysis on the growth rate of the expected total

sample size of Procedure KT +. We summarize the
analysis results by the following Theorem 5, and its
proof is included in the e-companion.

Theorem 5. If Assumption 4 holds and µk −µk−1 ≥ δ, with
probability at least 1−α, Procedure KT + can select alter-
native k as the best. Moreover, let N3 denote the total sam-
ple size of Procedure KT +. If σ2i is upper bounded by the
constant σ2 > 0 for all i ∈K, σ2i j is upper bounded by the
constant σ2upper > 0, for all i≠ j ∈K, g ≥ 2, m ≥ 1, and
n0 ≥ 4, then, E [N3] �O(k).

Even though Procedure KT + remains optimal in
rate, the constant on the growth rate of the expected
total sample size is now additionally depending on
the number of alternatives g in a match and the num-
ber of processors m.

In general, the constant on the upper bound in-
creases as one sets a larger value for g because of the
worse performance of Procedure KN in the worst case
scenario in each match. When g � 2, the procedure has
the tightest upper bound and performs the best asymp-
totically, but it may be the case that the procedure will
never show its superior performance until k is much
larger than the size of the problem we can encounter in
practice. Therefore, to balance the procedure’s finite-
time and asymptotic performances, we suggest setting
g > 2. Based on the results of our numerical experi-
ments, we suggest having fewer than 30 alternatives in
a match when the size of the problem is relatively small
(e.g., k ≤ 105) and 50 alternatives when k ≥ 105.

In Theorem 5, we consider the situation where the
number of processors in the parallel computing envi-
ronment does not change (i.e., m is a constant). In prac-
tice, the number of processors used to solve a problem
may vary. Taking this into consideration, the growth
rate of Procedure KT + may also increase with m. In the
extreme case where m � k, the procedure degenerates
to Rinott’s procedure, and the growth rate of the proce-
dure is the same as that of Rinott’s procedure. Howev-
er, it is arguable that the impact of such loss on the
wall clock time is limited. As we look at the number of
observations simulated by each processor, it decreases
whenever m increases because fewer alternatives are
assigned to each processor. It suggests that for Proce-
dure KT +, from the aspect of reducing the simulation
time in each processor, using more processors is always
beneficial. Also, when the number of processors is very
large (compared with the size of the problem), in each
processor, the computation cost for simulations ac-
counts for only a small fraction of total computation
cost. In this situation, the difference in the total sample
size may only slightly affect the wall clock time.

In Procedure KT +, it can be checked that approxi-
mately g(g− 1)=2 comparisons are associated with gen-
erating g observations within each match. Thus, the

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS 445

number of comparisons for Procedure KT + is roughly
(g− 1)N3=2. Because g is small compared with k, one
can treat the growth rates of the number of compari-
sons and the total sample size in Procedure KT + the
same. Also, CRNs still can be used in each match in
Procedure KT + without much difficulty.

5.3. Procedure KT1 with the PAC Guarantee
Different from Procedure KT 0 and Procedure KT , to
convert Procedure KT + to satisfy the PAC guarantee,
Procedure KN cannot be used in each match. When
g � 2, at round r, Procedure KN conducts the selection
either in the situation where the IZ assumption holds
or in the situation where the difference in means be-
tween the two alternatives is less than δr in which case
selecting any one of them is acceptable. When g > 2,
however, it can be the case that within a match, some
alternatives are within δr to the best, and the others
are not. In this situation, we need to use a procedure
that can satisfy the PAC guarantee to conduct the se-
lection. As shown by Kao and Lai (1980), with a slight
modification on Paulson’s procedure (Paulson 1964)
(another well-known fully sequential procedure), it can
satisfy the PAC guarantee. We let P-PAC (C,α,δ,n0)
denote the output of the modified Paulson’s procedure
with the first-stage sample size n0, which can select an
alternative within δ to the best alternative in C with
probability at least 1−α. In the e-companion, we pro-
vide detailed descriptions for the selection in P-PAC
(C,α,δ,n0). We summarize the property of P-PAC (C,
α,δ,n0) as follows:

Lemma 5 (Kao and Lai (1980)). For a set of alternatives
C, if P-PAC (C,α,δ,n0) � �P, we have

P max
i∈C

µi −µ�P
≤ δ

()
≥ 1−α:

In the following proposition, we show the modifica-
tions we have made on Procedure KT + to alter it to
satisfy the PAC guarantee, and its proof is included in
the e-companion. Because Rinott’s procedure can au-
tomatically satisfy the PAC guarantee, we keep using
it in the final step selection.

Proposition 3. Let N′
3 denote the total sample size of Pro-

cedure KT + after modifications. If Assumption 4 holds and
one replaces (13) and (14) in Procedure KT + by

I s
r+1� I s

r+1∪ P −PAC C,αr,δr, n0()
{ }

and

max 0,
⌈

h αr,m,n0()SIs
δr

()2⌉
− n0

{ }
,

respectively, where δr is the IZ parameter assigned to the
matches at round r and satisfies that δr ≥ 1

3

(3
4

)r for r � 1,

2, : : : , 	logg k
m
 + 1, and

∑	logg k
m
+1

r�1 �δ, then, with proba-
bility at least 1− α, the procedure can select an alternative

within δ to the best. Moreover, if σ2ij is upper bounded by a

constant σ2upper > 0, for all i≠ j ∈ K, and n0 > 2log 2
(2log3 + logg− 4log2) + 1, then E [N′

3] �O(k).

In the rest of this paper, we call the procedure after
modifications Procedure KT +-PAC. To efficiently run
Procedure KT +-PAC in parallel computing environ-
ments, we recommend setting g between 50 and 100,
which is larger than that of Procedure KT +.

6. Numerical Experiments
In this section, we examine the performance of the
proposed procedures. The objectives of the numerical
experiments are threefold: (1) to illustrate that the ex-
pected total sample size of our procedures indeed
grows linearly in k; (2) to demonstrate that CRNs can
be easily applied to our procedures and our proce-
dures can benefit from them significantly; and (3) to
compare Procedure KT + with the good selection pro-
cedure (GSP) proposed by Ni et al. (2017), aiming to
shed some light on the performance of the procedures
in parallel computing environments.

For all the numerical experiments reported in this
section, the desired PICS α and the IZ parameter δ are
set to be 0.05 and 0.1, respectively. In the cases of un-
known variances, 20 observations are simulated for
every alternative to estimate the sample variances
(i.e., n0 � 20). For the experiments in the first two sub-
sections, we consider a simple setting where the ob-
servations are generated from normal distributions,
and for the experiments in the last subsection, the ob-
servations are obtained by conducting real simulation
tasks. All codes used in this section can be retrieved
from https://github.com/biazhong/KT.

6.1. The Case with a Common Known Variance
In this subsection, we use a simple example to test
growth rates of the expected total sample size of Pro-
cedure KT 0 and Procedure KN . Specifically, we con-
sider a problem where all alternatives share a com-
mon known variance 1 (i.e., σ21 � σ22 � : : : � σ2k � σ2 � 1),
and the means of the alternatives follow the slippage
configuration (i.e., µ1 � µ2 � : : : � µk − δ). The observa-
tions simulated by different alternatives are indepen-
dent. We conduct this experiment on a single proces-
sor. When the variances of all alternatives are known
and equal, conducting all pairwise comparisons in Pro-
cedure KN at each round is equivalent to letting every
alternative only compare with the one with the largest
sample mean. Therefore, the number of comparisons
for Procedure KN can be significantly reduced in this
particular example. Furthermore, simulating a normal
observation takes almost no time. Because of these rea-
sons, both procedures can handle a relatively large
number of alternatives even on a single processor. We

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
446 Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS

https://github.com/biazhong/KT

test the performance of Procedure KT 0 and Procedure
KN with different numbers of alternatives k. We sum-
marize the estimated PCS and the average total sample
size with 95% confidence interval based on 1,000 inde-
pendent macro replications in Table 1. To better dem-
onstrate our results, we also plot the average total sam-
ple size per alternative (average total sample size/k)
against the number of alternatives k in Figure 4.

From the results in Figure 4 and Table 1, we have the
following conclusions. First, Procedure KN requires a
smaller average total sample size than Procedure KT 0
does when the number of alternatives is small (i.e.,
k ≤ 104). However, as the number of alternatives in-
creases, the average total sample size of Procedure KN
grows faster than that of Procedure KT 0 and eventual-
ly surpasses that of Procedure KT 0 when k ≥ 105. It in-
dicates that our procedure is suitable for solving large-
scale R&S problems in terms of the total sample size.
Second, Procedure KN delivers a higher PCS than

Procedure KT 0 does in this example. This is because
Procedure KN makes full use of the sample informa-
tion on the alternatives during the whole selection pro-
cess. Meanwhile, Procedure KT 0 completely abandons
previous sample information. Therefore, if the total sam-
ple sizes of both procedures are close, Procedure KN
has a higher PCS. However, ProcedureKT 0 can still pro-
vide the PCS guarantee even under the least favorable
configuration of the means (i.e., the slippage configura-
tion). Third, from Figure 4, we can see that as the num-
ber of alternatives increases, the average total sample
size per alternative of Procedure KT 0 remains constant.
It suggests that the linear growth rate on the expected to-
tal sample size is indeed attainable for our procedure.

6.2. The Use of CRNs
In this numerical experiment, we focus on investigat-
ing how our procedure may benefit from using CRNs.
We assume that the variances of all alternatives are
equal (i.e., σ21 � σ22 � : : : � σ2k � 1) but unknown. The ob-
servations simulated by any two alternatives are cor-
related, and the correlation is ρ. Procedure KT is
adopted to solve this problem. Because, in practice,
when the number of alternatives is large, the means of
alternatives are often spread out over a wide range; in
this example, for each macro replication, we consider
a mean configuration such that

µi �
	unif 0, 15()
δ for i � 1, 2, : : : ,k− 1
16δ for i � k ,

{
where unif(0, 15) is the uniform distribution with the
support [0, 15]. We test the performance of Procedure
KT with different numbers of alternatives k and dif-
ferent values of ρ. Similar to the previous experiment,
we implement the procedure on a single processor
and report the estimated PCS and average total sam-
ple size with 95% confidence interval based on 1,000
independent macro replications in Table 2.

We highlight the main findings from this experiment
as follows. First, as the correlation ρ increases, we ob-
serve a steady decrease on the average total sample size
(see each row). Particularly, in this example, every 0.25
increase on ρ leads to about 25% decrease on the aver-
age total sample size. When ρ � 0:75, the procedure
only requires an average total sample size, which is
only about 25% as that of ρ � 0. It suggests that even
though our procedure may experience the conserva-
tiveness caused by having several equally bad alterna-
tives in a match and abandoning previous sample in-
formation, the use of CRNs can help us greatly offset
such efficiency loss. Second, comparing the estimated
PCS at each row, we may conclude that the use of
CRNs does not affect the PCS. Third, in this case, we
observe a slight increase on the total sample size per al-
ternative (see each column). However, as k increases,

Table 1. Comparisons of Procedure KT 0 and Procedure
KN with Different Numbers of Alternatives

k

Procedure KT 0 Procedure KN

PCS
Average total
sample size PCS

Average total
sample size

102 0.963 1:462 × 105 0.978 0:884 × 105

60:003 × 105 60:008 × 105

103 0.965 1:512 × 106 0.989 1:165 × 106

60:001 × 106 60:008 × 106

104 0.956 1:527 × 107 0.994 1:419 × 107

60:001 × 107 60:009 × 107

105 0.955 1:528 × 108 0.994 1:686 × 108

60:001 × 108 60:008 × 108

106 0.956 1:528 × 109 0.993 1:990 × 109

60:001 × 109 60:008 × 109

Figure 4. (Color online) Growth Rate of Total Sample Size
per Alternative

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS 447

the rate of increase approaches to zero. It implies that
the total sample size per alternative may be upper
bounded as k increases, and the linear growth rate on
the expected total sample size remains intact.

6.3. The Three-Stage Buffer Allocation Problem
In this subsection, we test the performance of Proce-
dure KT + and an existing parallel procedure GSP pro-
posed by Ni et al. (2017) with the three-stage buffer al-
location problem in parallel computing environments.

GSP is by far the most efficient parallel procedure
used to solve large-scale problems in the R&S litera-
ture and satisfies the PAC guarantee. GSP is a fully se-
quential procedure. GSP uses the “divide and con-
quer” approach that we discussed in Section 3.1 to
reduce the comparison time. Also, GSP requires each
alternative to simulate a batch of observations to re-
duce the frequency of communications among the
processors, and carefully determines batch sizes of
different alternatives to balance the workloads of dif-
ferent processors. These strategies used in GSP make
it suitable for parallel computing environments. Co-
des for GSP used in this subsection are retrieved from
https://bitbucket.org/ericni/mapredrns and https://
bitbucket.org/ericni/sparkrns.

The three-stage buffer allocation problem is a prac-
tical simulation testing problem and is often used to
compare the practical performance of different proce-
dures. The problem considers a flow line with three
stations 1, 2, and 3. An infinite number of jobs wait in
front of station 1. Each job is sequentially processed
by the three stations. The service times at stations 1, 2,
and 3 are independently drawn from exponential dis-
tributions with service rates s1, s2, and s3, respectively.
In front of stations 2 and 3, there are finite numbers of
buffer storage locations, denoted as b2 and b3. If the
buffer of station i, for i � 2, 3, is fully occupied, then
station i− 1 is blocked, and it must hold the finished
job until the job at station i is finished and released.

Our objective is to find an allocation of buffer and
service rates with certain constraints to maximize the
steady-state throughput of the flow line. The mathe-
matical formulation of this problem is listed as follows:

max
x

E f x;ξ()
[]

s:t: s1+s2+s3�L1

b2 + b3 � L2

x � s1, s2, s3, b2, b3() ∈Z5
+,

where L1 and L2 are the problem parameters that specify
the set of feasible solutions and f (x;ξ) is the random
throughput of the flow line. For every feasible solution, we
obtain observations of f (x;ξ) by running simulation ex-
periments. For each simulation experiment, we warm up
the system with 2,000 jobs. After 2,000 jobs are processed,
we observe the throughput of the subsequent 50 jobs.

We consider three problems with different sizes of fea-
sible solutions by setting different values for L1 and L2.
Because the service times are exponentially distributed,
we can analytically calculate E [f (x;ξ)] for each feasible
solution by solving the balance equations for the under-
lying Markov chain from Buzacott and Shanthikumar
(1993). Hence, we are able to provide some detail infor-
mation on these problems in Table 3. One can observe
that, for all three problems, there are multiple alterna-
tives whose means lie within δ from the best. The IZ
assumption is violated in these problems. Therefore, in
the rest of the experiments, instead of PCS, we report
the estimated PAC probability (i.e., the probability of

Table 2. Performance Test for Procedure KT with Different Numbers of Alternatives and Different Values of ρ

k

Procedure KT

ρ � 0 ρ � 0:25 ρ � 0:50 ρ � 0:75

PCS
Average total
sample size PCS

Average total
sample size PCS

Average total
sample size PCS

Average total
sample size

102 0.998 8:156 × 104 0.996 6:142 × 104 0.996 4:111 × 10 4 0.995 2:091 × 104

60:046 × 104 60:033 × 104 60:023 × 104 60:011 × 104

103 0.994 8:885 × 105 0.995 6:673 × 105 0.992 4:459 × 105 0.994 2:260 × 105

60:016 × 105 60:012 × 105 60:007 × 105 60:004 × 105

104 0.989 9:124 × 106 0.990 6:854 × 106 0.995 4:584 × 106 0.994 2:321 × 106

60:005 × 106 60:004 × 106 60:003 × 106 60:001 × 106

105 0.991 9:155 × 107 0.992 6:877 × 107 0.992 4:597 × 107 0.987 2:328 × 107

60:002 × 107 60:001 × 107 60:001 × 107 60:001 × 107

106 0.990 9:160 × 108 0.993 6:882 × 108 0.992 4:609 × 108 0.991 2:328 × 108

60:001 × 108 60:001 × 108 60:001 × 108 60:001 × 108

Table 3. Summarized Information on Three-Stage Buffer
Allocation Problems

(L1,L2)
Number of

alternatives: k
Highest
mean: µk

Number of alternatives
within: [µk − δ,µk]

(20,20) 3, 249 5.78 21
(50,50) 57, 624 15.70 43
(128, 128) 1, 016, 127 41.66 97

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
448 Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS

https://bitbucket.org/ericni/mapredrns
https://bitbucket.org/ericni/sparkrns
https://bitbucket.org/ericni/sparkrns

selecting an alternative within δ to the best) of different
procedures.

In this subsection, we focus on implementing the
procedures on Apache Hadoop and Apache Spark.
They are two parallel computing platforms that are
widely supported by popular commercial clouds in-
cluding Amazon EC2/S3, Microsoft Azure, Google
Cloud Platform (GCP), etc. To make a fair compari-
son, while running the procedures, the configurations
of the parallel computing environments are the same.
For GSP, as its performance additionally depends on
the number of simulation observations each alterna-
tive can take at a time, we set the batch-size parameter
β � 100 as recommended by the authors. Except for
the first-stage sample size n0, all other parameters for
the procedure are the same as the ones used in Ni
et al. (2017). For Procedure KT +, CRNs are used while
solving these problems. Specifically, we let all alterna-
tives in a match use one identical random number
stream to generate observations. In this situation, the
observations generated by the alternatives are posi-
tively correlated. For GSP and Procedure KT +, both
simulations and comparisons are done locally within
each processor. Similar to Ni et al. (2017), we use utili-
zation to measure how efficiently these procedures use
processors to simulate observations and make com-
parisons. We calculate it as follows:

Utilization � total simulation time+ total comparison time
number of processors ×wall clock time

,

where the total simulation time and the total compari-
son time are summed over all processors.

6.3.1. Experiments on a Local Server. We first use
GSP and Procedure KT + to solve the problem with
3,249 alternatives on a local server with 48 available
processors, 128 Gigabytes (GB) of memory, and Linux
Red Hat Enterprise 7.4 operating system. As a refer-
ence, we also include the results of Procedure
KT +-PAC, Rinott’s procedure, and a standard knock-
out-tournament procedure in this experiment. The
standard knockout-tournament procedure has the
same selection structure as that of Procedure KT 0, ex-
cept that in every match, it does not use Procedure KN
to compare alternatives. It simply takes a fixed number
τ of observations for each alternative and picks the al-
ternative with the largest sample mean to the next
round.4 We call the procedure Procedure KT -EA,
where EA stands for equal allocation. It should be not-
ed that, among these five procedures, GSP, Procedure
KT +-PAC, and Rinott’s procedure satisfy the PAC
guarantee. Procedure KT + only satisfies the PCS guar-
antee, and Procedure KT -EA is a heuristic procedure.
For Procedure KT + and Procedure KT +-PAC, we set
the number of alternatives in every match g to be 20
and 50, respectively. For Procedure KT -EA, we set τ �
45 so that it can solve the problem with roughly the
same wall clock time as that of Procedure KT +. We es-
timate all interested statistics based on 100 independent
macro replications. The results are summarized in Ta-
ble 4.

From Table 4, we can draw following conclusions.
First, except for Procedure KT -EA, all the procedures
numerically demonstrate the ability to select an

Table 4. A Comparison of GSP, Procedure KT +, Procedure KT +-PAC, Rinott’s Procedure, and Procedure
KT -EA on the Problem with 3,249 Alternatives: m � 48

Procedure PAC
Total sample size

(× 105)
Wall clock time

(seconds)
Total simulation
time (seconds)

Total comparison
time (seconds) Utilization (%)

Hadoop
GSP 1.00 5.36 852.31 387.31 0.31 0.95
Procedure
KT +

1.00 2.07 68.29 101.53 0.08 3.10

Procedure
KT +-PAC

1.00 8.91 100.71 421.73 0.29 8.73

Rinott’s
procedure

1.00 22.96 100.77 1159.48 0.00 23.97

Procedure
KT -EA

0.88 2.90 69.76 138.07 0.00 4.12

Spark
GSP 1.00 5.41 15.09 373.83 0.39 51.67
Procedure
KT +

1.00 2.06 6.03 163.69 0.15 56.61

Procedure
KT +-PAC

1.00 9.02 40.45 597.88 0.25 30.81

Rinott’s
procedure

1.00 22.62 38.99 1573.61 0.00 84.08

Procedure
KT -EA

0.89 2.90 6.25 216.65 0.00 72.21

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS 449

alternative within δ to the best. Comparing Procedure
KT + and Procedure KT -EA, we may conclude that
using Procedure KN to conduct the matches and the
modifications we have made on Procedure KT + are
indeed necessary to ensure the quality of the final out-
put. Second, in this experiment, when we run the pro-
cedures on Apache Hadoop, the processor utilizations
are low. This is because, on Apache Hadoop, the com-
munication cost among the processors is considerably
high. Because this problem does not need these proce-
dures to simulate many observations, most of the wall
clock time is spent on communications. Compared
with the other four procedures, GSP needs more fre-
quent communications among the processors. There-
fore, in terms of the wall clock time, the performance
of GSP is not satisfactory on Apache Hadoop. Third,
the total sample size of Procedure KT +-PAC is much
larger than those of GSP and Procedure KT +. It sug-
gests that as we alter Procedure KT + to theoretically
satisfy the PAC guarantee, the procedure loses a sig-
nificant amount of efficiency on the total sample size.
Even though the total sample size of Procedure
KT -PAC theoretically remains to grow linearly in k,
the constant on the upper bound is too large to allow
the procedure to translate its theoretical advantage
into good practical performance for reasonable sizes
of problems. However, Procedure KT +-PAC still re-
quires fewer observations than the stagewise proce-
dure, Rinott’s procedure, does. Because of the ineffi-
ciency of the total sample size of Procedure KT +-PAC
and Rinott’s procedure, and the failure of ensuring
the quality of the final output of Procedure KT -EA, in
the rest of this subsection, we focus on comparing
GSP and Procedure KT +.

Under the same setting as the previous experiment,
we then run GSP and Procedure KT + to solve the prob-
lem with 57,624 alternatives. We report the statistics
based on 10 independent macro replications. Because
both procedures can always make a “good selection,”
we no longer report the estimated PAC in the rest of the
experiments. In Table 5, similar results to those in the
previous experiment can be found. It is clear that as the
problem becomes harder and more observations are re-
quired to find the best, for both procedures, the

processor utilizations increase on both parallel comput-
ing platforms. This is consistent with our previous
discussion.

From these two experiments, we can conclude that
Procedure KT + may have better practical performance
than GSP across different problems and different paral-
lel computing platforms because the total sample size
and the wall clock time of Procedure KT + are always
smaller than those of GSP.

6.3.2. Experiments on Google Cloud Platform. Then,
we conduct our experiments on Google Cloud Plat-
form. On GCP, we set up a cluster with 31 n1-standard-
16 virtual machines (VMs). Each VM has 16 virtual cen-
tral processing units (vCPUs), 60 GB of memory, and
128 GB primary disk size. The operating system for
each VM is Debian GNU/Linux 9 (stretch). Master/
Worker structure is adopted for the cluster. One VM is
served as the master, and all others are workers. The
master performs managerial work for parallel comput-
ing. It is responsible for assigning parallel jobs to work-
ers, and instructing and coordinating workers. The mas-
ter also regularly receives reports from all workers. In
case of a job failure, the master can choose a new proces-
sor to resume the job. The workers are the actual VMs
that execute parallel jobs. The hourly on-demand charge
for eachVM is about 1.0634United States Dollar (USD) in
HongKong (asia-east2), resulting in a total cost of 32.9654
USD per hour for the cluster.We run GSP and Procedure
KT + on such a cluster to solve problems. Because of the
high cost of the cluster, all statistics reported in the follow-
ing experiments are based on onemacro replication.

As in practice, one may not have the prior knowl-
edge on the optimal number of processors needed to
solve a problem, in the following experiment, we ex-
amine the wall clock times that GSP and Procedure
KT + require to solve the problem with 57,624 alterna-
tives as different numbers of processors are used. Be-
cause processor utilizations are always low on Apache
Hadoop, in this situation, as we change the number of
processors, the impact on the wall clock time may not
be significant. We only compare the performance of
the two procedures on Apache Spark. We summarize
the results in Figure 5.

Table 5. A Comparison of GSP and Procedure KT + on the Problem with 57,624 Alternatives: m � 48

Procedure
Total sample size

(× 106)
Wall clock time

(seconds)
Total simulation
time (seconds)

Total comparison
time (seconds) Utilization (%)

Hadoop
GSP 13.09 946.58 7134.49 5.93 15.71
Procedure KT + 6.98 201.09 3598.88 1.21 37.30

Spark
GSP 13.54 202.23 8563.71 6.03 88.28
Procedure KT + 7.30 123.66 4587.47 1.54 77.31

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
450 Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS

From Figure 5(a), we can observe that, for both pro-
cedures, as more processors are used, the marginal
effect of reducing the wall clock time diminishes. The
reason is that when m is large, as we use more pro-
cessors in the parallel computing environment, the
improvement of the simulation time of each processor
is limited (see Figure 5(b)). However, for GSP, it al-
ways needs to spend a relatively large amount of time
on communications, and for Procedure KT +, there al-
ways exists some efficiency loss because of the varia-
tions in completion times of different processors.
Therefore, after the number of processors reaches a
certain level, for both procedures, we hardly observe
any improvement on the wall clock times. Because the
wall clock times of Procedure KT + are smaller than
those of GSP in all instances, we may conclude that, in
this experiment, for Procedure KT +, the efficiency
loss because of the variations in completion times of
different processors is tolerable. It is also worth noting
that, when m � 480, Procedure KT + tends to require
more observations to identify the best than GSP does.
It is because the total sample size of Procedure KT +

can increase with the number of processors m, and

GSP does not. However, in this case, the wall clock
time of Procedure KT + is still smaller than that of
GSP. This verifies our discussion in Section 5.2 that
the computation cost for simulations is no longer a
dominant factor that affects the wall clock time when
the number of processors is very large compared with
the size of the problem.

Lastly, we run these two procedures to solve the
problem with 1,016,127 alternatives. In this experi-
ment, all other parameters are the same as those in
previous experiments except that for Procedure KT +,
we set the number of alternatives in every match g to
be 50. We summarize the results in Table 6. The ap-
proximate cost for each procedure in the table is calcu-
lated by

Approximate Cost � wall clock time (seconds)
3600 seconds=hour

× 32:9654 USD=hour:

We ignore the time spent on setting up the cluster. In
Table 6, we observe very similar results to those
of previous experiments. We may also conclude that
Procedure KT + has more potential to economically

Table 6. A Comparison of GSP and Procedure KT + on the Problem with 1,016,127 Alternatives: m � 480

Procedure
Total sample size

(× 108)
Wall clock time

(seconds)
Total simulation
time (seconds)

Total comparison
time (seconds) Utilization (%)

Approximate
cost (USD)

Hadoop
GSP 7.19 8305.59 360931.35 60.58 9.05 76.05
Procedure KT + 3.22 760.38 164796.15 50.06 45.17 6.96

Spark
GSP 6.96 1254.37 353259.66 59.31 58.68 11.49
Procedure KT + 3.23 623.69 164921.99 52.81 55.11 5.71

Figure 5. (Color online) Scaling Performance of GSP and ProcedureKT + on Apache Spark: k � 57, 624

Notes. (a) Wall clock time. (b) Average number of observations simulated by one processor.

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS 451

solve very large-scale R&S problems on commercial
clouds across different parallel computing platforms.

6.3.3. Robustness to Random Simulation Times. In
practice, the time needed to generate an observation
may vary from one to another. The variability in simu-
lation times may intensify the variations in completion
times of different processors and thus, affect the perfor-
mance of Procedure KT + in parallel computing envi-
ronments. In this experiment, we conduct a robustness
test for Procedure KT +. Specifically, while simulating
an additional observation for every surviving alterna-
tive in a match, instead of warming up the system with
exact 2,000 jobs, we warm up the system with W jobs,
where W is drawn from a uniform distribution with
mean 2,000 and width ω. In this example, we let
ω � 1, 000 and ω � 2, 000 (i.e.,W ~ unif (1500, 2500) and
W ~ unif (1000, 3000)) to represent different levels of
variability. We use Procedure KT + to solve the prob-
lems with 3,249 and 57,624 alternatives on the local sev-
er with 48 processors. We only conduct the experiment
on Apache Spark and estimate the wall clock times and
utilizations based on 100 macro replications. The re-
sults are summarized in Table 7. As a reference, in the
table, we also include the results of the case where the
number of warm-up periods is exact 2,000 (i.e., ω � 0).

From Table 7, we observe that there is indeed an in-
crease on the wall clock time and a decrease on the uti-
lization as the variability in simulation times increases.
However, compared with the base case where ω � 0,
the differences are not large, and we think they are ac-
ceptable. It suggests that Procedure KT + is relatively
robust against the randomness in simulation times.

7. Concluding Remarks
Different from single-processor computing environ-
ments, developing procedures for parallel computing
environments needs one’s careful consideration of the
time spent on simulation, comparison, and communi-
cation. In this paper, inspired by the knockout-tourna-
ment arrangement of tennis Grand Slam tournaments,
we develop procedures that are well suited for solv-
ing large-scale R&S problems in parallel computing

environments. The total sample sizes of our proce-
dures grow linearly with the number of alternatives k
no matter whether the variances of the alternatives
are known or not. Therefore, our procedures are opti-
mal in rate. The total comparison time in our proce-
dures is negligible compared with the simulation
time. When the procedures are implemented in paral-
lel computing environments, the number of communi-
cations among the processors is minimal. Further-
more, CRNs can be easily applied to our procedures.
The numerical results show that our procedures are
competitive with the best parallel R&S procedures.

There are two topics that are worth future research.
First, in this paper, we focus on using Procedure KN to
conduct the matches. In fact, depending on the specific
problem encountered in practice, one also has the free-
dom to use other existing procedures. For example, the
recent Bayes-inspired indifference zone (BIZ) procedure
proposed by Frazier (2014) demonstrates the ability to
use much fewer observations to identify the best than
Procedure KN does when the observations are inde-
pendently generated from different alternatives. Thus,
one may consider using the BIZ procedure to conduct
the matches for the problems where CRNs cannot be
used. It would be valuable to investigate the best
choices of the procedures that can be used to conduct
matches for different types of problems. Second, in this
paper, we focus on developing procedures under the
IZ formulation. To alter our procedures to satisfy the
more strict PAC guarantee, the procedures experience
a large amount of efficiency loss on the total sample
size because smaller IZ parameters are assigned to the
matches. Recently, there are some works studying IZ-
free procedures. For these procedures, their perfor-
mance is immune to the change of the IZ parameter. It
is of both theoretical and practical interest to study
how one can modify these procedures and use them to
help our procedures satisfy the PAC guarantee with-
out losing much efficiency on the total sample size.

Acknowledgments
The authors thank the editor-in-chief John Birge, the asso-
ciate editor, and three referees for helpful comments that
improved the presentation and structuring of the paper.

Endnotes
1 Let BΔ(·) denote the BM process with unit variance and drift Δ. As
shown by Hong (2006), the random processes {Zi j (t) � t [X̄i (t) −
X̄j (t)] = σ2i j : t � 1, 2, : : : } and {Bµi−µj

(t=σ2i j) : t � 1, 2, : : : , } have the
same joint distribution.
2 If the observations simulated by different alternatives are indepen-
dent, the desired false elimination probability can be further improved
to 1− (1−α)1=k−1. However, the rate optimality is still not achievable.
3 Because two alternatives engage in one match and there are k− 1
matches, the total number of matches that all alternatives engage in is
2 (k− 1). Therefore, on average, each alternative engages in 2 (k− 1)=k
matches.

Table 7. Robustness Test for Procedure KT + Using a
Random Number of Warm-Up Periods on Apache Spark:
W ~ unif (2000−ω=2, 2000+ω=2)

Number of
alternatives: k ω

Wall clock
time (seconds) Utilization (%)

3,249 0 6.03 56.61
3,249 1,000 6.08 53.36
3,249 2,000 6.25 52.49
57,624 0 123.66 77.31
57,624 1,000 126.82 75.97
57,624 2,000 128.69 74.97

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
452 Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS

4 When every processor produces a local best alternative, the stan-
dard knockout-tournament procedure takes additional τ observa-
tions for each alternative and directly selects the alternative with
the largest sample mean as the final best alternative.

References
Bechhofer RE (1954) A single-sample multiple decision procedure

for ranking means of normal populations with known varian-
ces. Ann. Math. Statist. 25(1):16–39.

Bechhofer RE, Goldsman DM, Santner TJ (1995) Design and Analysis
of Experiment for Statistical Selection, Screening, and Multiple Com-
parisons, 1st ed. (Wiley, New York).

Buzacott JA, Shanthikumar JG (1993) Stochastic Models of Manufactur-
ing Systems, vol. 4, 1st ed. (Pearson, Upper Saddle River, NJ).

Chen CH, Lin J, Yücesan E, Chick SE (2000) Simulation budget allo-
cation for further enhancing the efficiency of ordinal optimiza-
tion. Discrete Event Dynam. Systems 10(3):251–270.

Chick SE (2006) Subjective probability and Bayesian methodology.
Henderson SG, Nelson BL, eds. Handbook in Operations Research
and Management Science: Simulation, vol. 13 (Elsevier, Amster-
dam), 225–257.

Chick SE, Frazier P (2012) Sequential sampling with economics of
selection procedures. Management Sci. 58(3):550–569.

Chick SE, Gans N (2009) Economic analysis of simulation selection
problems. Management Sci. 55(3):421–437.

Chick SE, Inoue K (2001) New two-stage and sequential procedures
for selecting the best simulated system. Oper. Res. 49(5):732–743.

Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to
Algorithms, 2nd ed. (The MIT Press, Cambridge, MA).

Dudewicz EJ, Dalal SR (1975) Allocation of observations in ranking
and selection with unequal variances. Sankhya Indian J. Statist.
Ser. B 37(1):28–78.

Even-Dar E, Mannor S, Mansour Y (2002) PAC bounds for multi-
armed bandit and Markov decision processes. Kivinen J, Sloan
R, eds. Proc. 15th Internat. Conf. Computational Learning Theo-
ry (Springer, Berlin), 255–270.

Fan W, Hong LJ, Nelson BL (2016) Indifference-zone-free selection
of the best. Oper. Res. 64(5):1499–1514.

Frazier PI (2014) A fully sequential elimination procedure for indif-
ference-zone ranking and selection with tight bounds on proba-
bility of correct selection. Oper. Res. 62(4):926–942.

Frazier PI, Powell WB, Dayanik S (2008) A knowledge-gradient poli-
cy for sequential information collection. SIAM J. Control Optim.
47(5):2410–2439.

Frazier PI, Powell WB, Dayanik S (2009) The knowledge-gradient
policy for correlated normal beliefs. INFORMS J. Comput. 21(4):
599–613.

Hong LJ (2006) Fully sequential indifference-zone selection
procedures with variance-dependent sampling. Naval Res.
Logist. 53(5):464–476.

Hunter SR, Nelson BL (2017) Parallel ranking and selection. Tolk A,
Fowler J, Shao G, Yücesan E, eds. Advances in Modeling and Sim-
ulation: Seminal Research from 50 Years of Winter Simulation Con-
ferences (Springer, Cham, Switzerland), 249–275.

Inoue K, Chick SE (1998) Comparison of Bayesian and frequentist
assessments of uncertainty for selecting the best system. Medei-
ros DJ, Watson EF, Carson JS, Manivannan MS, eds. Proc. 1998
Winter Simulation Conf. (IEEE, Piscataway, NJ), 727–734.

Jamieson K, Malloy M, Nowak R, Bubeck S (2014) Lil’ UCB: An op-
timal exploration algorithm for multi-armed bandits. Balcan
MF, Feldman V, Szepesvári C, eds. Proc. 27th Conf. Learn. Theory
(PMLR, Barcelona, Spain), 423–439.

Kao SC, Lai TL (1980) Sequential selection procedures based on con-
fidence sequences for normal populations. Comm. Statist. Theory
Methods 9(16):1657–1676.

Kim SH, Nelson BL (2001) A fully sequential procedure for indiffer-
ence-zone selection in simulation. ACM Trans. Model. Comput.
Simulation 11(3):251–273.

Kim S-H, Nelson BL (2006) Selecting the best system. Henderson SG,
Nelson BL, eds. Handbook in Operations Research and Management
Science: Simulation, vol. 13 (Elsevier, Amsterdam), 501–534.

Kim MP, Suksompong W, Williams VV (2017) Who can win a single-
elimination tournament? SIAM J. Discrete Math. 31(3):1751–1764.

Luo J, Hong LJ (2011) Large-scale ranking and selection using cloud
computing. Jain S, Creasey R, Himmelspach J, White KP, Fu M,
eds. Proc. 2011 Winter Simulation Conf. (IEEE, Piscataway, NJ),
4046–4056.

Luo J, Hong LJ, Nelson BL, Wu Y (2015) Fully sequential procedures
for large-scale ranking-and-selection problems in parallel com-
puting environments. Oper. Res. 63(5):1177–1194.

Nelson BL, Matejcik FJ (1995) Using common random numbers for
indifference-zone selection and multiple comparisons in simula-
tion. Management Sci. 41(12):1935–1945.

Ni EC, Henderson SG, Hunter SR (2014) A comparison of two par-
allel ranking and selection procedures. Tolk A, Diallo S, Ryz-
hov IO, Yilmaz L, eds. Proc. 2014 Winter Simulation Conf. (IEEE,
Piscataway, NJ), 3761–3772.

Ni EC, Ciocan DF, Henderson SG, Hunter SR (2017) Efficient rank-
ing and selection in parallel computing environments. Oper.
Res. 65(3):821–836.

Paulson E (1964) A sequential procedure for selecting the popula-
tion with the largest mean from k normal populations. Ann.
Math. Statist. 35(1):174–180.

Peng Y, Chong EK, Chen CH, Fu MC (2018) Ranking and selection as
stochastic control. IEEE Trans. Automatic Control 63(8):2359–2373.

Rinott Y (1978) On two-stage selection procedures and related
probability-inequalities. Comm. Statist. Theory Methods 7(8):799–811.

Zhong Y, Hong LJ (2017) A new framework of designing sequential
ranking-and-selection procedures. Chan WKV, D’Ambrogio A,
Zacharewicz G, Mustafee N, Wainer GA, Page E, eds. Proc.
2017 Winter Simulation Conf. (IEEE, Piscataway, NJ), 2237–2244.

Ying Zhong is an assistant professor in the Department
of Management Science and E-commerce at the University
of Electronic Science and Technology of China. His research
interests include simulation optimization, the multiarmed
bandit problem with covariates, and parallel computing.

L. Jeff Hong is the Fudan Distinguished Professor and
the Hongyi Chair Professor appointed by the School of Man-
agement and the School of Data Science at Fudan Universi-
ty. His research interests are in the broad areas of machine
learning and business analytics: stochastic modeling, sto-
chastic simulation, stochastic optimization, statistical learn-
ing, and reinforcement learning, with applications in supply
chain management, revenue management, financial risk
management, and healthcare analytics.

Zhong and Hong: Knockout-Tournament Procedures in Parallel Computing Environments
Operations Research, 2022, vol. 70, no. 1, pp. 432–453, © 2021 INFORMS 453

