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Abstract

In this paper we study distributionally robust optimization (DRO) problems where the am-
biguity set of the probability distribution is defined by the Kullback-Leibler (KL) divergence.
We consider DRO problems where the ambiguity is in the objective function, which takes a
form of an expectation, and show that the resulted minimax DRO problems can be formulated
as a one-layer convex minimization problem. We also consider DRO problems where the ambi-
guity is in the constraint. We show that ambiguous expectation-constrained programs may be
reformulated as a one-layer convex optimization problem that takes the form of the Benstein
approximation of Nemirovski and Shapiro (2006). We further consider distributionally robust
probabilistic programs. We show that the optimal solution of a probability minimization prob-
lem is also optimal for the distributionally robust version of the same problem, and also show
that the ambiguous chance-constrained programs (CCPs) may be reformulated as the original
CCP with an adjusted confidence level. A number of examples and special cases are also dis-
cussed in the paper to show that the reformulated problems may take simple forms that can be
solved easily. The main contribution of the paper is to show that the KL divergence constrained
DRO problems are often of the same complexity as their original stochastic programming prob-
lems and, thus, KL divergence appears a good candidate in modeling distribution ambiguities
in mathematical programming.

1 Introduction

Optimization models are often used in practice to guide decision makings. In many of these models

there exist parameters that need to be specified or estimated. When these parameters appear in

the objective function, the models can typically be formulated as

minimize
x∈X

H(x, ξ), (1)

where ξ denotes the vector of parameters, x is the vector of design (or decision) variables, and

X ⊂ <d is the feasible region. Alternatively, when these parameters appear in the constraint

function, the models can be formulated as

minimize
x∈X

h(x) (2)

subject to H(x, ξ) ≤ 0.
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Although it is possible to unify Problems (1) and (2) using, for instance, an epigraphical repre-

sentation, we think it is necessary to study them separately due to their different structures and

applications.

It is widely known that optimal solutions of optimization models, like (1) and (2), may de-

pend heavily on the specification or estimation of their parameters. However, due to limited da-

ta/information availability on and possibly random nature of these parameters, it is often difficult

to specify or estimate them precisely. Then, the optimal solutions of these models may turn out

to be rather suboptimal or even infeasible for the true optimization problems. To address such an

issue, a number of approaches have been suggested in the past decades. Robust optimization (see,

for instance, Ben-Tal and Nemirovski (1998, 2000), Bertsimas and Sim (2004), and El Ghaoui et

al. (1998)) targets to find an optimal solution that is, to some extent, immune to the ambiguity

in the parameters. It typically models the ambiguity by restricting the parameters in a set, often

called an uncertainty set, and optimizes under the worst case of the parameters in the set. For

a comprehensive survey on robust optimization, readers are referred to Ben-Tal et al. (2009) and

Bertsimas et al. (2011).

Modeling ambiguous parameters using an uncertainty set and allowing the parameters to take

any value in the set sometimes ignore that the parameters may admit a stochastic nature (i.e., they

are random variables) and, therefore, lead to solutions that may be excessively conservative, espe-

cially when the uncertainty set is large. To address this issue, distributionally robust optimization

(DRO) was introduced. DRO considers a stochastic programming version of Problem (1) or (2) by,

for instance, substituting H(x, ξ) in Problems (1) and (2) by their expectations EP [H(x, ξ)] with

P denoting the distribution of ξ, models the ambiguity by restricting the distribution P in a set,

often called an ambiguity set, and optimizes under the worst case of the distribution in the set.

This approach is also in line with the economic literature that distinguishes between the random-

ness of the parameters (called the risk) and the ambiguity in specifying the randomness (called the

uncertainty or ambiguity); see, e.g., Ellsberg (1961) and Epstein (1999). The literature on DRO is

growing fast; see, e.g., the recent studies of Delage and Ye (2010) and Goh and Sim (2010).

An important question about DRO modeling is how to choose the ambiguity set. There exists

a significant amount of work that constructs the ambiguity set by the moments of the distribution.

For instance, Delage and Ye (2010) novelly constructed a confidence set for the mean vector and co-

variance matrix using historical data. Goh and Sim (2010) considered tractable conic representable

sets for the mean vector coupled with information on directional deviations. We refer the readers

to Delage and Ye (2010) and references therein on the literature on moment ambiguities. Note that

in many practical situations, we may obtain an estimate of the distribution via statistical fitting,

which is our best estimate (or best guess) of the distribution and often contains valuable infor-

mation of the distribution. We call such a distribution nominal distribution. Then, a reasonable
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approach is to construct the ambiguity set by requiring the distribution within a certain distance

from the nominal distribution. There are different ways to define the distance between two proba-

bility distributions. In this paper we use the Kullback-Leibler (KL) divergence. The KL divergence

originated in the field of information theory (Kullback and Leibler 1951), and it is now accepted

widely as a good measure of distance between two distributions. KL divergence is also widely used

in the area of operations research in recent years. For instance, in rare event simulation, the KL

cross entropy is minimized in order to find a good importance sampling distribution that achieves

variance reduction (e.g., Rubinstein 2002 and Homem-de-Mello 2007), whereas in simulation op-

timization, the KL divergence is minimized in order to obtain a good sampling distribution that

guides the random search (e.g., Hu et al. 2007).

Ambiguity sets defined by distance measures have been investigated recently. Calafiore (2007)

studied a portfolio selection problem where the ambiguity of the return distribution is described

by KL divergence. Klabjan et al. (2012) considered the inventory management problem where

the ambiguity of the demand distribution for a single item is depicted via the histogram and the

χ2-distance. Ben-Tal et al. (2012) considered the robust optimization problems where ambiguities

are modeled using various φ-divergence measures. These studies all assume that the distribution of

the random parameters is supported on a finite set of values and the ambiguity set is constructed

for the discrete distribution. Prior to Ben-Tal et al. (2012), Ben-Tal et al. (2010) proposed a soft

robust model under ambiguity and related the model to the theory of convex risk measures. Their

work is not restricted to finite scenarios but requires a bounded support for the random function

due to the bounded requirement for the dual representation of convex risk measures.

In this paper we study DRO problems where the underlying distributions are general, allowing

them to be discrete or continuous and bounded or unbounded, and the ambiguity set consists of all

probability distributions whose KL divergence from the nominal distribution is less than or equal

to a positive constant. Such a constant is referred to as the index of ambiguity, since it controls the

size of the ambiguity set. We first study the optimization models where the ambiguous parameters

appear in the objective functions, and consider their minimax DRO problem. We implement a

change-of-measure technique and reformulate the problem as a minimax problem with the inner

problem maximizing over the likelihood ratio functional and the outer problem minimizing over

x. To solve the inner functional optimization problem, we implement a functional optimization

technique to solve its Lagrangian dual, obtain a closed-form expression of the optimal objective,

and prove the strong duality. This closed-form expression allows us to convert the minimax DRO

problem into a single minimization problem, which can be solved via either conventional determin-

istic optimization techniques or standard stochastic optimization techniques. Furthermore, as an

interesting and important side result, we identify that having a light right tail is a sufficient and

necessary condition for the worst-case expectation being finite in the DRO model, and this result
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has profound implications in the modeling of ambiguities for distributions having heavy tails.

We next consider optimization models where random parameters appear in constraint functions,

as in Problem (2). There are different approaches to handling these parameters. One approach is to

requiring the expected value of the random function satisfy the constraint, i.e., substituting H(x, ξ)

in (2) by EP [H(x, ξ)], and we call this problem an expectation constrained program (ECP). Another

approach is to requiring the random constraint be satisfied with at least a given probability, i.e.,

substituting the constraint in (2) by Pr∼P {H(x, ξ) ≤ 0} ≥ 1 − β for some β ∈ (0, 1), and we call

this problem a chance constrained program (CCP). We first consider DRO formulations of ECPs,

where we require the expectation constraints be satisfied for any P in an ambiguity set defined by

KL divergence. We call such problems ambiguous ECPs. Implementing the functional approach

developed for minimax DRO problems, we show that the ambiguous ECPs may be reformulated as

single-layer optimization problems. More interestingly, we find that the formulations of ambiguous

ECPs are equivalent to the famous Bernstein approximations of Nemirovski and Shapiro (2006),

which are constructed to conservatively approximate CCPs. This result shows that the ECPs

and CCPs are intrinsically interrelated via the KL divergence, and it allows us to understand the

conservatism of the Bernstein approximations to CCPs from a robust optimization perspective.

When the performance measure “expectation function” in optimization models is substituted

by a “probability function”, the resulted stochastic programming model is often called a proba-

bilistic program. Probabilistic programs are often studied separately from the expectation based

stochastic programming in the literature due to their particularity (Prékopa 2003). Depending on

where the probability function appears, probabilistic programs can be classified as the probability

minimization problem and the CCP. We consider the DRO formulations for these probabilistic

programs. DRO formulations of probability minimization problems propose to minimize the worst

case of the probability function. We show that when ambiguity sets are defined by KL divergence,

the minimax DRO for probability minimization is essentially the same as the original probability

minimization problem. Therefore, to solve such DRO, it suffices to solve the original problem.

DRO formulations of CCPs require the chance constraints be satisfied for all P in an ambiguity

set. Note that such problems are also called ambiguous CCPs in the literature (e.g., Erdogan and

Iyengar 2006 and Nemirovski and Shapiro 2006). We show that, when ambiguity sets are defined

by KL divergence, the ambiguous CCPs may be reformulated as the original CCPs with only the

confidence levels being rescaled to a more conservative level. This suggests that KL divergence-

constrained ambiguous CCPs essentially have the same complexity as the original CCPs and can

be solved using the same techniques that are used to solve the original CCPs. To generalize the

results, we also study the distributionally robust value-at-risk (VaR) and conditional value-at-risk

(CVaR) optimization problems, and show that they are also tractable when their ambiguity sets

are defined by KL divergence.
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Following the theoretical foundations developed in the paper, we consider a number of examples

and special cases. For the affinely perturbed independent case, we show that the worst-case expec-

tation can be written as a summation of convex functions that are generated by the logarithmic

moment generating functions of the independent random parameters. For the linear case with a

multivariate normal nominal distribution, we show the worst-case expectation has a second order

cone representation. Moreover, the worst-case distribution is still a multivariate normal distribu-

tion with a shifted mean vector and the same covariance matrix. In the Appendix we re-derive

this formulation by restricting ambiguous distribution to the family of multivariate normal distri-

butions. Finally, we consider the broadly used exponential family of distributions and derive the

general expressions of the worst-case distributions.

While this paper focuses mainly on solving various KL divergence constrained DRO problems,

we are equally concerned about the modeling of ambiguity sets. In this paper we show that the

use of KL divergence has some advantages. The first advantage is that KL divergence is a widely

accepted measure of distances between distributions. The second (and perhaps more critical) ad-

vantage is its tractability in solving DRO problems. As shown in this paper, when the ambiguity set

is defined by KL divergence, the worst-case expectation of a random performance may be derived

analytically and the resulted DRO models, including minimax DRO, ambiguous ECP, ambiguous

probabilistic programs (including probability minimization and CCP), and distributionally robust

VaR/CVaR problems, can all be formulated into simple one-layer optimization problems that are

readily solvable by standard optimization tools. Furthermore, these DRO models may be incor-

porated into more sophisticated models, such as multistage stochastic programming models and

dynamic programming models (e.g., inventory systems, as considered in Klabjan et al. (2012)),

to solve more complicated practical problems. In addition, we also show that KL divergence con-

strained DRO models may serve as analytically tractable conservative approximations to DRO

models using many other distance measures.

Using KL divergence to model ambiguity sets, nevertheless, also has some limitations. First,

there may not be any practical guidelines in determining the size of the ambiguity set (i.e., the index

of ambiguity). When distributions are supported on a finite set of values, Ben-Tal et al. (2012)

show that some confidence set may be derived using data. When distributions are continuous,

however, we do not have such results. This is an important question for future research. Second,

as shown in the paper, we find that KL divergence has difficulty in handling random functions that

are heavy right tailed under the nominal distribution. In such cases, the worst-case expectation

is infinite no matter how small the index of ambiguity is. Therefore, such a DRO model cannot

be applied for stochastic optimization models with heavy tail random functions. It is worthwhile

noting that similar modeling issues exist for many distance measures that can be bounded from

above by KL divergence. Considering that heavy tail distributions are not uncommon in practical
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situations (especially in financial risk management), it remains a very important problem to develop

meaningful yet tractable DRO models for heavy tailed distributions.

The rest of this paper is organized as follows. In Section 2 we study minimax DRO problems

and show that the worst-case expectation admits an analytical expression. In Section 3 we inves-

tigate DRO formulations of ECPs, and uncover some intrinsic relations between robust ECPs and

CCPs. In Section 4 we analyze DRO formulations of probabilistic programs and their extensions

to VaR/CVaR optimization problems. We consider a number of special cases in Section 5, followed

by conclusions in Section 6. Some lengthy proofs are provided in the Appendix.

2 Minimax Distributionally Robust Optimization

We first analyze the case where the ambiguous random parameters are in the objective function.

Consider the following minimax distributionally robust optimization problem:

minimize
x∈X

maximize
P∈P

EP [H(x, ξ)] (3)

where the feasible region X is assumed to be a convex compact subset of <d, P denotes the distri-

bution of ξ, EP [·] denotes that the expectation is taken with respect to a probability distribution

P , P is an ambiguity set and the maximum is taken over all probability distributions contained in P.

As discussed in Section 1, the ambiguity set P may take different forms, depending on the available

information and the modeler’s belief. In this paper, we focus on the case where the distribution

of ambiguous parameters is constrained by the Kullback-Leibler (KL) divergence. Specifically, we

consider the ambiguity set

P = {P ∈ D : D(P ||P0) ≤ η} , (4)

where D denotes the set of all probability distributions and D(P‖P0) denotes the KL divergence

from distribution P to the nominal distribution P0. The KL divergence D(P‖P0) implicitly assumes

that P is absolutely continuous with respect to P0 (denoted as P << P0), i.e., for every measurable

set A, P0(A) = 0 implies P (A) = 0. Suppose the k-dimensional distributions P and P0 have

densities p(z) and p0(z) on Ξ ⊂ <k. Note that we do not differentiate P and p(z) throughout this

paper: The two notations denote the same distribution if no confusion is caused. Then the KL

divergence from P to P0 is defined as

D(P‖P0) =

∫
Ξ
p(z) log

p(z)

p0(z)
dz. (5)

When P0 is a discrete distribution, we understand p0(z) in (5) as the probability mass function and

the integral as the summation. When P0 follows a mixed distribution, p0(z) is the density at z if

P0 has zero mass at z, and is the probability mass function at z if P0 has a positive mass at z, and

the integral becomes a mixture of integral and summation. It can be shown that D(P‖P0) ≥ 0 and
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the equality holds if and only if p(z) = p0(z) almost surely (a.s.) under P0. As defined in Section

1, the constant η used in (4) is the index of ambiguity, which controls the size of the ambiguity set

P.

Problem (3) is a rather abstract optimization model, as the decision variable of the inner

maximization problem is the probability distribution P , which does not explicitly appear in the

objective function. This makes the problem difficult to handle. One step towards solving Problem

(3) is to transform it into an explicit optimization problem via the so called change-of-measure

technique (e.g., Hu et al. 2012 and Lam 2012). Note that p0(z) is the nominal distribution of

the random vector ξ. Let L(z) = p(z)/p0(z). In the literature L(z) is often called a likelihood

ratio or a Radon-Nikodym derivative. It is easy to see that L(z) ≥ 0 and EP0 [L(ξ)] = 1. When

there is no confusion we suppress the variable z and just use L to denote L(z). We denote by

L = {L ∈ L(P0) : EP0 [L] = 1, L ≥ 0 a.s.} the set of likelihood ratios that are generated by all P

such that P << P0. By applying the change-of-measure technique, we obtain

D(P‖P0) =

∫
Ξ

p(z)

p0(z)
log

p(z)

p0(z)
p0(z) dz = EP0 [L(ξ) logL(ξ)] .

Similarly, applying the change-of-measure technique to the objective function, we have

EP [H(x, ξ)] =

∫
Ξ
H(x, ξ)p(z)dz =

∫
Ξ
H(x, ξ)

p(z)

p0(z)
p0(z)dz = EP0 [H(x, ξ)L(ξ)] .

Therefore, we can transform both the constraint function and the objective function into expecta-

tion forms where the expectation is taken with respect to the nominal distribution P0. Then, the

inner maximization problem in Problem (3) can be reformulated as

maximize EP0 [H(x, ξ)L] (6)

subject to EP0 [L logL] ≤ η,

L ∈ L.

Therefore, the change-of-measure technique converts an optimization problem on P (i.e., the inner

maximization problem in Problem (3)) to an optimization problem on L (i.e., Problem (6)) which,

we show in next subsection, can be solved analytically by a functional approach.

2.1 Solving the Inner Maximization Problem

A first yet critical observation is that, with L being the decision variable, Problem (6) is a convex

optimization problem. To see this more clearly, let us consider any λ ∈ [0, 1] and any Li(ξ) ∈ L, i =

1, 2. It can be verified that Lλ(ξ) = λL1(ξ)+(1−λ)L2(ξ) ∈ L. Furthermore, since y log y is a convex

function of y on <+, we have for every ξ, Lλ(ξ) logLλ(ξ) ≤ λL1(ξ) logL1(ξ)+(1−λ)L2(ξ) logL2(ξ).

It follows that EP0 [Lλ(ξ) logLλ(ξ)] ≤ λEP0 [L1(ξ) logL1(ξ)] + (1 − λ)EP0 [L2(ξ) logL2(ξ)]. This
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shows EP0 [L logL] is convex in L. Similarly, it can be shown that EP0 [H(x, ξ)L] is convex in L.

Thus, Problem (6) is a convex optimization problem.

For every x ∈ X, let MH(t) = EP0

[
etH(x,ξ)

]
denote the moment generating function of H(x, ξ)

under P0. Let S = {s ∈ < : s > 0,MH(s) < +∞}. Note that we suppress the dependence of MH(t)

and S on x for notational simplicity. We make the following assumption on the original optimization

problem.

Assumption 1. For every x ∈ X, S is a nonempty set.

Assumption 1 shows that under measure P0, the moment generating function MH(t) of the

random variable H(x, ξ) is finite valued for some s > 0. Because MH(t) is convex in t, its effective

domain domMH := {t ∈ < : MH(t) < +∞} is a convex set (Rockafellar 1970), which implies [0, s] ⊂
domMH . Assumption 1 requires that the random variable H(x, ξ) has a light right tail under P0

for every x ∈ X. Note that H(x, ξ) simply satisfies this assumption if it is supported on a finite

set of values or if it is bounded a.s.

The basic idea of solving Problem (3) is to implement the duality theory of convex optimization,

which is a key tool in robust optimization and has been used frequently in DRO; see, e.g., Delage

and Ye (2010) and Goh and Sim (2010). To formulate the dual of Problem (6), we let

`0(α,L) = EP0 [H(x, ξ)L(ξ)]− α (EP0 [L(ξ) logL(ξ)]− η)

be the Lagrangian functional associated with Problem (6). Then, Problem (6) is equivalent to

maximize
L∈L

minimize
α≥0

`0(α,L). (7)

Interchanging the order of the maximum and minimum operators, we obtain the Lagrangian dual

of Problem (7), which is represented as

minimize
α≥0

maximize
L∈L

`0(α,L). (8)

Conventionally, since Problem (6) is a convex optimization problem, the strong duality for Problems

(7) and (8) should hold. We prove the strong duality later in this section (i.e., Theorem 2). The

strong duality indicates that, to solve Problem (6), it suffices to solve Problem (8). In what follows

we focus on Problem (8). Omitting the term αη, the inner maximization problem in Problem (8)

can be expressed as

maximize
L∈L0

EP0 [H(x, ξ)L(ξ)− αL(ξ) logL(ξ)] (9)

subject to EP0 [L(ξ)] = 1,

where we define L0 = {L ∈ L(P0) : L ≥ 0 a.s.}.
Problem (9) is a convex functional optimization problem. Let v(α) denote the optimal objective

value of Problem (9). To solve the problem, we consider three cases:
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• Case 1, α = 0;

• Case 2, α 6= 0 and 1/α ∈ S;

• Case 3, α 6= 0 and 1/α 6∈ S.

We first consider Case 1. Let Hu(x) be the essential supremum of H(x, ξ) under measure P0, i.e.,

Hu(x) = inf {t ∈ < : Pr∼P0 {H(x, ξ) > t} = 0} ,

where Pr∼P0 denotes that the probability is taken with respect to P0. Then, we can construct

a sequence of distributions Pj << P0 concentrating towards Hu(x) and consequently construct

Lj ∈ L0, such that EP0 [H(x, ξ)Lj(ξ)] tends to Hu(x) as j → +∞. Therefore, v(α) = Hu(x).

Next we consider Case 2. There are a number of potential approaches to solving relatively

simple convex functional optimization problems. We find the method of Homem-de-Mello (2007)

applicable. Homem-de-Mello (2007) investigated the rare event probability estimation using a

“cross-entropy method”. One critical step of his method is to find a density that minimizes the KL

divergence to the nominal best but non-attainable density among a certain class. He formulated the

problem into a convex functional optimization problem, and proposed an implementable approach

to solving the problem. The basic idea of Homem-de-Mello (2007) is to compute the derivative of

the functional with respect to the decision variable, which is a density function. In this paper, we

implement a similar approach to solving Problem (9).

Define the functionals

J (L(ξ)) := EP0 [H(x, ξ)L(ξ)− αL(ξ) logL(ξ)] ,

Jc(L(ξ)) := EP0 [L(ξ)]− 1.

Note that J (L(ξ)) is convex in L and Jc(L(ξ)) is linear in L. This allows us to calculate the

derivative of the functionals (see, e.g., Shapiro et al. (2009) for the definition of a derivative). Let

DJ (L(ξ)) denote the derivative of J (L(ξ)). Then, for any feasible direction V (ξ) at L(ξ),

DJ (L(ξ))V = lim
t→0

J (L(ξ) + tV (ξ))− J (L(ξ))

t

= lim
t→0

EP0 [H(x, ξ) (L+ tV )− α (L+ tV ) logL]− EP0 [H(x, ξ)L− αL logL]

t

= EP0 [H(x, ξ)V ]− α lim
t→0

EP0

[
(L+ tV ) log (L+ tV )− L logL

t

]
. (10)

Note that the function y log y is convex in y on <+. It follows that for any y and v feasible, the

function [(y + tv) log(y + tv)− y log y] /t is monotone in t. Therefore, by the monotone convergence

theorem (Durrett 2005), we can interchange the order of the operators limt→0 and EP0 in (10). It
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follows that

DJ (L(ξ))V = EP0 [H(x, ξ)V ]− αEP0

[
lim
t→0

(L+ tV ) log (L+ tV )− L logL

t

]
= EP0 [H(x, ξ)V ]− αEP0 [(logL+ 1)V ]

= EP0 [(H(x, ξ)− α (logL+ 1))V ] .

Similarly, it is also straightforward to obtain that

DJc(L(ξ))V = EP0 [V (ξ)] .

We have obtained the derivatives of the functionals. As in Homem-de-Mello (2007), we now con-

struct the Lagrangian functional associated with Problem (9) as follows:

`(L, λ) = EP0 [H(x, ξ)L(ξ)− αL(ξ) logL(ξ)] + λ (EP0 [L(ξ)]− 1)

= EP0 [H(x, ξ)L− αL logL+ λL]− λ.

Recall that Proposition 3.3 of Bonnans and Shapiro (2000) shows, if there exists a pair (L∗(ξ), λ∗)

such that L∗(ξ) ∈ L0, Jc(L∗(ξ)) = 0 and

L∗(ξ) ∈ arg max
L∈L0

`(L, λ∗), (11)

L∗(ξ) is an optimal solution of Problem (9). The problem thus simplifies to solving Problem (11).

Note that Problem (11) is a convex optimization problem with essentially no constraints. Thus,

its optimal solution should be a stationary point of a certain sense, i.e., it should enforce the

derivative of `(L, λ) to be zero in some sense. From the expressions of the derivatives and the

linearity of the derivative operator, we immediately obtain

D`(L, λ)V = EP0 [(H(x, ξ)− α (logL+ 1) + λ)V ] .

Then, we have the following proposition whose strict proof is provided in the Appendix.

Proposition 1. Suppose L = L∗(ξ, λ) satisfies H(x, ξ) − α (logL+ 1) + λ = 0, which means

D`(L, λ) = 0 (i.e., D`(L, λ) is the zero linear operator). Then, `(L∗(ξ, λ), λ) < +∞ and L∗(ξ, λ) ∈
arg maxL∈L0 `(L, λ).

Proposition 1 shows that the optimal objective value of the functional optimization problem

(11) is finite. Moreover, it shows the optimal solution takes the following form

L∗(ξ, λ) = e(λ−α)/α · eH(x,ξ)/α.

Setting λ∗ = −α log EP0

[
eH(x,ξ)/α

]
+ α, we have Jc(L∗(ξ, λ∗)) = 0. Therefore,

L∗(ξ) = L∗(ξ, λ∗) =
eH(x,ξ)/α

EP0

[
eH(x,ξ)/α

] (12)
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and λ∗ form a pair that satisfies the conditions in Proposition 3.3 of Bonnans and Shapiro (2000).

This shows that L∗(ξ) solves Problem (9). Plugging L∗(ξ) into Problem (9) we obtain the optimal

objective value of Problem (9):

v(α) = α log EP0

[
eH(x,ξ)/α

]
+ αη. (13)

Finally, we consider Case 3. In this case, we must have Hu(x) = +∞. Now we consider a

positive real sequence {Rj} such that limj→+∞ Rj = +∞. Let 1{A} denote the indicator function

which is equal to 1 if the event A happens and 0 otherwise. We use H(x, ξ)1{H(x,ξ)≤Rj} to replace

H(x, ξ) in Problem (9) and denote the resulted problem as Problem (Rj). Denote the optimal

objective value of Problem (Rj) as vj(α). Because H(x, ξ)1{H(x,ξ)≤Rj} is bounded by Rj from

above, its moment generating function exists for all s ≥ 0. Therefore, we can solve Problem (Rj)

using the functional approach in Case 2 and obtain the optimal objective value vj(α). It follows

that

vj(α) = α log EP0

[
e
H(x,ξ)1{H(x,ξ)≤Rj}/α

]
+ αη.

Because α 6∈ S, we have vj(α) → +∞ as j → +∞. Note that the objective function of Problem

(Rj) is always a lower bound of the objective function of Problem (9). Moreover, the feasible

regions of the two problems are the same. Thus, we have vj(α) ≤ v(α) for any j > 0. This implies

v(α) = +∞.

Because Assumption 1 is satisfied, for any x ∈ X, there always exists α > 0 such that (13) is

finite. This shows the optimal objective value of Problem (8) is finite. Note further that in the

Appendix we show (43) holds. Therefore, we can incorporate Case 1 into Case 2. Combining the

three cases, we obtain the following theorem.

Theorem 1. Suppose that Assumption 1 is satisfied. Problem (8) is equivalent to the following

one-layer optimization problem

minimize
α≥0

hx(α) := α log EP0

[
eH(x,ξ)/α

]
+ αη. (14)

Remark 1. Recently, Lam (2012) proposed a one dimensional analog of Problem (6). His goal

is to study the robustness of the random system outputs to the simulation input distributions,

as what is suggested and investigated in Hu et al. (2012). The theme of model misspecification

was also considered in robust control (Hansen and Sargent 2008). Hansen and Sargent (2008)

modeled distribution perturbations of the shock process that enters the transition equation of a

control problem, and proposed Problem (8) to penalize the misspecification. Both Hansen and

Sargent (2008) and Lam (2012) seeked the expression of the optimal solution of Problem (8) by a

heuristic approach and then verified the optimality by using the Jensen’s inequality. In this paper,

the decision models and source of randomness are drastically different from that of control theory.
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Moreover, the variable α which is allowed to take values on <+ becomes a decision variable adjoint

with x. Different cases are considered and the problem is solved by a more systematic functional

optimization approach. This solution approach provides us more insights about the optimal solution

(as shown in Section 2.2) and may be used to solve more general functional optimization problems

that may arise in DRO.

Let α∗(x) be an optimal solution of Problem (14). Let κu = Pr∼P0 {H(x, ξ) = Hu(x)}, i.e., κu

is the mass of the distribution P0 on its essential supremum. We have the following proposition.

The proof of the proposition is provided in the Appendix.

Proposition 2. Suppose Assumption 1 is satisfied. Then α∗(x) = 0 or 1/α∗(x) ∈ S. Moreover,

α∗(x) = 0 if and only if Hu(x) < +∞, κu > 0 and log κu + η ≥ 0.

Proposition 2 shows that the optimal solution of Problem (14) is finite. It also provides the

equivalent conditions for that the optimality is attained at 0. This will be used in analyzing the

complementary slackness between Problems (7) and (8). Now we can state and prove strictly the

following theorem regarding the strong duality.

Theorem 2. Suppose that Assumption 1 is satisfied. Then, the optimal objective values of Problems

(7) and (8) are equal.

Proof. Consider the Lagrangian functional `0(α,L). We first show that if there exists a saddle

point (α̃, L̃) for `0(α,L), i.e., for any α ≥ 0 and L ∈ L,

`0(α̃, L) ≤ `0(α̃, L̃) ≤ `0(α, L̃), (15)

then the strong duality holds.

Let vp and vd denote the optimal objective values of Problem (7) and Problem (8) respectively.

By weak duality, we immediately obtain vp ≤ vd. By (15), we have `0(α̃, L̃) ≤ infα≥0 `0(α, L̃). It

follows that

`0(α̃, L̃) ≤ inf
α≥0

`0(α, L̃) ≤ sup
L∈L

inf
α≥0

`0(α,L) = vp.

On the other hand, by (15), we have supL∈L `0(α̃, L) ≤ `0(α̃, L̃). It follows that

vd = inf
α≥0

sup
L∈L

`0(α,L) ≤ sup
L∈L

`0(α̃, L) ≤ `0(α̃, L̃).

Therefore, we obtain vp = vd = `0(α̃, L̃).

We next show the existence of the saddle point. Let α̃ = α∗(x). We consider two cases: Case

A, α̃ 6= 0; Case B, α̃ = 0. For Case A, let

L̃ =
eH(x,ξ)/α̃

EP0

[
eH(x,ξ)/α̃

] .
12



We show that (α̃, L̃) is a saddle point. Because L̃ solves Problem (9) as α = α̃, we have `0(α̃, L) ≤
`0(α̃, L̃). Now we prove the second inequality of (15). We show that it is actually an equality. Note

that α̃ = α∗(x) is an optimal solution of Problem (14). Furthermore, from Proposition 2 we have

0 < α∗(x) < +∞. Therefore,

0 = ∇α
[
α log EP0

[
eH(x,ξ)/α

]
+ αη

]∣∣∣
α=α̃

= −
EP0

[
eH(x,ξ)/α̃H(x, ξ)/α̃

]
EP0

[
eH(x,ξ)/α̃

] + log EP0

[
eH(x,ξ)/α̃

]
+ η.

It follows that

−EP0

[
L̃(ξ) log L̃(ξ)

]
+ η = −

EP0

[
eH(x,ξ)/α̃H(x, ξ)/α̃

]
EP0

[
eH(x,ξ)/α̃

] + log EP0

[
eH(x,ξ)/α̃

]
+ η = 0.

Therefore,

`0(α, L̃) = EP0

[
H(x, ξ)L̃(ξ)

]
− α

(
EP0

[
L̃(ξ) log L̃(ξ)

]
− η
)

= EP0

[
H(x, ξ)L̃(ξ)

]
= `0(α̃, L̃).

Consider now Case B. By Proposition 2, we have Hu(x) < +∞, κu > 0, and log κu + η ≥ 0. We

let PHu denote the probability distribution of ξ such that H(x, ξ) is concentrated on the single point

Hu(x), and L̃ denote the corresponding likelihood ratio. Note that L̃ is well defined since κu > 0.

We now show that (α̃, L̃) is still a saddle point. The first inequality in (15) is straightforward. We

only need to verify the second one. It suffices to show EP0

[
L̃ log L̃

]
−η ≤ 0. The result then follows

from that EP0

[
L̃ log L̃

]
− η = log(1/κu)− η ≤ 0.

Theorems 1 and 2 are important results of this paper. They together show that, when the

random function has a light right tail, the worst-case expectation admits an analytical expression.

The light right tail we identify includes the bounded case and numerous other interesting cases in

practical applications (perhaps a simplest example is the normal distribution; see Section 5). Such

a property guarantees the tractability of KL divergence in modeling ambiguity.

2.2 Modeling Difficulty for Heavy Tail

The results shown in Theorems 1 and 2 require the assumption that the random function has a light

right tail. We now investigate what happens if the random function has a heavy right tail. Suppose

that S is empty for x. Then, Hu(x) = +∞ and we can find a positive real sequence {Rj} tending to

+∞ such that the sequence of probability masses of H(x, ξ)1{H(x,ξ)≤Rj} at corresponding essential

supremums diminishes to 0. Let α∗j (x) denote the optimal solution of Problem (14) where the

function H(x, ξ) is replaced with H(x, ξ)1{H(x,ξ)≤Rj}. Then, from Proposition 2, 0 < α∗j (x) < +∞
starting from sufficiently large j. Construct the sequence

Lj =
e
H(x,ξ)1{H(x,ξ)≤Rj}/α

∗
j (x)

EP0

[
e
H(x,ξ)1{H(x,ξ)≤Rj}/α

∗
j (x)
] , j = 1, 2, · · · .

13



Then, following the analysis in the proof of Theorem 2, we have {Lj} is a sequence of feasible

solutions of Problem (6). Furthermore, the sequence of objective values of {Lj} tends to +∞. This

shows the optimal objective value of Problem (6) is positive infinite.

It is now clear that the light right tail of the random function is the sufficient and necessary

condition for Problem (6) to have a finite optimal value. The result also shows, when the random

function has a heavy tail distribution, the worst-case expectation is positive infinite no matter how

small the ambiguity set is. In such a case, the DRO formulation becomes meaningless and can no

longer be applied.

The difficulty of modeling ambiguous heavy tail distributions does not only exist for KL diver-

gence. Other distance measures may suffer from the same difficulty. To see this, we consider a

general distance measure DM and the KL divergence D. For any two functions B1(y) and B2(y),

we say B1(DM ) ≤ B2(D), if B1(DM (P1||P2)) ≤ B2(D(P1||P2)) holds for any distributions P1 and

P2. Then, we have the following theorem whose proof is provided in the Appendix.

Theorem 3. Suppose that there exists a nonnegative increasing function B(y) on <+ such that

B(y) > 0 if y > 0 and B(DM ) ≤ D. Then for any η > 0,

PM := {P ∈ D : DM (P ||P0) ≤ η} ⊃ {P ∈ D : D(P ||P0) ≤ B (η)} .

Furthermore, suppose that S is empty for x. Then, supP∈PM EP [H(x, ξ)] = +∞.

Theorem 3 shows that if we can find some function B(y) for DM , such that DM can be bounded

from above by the KL divergence together with B(y), the worst-case expectation for the ambiguity

set PM is also infinite given that H(x, ξ) is heavy tailed under P0. This shows the distance measure

DM cannot be used in modeling ambiguous heavy tail distributions as well.

For many distance measures, it is easy to find the function B(y). Gibbs and Su (2002) studied

a number of distances of distributions. They showed that the Discrepancy, Hellinger distance,

Kolmogorov (or Uniform) metric, Lévy metric, Prokhorov metric, and Total variation distance,

when well defined on an underlying space, can all be bounded from above by KL divergence together

with some functions. This means that we can find B(y) for all these distances provided they are well

defined on the considered distribution space. Take Hellinger distance DH , Total variation distance

DTV and Prokhorov metric DPV as examples. From Gibbs and Su (2002), we have D2
H ≤ D,

2D2
TV ≤ D and 2D2

PV ≤ D. Therefore, we can set B(y) = y2 for Hellinger distance, B(y) = 2y2

for Total variation distance, and B(y) = 2y2 for Prokhorov metric on y ≥ 0. Theorem 3 shows

that, on the other hand, if we want to use some distance measure to model ambiguous heavy tailed

distributions, we have to look for distance measures that cannot be bounded by KL divergence.

Nevertheless, heavy tailed distributions appear frequently in practical applications, especially in

financial risk management. Therefore, it is an important question to investigate how to modify the
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KL divergence constrained ambiguity set P, maybe by incorporating some additional constraints,

such that the new set is meaningful for heavy tailed distributions and, at the same time, keeps the

tractability of the original set. Here we consider adding a perturbation constraint

Ll ≤ L ≤ Lu,

where Ll and Lu are some nonnegative functions of z and the inequalities hold for all z ∈ Ξ.

The functional approach developed in Section 2.1 allows us to look into the specific structures

of the problems. Therefore, it may be applicable to handle these more sophisticated ambiguity

sets. Our preliminary study via using the functional approach shows a Monte Carlo approach may

be necessary to estimate a worst-case performance in this case. The basic idea is that L is now

restricted and cannot take values freely on <+, and therefore we need to compare the values Ll,

Lu and the value of L(z) that enforces the gradient to 0. We will investigate such an extension in

our future research.

2.3 Solving the Minimax Problem

From Theorem 2 we have the following theorem. The proof of the theorem is straightforward

following the analysis above, and thus is omitted here.

Theorem 4. Suppose Assumption 1 is satisfied. Then, Problem (3) is equivalent to

minimize
x∈X, α≥0

h(x, α) := α log EP0

[
eH(x,ξ)/α

]
+ αη. (16)

In Theorem 4, in order to emphasize (x, α) is the joint decision vector, we use h(x, α) rather

than hx(α) to denote the objective function. Suppose that H(x, ξ) is convex in x for every ξ. The

objective function h(x, α) is a convex function of (x, α). Indeed, the convexity follows from the fact

that the functional `0(α,L) is convex in (x, α), and h(x, α) is obtained by maximizing `0(α,L) over

L ∈ L. Therefore, Problem (16) is a d+1-dimensional convex optimization problem. Note that the

first term of h(x, α) is exactly the logarithmic moment generating function of H(x, ξ) under the

probability measure P0. In some cases, the logarithmic moment generating function has a closed-

form expression. Then, Problem (16) can be transformed to a deterministic convex optimization

problem that can be solved by standard optimization algorithms; see examples in Section 5.

When the closed-form expression of the logarithmic moment generating function is not available,

Problem (16) is a typical stochastic optimization problem with a fixed probability distribution P0.

We can then use standard stochastic optimization techniques, such as sample average approximation

(SAA) and stochastic approximation (SA) to solve the problem (Shapiro et al. 2009). For instance,

to apply the SAA, we first generate an independent and identically distributed (i.i.d.) sample

ξj , j = 1, · · · , N from the distribution P0, and then use the following optimization problem to
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approximate (16):

minimize
x∈X, α≥0

ĥN (x, α) := α log

 1

N

N∑
j=1

eH(x,ξj)/α

+ αη. (17)

By the strong law of large numbers, we have 1
N

∑N
j=1 e

H(x,ξj)/α converges to EP0

[
eH(x,ξ)/α

]
with

probability one (w.p.1) as N goes to infinity for every x ∈ X and α > 0. Then, by the continuous

mapping theorem, α log
(

1
N

∑N
j=1 e

H(x,ξj)/α
)

converges to α log EP0

[
eH(x,ξ)/α

]
w.p.1 as N goes to

infinity for every x ∈ X and α > 0. Because h(x, α) is jointly convex in x and α, by Theorem 7.50

of Shapiro et al. (2009), we have that ĥN (x, α) converges to h(x, α) w.p.1 uniformly on X × <+.

Therefore, the convergence of the optimal value and the set of optimal solutions of the SAA, i.e.,

Problem (17), to those of the true problem, i.e., Problem (16), can be guaranteed; see, e.g., Theorem

5.3 of Shapiro et al. (2009) and the followed discussions.

Before ending this section, we briefly discuss the structure of the probability distribution that

achieves the worst-case performance. Suppose α∗(x) 6= 0. Let p∗(z, α) denote the probability

distribution that achieves the maximal value of `(L, λ∗). Then,

p∗(z, α) = p0(z)L∗(z) =
p0(z)eH(x,z)/α

EP0

[
eH(x,ξ)/α

] .
It follows that the probability measure

p∗(z, α∗(x)) =
p0(z)eH(x,z)/α∗(x)

EP0

[
eH(x,ξ)/α∗(x)

] (18)

is the optimal distribution that achieves the worst-case expectation in the inner maximization

problem of Problem (3). This structure shows that the optimal distribution is proportional to the

nominal distribution composite with the exponential term eH(x,z)/α∗(x). When p0(z) is a density

function, p∗(z, α∗(x)) is also a density function, and it has the same support as p0(z). This is

different from many results in the robust optimization literature, where optimal distributions are

often atomic (i.e., they allocate positive probabilities on a finite set of values). For many parametric

families of distributions, we find that the optimal distribution and the nominal one are in the same

family. We discuss this further in Section 5.

3 Ambiguous Expectation Constrained Programs

The minimax DRO is a natural formulation when the ambiguous random parameters appear in

the objective function of an optimization model. In many practical models, these parameters may

appear in the constraints of the optimization models, like Problem (2). When a decision maker is

risk-neutral to the randomness, he or she may only require the constraint be satisfied “averagely”.
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Then, we have the following formulation of an ECP:

minimize
x∈X

h(x) (19)

subject to EP0 [H(x, ξ)] ≤ 0.

In this section we consider a robust version of Problem (19), which requires the constraint be

satisfied for all the distributions in the ambiguity set P, where P is defined by (4). That is, we are

interested in solving

minimize
x∈X

h(x) (20)

subject to maximize
P∈P

EP [H(x, ξ)] ≤ 0.

We call Problem (20) an ambiguous ECP. Following the functional approach developed in Section

2, we obtain the following theorem.

Theorem 5. Suppose that Assumption 1 is satisfied. Then, Problem (20) is equivalent to

minimize
x∈X

h(x) (21)

subject to inf
α≥0

α log EP0

[
eH(x,ξ)/α

]
+ αη ≤ 0.

Theorem 5 shows that the ambiguous ECP can be simplified as a one-layer optimization problem,

which is convex if h(x) is convex in x and H(x, ξ) is convex in x for every ξ. Therefore, it may be

solved efficiently using standard optimization techniques.

3.1 Relation to Chance Constrained Programs

A different, often more natural, approach to modeling the randomness in the decision problem (2)

is to require that the constraint be satisfied with at least a given probability. Such an approach

leads to the following optimization problem:

minimize
x∈X

h(x) (22)

subject to Pr∼P0 {H(x, ξ) ≤ 0} ≥ 1− β,

where 1 − β ∈ (0, 1) is called the confidence level of the probability constraint. Problem (22)

is often called a CCP; see, e.g., Charnes et al. (1958), Prékopa (2003), Nemirovski and Shapiro

(2006), and Hong et al. (2011) for more details about CCPs. Compared to the ECP formulation,

the CCP formulation is in general (but not necessarily) a more conservative approach, which may

be advocated by decision makers who are risk-averse to the randomness in ξ. Because CCPs are

generally nonconvex optimization problems and are often difficult to solve, a convex conservative

approximation approach is often used to tackle them (see, e.g., Ben-Tal and Nemirovski 2000,

Nemirovski and Shapiro 2006, and Chen et al. 2010).
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The Bernstein approximation of Nemirovski and Shapiro (2006) is a famous example of such

an approach. It takes the following form:

minimize
x∈X

h(x) (23)

subject to inf
α>0

[
α log EP0

[
eH(x,ξ)/α

]
− α log β

]
≤ 0.

Nemirovski and Shapiro (2006) showed that Problem (23) is a convex conservative approximation

of Problem (22). Using Jensen’s inequality, we have

α log EP0

[
eH(x,ξ)/α

]
≥ αEP0

[
log
(
eH(x,ξ)/α

)]
= EP0 [H(x, ξ)] .

It follows that

inf
α>0

[
α log EP0

[
eH(x,ξ)/α

]
− α log β

]
≥ EP0 [H(x, ξ)] + inf

α>0
{−α log β} = EP0 [H(x, ξ)] .

Therefore, the Bernstein approximation, i.e., Problem (23), is also a convex conservative approxi-

mation of the ECP, i.e., Problem (19).

Comparing Problems (21) and (23) we have the following theorem that reveals the links between

ambiguous ECPs and Bernstein approximations.

Theorem 6. If η = log(β−1), or equivalently β = e−η, Problems (21) and (23) are the same.

Theorem 6, we think, is an interesting result. Note that the formulation of CCP reflects a decision

maker’s risk averseness and the formulation of ambiguous ECP reflects a decision maker’s ambiguity

averseness. Even though we often treat risk and ambiguity differently (see, for instance, Ellsberg

(1961) and Epstein (1999)), Theorem 6 shows that they are interrelated via the KL divergence. By

solving the Bernstein approximation, we obtain a solution that not only approximates the solution

of the corresponding CCP, but is also optimal under an ambiguous ECP with an appropriately

determined index of ambiguity; and vice versa.

Table 1: Relation between Confidence Level and Index of Ambiguity

confidence level β index of ambiguity η index of ambiguity η confidence level β
0.1 2.3026 0.5 0.6065
0.05 2.9957 1 0.3679
0.01 4.6052 1.5 0.2231

Theorem 6 also provides valuable information on the selection of the index of ambiguity in DRO

models. From Theorem 6 we immediately see that, the confidence level β = 0.05 corresponds to

the index of ambiguity η = log(β−1) ≈ 3.0, while the index of ambiguity η = 0.5 corresponds to

the confidence level β = e−η ≈ 0.6. Some more correspondences between the confidence level and

the index of ambiguity are shown in Table 1, to help obtain a sense of their relationships.
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4 Distributionally Robust Probabilistic Programs

In Sections 2 and 3 we focus mainly on performance measures that are defined as expectation-

s. In many situations, however, decision makers who are risk-averse to randomness may prefer

using probabilities as performance measures. Then, they may consider a probabilistic program.

Probabilistic programming is an important area within stochastic programming and it has been

studied extensively in the literature; see Prékopa (2003) for a comprehensive review. Depending on

whether the probability function appears in the objective or in the constraint, they can be roughly

classified into the problems of optimizing a probability function and the CCPs that are discussed in

Section 3.1. When a decision maker is both risk averse and ambiguity averse, he or she may want

to formulate a probabilistic program into a distributionally robust probabilistic program, which we

study in this section.

4.1 Minimax Probability Optimization

Consider the following problem of minimizing a probability performance measure,

minimize
x∈X

Pr∼P0 {H(x, ξ) > 0} . (24)

This model has many applications. For instance, in risk management, managers often want to

minimize the probability of failure, ruin, or occurrence of certain undesirable events, whereas in

goal driven optimization, decision makers often target to maximize the probability of attaining

aspiration levels; see, e.g., Bordley and Pollock (2009) and Chen and Sim (2009). In this subsection

we are interested in finding how this model is affected by the ambiguity in the distribution of ξ.

Suppose that the ambiguity set P is defined by (4). We then have the following formulation of the

minimax DRO for Problem (24):

minimize
x∈X

maximize
P∈P

Pr∼P {H(x, ξ) > 0} , (25)

which can also be written as

minimize
x∈X

maximize
P∈P

EP
[
1{H(x,ξ)>0}

]
, (26)

where 1{A} is the indicator function. Therefore, Problem (26) may be considered as a special

instance of the minimax DRO model (3). Let v denote the optimal objective value of Problem (24).

Then, based on Theorem 4, we have the following theorem.

Theorem 7. (a) Any optimal solution of Problem (24) is also an optimal solution of the outer

minimization problem of Problem (25).

(b) If log v + η < 0, any optimal solution of the outer minimization problem of Problem (25) is

also an optimal solution of Problem (24); if log v + η ≥ 0, the objective value of the inner
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maximization problem of Problem (25) equals 1 for all x ∈ X, and all x ∈ X are optimal

solutions of the outer minimization problem of Problem (25).

Proof. For simplicity of notation, we let κ(x) = Pr∼P0 {H(x, ξ) > 0}. Note that 1{H(x,ξ)>0} only

takes two values 0, 1. Therefore Assumption 1 is satisfied for 1{H(x,ξ)>0}. Using Theorem 4 by

setting H(x, ξ) in Theorem 4 as 1{H(x,ξ)>0}, we obtain that

inf
x∈X

sup
P∈P

EP
[
1{H(x,ξ)>0}

]
= inf

x∈X
inf
α≥0

α log EP0

[
e1{H(x,ξ)>0}/α

]
+ αη (27)

= inf
x∈X

inf
α≥0

α log
[
κ(x)e1/α + (1− κ(x))

]
+ αη

= inf
x∈X

inf
α≥0

α log
[
κ(x)

(
e1/α − 1

)
+ 1
]

+ αη

= inf
α≥0

inf
x∈X

α log
[
κ(x)

(
e1/α − 1

)
+ 1
]

+ αη. (28)

Because e1/α − 1 > 0 for all α ≥ 0 and log(·) is a strictly increasing function, we have if x̄ is

an optimal solution of Problem (24), it attains the inner infimum in (28) and thus is an optimal

solution of the outer minimization problem of Problem (25). Therefore (a) holds.

We next show (b). Consider first the case that log v + η < 0. Suppose that x̄ is an optimal

solution of Problem (24). Then v = κ(x̄). For x = x̄, from Proposition 2, the inner infimum of

(27) is attained at ᾱ > 0 and the objective value of the inner maximization problem of Problem

(25) is less than 1. Consider any optimal solution x̂ of the outer minimization problem of Problem

(25). If log κ(x̂) + η ≥ 0, then for x = x̂, the inner infimum of (27) is attained at α̂ = 0 and

the objective value of the inner maximization problem of Problem (25) equals 1. This contradicts

with the optimality of x̂. Therefore we have log κ(x̂) + η < 0. Similarly, for x = x̂, Proposition 2

implies that the inner infimum of (27) is attained at α̂ > 0. Suppose x̂ is not an optimal solution

of Problem (24). Then κ(x̂) > κ(x̄). It follows that

inf
x∈X

sup
P∈P

EP
[
1{H(x,ξ)>0}

]
= α̂ log

[
κ(x̂)

(
e1/α̂ − 1

)
+ 1
]

+ α̂η

> α̂ log
[
κ(x̄)

(
e1/α̂ − 1

)
+ 1
]

+ α̂η

≥ inf
α≥0

α log
[
κ(x̄)

(
e1/α − 1

)
+ 1
]

+ αη

≥ inf
x∈X

inf
α≥0

α log
[
κ(x)

(
e1/α − 1

)
+ 1
]

+ αη

= inf
x∈X

sup
P∈P

EP
[
1{H(x,ξ)>0}

]
.

This is a contradiction. Therefore, x̂ is an optimal solution of Problem (24).

Consider now the case that log v+η ≥ 0. Since v ≤ κ(x) for all x ∈ X, we have log κ(x)+η ≥ 0

for all x ∈ X. From Proposition 2, for any x ∈ X, the inner infimum of (27) is attained at α = 0

and the objective value of the inner maximization problem of Problem (25) equals 1. Therefore all

x ∈ X solve Problem (25). This concludes the proof of the theorem.
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Theorem 7 shows that when the ambiguity set is defined by the KL divergence, a solution

that optimizes the original probability function simultaneously optimizes the worst-case probability

function, no matter what value the index of ambiguity η takes. Theorem 7 suggests that, to solve

Problem (25), it suffices to solve Problem (24). In many practical situations, the optimal objective

value v of Problem (24) is small (e.g., ≤ 0.05) and the index of ambiguity η is not very large (see

also the discussions in Section 4.2). Thus the case that log v + η ≥ 0 is not very likely to happen

and is often of no interest. In such situations, the original probability optimization problem and

its DRO are actually the same problem. This result again suggests that risk and ambiguity are

interrelated via the KL divergence. It seems that in the KL divergence-constrained distributionally

robust probability optimization problems, risk and ambiguity are the two sides of the same coin.

If we take care of one, we may have already taken care of the other.

4.2 Ambiguous Chance Constrained Programs

We next consider an ambiguous CCP that requires the chance (or probability) constraint be satisfied

for all distributions in an ambiguity set. This problem has been considered in the literature.

Erdogan and Iyengar (2006) considered ambiguous CCPs in which the ambiguity set is

{P ∈ D : DPV (P ||P0) ≤ η}

where DPV denotes the Prohorov metric (Gibbs and Su 2002). They studied the scenario approach,

and proposed a robust sampled problem where the sample is simulated from the nominal distribu-

tion P0, to approximate the ambiguous CCP, and built a lower bound for the sample size which

ensures that the feasible region of the robust sampled problem is contained in the feasible region

of the ambiguous CCP with a given probability. Besides proposing the Bernstein approximation-

s, Nemirovski and Shapiro (2006) also considered ambiguous CCPs. They built Bernstein-type

approximations to ambiguous CCPs where the ambiguity set is comprised of some product distri-

butions. In this subsection, we study ambiguous CCPs where the ambiguity set is defined by the

KL divergence. Suppose that the ambiguity set P is defined by (4). We then have the following

formulation of an ambiguous CCP:

minimize
x∈X

h(x) (29)

subject to Pr∼P {H(x, ξ) ≤ 0} ≥ 1− β, ∀ P ∈ P.

Similar to Problem (25), Problem (29) can be written as

minimize
x∈X

h(x)

subject to maximize
P∈P

EP
[
1{H(x,ξ)>0}

]
≤ β. (30)

Therefore, Problem (29) may be considered as a special instance of ambiguous ECPs. Then, based

on Theorem 5, we have the following theorem on the equivalent form of an ambiguous CCP.
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Theorem 8. Problem (29) is equivalent to the following CCP

minimize
x∈X

h(x)

subject to Pr∼P0 {H(x, ξ) ≤ 0} ≥ 1− β̄,

where

β̄ = sup
t>0

e−η(t+ 1)β − 1

t
. (31)

Proof. Using Theorem 5 by setting H(x, ξ) in Theorem 5 as 1{H(x,ξ)>0}, and following the analysis

in Theorem 7, we obtain constraint (30) is equivalent to

inf
α≥0

α log
[
κ(x)

(
e1/α − 1

)
+ 1
]

+ αη ≤ β. (32)

Let A denote the set defined by (32). We now show that A is equal to a set B which is defined by

the following constraint

∃ α > 0, α log
[
κ(x)

(
e1/α − 1

)
+ 1
]

+ αη ≤ β. (33)

It is obvious that B ⊂ A. Thus it suffices to show A ⊂ B. Consider any x ∈ A. If κ(x) = 0, then

x also satisfies (33) by setting, e.g., α = β/(2η). Suppose κ(x) > 0. Note that the left hand side of

(32) tends to 1 as α→ 0, and +∞ as α→ +∞. Therefore, the infimum in (32) cannot be attained

at α = 0,+∞ and has to be attained at a positive and finite α. This shows x ∈ B. Therefore

A = B.

Elementary algebra shows that constraint (33) can be simplified as

∃ α > 0, κ(x) ≤ e
β
α
−η − 1

e
1
α − 1

.

which can further be transformed as the following constraint via a one-to-one transformation t =

e
1
α − 1:

∃ t > 0, κ(x) ≤ e−η(t+ 1)β − 1

t
. (34)

Because
(
e−η(t+ 1)β − 1

)
/t tends to −∞ as t → 0 and tends to 0 as t → +∞, and it is strictly

larger than 0 when t > eη/β − 1, it attains its maximum over t > 0 at some positive and finite

t. Therefore, constraint (34) can be strengthened as κ(x) ≤ β̄ where β̄ is defined by (31). This

concludes the proof of the theorem.

Remark: A similar result as Theorem 8 for ambiguous CCPs was also derived by Jiang and Guan

(2012) using a different approach.

Theorem 8 shows that the ambiguous CCP can be equivalently formulated as the original CCP

with only the confidence level being adjusted. This suggests that it can be solved by using standard
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CCP algorithms. Furthermore, note that
[
(t+ 1)β − 1

]
/t ≤ β. Thus, β̄ ≤ β. This shows that, to

compensate the distributional robustness of the CCP, a certain amount of allowed error probability

needs to be given up. Similar to the discussions followed Theorems 6 and 7, again, we see that

risk and ambiguity are interrelated via the KL divergence. Theorem 8 shows that, in the KL

divergence-constrained ambiguous CCP, the ambiguity averseness is equivalent to an increase of

risk averseness in the original CCP.

To determine the new confidence level β̄, we need to solve a one dimensional optimization

problem. The problem has a nice structure that allows us to design a bisection search algorithm to

solve it. The basic idea is to check whether the set

Tβ̃ =

{
t : t > 0,

e−η(t+ 1)β − 1

t
> β̃

}
is empty for a given β̃ > 0. If Tβ̃ is non-empty, then β̄ > β̃ and we should search β̄ in (β̃, β].

Otherwise, we should search β̄ in (0, β̃]. Checking the non-emptiness of Tβ̃ can be transformed to

checking whether the maximum of

Φ(t) = e−η(t+ 1)β − 1− β̃t

over t ≥ 0 is larger than 0. Note that Φ(t) is a concave function of t on [0,+∞), and its maximum

over t ≥ 0 is attained at

t∗(β̃) = max

0,

(
β̃eη

β

) 1
β−1

− 1

 .

When Φ(t∗(β̃)) > 0, we have t∗(β̃) > 0 and
(
e−η(t∗(β̃) + 1)β − 1

)
/t∗(β̃) > β̃. This shows Tβ̃ is

non-empty. Similarly, some careful analysis shows when Φ(t∗(β̃)) < 0, we have Tβ̃ is empty and

β̄ < β̃, and when Φ(t∗(β̃)) = 0, we have β̄ = β̃. Therefore, the following bisection search algorithm

can be used to solve the one dimensional problem and obtain a solution with arbitrary accuracy.

Step 0. Set i = 0. Set βl := 0 and βu := β

Step i. Set β̃ = βl+βu
2 and compute Φ(t∗(β̃)).

If Φ(t∗(β̃)) > 0, update βl =: β̃. Set i = i+ 1.

If Φ(t∗(β̃)) < 0, update βu =: β̃. Set i = i+ 1.

If Φ(t∗(β̃)) = 0, stop.

We compute the adjusted confidence levels for some η values using the bisection search (stop if

βu − βl ≤ 10−12) and report the results in Table 2.

In Erdogan and Iyengar (2006), the index of ambiguity η cannot be larger than the confidence

level β of the original CCP. In our formulation, we do not have this restriction. For any η > 0, the

adjusted confidence level β̄ is larger than 0. However, from Table 2, it is clear that β̄ may be very

small (leading to extreme conservativeness) if η is significantly larger than β.
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Table 2: Relation between Rescaled Confidence Level and Index of Ambiguity

index of ambiguity η rescaled confidence level β̄
β = 0.1 1 1.7589e-006

0.1 0.0166
0.05 0.0313
0.01 0.0629

β = 0.05 1 3.8563e-011
0.1 0.0027
0.05 0.0081
0.01 0.0250

4.3 Distributionally Robust Optimization for Other Performance Measures

The results derived for DRO problems in preceding sections may be extended to other performance

measures. Here we discuss two important risk measures, value-at-risk (VaR) and conditional value-

at-risk (CVaR), which are widely used in financial risk management. We briefly show how to derive

the DRO reformulations of VaR and CVaR related stochastic programs. Consider the following

DRO formulation of a VaR optimization problem:

minimize
x∈X

maximize
P∈P

VaR1−β,P (H(x, ξ)) (35)

where the subscript P denotes the distribution of ξ and P is the KL divergence constrained ambi-

guity set defined in (4). Problem (35) suggests to minimize the worst-case VaR. We then have the

following proposition.

Proposition 3. Problem (35) is equivalent to

minimize
x∈X

VaR1−β̄,P0
(H(x, ξ)), (36)

where β̄ is defined by (31).

Proof. From the definition of VaR (e.g., Trindade et al. 2007), it is not difficult to verify Problem

(35) can be rewritten as

minimize
x∈X,t∈<

t (37)

subject to Pr∼P {H(x, ξ)− t ≤ 0} ≥ 1− β, ∀ P ∈ P.

Using Theorem 8, Problem (37) can be transformed as

minimize
x∈X,t∈<

t

subject to Pr∼P0 {H(x, ξ)− t ≤ 0} ≥ 1− β̄,

which is equivalent to Problem (36) from the definition of VaR.
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Consider next the following distributionally robust VaR constrained program:

minimize
x∈X

h(x) (38)

subject to VaR1−β,P (H(x, ξ)) ≤ 0, ∀ P ∈ P.

Problem (38) requires the worst-case VaR satisfy the non-positive constraint. We have the following

proposition which can be proven following the argument in Proposition 3.

Proposition 4. Problem (38) is equivalent to

minimize
x∈X

h(x)

subject to VaR1−β̄,P0
(H(x, ξ)) ≤ 0,

where β̄ is defined by (31).

Propositions 3 and 4 show that DRO formulations of VaR optimization problems can be con-

verted to VaR optimization problems of different confidence levels. Therefore, we can implement

standard VaR optimization algorithms to solve these DROs.

We further consider a distributionally robust CVaR constrained program, which may be formu-

lated as

minimize
x∈X

h(x) (39)

subject to CVaR1−β,P (H(x, ξ)) ≤ 0, ∀ P ∈ P.

Problem (39) requires the worst-case CVaR satisfy the non-positive constraint. We have the fol-

lowing proposition.

Proposition 5. Suppose that Assumption 1 is satisfied. Problem (39) is equivalent to

minimize
x∈X,t∈<,α≥0

h(x) (40)

subject to α log EP0

[
e[H(x,ξ)+t]+/α

]
+ αη − βt ≤ 0.

Proof. By the stochastic program representation of CVaR (Rockafellar and Uryasev 2000), it is

clear that Problem (39) is equivalent to

minimize
x∈X,t∈<

h(x)

subject to EP
[
[H(x, ξ) + t]+

]
− βt ≤ 0, ∀ P ∈ P.

Assumption 1 guarantees that for any t, EP0

[
es[H(x,ξ)+t]+

]
is finite for some s > 0. Applying

Theorem 5, the optimization problem above is equivalent to Problem (40).

Note that Problem (40) is a typical convex stochastic program that may be solved by applying

a sample-average approximation (see, e.g., Shapiro et al. (2009)). Then, by Proposition 5, Problem

(39) is also solvable by the same approach.
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4.4 Conservative Approximation to Other Distance Measures

In Section 2.2 we showed that many distance measures can be bounded from above by the KL

divergence. Therefore, the inability of the KL divergence in handling heavy tailed distributions

also implies the inabilities of those distance measures. There are also many distance measures that

can bound the KL divergence from above (Gibbs and Su 2002). For those distance measures, the

KL divergence can serve as a conservative approximation. We summarize the result in the following

theorem. Since the result is straightforward, we omit the proof.

Theorem 9. Suppose there exists an increasing function B(y) on <+ such that D ≤ B(DM ).

Then, for any η > 0,

PM := {P ∈ D : DM (P ||P0) ≤ η} ⊂ {P ∈ D : D(P ||P0) ≤ B (η)} := P(B(η)).

Consequently, supP∈PM EP [H(x, ξ)] ≤ supP∈P(B(η)) EP [H(x, ξ)].

Suppose that DM and PM are used in defining the ambiguity set in an ambiguous ECP or

ambiguous CCP, but the distance measure DM may not have the mathematical tractability as the

KL divergence. In such cases we may use the KL divergence to construct a new ambiguity set

P(B(η)). By Theorem 9, we know that the new ambiguous ECP or CCP is a tractable conservative

approximation to the original problem.

To demonstrate how to specify the function B(y), we consider two examples. The first is

the χ2-distance Dχ2 , which is used by Klabjan et al. (2012) to study multi-period inventory

management problems. It follows from Gibbs and Su (2002) that D ≤ log
(
1 +Dχ2

)
. Then, we

can set B(y) = log (1 + y). The second example is the J-divergence DJ , which belongs to the

φ-divergence class (Ben-Tal et al. 2012). Following the definition in Ben-Tal et al. (2012), we have

DJ = D +DB where DB denotes the Burg entropy. This implies D ≤ DJ and thus we can simply

set B(y) = y.

5 Special Cases and Illustrations

In this section, we consider some special cases for the DRO formulations, and show that the DRO

problems can often be transformed to simple optimization problems in these cases.

5.1 Affinely Perturbed Independent Case

Suppose that H(x, ξ) =
∑k

i=1 hi(x)ξi, where ξi, i = 1, · · · , k are independent of each other, the

functions hi(x), i = 1, · · · , k are convex in X, and for those i ≥ 1 such that the support of ξi is

not a subset of <+, the function hi(x) is affine. These conditions are also used by Nemirovski
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and Shapiro (2006) to analyze their Bernstein approximation. Denote the logarithmic moment

generating function of ξi, i = 1, · · · , k by

Λi(si) = log EP0i

[
esiξi

]
, i = 1, · · · , k,

where EP0i denotes that the expectation is taken with respect to the marginal distribution of ξi

under the nominal probability distribution P0. Then,

α log EP0

[
eH(x,ξ)/α

]
= α

k∑
i=1

Λi(α
−1hi(x)).

Consequently, the worst-case expectation can be expressed as

inf
α≥0

α
k∑
i=1

Λi(α
−1hi(x)) + αη.

Note that, in the affinely perturbed independent case, EP [H(x, ξ)] = (h1(x), · · · , hk(x))Tµ,

where µ = EP (ξ). This makes us wonder whether we can transform a KL divergence constrained

ambiguity set to a mean constrained ambiguity set, which is a simple case of a moments constrained

ambiguity set (see, for instance, Delage and Ye (2010)). However, we find it difficult to make such a

transformation. This may indicate that the ambiguity defined by the moments and the ambiguity

defined by the entire distribution may be quite different, revealing that the DRO approach with

moment ambiguities and the DRO approach taking into consideration the whole distribution may

be quite different modeling approaches.

5.2 Linear Case with Normal Nominal Distribution

Suppose that H(x, ξ) = ξTx, and that the nominal distribution of ξ is a multivariate normal

distribution N(µ0,Σ0) with mean µ0 and covariance matrix Σ0. Then, H(x, ξ) follows a normal

distribution N(µT0 x, x
TΣ0x) under the probability measure N(µ0,Σ0), and

inf
α≥0

α log EP0

[
eH(x,ξ)/α

]
+ αη = inf

α≥0
α log

(
e
µT0 x

α
+
xTΣ0x

2α2

)
+ αη

= µT0 x+ inf
α≥0

xTΣ0x

2α
+ αη

= µT0 x+
√

2η
√
xTΣ0x. (41)

This shows the minimax DRO problem and the ambiguous ECP can be transformed to second

order cone programs that can be solved easily.

We now derive the optimal distribution that achieves the worst-case expectation in the non-

degenerate case (x 6= 0). Note that α∗(x) =
√
xTΣ0x/2η. It follows from (18) that the optimal

distribution is

p∗(z, α∗(x)) =
(2π)

k
2 e−

1
2

(z−µ0)TΣ−1
0 (z−µ0)− 1

2
log det Σ0ez

T x/
√
xTΣ0x/2η

EP0

[
eξ
T x/
√
xTΣ0x/2η

] ,
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where detA denotes the determinant of a matrix A. Some simple algebra shows that

p∗(z, α∗(x)) = (2π)
k
2 e−

1
2

(z−µ∗)TΣ∗−1(z−µ∗)− 1
2

log det Σ∗ ,

where

µ∗ = µ0 +
Σ0x√

xTΣ0x/(2η)
(42)

and Σ∗ = Σ0. Therefore, p∗(z, α∗(x)) is the density of the multivariate normal distribution

N(µ∗,Σ∗). This result shows that, in the linear case, if the nominal distribution is a multivariate

normal distribution, the optimal distribution that achieves the worst-case expectation is still a mul-

tivariate normal distribution with the same covariance matrix. Only the mean vector is changed.

In Appendix A.4 we show that the same optimal distribution can also be derived by restricting

the candidate distributions to the family of multivariate normal distributions. Furthermore, it

is worthwhile noting that this linear case may be generalized to H(x, ξ) =
∑k

i=1 hi(x)ξi, where

hi(x), i = 1, · · · , k are affine functions of x.

5.3 Exponential Families

In Section 5.2 we show that, in the linear case with a multivariate normal nominal distribution,

the worst-case distribution and the nominal distribution belong to the same distribution family. In

this subsection we show that this property can be extended to exponential families of distributions.

Exponential families include many useful families of distributions. Brown (1986) pointed out “many

if not most of the successful mathematical formulations of statistical questions involve specific

exponential families of distributions.” It is well known that an exponential family associated with

its sufficient statistics φ = (φ1, φ2, · · · , φk′)T consists of the following parameterized collection of

probability density (mass) functions

p(z, θ) = eφ(z)Tθ−A(θ),

taken with respect to some underlying measure dν (Wainwright and Jordan 2008), where dν is

not necessarily the Lebesgue measure. The vector θ is often called the natural parameter, and the

quantity A, known as the log partition function or cumulant function, is defined by the integral

A(θ) = log

∫
Z

exp{φ(z)T θ}ν(dz),

where Z is the support that is independent of the natural parameter θ. A key structure of such a

canonical form of exponential family is that the log partition function A(θ) is convex (Wainwright

and Jordan 2008).

Suppose that the nominal distribution has a density (mass) function p(z, θ0). Then, from (18),

we have that the optimal distribution takes the following form

p∗(z, α∗(x)) = eφ(z)Tθ0−A(θ0)+H(x,z)/α∗(x),
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with some new measure dν̃. If φ(z) = z andH(x, z) = xT z, then p∗(z, α∗(x)) = eφ(z)Tθ1−A(θ1−x/α∗(x))

where θ1 = θ0 + x/α∗(x). In such a case, the optimal distribution p∗(z, α∗(x)) belongs to the same

exponential family.

6 Conclusions

In this paper, we have studied various DRO problems with KL divergence constrained ambiguity

sets. We have shown that the resulted minimax DRO problems, the ambiguous ECPs and the

distributionally robust probabilistic programs are all quite tractable. We have also considered

other optimization models and other distance measures in modeling ambiguity sets, and have also

uncovered some interesting relations between different optimization models. Furthermore, it is

worthwhile noting that the probability distributions considered in this paper are quite general.

They can be either continuous, discrete, or mixed. The only condition is they have to have a light

right tail.

In this paper we have discussed the advantages and disadvantages of using the KL divergence

in modeling ambiguities in distributions, and have linked it to various other distance measures.

In conclusion, we find that the properties of KL divergence make it a very special and tractable

distance measure and a good candidate for modeling ambiguities.

A Appendix

A.1 Proof of Proposition 1

Proof. Because H(x, ξ)L− αL logL+ λL is concave in L, we have for every ξ and L(ξ),

H(x, ξ)L− αL logL+ λL ≤ H(x, ξ)L∗(ξ, λ)− αL∗(ξ, λ) logL∗(ξ, λ) + λL∗(ξ, λ)

= αe(λ−α)/α · eH(x,ξ)/α.

Because 1/α ∈ S, we have for every L ∈ L0,

`(L, λ) ≤ `(L∗(ξ, λ), λ) < +∞.

The inequality above further shows L∗(ξ, λ) ∈ arg maxL∈L0 `(L, λ).

A.2 Proof of Proposition 2

Proof. We first show that α∗(x) < +∞. For every α > 0, let β = 1/α. Then

lim
α→+∞

α log EP0

[
eH(x,ξ)/α

]
= lim

β→0

log EP0

[
eH(x,ξ)β

]
β

= lim
β→0
∇β log EP0

[
eH(x,ξ)β

]
= lim

β→0

EP0

[
eH(x,ξ)βH(x, ξ)

]
EP0

[
eH(x,ξ)β

] = EP0 [H(x, ξ)]
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where the second equality follows from L’Hospital rule (Rudin 1976), the third equality follows from

changing the order of ∇β and EP0 , which can be ensured by the Dominated Convergence Theorem,

and the fourth equality follows from changing the order of limβ→0 and EP0 , which is also ensured by

the Dominated Convergence Theorem. Therefore, the objective function hx(α) will tend to +∞ as

α→ +∞. Because S is not empty, there exists α > 0 such that hx(α) is finite. Thus α∗(x) < +∞
and we further have α∗(x) = 0 or 1/α∗(x) ∈ S.

Recall that Hu(x) is the essential supremum of H(x, ξ) under measure P0. We first show that

lim
α→0

hx(α) = Hu(x). (43)

If Hu(x) < +∞, then hx(α) is finite valued for all α > 0 and hx(α) ≤ Hu(x) + αη. Therefore

limα→0 hx(α) ≤ Hu(x). By the definition of Hu(x), for any given M < Hu(x), we have

κM := Pr∼P0 {H(x, ξ) ≥M} > 0.

It follows that

lim
α→0

α log EP0

[
eH(x,ξ)/α

]
≥ lim

α→0
α log(κMe

M/α) = M. (44)

Therefore we have (43) holds. If Hu(x) = +∞, for any given M < Hu(x), we have κM > 0, and

thus (44) holds. Therefore we also have (43) holds.

Now we prove the “only if” direction. Suppose α∗(x) = 0. Because Assumption 1 is satisfied,

from (43) we have Hu(x) < +∞. We first show that κu > 0. Suppose not. By the definition of

Hu(x), we can find Hl(x) < Hu(x) such that

0 < κl := Pr∼P0 {Hl(x) ≤ H(x, ξ) ≤ Hu(x)} ≤ e−2η.

Let ε = Hu(x)−Hl(x) and q = 1− κl. Then ε > 0, 0 < q < 1 and

hx(α) ≤ α log
(
qeHl(x)/α + κle

Hu(x)/α
)

+ αη

= Hu(x) + α log
(
qe−ε/α + κl

)
+ αη.

Consider α log
(
qe−ε/α + κl

)
+αη. We have limα→0 α log

(
qe−ε/α + κl

)
+αη = 0. Moreover, simple

calculation shows that limα→0∇α
[
α log

(
qe−ε/α + κl

)
+ αη

]
= log κl+η ≤ −η < 0. This shows that

there exists ᾱ > 0 such that ᾱ log
(
qe−ε/ᾱ + p

)
+ ᾱη < 0. Thus hx(ᾱ) < Hu(x). This contradicts

with that α∗(x) = 0 is an optimal solution. Therefore κu > 0.

We then show log κu + η ≥ 0. Note that hx(α) is differentiable at every α > 0.

∇αhx(α) = ∇α
[
α log

(
κu + EP0

[
e(H(x,ξ)−Hu(x))/α1{H(x,ξ)<Hu(x)}

])
+ αη

]
= log

(
κu + EP0

[
e(H(x,ξ)−Hu(x))/α1{H(x,ξ)<Hu(x)}

])
+

EP0

[
e(H(x,ξ)−Hu(x))/α1{H(x,ξ)<Hu(x)} (Hu(x)−H(x, ξ)) /α

]
κu + EP0

[
e(H(x,ξ)−Hu(x))/α1{H(x,ξ)<Hu(x)}

] + η.
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By using Dominated Convergence Theorem, it can be verified that limα→+∞∇αhx(α) = η. Let

h1(α) := EP0

[
e(H(x,ξ)−Hu(x))/α1{H(x,ξ)<Hu(x)}

]
. Then h1(α) ≥ 0. Moreover, using Dominated

Convergence Theorem, we have limα→0 h1(α) = 0. Let

h2(α) :=
EP0

[
e(H(x,ξ)−Hu(x))/α1{H(x,ξ)<Hu(x)} (Hu(x)−H(x, ξ)) /α

]
κu + EP0

[
e(H(x,ξ)−Hu(x))/α1{H(x,ξ)<Hu(x)}

] .

Similarly, we have h2(α) ≥ 0 and limα→0 h2(α) = 0. It follows that limα→0∇αhx(α) = log κu + η.

If log κu + η < 0, then we can find ᾱ > 0, such that ∇αhx(ᾱ) = 0. This again contradicts with that

α∗(x) = 0 is an optimal solution. Thus we have proven the “only if” direction.

Finally we briefly verify the “if” direction. For any α > 0, ∇αhx(α) = log (κu + h1(α)) +

h2(α) + η. If κu = 1, then h1(α) = h2(α) = 0 and ∇αhx(α) = η > 0 for all α > 0. If 0 < κu < 1,

then h1(α) > 0 and h2(α) > 0 for all α > 0. Because log κu + η ≥ 0, we have ∇αhx(α) > 0 for

all α > 0. This shows when Hu(x) < +∞, κu > 0 and log κu + η ≥ 0, hx(α) is differentiable and

∇αhx(α) > 0 for all α > 0. Note that hx(α) is convex in α. We have α∗(x) = 0. This finishes the

proof of the proposition.

A.3 Proof of Theorem 3

Proof. Consider any P ∈ D satisfying D(P ||P0) ≤ B (η). Since B(DM ) ≤ D and B(·) is increasing,

DM (P ||P0) ≤ B−1 (D(P ||P0)) ≤ η where B−1(·) is the inverse function of B(·). Therefore P ∈ PM .

Suppose that S is empty for x. Since B (η) > 0, following the analysis in Section 2.2, we have

supP∈{P∈D:D(P ||P0)≤B(η)} EP [H(x, ξ)] = +∞. Therefore, supP∈PM EP [H(x, ξ)] = +∞.

A.4 Alternative Formulation for Linear Normal Case

The KL divergence between two multivariate normal distributions can be expressed using their

mean vectors and covariance matrices. Specifically, consider P0 with distribution N(µ0,Σ0) and P

with distribution N(µ,Σ). We have

D(P ||P0) =
1

2

(
tr
(
Σ−1

0 Σ
)

+ (µ− µ0)T Σ−1
0 (µ− µ0)− log

(
det Σ

det Σ0

)
− k
)
,

where trA denotes the trace of a matrix A, and k is the dimension of ξ. Note that EP [H(x, ξ)] =

xTµ, where µ is the expectation of ξ under distribution P . By restricting the candidate distributions

to the family of multivariate normal distributions, the worst-case expectation in the DRO problem

is equal to the optimal objective value of the following semi-definite optimization problem with the

mean vector µ and the covariance matrix Σ being the decision variables.

maximize
µ, Σ�0

xTµ (45)

subject to
1

2

(
tr
(
Σ−1

0 Σ
)

+ (µ− µ0)T Σ−1
0 (µ− µ0)− log

(
det Σ

det Σ0

)
− k
)
≤ η.
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It is well known that the logarithm determinant function log det Σ is a concave function of Σ (see,

e.g., Hu et al. (2012)). Thus − log det Σ is convex in Σ. Note that tr
(
Σ−1

0 Σ
)

is a linear function of

Σ. Therefore, Problem (45) is a convex optimization problem of µ and Σ. Observe further that the

objective function of Problem (45) does not include Σ. Therefore, we can take the infimum for the

constraint function over Σ � 0 to eliminate the decision variable Σ. Let ∇Σ denote the derivative

of a function with respect to the matrix Σ. Note that (Hu et al. 2012)

∇Σ

[
tr
(
Σ−1

0 Σ
)
− log det Σ

]
= Σ−1

0 − Σ−1.

Therefore, the infimum of the constraint function in Problem (45) is attained at Σ = Σ0. Plugging

Σ = Σ0 into Problem (45) and noting that tr
(
Σ−1

0 Σ0

)
= k, we obtain that Problem (45) is

equivalent to the following optimization problem

maximize xTµ (46)

subject to
1

2
(µ− µ0)T Σ−1

0 (µ− µ0) ≤ η.

Problem (46) is a convex quadratic program of µ. Using the Lagrangian duality, we can solve

Problem (46) analytically. We find that the optimal solution µ∗ of Problem (46) is exactly given by

(42). Furthermore, this solution yields the optimal objective value µT0 x+
√

2η
√
xTΣ0x. Therefore,

we again obtain the second order cone representation (41). Meanwhile, we obtain the worst-case

normal distribution is N(µ∗,Σ∗) where µ∗ is given by (42) and Σ∗ = Σ0. This is the same as what

has been derived using the functional approach in Section 5.2.
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Shapiro, A., D. Dentcheva, A. Ruszczyński. 2009. Lectures on Stochastic Programming: Modeling

and Theory. SIAM, Philadelphia.

Trindade, A. A., S. Uryasev, A. Shapiro, G. Zrazhevsky. 2007. Financial prediction with con-

strained tail risk. Journal of Banking and Finance, 31 3524-3538.

Wainwright, M. J., M. I. Jordan. 2008. Graphical models, exponential families, and variational

inference. Foundations and Trends in Machine Learning, 1 1-305.

34


