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Abstract
Probabilistic programs are widely used decision models. When implemented in practice,

however, there often exists distributional ambiguity in these models. In this paper, we model
the ambiguity using the likelihood ratio (LR) and use LR to construct various ambiguity sets.
We consider ambiguous probabilistic programs which optimize under the worst case. Ambiguous
probabilistic programs can be classified as ambiguous probability minimization problems (PM)
and ambiguous chance constrained programs (CCP). We show that the ambiguous PM can be
transformed to a pure PM under the nominal distribution, and that the ambiguous CCP can
be transformed to a pure CCP with only the confidence level being rescaled from the original
CCP. Our study indicates that ambiguous probabilistic programs with ambiguity modeled by
LR essentially have the same complexity as the corresponding pure probabilistic programs and
that risk and uncertainty have strong connections in probabilistic programs.

1 Introduction

Decision making often seeks stochastic programming models, where random outputs of a system

of interested are mapped to some deterministic values using functionals and such deterministic

values are then used for decision. Expectation is a frequently used functional. It represents the

average of the output and is typically used if decision makers are risk-neutral. Probability is another

functional of great interest. It represents the occurrence chance of some events that are of concern.

It is often advocated by decision makers who are risk-averse to randomness. The use of probability

functional in optimization models results in the so called probabilistic programs, which have been

an important class of stochastic optimization problems and have been studied extensively in the

literature. For a comprehensive review, readers are referred to Prékopa (2003).

In various situations, a decision maker hopes to optimize (say minimize) the probability of some

events. Then she may formulate her problem as the following probabilistic program:

minimize
x∈X

Pr∼P0 {H(x, ξ) > 0} , (1)
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where X ⊂ <d is the feasible region, x is the decision vector, ξ is the k-dimensional random vector,

H(·, ·) : <d ×<k → < is a deterministic function, which we call a loss function, and Pr∼P0 denotes

that the probability is taken with respect to (w.r.t.) the distribution P0. We refer to Problem (1) as

a probability minimization model (PM) throughout this paper. Problem (1) is an important model

and has been studied in many applications. For instance, in risk management, managers often want

to minimize the probability of failure, ruin, or occurrence of certain undesirable events, whereas

in goal driven optimization, which has deep root in bounded rationality of Simon (1955), decision

makers often target to maximize the probability of attaining aspiration levels; see, e.g., Bordley

and Pollock (2009), Chen and Sim (2009) and Brown and Sim (2009) for a thorough discussion.

In another class of situations, the decision maker aims to optimize an objective while require

that the constraint with randomness be satisfied with a given probability. She may then formulate

her problem as the following probabilistic program:

minimize
x∈X

h(x) (2)

subject to Pr∼P0 {H(x, ξ) ≤ 0} ≥ 1− β,

where h is the objective function to be optimized and β is the pre-specified confidence level. Problem

(2) is a well known model called chance constrained program (CCP). CCP was first considered in

Charnes et al. (1958), and has been studied extensively since then, see, e.g., Miller and Wagner

(1965), Prékopa (1970), Hong et al. (2011), and Hu et al. (2013). CCPs are also often considered

as an alternative formulation to the conventional robust optimization (RO) formulation. One can

imagine that when β = 0, the CCP becomes a RO problem; see the discussion in Ben-Tal et al.

(2009).

The probabilistic programs above assume that the random vector ξ follows a distribution P0.

To implement these probabilistic programs in real applications, a very first step is to specify the

distribution P0 for the random vector ξ, using whatever available information. However, it is a rare

case that P0 can be determined precisely. There often exist profound uncertainties for P0. In this

paper, we follow the convention of the economics literature (see, e.g., Ellsberg (1961) and Epstein

(1999)) and use the notion “ambiguity” to describe the phenomenon that a distribution cannot be

fully determined. One of the central issues for the decision makers is that the ambiguity of the

random distribution may (severely) affect the decision. To handle such an issue, many proposals

have been suggested, among which the distributionally robust optimization (DRO) has been a

reasonable pursuit and has attracted increasing attention in recent years. DRO assumes that the

distribution of the random vector is not precisely determined but is contained in a set, which is

referred to as an ambiguity set. DRO then considers the worst case of the probability function when

the distribution varies in the ambiguity set and proposes to optimize this worst case. Obviously,

DRO is an ambiguity-averse approach.
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To be a little more precise, we consider a distribution P of ξ and let P denote the ambiguity

set of P . Applying the DRO approach to the PM we obtain the following problem:

minimize
x∈X

maximize
P∈P

Pr∼P {H(x, ξ) > 0} . (3)

Similarly, applying the DRO approach to the CCP, we obtain the following problem:

minimize
x∈X

h(x) (4)

subject to Pr∼P {H(x, ξ) ≤ 0} ≥ 1− β, ∀ P ∈ P.

Problem (3) is a very natural formulation. However, to the best of our knowledge, the study on

this model is scarce in the literature. We will try to build some encouraging results for this model.

The distributionally robust CCP (4) is also referred to as an ambiguous CCP in the literature. It

was considered in Erdogan and Iyengar (2006) and Nemirovski and Shapiro (2006). We adopt the

notion of Erdogan and Iyengar (2006) and call Problem (3) and Problem (4) ambiguous PM and

ambiguous CCP, respectively. Clearly, when a risk-averse decision maker is also ambiguity-averse,

she may want to formulate a probabilistic program into an ambiguous probabilistic program.

To implement the ambiguous probabilistic programs, a key is to specify the ambiguity set P
for the underlying distribution. Significant amount of work has been devoted to the construction

of the ambiguity set in DRO literature. Especially, there exist a bunch of studies that consider

building ambiguity set using the moments of the distribution; see, e.g., Delage and Ye (2010)

and Goh and Sim (2010) for detailed discussion. A number of situations have been identified

where the ambiguity in probabilistic programs is tractable. For instance, El Ghaoui et al. (2003)

studied worst-case value-at-risk in portfolio selection where the mean vector and covariance matrix

of the underlying distribution are within bounded intervals and showed that the problems can be

cast as semidefinite programs. Besides, many studies proposed tractable approximations for the

ambiguous CCP. Chen et al. (2010) investigated conditional value-at-risk (CVaR) approximations

to ambiguous CCPs and suggested a number of conservative approximations by incorporating

distributional information such as the moments, the support, as well as the forward and backward

deviations. For the ambiguity modeled using the first and second order moments, Zymler et al.

(2013a) further showed that the approximations resulting from using CVaR to approximate chance

constraint, i.e., the worst-case CVaR approximations, are indeed exact when the loss function is

concave or quadratic in the random vector. These findings provide ways for Zymler et al. (2013a)

to reformulate their ambiguous CCPs into semidefinite programs.

In many real situations, we have some data and/or information, using which we can often

obtain, e.g., via statistical fitting or empirical justification, a nominal distribution P0 of the random

vector. Such a nominal distribution is often our best guess and contains valuable information

about the stochastic nature of the parameters. Then, a natural approach to studying the effect
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of ambiguity is to consider some level of perturbation or deviation of the nominal distribution.

In this paper, we model the distributional ambiguity using the so called likelihood ratio (LR).

Based on the data and information available, different ambiguity sets may be constructed via

LR. We mainly consider two classes of constraints imposed on LR using convex functions: uniform

constraints and expected constraints. The uniform constraints are somewhat straightforward. They

actually define a uniform band of the LR which we call a band ambiguity set. Such ambiguity was

studied in Shapiro and Ahmed (2004) under the context of minimax stochastic programs. The

expected constraints naturally lead to the concept of distance of distributions. The approach

of seeking some distance of distributions and then considering a neighborhood of the nominal

distribution defined by the distance has been very popular for modeling distributional ambiguity.

Many distances between probability distributions have been suggested. Particularly, imposing

some minor regularity conditions on the convex function in the expected constraints, we obtain the

neighborhood defined by a well-known class of distances called φ-divergence. The φ-divergence was

introduced systematically in Pardo (2006) and Ben-Tal et al. (2013), and was used to construct

ambiguity set in DRO framework. Yanıkoğlu and den Hertog (2012) further considered the φ-

divergence in ambiguous CCPs and provided nice approximations for the ambiguous CCPs. φ-

divergence contains many distances including the widely used Kullback-Leibler (KL) divergence,

χ2 distance, Hellinger distance, Variation distance, Burg entropy, and many others. In an earlier

technical report Hu and Hong (2012), we studied the general DRO framework where the ambiguity

set is defined by the KL divergence. We demonstrated the tractability of the ambiguous probabilistic

programs (including both PM and CCP) in a unified way as for the general expectation based

stochastic programs. Interestingly, we also realized the work of Jiang and Guan (2012) which

studied a CCP model with affine loss functions and KL divergence defined ambiguity set and

derived a similar tractability result for CCPs, as well as the work of El Ghaoui et al. (2003) which

considered the KL divergence deviation from a Gaussian distribution and obtained the reformulation

of the entropy-constrained value-at-risk. Our current paper has been greatly inspired by the work

of Ben-Tal et al. (2013) and it updates and extends the framework of Hu and Hong (2012). One of

the main contributions of our paper, as will be seen, is that we succeed to discover nice structures

for the ambiguous probabilistic programs and disclose the fact that the complexity reduction of

ambiguous probabilistic programs to pure probabilistic programs is indeed enjoyed by a large class

of ambiguity sets constructed using LR. We expect our findings can complement the literature of

DRO and our framework may be expanded for more plentiful ambiguity structures.

To provide a unified framework, the analysis of this paper is first conducted on an ambiguity set

which combines the uniform constraints and expected constraints. We show the ambiguity set is

general enough to model many real situations. We first study a worst-case probability function and

show that it is the optimal value of a constrained functional optimization problem. Implementing
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the Lagrangian duality, we show that the worst-case probability function is equal to the optimal

value of an optimization problem with real decision variables. Based on this result, we then analyze

ambiguous PMs and ambiguous CCPs separately. We show that solving an ambiguous PM can be

reduced to solving a pure PM, where the underlying distribution is the nominal one. To the best

of our knowledge, this is the first time that this kind of results is derived. We next consider an

ambiguous CCP. We show that the ambiguous CCP can be converted to a pure CCP with only

the confidence level being rescaled from the original CCP. The new confidence level is the optimal

value of a nonlinear optimization problem and it can be derived within the convex framework. We

further consider a number of specific instances of the ambiguity set. We discuss how to determine

the sizes of these sets which admit some statistical meaning based on data available and show how

to derive the new confidence levels for these sets.

Note that our analysis does not impose any structural assumptions on the loss function H(x, ξ).

Indeed, our approach can be used to handle the general probability function Pr∼P {A(x, ξ)} where

A(x, ξ) is an event depending on x and ξ. This naturally absorbs more complicated models such

as joint CCPs (e.g., Miller and Wagner 1965) and CCPs with conic statements (e.g., Cheung et

al. 2012). Of course, on the other hand, it should be admitted that for a general loss function,

even the pure probabilistic programs may be difficult to solve. Our results show that the LR

based ambiguity does not add much difficulty to the probabilistic programs. When we optimize a

probability function, we often have simultaneously optimized a worst-case probability performance

measure. In the CCP formulation, the ambiguity (uncertainty) and the randomness (risk) can

often transform to each other. Therefore, we can often reduce some level of risk to take care of

uncertainty. In this regard, the use of probability functional as performance measures in decision

under uncertainty is quite appealing.

The rest of this paper is organized as follows. In Section 2, we consider the worst-case prob-

ability function, and discuss the ambiguous PM and ambiguous CCP. In Section 3 we consider

the ambiguity set and discuss how to determine the size of the set and how to compute the new

confidence level for ambiguous CCP. We conclude the paper in Section 4. Some lengthy proofs are

provided in the Appendix.

2 Ambiguous Probabilistic Programs

Let 1{A} denote the indicator function, which is equal to 1 if A happens and 0 otherwise. Then

the probability function Pr∼P {H(x, ξ) > 0} can be rewritten as EP

[
1{H(x,ξ)>0}

]
. Therefore, the

ambiguous PM, i.e., Problem (3), can be reformulated as the following problem

minimize
x∈X

maximize
P∈P

EP

[
1{H(x,ξ)>0}

]
,
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and the ambiguous CCP, i.e., Problem (4), can be rewritten as

minimize
x∈X

h(x)

subject to maximize
P∈P

EP

[
1{H(x,ξ)>0}

] ≤ β.

Suppose we have obtained a nominal distribution P0. Suppose the true but unknown distribution

is P . We construct the ambiguity set by considering the difference between P0 and P . Suppose

the k-dimensional distributions P and P0 have densities p(z) and p0(z) on Ξ ⊂ <k. Note that

we do not differentiate P and p(z) throughout this paper: The two notations denote the same

distribution if no confusion is caused. Let L = p/p0. Note that L is called a likelihood ratio (LR)

in the literature. The definition of LR implicitly assumes that P is absolutely continuous w.r.t. P0

(denoted as P ¿ P0), i.e., for every measurable set A, P0(A) = 0 implies P (A) = 0. When P0 is

a discrete distribution, we understand p0(z) as the probability mass function. When P0 follows a

mixed distribution, p0(z) is the density at z if P0 has zero mass at z, and is the probability mass

function at z if P0 has a positive mass at z. Clearly, LR is a good candidate for measuring the

perturbation/deviation of the true distribution to the nominal one. As mentioned in Section 1, we

use two different classes of constraints on the LR to model the ambiguity. The first is called uniform

constraints. Specifically, we consider a convex function ϕ : < → <, and construct the constraint

ϕ(L) ≤ ρ, (5)

where ρ is a positive constant. To guarantee that the nominal distribution satisfies (5), we impose

the regularity condition for ϕ that ϕ(1) ≤ ρ. Because ϕ is convex and finite valued, the constraint

(5) defines a closed interval of L. Furthermore, a finite number of constraints taking the form of

(5) still define an closed interval. Therefore, using the uniform constraints we are arriving at a set

of p such that the LR falls in an interval, i.e., a ≤ L ≤ b for some 0 ≤ a ≤ 1 ≤ b ≤ ∞. Although L

is itself a function of ξ, (5) requires the constraint be satisfied for all ξ. This is why we call (5) a

uniform constraint.

The second class is called expected constraints. Specifically, consider a convex function φ on

< and construct the constraint EP0 [φ(L)] ≤ η. Imposing some minor regularity conditions on φ,

we are arriving at the famous φ-divergence in statistics. Seeking some distance of distributions

and constructing the ambiguity set by requiring the distribution within a certain distance from the

nominal distribution has been a natural approach to modeling ambiguity. The φ-divergence is often

used to measure the distance of a distribution to another one. Therefore, imposing constraints on

LR using φ-divergence admits a clear statistical and practical meaning. Following the notions of

Pardo (2006) and Ben-Tal et al. (2013), a φ-divergence function is a convex function for t > 0,

satisfying φ(1) = 0, 0φ(a/0) := a limt→∞ φ(t)/t for a > 0, and 0φ(0/0) := 0. For P and P0
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introduced above, the φ-divergence from P to P0 is defined as

Dφ(P‖P0) =
∫

Ξ
p0(z)φ

(
p(z)
p0(z)

)
dz = EP0

[
φ

(
p(ξ)
p0(ξ)

)]
= EP0 [φ (L)] . (6)

Similarly, we understand the integral in (6) as the summation if P0 is a discrete distribution,

and as a mixture of integral and summation if P0 is a mixed distribution. It can be shown that

D(P‖P0) ≥ 0 and the equality holds if and only if p(z) = p0(z) almost surely (a.s.) under P0.

Using the φ-divergence, we can construct a neighborhood of P0 defined by Dφ(P ||P0) ≤ η. As can

be seen, instead of requiring L satisfy a constraint for all ξ in uniform constraints, in expected

constraints one only requires L satisfy a constraint averagely.

We consider a unified form by combining the two classes of constraints, and construct the

following ambiguity set of P :

P = {P ∈ D : a ≤ p/p0 ≤ b, Dφi
(P ||P0) ≤ ηi, i = 1, · · · ,m} ,

where D denotes the set of all probability distributions and Dφi
(P ||P0) denotes the φi-divergence

from P to P0. In the ambiguity set P, the constants a, b and ηi, i = 1, 2, · · · ,m are indexes of

ambiguity, which control the size of P. In terms of L, P can also be represented as follows:

L = {L ∈ L(a, b) : EP0 [L] = 1,EP0 [φi (L)] ≤ ηi, i = 1, · · · ,m} .

where we define L(a, b) = {L : a ≤ L ≤ b a.s.}. We defer the more detailed discussion on the

ambiguity set in Section 3. In what follows, we discuss how to solve the ambiguous probabilistic

programs with ambiguity set L.

2.1 Worst-Case Probability Function

For simplicity of notation, we use 1 to denote 1{H(x,ξ)>0}. In the ambiguous probabilistic programs,

the critical is the worst-case probability function, that is, the optimal value of the following problem:

maximize
P∈P

EP [1] . (7)

Problem (7) is a rather abstract optimization problem. One of the major difficulties for solving

the problem comes from that the randomness is embedded in the decision variable. A widely used

technique that can separate them is the change-of-measure technique (e.g., Hu et al. (2012)).

Applying the technique, we obtain that

EP [1] =
∫

Ξ
1p(z)dz =

∫

Ξ
1 p(z)
p0(z)

p0(z)dz = EP0 [1L(ξ)] .
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Recall the definition of the ambiguity set P and L. Problem (7) can be stretched as

maximize EP0 [1L] (8)

subject to EP0 [φi (L)] ≤ ηi, i = 1, · · · ,m,

EP0 [L] = 1,

L ∈ L(a, b).

Problem (8) is a functional optimization problem with the decision variable L. It is not difficult to

see that the problem is a convex optimization problem. One standard approach of handling such

constrained functional optimization problem is to use the Lagrangian duality. We construct the

Lagrangian functional associated with Problem (8):

`0(λ, α, L) := EP0 [1L]−
m∑

i=1

αi (EP0 [φi (L)]− ηi) + λ (EP0 [L]− 1)

= EP0

[
(1 + λ) L−

m∑

i=1

αiφi (L)

]
+

m∑

i=1

αiηi − λ.

Then Problem (8) is equivalent to

maximize
L∈L(a,b)

minimize
λ∈<,α≥0

`0(λ, α, L). (9)

Interchanging the maximum and minimum in Problem (9), we obtain the Lagrangian dual of

Problem (9):

minimize
λ∈<,α≥0

maximize
L∈L(a,b)

`0(λ, α, L). (10)

The major concern about the above primal and dual problems are whether they have the same

optimal value. Fortunately, the duality gap turns out to be zero without any extra qualification

conditions. We summarize the result in the following theorem. The proof of the theorem can be

found in the Appendix.

Theorem 1. The optimal values of Problems (9) and (10) are the same. The optimal value of

Problems (10) is attained at some λ∗ ∈ < and α∗ ≥ 0.

Theorem 1 guarantees that, to solve Problems (9) it suffices to solve Problem (10). Let v(λ, α)

denote the optimal value of the inner maximization problem of Problem (10). We discuss first

how to derive some simplified form for v(λ, α). We take an approach that was adopted in Ben-Tal

and Teboulle (2007). This approach critically utilizes the following lemma, which can be found in

Ben-Tal and Teboulle (2007), as well as in Rockafellar and Wets (1998).
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Lemma 1. Let Ω be a σ-finite measure space, and let X := Lp (Ω,F , P ) , p ∈ [1,+∞]. Let g :

< × Ω → (−∞,+∞] be a normal integrand, and define on X the integral functional Ig(x) :=∫
Ω g(x(ω), ω)dP (ω). Then

inf
x∈X

∫

Ω
g(x(ω), ω)dP (ω) =

∫

Ω
inf
s∈<

g(s, ω)dP (ω)

provided the left-hand side is finite. Moreover,

x̄ ∈ argmin
x∈X

Ig(x) ⇐⇒ x̄(ω) ∈ argmin
s∈<

g(s, ω), a.e. ω ∈ Ω.

Lemma 1 guarantees that we can put the supremum in the expectation in the expression of

v(λ, α). Therefore,

v(λ, α) = EP0

[
sup

L∈L(a,b)

{
(1 + λ) L−

m∑

i=1

αiφi (L)

}]
+

m∑

i=1

αiηi − λ. (11)

To simplify v(λ, α), we define an auxiliary function

Ψ(s, α) = sup
t∈L(a,b)

{
st−

m∑

i=1

αiφi (t)

}
. (12)

It is not difficult to see that Ψ(s, α) is a well defined deterministic function. Moreover, we have the

following proposition.

Proposition 1. Ψ(s, α) is convex in (s, α), is non-decreasing in s, and satisfies Ψ(s, α) ≥ s.

Proposition 1 summarizes important properties of Ψ(s, α). We will frequently refer to this propo-

sition in the analysis followed. To further simplify the notation, we let κ(x) = Pr∼P0 {H(x, ξ) > 0}.
Then it follows from (11) and (12) that

v(λ, α) = EP0 [Ψ(1 + λ, α)] +
m∑

i=1

αiηi − λ

= Ψ(1 + λ, α)κ(x) + Ψ(λ, α) (1− κ(x)) +
m∑

i=1

αiηi − λ

= [Ψ(1 + λ, α)−Ψ(λ, α)]κ(x) + Ψ(λ, α) +
m∑

i=1

αiηi − λ, (13)

where the second equality follows from the definition of the random variable 1. Then, we have the

following result on the expression of the worst-case probability function.

Theorem 2. Suppose that the ambiguity set is L. Then the optimal value of Problem (7) is equal

to infλ∈<,α≥0 v(λ, α) where v(λ, α) is given by (13).

Theorem 2 builds that the worst-case probability function is equal to the optimal value of an

optimization problem with real decision variables. In the following subsections, we derive results

for both ambiguous PM and ambiguous CCP based on Theorem 2.
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2.2 Ambiguous Probability Minimization

Consider first the ambiguous PM. We have the following result.

Theorem 3. Suppose that the ambiguity set is L. Then any optimal solution of Problem (1) solves

Problem (3).

Proof. Suppose that the ambiguity set is L. Then it follows from Theorem 2 that

inf
x∈X

sup
P∈P

EP

[
1{H(x,ξ)>0}

]
= inf

x∈X
inf

λ∈<,α≥0
v(λ, α, x)

where v(λ, α, x) = v(λ, α) which is defined by (13). Suppose x∗ is an optimal solution of Problem

(1). Then for any x ∈ X, κ(x∗) ≤ κ(x). From Proposition 1 we have Ψ(s, α) is non-decreasing in

s. Therefore Ψ(1 + λ, α)−Ψ(λ, α) ≥ 0. It follows that v(λ, α, x∗) ≤ v(λ, α, x) for all (λ, α). Thus

infλ∈<,α≥0 v(λ, α, x∗) ≤ infλ∈<,α≥0 v(λ, α, x). This indicates that x∗ solves Problem (3).

Theorem 3 shows that, for the ambiguity set L, a solution that minimizes the original probability

function simultaneously minimizes the worst-case probability function, no matter what divergences

are used and what values the indexes of ambiguity a, b, ηi take. Therefore, to solve Problem (3), it

suffices to solve Problem (1). It reflects that the probability minimization model has already taken

care of the ambiguity (at least the ambiguity defined in this paper) of the distribution of the random

parameters. This result suggests in probabilistic programs, risk and ambiguity are interrelated. It

seems that in the ambiguous PM, risk and ambiguity are the two sides of the same coin. If we take

care of one, we may have already taken care of the other. In the literature, it is often criticized

that one serious issue of the model of optimizing probability risk measure is that it is difficult to

precisely determine a distribution for the random parameters. Theorem 3 suggests that the model

of optimizing a probability functional (measure) can be quite robust to the distribution ambiguity.

2.3 Ambiguous Chance Constrained Program

We now turn to the ambiguous CCP. In contrast to ambiguous PM, there have been encouraging

results for the ambiguous CCP in the literature. The use of distribution distance in ambiguous

CCP was pioneered by Erdogan and Iyengar (2006), who considered ambiguous CCPs in which the

ambiguity set is

{P ∈ D : DPV (P ||P0) ≤ η}

where DPV denotes the Prohorov metric. They studied the scenario approach, and proposed a

robust sampled problem where the sample is simulated from the nominal distribution P0, to ap-

proximate the ambiguous CCP, and built a lower bound for the sample size which ensures that the

optimal solution of the robust sampled problem is included in the feasible region of the ambiguous

CCP with a given probability. Other studies on ambiguous CCPs include El Ghaoui et al. (2003),
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Nemirovski and Shapiro (2006), Chen et al. (2010), Jiang and Guan (2012), Hu and Hong (2012),

and Zymler et al. (2013a,b). Most closely to our setting, Yanıkoğlu and den Hertog (2012) con-

sidered the φ-divergence in ambiguous CCP. They proposed safe approximations to the ambiguous

CCPs.

In this subsection, we study ambiguous CCPs with ambiguity set L. Different from Yanıkoğlu

and den Hertog (2012), we derive exact reformulation for the ambiguous CCPs. Our key results

for ambiguous CCPs are summarized in the following theorem.

Theorem 4. Suppose that the ambiguity set is L. Then Problem (4) is equivalent to the following

CCP

minimize
x∈X

h(x)

subject to Pr∼P0 {H(x, ξ) ≤ 0} ≥ 1− β̄,

where

β̄ = sup
λ∈<,α≥0

β − (Ψ(λ, α) +
∑m

i=1 αiηi − λ)
Ψ(1 + λ, α)−Ψ(λ, α)

. (14)

Proof. From Theorem 2 we have that maximize
P∈P

EP

[
1{H(x,ξ)>0}

] ≤ β is equivalent to

inf
λ∈<,α≥0

v(λ, α) ≤ β (15)

where v(λ, α) is defined by (13). From Theorem 1, the infimum in (15) is attained at some λ∗ ∈ <
and α∗ ≥ 0, Thus (15) is equivalent to

∃ λ ∈ <, α ≥ 0, such that [Ψ(1 + λ, α)−Ψ(λ, α)]κ(x) + Ψ(λ, α) +
m∑

i=1

αiηi − λ ≤ β. (16)

Suppose that A is the set of (x, λ, α) such that (x, λ, α) satisfies (16). We show that for any

(x, λ, α) ∈ A,

Ψ(1 + λ, α)−Ψ(λ, α) 6= 0.

To see this, we note that if Ψ(1+λ, α)−Ψ(λ, α) = 0, then from (16) we have Ψ(λ, α)+
∑m

i=1 αiηi−λ ≤
β. However, from Proposition 1, we have Ψ(λ, α) = Ψ(1 + λ, α) ≥ 1 + λ. This further implies that

Ψ(λ, α) +
∑m

i=1 αiηi − λ ≥ 1 +
∑m

i=1 αiηi ≥ 1. We obtained a contradiction since β < 1.

The analysis shows that (16) is equivalent to the following

∃ λ ∈ <, α ≥ 0, such that κ(x) ≤ β − (Ψ(λ, α) +
∑m

i=1 αiηi − λ)
Ψ(1 + λ, α)−Ψ(λ, α)

. (17)

It now suffices to show that (17) can be equivalently strengthened as

κ(x) ≤ β̄, (18)
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where β̄ is defined by (14). We briefly justify the equivalence as follows. Let A and B denote

the set of x satisfying (17) and (18) respectively. Then it is obvious that A ⊂ B. We now prove

the opposite inclusion. Consider any x∗ ∈ B. If the supremum in (14) for x∗ is attained at

some finite λ∗ ∈ < and α∗ ≥ 0, then x∗ ∈ A. Suppose the supremum is attained only when

some αi → +∞. Then by Proposition 1, Ψ(λ, α) +
∑m

i=1 αiηi − λ ≥ αiηi → +∞. Note that

Ψ(1 + λ, α) − Ψ(λ, α) ≥ 0. We have β̄ ≤ 0. This implies κ(x∗) ≤ 0. Thus x∗ must satisfy

the original worst-case chance constraint and consequently x∗ ∈ A. Suppose now the supremum

is attained at finite αi but only when λ → +∞. Consider the situation where b > 1 (In the

degenerate case where b = 1, it is easy to see the ambiguity set has only one element, i.e., the

nominal distribution. It is easy to show that β̄ = β). We select a finite b0 ∈ (1, b]. Then

Ψ(λ, α) +
∑m

i=1 αiηi − λ ≥ Ψ(λ, α) − λ ≥ b0λ −
∑m

i=1 αiφi (b0) − λ → +∞. We also have β̄ ≤ 0.

This also implies x∗ ∈ A. Similarly, the result β̄ ≤ 0 holds when the supremum is attained only

when λ → −∞. This concludes the proof of the theorem.

Theorem 4 shows that the ambiguous CCP can be equivalently formulated as the original

CCP with only the confidence level being adjusted from the original one. This suggests that the

ambiguous CCP can be solved by using standard techniques developed for pure CCPs. Furthermore,

it is not difficult to verify that β̄ ≤ β. This shows that, to compensate the distributional robustness

of the CCP, a certain amount of allowed error probability needs to be given up. Similar to the

discussions followed Theorem 3, again, we see that risk and ambiguity are interrelated. Theorem

4 shows that, in the LR constrained ambiguous CCP, the ambiguity averseness is equivalent to an

increase of risk averseness in the original CCP. From a modeling perspective, we can take care of

the ambiguity by reducing the confidence level, i.e., by considering more conservative confidence

level.

2.3.1 Computing New Confidence Level

To obtain the new CCP, we still need to derive the new confidence level β̄ which is defined by

(14). Because the corresponding optimization problem is typically non-convex, it may be difficult

to obtain β̄ by directly solving (14). To this end, we go back to the definition of v(λ, α). We

show that β̄ can be obtained via solving a sequence of convex optimization problems. Note that

β̄ ∈ [0, 1]. Therefore, we only need to seek β̄ from [0, 1] and β̄ is equal to the optimal value of the

following optimization problem:

maximize
0≤y≤1,λ∈<,α≥0

y

subject to y ≤ β − (Ψ(λ, α) +
∑m

i=1 αiηi − λ)
Ψ(1 + λ, α)−Ψ(λ, α)

,

12



which can be reformulated as

maximize
0≤y≤1,λ∈<,α≥0

y (19)

subject to yΨ(1 + λ, α) + (1− y)Ψ(λ, α) +
m∑

i=1

αiηi − λ ≤ β.

From Proposition 1, Ψ(s, α) is convex in (s, α). This suggests for any given y ∈ [0, 1], the constraint

function in Problem (19) is convex in (λ, α). Furthermore, the constraint function is nondecreasing

in y. The nice structures allow for the following bisection procedure to solve Problem (19).

Bisection Search

Step 0. Set i = 0. Set yl := 0 and yu := 1

Step i. Set yi = yl+yu

2 and solve

minimize
λ∈<,α≥0

yiΨ(1 + λ, α) + (1− yi)Ψ(λ, α) +
m∑

i=1

αiηi − λ

to obtain its optimal value v.

If v ≤ β, update yl =: yi. Set i = i + 1.

If v > β, update yu =: yi. Set i = i + 1.

It is not difficult to see that the sequence {yi} generated by the Bisection Search procedure converges

to the optimal value of Problem (19), i.e., β̄, and the convergence rate is in an exponential order.

To implement the Bisection Search procedure, we need to solve a sequence of convex optimization

problems in Step i. Because the function Ψ(λ, α) is itself defined as a supremum, we suggest

obtaining the dual of the supremum and building the corresponding strong duality. This may help

obtain an equivalent reformulation of the problem in Step i and the reformulation may have a

closed form. In next section, we discuss how to obtain a reformulation for the ambiguity set L. It

is worthwhile noting that at each iteration of the Bisection Search, we do not really want to solve

the problem, but to identify whether its optimal value is less than β. Therefore, when actually

solving the optimization problem using some nonlinear optimization algorithm, e.g., an interior

point method, if we have obtained an objective value that is already less than or equal to β, we

do not need to proceed the algorithm any more and we can go directly to the next iteration of

Bisection Search. This may save some computational effort.

2.3.2 Extending to Value-at-Risk

The results derived for ambiguous CCP may be extended to the important risk measure, value-

at-risk (VaR), which is widely used in financial risk management. Distributionally robust VaR
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optimization has recently been discussed in Zymler et al. (2013b). Zymler et al. (2013b) studied

the ambiguity of nonlinear portfolio optimization modeled using the first two moments. Different

from Zymler et al. (2013b), we focus on in this section the ambiguity defined by the LR in VaR

optimization. We briefly show how to derive the DRO reformulations of VaR related stochastic

programs. Consider the following ambiguous VaR minimization problem:

minimize
x∈X

maximize
P∈P

VaR1−β,P (H(x, ξ)) (20)

where the subscript P denotes that the VaR is calculated when ξ follows P . Problem (20) suggests

to minimize the worst-case VaR. We then have the following corollary.

Corollary 1. Suppose that the ambiguity set is L. Then Problem (20) is equivalent to

minimize
x∈X

VaR1−β̄,P0
(H(x, ξ)), (21)

where β̄ is defined by (14).

Proof. From the definition of VaR, it is not difficult to verify Problem (20) can be rewritten as

minimize
x∈X,t∈<

t (22)

subject to Pr∼P {H(x, ξ)− t ≤ 0} ≥ 1− β, ∀ P ∈ P.

Using Theorem 4, Problem (22) can be transformed as

minimize
x∈X,t∈<

t

subject to Pr∼P0 {H(x, ξ)− t ≤ 0} ≥ 1− β̄,

which is equivalent to Problem (21) from the definition of VaR.

Consider next the following ambiguous VaR constrained program:

minimize
x∈X

h(x) (23)

subject to VaR1−β,P (H(x, ξ)) ≤ 0, ∀ P ∈ P.

Problem (23) requires the worst-case VaR satisfy the non-positive constraint. We have the following

corollary which can be proven following the argument in Corollary 1.

Corollary 2. Suppose that the ambiguity is L. Then Problem (23) is equivalent to

minimize
x∈X

h(x)

subject to VaR1−β̄,P0
(H(x, ξ)) ≤ 0,

where β̄ is defined by (14).

Corollaries 1 and 2 show that ambiguous VaR optimization problems can be converted to pure

VaR optimization problems of different confidence levels. Therefore, we can implement standard

VaR optimization algorithms to solve these ambiguous VaR optimization problems.
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3 Ambiguity Set

In preceding sections we have obtained the main results for a general ambiguity set for the am-

biguous probabilistic programs. In this section, we consider a number of cases that may be used in

practical applications and discuss how to construct the sets based on data. Furthermore, although

the results derived show that in solving the ambiguous PM, we do not need to differentiate the

ambiguity set, the new confidence level for ambiguous CCP depends on the ambiguity set. In this

section, we demonstrate how to derive the new confidence level for CCPs for the various ambiguity

sets.

3.1 Band Ambiguity Set

Consider first an instance of L in which there are only uniform constraints. It simply takes the

following form

La,b := {L ∈ L(a, b) : EP0 [L] = 1} .

We call La,b a band ambiguity set. The band ambiguity was studied in Shapiro and Ahmed (2004).

This is a very intuitive ambiguity set, particularly suitable for sensitivity analysis, e.g., we can

perturb the probability distribution by a percentage and see the worst case of the probability

performance measure. When the distribution is discrete, the band ambiguity set constrains the

probability mass at each scenario within an interval.

The following corollary shows the new confidence level can be derived analytically for the

ambiguous CCP with La,b.

Corollary 3. Suppose that the ambiguity set is La,b. Then Problem (4) is equivalent to the following

CCP:

minimize
x∈X

h(x)

subject to Pr∼P0 {H(x, ξ) ≤ 0} ≥ 1− β̄,

where

β̄ =

{
β+a−1

a if β > 1−a
1−a/b

β
b if β ≤ 1−a

1−a/b

.

Proof. Consider the function Ψ(s, α) defined by (12). Because for the ambiguity set La,b, we do

not have constraint defined by φi, the function Ψ(s, α) is only a function of s. For simplicity, we

denote it by Ψ(s). It can be verified that

Ψ(s) = sup
t∈L(a,b)

{st} = bs+ − a[−s]+ = bs+ − a
(
s+ − s

)
= as + (b− a) s+,
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where y+ = max{y, 0}. It follows from Theorem 4 that

β̄ = sup
λ∈<

β − (aλ + (b− a)λ+ − λ)
[a(1 + λ) + (b− a)[1 + λ]+]− [aλ + (b− a)[λ]+]

= sup
λ∈<

β − (aλ + (b− a)λ+ − λ)
a + (b− a) [[1 + λ]+ − [λ]+]

(24)

=

{
β+a−1

a if β ≥ 1−a
1−a/b

β
b if β ≤ 1−a

1−a/b

,

where the last equality follows from the fact that if β ≥ (1− a) / (1− a/b), then the supremum in

(24) is attained at λ = 0, and if β ≤ (1− a) / (1− a/b), then the supremum in (24) is attained at

λ = 1. This concludes the proof of the corollary.

Table 1: Relation between New Confidence Level and Bounds of Band

a b new confidence level β̄
β = 0.1 0.9 1.1 0.0909

0.5 1.5 0.0667
0.95 10 0.0526
0.01 100 0.0010

β = 0.05 0.9 1.1 0.0455
0.5 1.5 0.0333
0.95 10 0.0050
0.01 100 0.0005

We compute the new confidence levels for some combinations of a and b and report the results in

Table 1. From the table, we see that for the band ambiguity set, the new confidence level decreases

approximately in a linear fashion with respect to the increase of bounds of the band.

3.2 φ-divergence Constrained Ambiguity Set

Next we consider another special case of L, a neighborhood of the nominal distribution which is

defined by the φ-divergence. As has been mentioned, the φ-divergence was suggested in Ben-Tal et

al. (2013) and Yanıkoğlu and den Hertog (2012) to model the uncertainty in optimization problems.

Ben-Tal et al. (2013) considered DRO problems. They assumed that the underlying distribution in

the optimization problem is discrete, and constructed a confidence region using a set of realizations

of the random vector. They showed the tractability of the resulting DRO for various φ-divergences.

Yanıkoğlu and den Hertog (2012) further considered the φ-divergence in ambiguous CCP. They

also focused on discrete distribution setting. They developed safe approximation to the ambiguous

CCP and showed that the resulted safe approximation using φ-divergence could be less conservative

than some existing safe approximation methods.

Of particular importance of the φ-divergence is its conjugate, which is defined as

φ∗(s) = sup
t≥0

{st− φ (t)} .
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Table 2 extracted from Ben-Tal et al. (2013) summarized information of various φ-divergence

measures. In Table 2 the second column shows various φ-divergence functions, whereas the third

Table 2: Some φ-Divergence Functions and Their Conjugates

Divergence φ(t), t ≥ 0 φ∗(s)
Kullback-Leibler t log t es−1

Burg entropy − log t −1− log(−s), s ≤ 0
J-divergence (t− 1) log t No closed form
χ2-distance (t−1)2

t 2− 2
√

1− s, s ≤ 1

Modified χ2-distance (t− 1)2
{ −1 s < −2

s + s2/4 s ≥ −2
Hellinger distance (

√
t− 1)2 s

1−s , s < 1

χ-distance of order θ > 1 |t− 1|θ s + (θ − 1)
(
|s|
θ

)θ/(θ−1)

Variation distance |t− 1|
{ −1 s < −1

s −1 ≤ s ≤ 1
Cressie-Read 1−θ+θt−tθ

θ(1−θ) , θ 6= 0, 1 1
θ (1− s (1− θ))θ/(θ−1) − 1

θ s < 1
1−θ

column shows the corresponding conjugates. Let

Lφ = {L ∈ L(0,+∞) : EP0 [L] = 1,EP0 [φ (L)] ≤ η} .

We call Lφ a φ-divergence constrained ambiguity set. We have the following result for the ambiguous

CCP with Lφ and the proof is provided in the Appendix.

Corollary 4. Suppose that the ambiguity set is Lφ. Suppose that φ∗(·) is the conjugate of φ(·).
Then Problem (4) is equivalent to the following CCP

minimize
x∈X

h(x)

subject to Pr∼P0 {H(x, ξ) ≤ 0} ≥ 1− β̄,

where

β̄ = sup
λ∈<,α≥0

β + λ− ηα− αφ∗
(

λ
α

)

α
[
φ∗

(
1+λ
α

)− φ∗
(

λ
α

)] . (25)

Corollary 4 shows the expression of the new confidence level for Lφ. Similarly, we can use the

Bisection Search procedure proposed in Section 2.3 to compute β̄. In that procedure, the sequence

of optimization problems we want to solve become the following

minimize
λ∈<,α≥0

yiαφ∗
(

1 + λ

α

)
+ (1− yi)αφ∗

(
λ

α

)
+ αη − λ. (26)

For the φ-divergence (except J-divergence) in Table 2, we have the closed form of the conjugate

φ∗, which indicates Problem (26) has an explicit expression. In what follows, we consider further

the various φ-divergences and discuss the tractability of Problem (26).
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3.2.1 Tractability of Divergences

Problem (26) has a similar structure as Problem (13) of Ben-Tal et al. (2013). Ben-Tal et al. (2013)

showed that Problem (13) therein can be reformulated into simple optimization problems such as

conic quadratic program (CQP) and linear program (LP) for various φ-divergences. Similarly,

Problem (26) can also be reformulated as simple optimization problems. Below we first build

reformulations of Problem (26) for χ2-distance, Modified χ2-distance, Hellinger distance, χ-distance

of order θ > 1, and Cressie-Read.

χ2-distance.

minimize (2 + η)α− λ + yiµ1 + (1− yi)µ2

subject to
√

µ2
1 + (1 + λ)2 ≤ 2α− λ− 1,

√
µ2

2 + λ2 ≤ 2α− λ,

λ− α + 1 ≤ 0, α ≥ 0, λ, µ1, µ2 ∈ <.

Modified χ2-distance.

minimize (η − 1)α− λ +
1
4
yiµ3 +

1
4
(1− yi)µ4

subject to

√
µ2

1 +
1
4

(α− µ3)
2 ≤ 1

2
(α + µ3) ,

√
µ2

2 +
1
4

(α− µ4)
2 ≤ 1

2
(α + µ4) ,

µ1 ≥ 1 + λ + 2α, µ2 ≥ λ + 2α, α ≥ 0, µ1 ≥ 0, µ2 ≥ 0, λ, µ3, µ4 ∈ <.

Hellinger Distance.

minimize (η − 1)α− λ + yiµ1 + (1− yi)µ2

subject to

√
α2 +

1
4

[α− (1 + λ)− µ1]
2 ≤ 1

2
[α− (1 + λ) + µ1] ,

√
α2 +

1
4

(α− λ− µ2)
2 ≤ 1

2
(α− λ + µ2) ,

α− (1 + λ) ≥ 0, α ≥ 0, λ, µ1, µ2 ∈ <.

χ-distance of Order θ > 1.

minimize ηα + yi(θ − 1)α
(µ1

θα

) θ
θ−1 + (1− yi)(θ − 1)α

(µ2

θα

) θ
θ−1 + yi

subject to 1 + λ ≤ µ1, 1 + λ ≥ −µ1,

λ ≤ µ2, λ ≥ −µ2,

α ≥ 0, λ, µ1, µ2 ∈ <.
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Cressie-Read.

minimize
(
η − θ−1

)
α− λ + yiθ

−1α
(µ1

α

)θ/(θ−1)
+ (1− yi)θ−1α

(µ2

α

)θ/(θ−1)

subject to α− (1− θ) (1 + λ) = µ1,

α− (1− θ) λ = µ2,

α ≥ 0, λ, µ1, µ2 ∈ <.

The reformulations above are all CQPs, which can be solved easily. Next we discuss Variation

distance.

Variation Distance. It is not difficult to show that for the Variation distance, Problem (26) can

be reformulated as a LP. However, the following corollary shows that the new confidence level for

Variation distance has a closed expression. The proof of the corollary can be finished by a standard

calculation and thus is omitted.

Corollary 5. Suppose that the ambiguity set is Lφ and that the φ-divergence is the Variation

distance. Then the new confidence level defined by (25) is β̄ = max
{
β − η

2 , 0
}
.

Corollary 5 reveals that if the index of ambiguity η is greater than or equal to 2β, the new

confidence level degenerates to 0. This means it is not possible to require the worst-case probability

satisfy the constraint when the constraint H(x, ξ) ≤ 0 does not hold almost surely under P0. Similar

phenomenon for the Prohorov metric was observed in Erdogan and Iyengar (2006). In Erdogan

and Iyengar (2006), the index of ambiguity η cannot be larger than the confidence level β of the

original CCP.

For Burg entropy and KL divergence, Problem (26) admits a self-concordant barrier and thus

can be solved readily. Readers can refer to Ben-Tal et al. (2013) for the analysis on self-concordant

barrier. Below we discuss more on the KL divergence.

Kullback-Leibler Divergence. Among the φ-divergence class, the KL divergence has received

the most attention, in different fields including information theory, communication, and operations

research. We show that for the KL divergence, the new confidence level can be derived by analyt-

ically solving a sequence of optimization problems. Consider the ambiguity set Lφ where φ is the

KL divergence. It follows from Corollary 4 that

β̄ = sup
λ∈<,α≥0

β + λ− ηα− αe
λ
α
−1

α
[
e

1+λ
α
−1 − e

λ
α
−1

] = sup
λ∈<,α≥0

(
β
α − η + λ

α

)
e−

λ
α

+1 − 1

e
1
α − 1

= sup
α≥0

sup
t>0

(
β
α − η + 1

)
t− t log t− 1

e
1
α − 1

= sup
α≥0

e
β
α
−η − 1

e
1
α − 1

= sup
t>0

e−η(t + 1)β − 1
t

.

where the first equality follows by plugging the conjugate of the KL divergence into (25), the

second equality follows from dividing both numerator and denominator by αe
λ
α
−1 and from the
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careful analysis indicating that the supremum cannot be attained at α = 0, the third equality

follows from making transformation t := e−
λ
α

+1, the fourth equality follows from directly solving

the problem over t > 0, and the last equality follows from making transformation t := e
1
α − 1.

The last supremum in the equation above has a nice structure that allows us to design a bisection

search algorithm to solve it. The basic idea is to check whether the set

Tβ̃ =
{

t : t > 0,
e−η(t + 1)β − 1

t
> β̃

}

is empty for a given β̃ > 0. If Tβ̃ is non-empty, then β̄ > β̃ and we should search β̄ in (β̃, β].

Otherwise, we should search β̄ in (0, β̃]. Checking the non-emptiness of Tβ̃ can be transformed to

checking whether the maximum of

Φ(t) = e−η(t + 1)β − 1− β̃t

over t ≥ 0 is larger than 0. Note that Φ(t) is a concave function of t on [0,+∞), and its maximum

over t ≥ 0 is attained at

t∗(β̃) = max



0,

(
β̃eη

β

) 1
β−1

− 1



 .

When Φ(t∗(β̃)) > 0, we have t∗(β̃) > 0 and
(
e−η(t∗(β̃) + 1)β − 1

)
/t∗(β̃) > β̃. This shows Tβ̃ is

non-empty. Similarly, some careful analysis shows when Φ(t∗(β̃)) < 0, we have Tβ̃ is empty and

β̄ < β̃, and when Φ(t∗(β̃)) = 0, we have β̄ = β̃. Therefore, the following bisection search algorithm

can be used to solve the one dimensional problem and obtain a solution with arbitrary accuracy.

Bisection Search for Kullback-Leibler Divergence

Step 0. Set i = 0. Set βl := 0 and βu := β

Step i. Set βi = βl+βu

2 and compute Φ(t∗(βi)).

If Φ(t∗(βi)) > 0, update βl =: βi. Set i = i + 1.

If Φ(t∗(βi)) < 0, update βu =: βi. Set i = i + 1.

If Φ(t∗(βi)) = 0, stop.

We compute the new confidence levels for some η values using the Bisection Search (stop if

βu − βl ≤ 10−12) and report the results in Table 3.

Different from the Variation distance, for the KL divergence we do not have the restriction on

the value of η. For any η > 0, the adjusted confidence level β̄ is larger than 0. However, from Table

3, it is clear that β̄ may be very small (leading to extreme conservativeness) if η is significantly

larger than β. In contrast to the linear fashion for the band ambiguity set, the new confidence level
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Table 3: Relation between New Confidence Level and Index of Ambiguity

index of ambiguity η new confidence level β̄
β = 0.1 1 1.7589e-006

0.1 0.0166
0.05 0.0313
0.01 0.0629

β = 0.05 1 3.8563e-011
0.1 0.0027
0.05 0.0081
0.01 0.0250

could decrease very rapidly w.r.t. the increase of the index of ambiguity for the KL divergence

constrained ambiguity set.

J-divergence. The conjugate of J-divergence is not analytically available. However, the J-

divergence can be expressed as the sum of the KL divergence and the Burg entropy. Furthermore,

the conjugate of the sum of two functions can be expressed as the infimum of the conjugates of the

two functions; see Proposition 1 of Ben-Tal et al. (2013). Therefore, Problem (26) for J-divergence

is equivalent to the following problem:

minimize yiα

[
φ∗KL

(
t1
α

)
+ φ∗B

(
t2
α

)]
+ (1− yi)α

[
φ∗KL

(
t3
α

)
+ φ∗B

(
t4
α

)]
+ αη − t3 − t4

subject to t1 + t2 = 1 + t3 + t4

α ≥ 0, ti ∈ <, i = 1, 2, 3, 4,

where φ∗KL and φ∗B are the conjugates of the KL divergence function and the Burg entropy function,

respectively. Clearly, this technique may be used to handle the φ-divergence which can be expressed

as the sum of multiple φ-divergences.

Ambiguity Set L. Using the convolution technique, we can now derive an analytical expression

for the general ambiguity set L. More specifically, we have the following corollary. The proof of

the corollary can be found in the Appendix.

Corollary 6. Suppose that the intersection of the relative interiors of the effective domains of φi

is nonempty. Then

Ψ(s, α) = inf
µ1≥0,µ2≤0,

∑m
i=1 si−µ1−µ2=s

{
m∑

i=1

αiφ
∗
i

(
si

αi

)
− aµ1 − bµ2

}
.

Corollary 6 essentially generalizes Corollary 4 of Ben-Tal et al. (2013). From Corollary 6, we

immediately have that the optimization problem in Step i of the Bisection Search is equivalent to
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the following problem:

minimize yi

[
m∑

i=1

αiφ
∗
i

(
si

αi

)
− aµ1 − bµ2

]
+ (1− yi)

[
m∑

i=1

αiφ
∗
i

(
ti
αi

)
− aν1 − bν2

]
+

m∑

i=1

αiηi − λ

subject to
m∑

i=1

si − µ1 − µ2 = 1 + λ,
m∑

i=1

ti − ν1 − ν2 = λ,

λ ∈ <, α ≥ 0, µ1 ≥ 0, µ2 ≤ 0, ν1 ≥ 0, ν2 ≤ 0, si ∈ <, ti ∈ <, i = 1, 2, · · · ,m.

Note that the problem above can again be reformulated into simple optimization problems as that

for a single φ-divergence. Thus, the Bisection Search procedure can be implemented readily.

3.3 Specifying the Ambiguity Set

In the ambiguous probabilistic programs, the size of the ambiguity set is also critical to the model.

In this section we discuss how to specify the band ambiguity set and the φ-divergence constrained

ambiguity set when the distribution is discrete. We leave the continuous case unresolved due to

the challenge of the problem. But we propose some idea of handling continuous case and we try to

solve the problem in a future study.

Suppose that the distribution of ξ is discrete and is supported on a finite number of scenarios

{ξ1, ξ2, · · · , ξs} with probabilities {p1, p2, · · · , ps} where
∑s

i=1 pi = 1. We first discuss how to

determine bounds a and b for La,b in practical applications. Suppose we obtained a sample of

the random vector ξ with sample size n. Let p̂ = (p̂1, p̂2, · · · , p̂s) denote the empirical estimate of

p = (p1, p2, · · · , ps). From Wasserman (2004) we have

√
n

(
p̂1

p1
− 1,

p̂2

p2
− 1, · · · ,

p̂s

ps
− 1

)
⇒ Y,

where “⇒” denotes convergence in distribution, and Y = (Y1, Y2, · · · , Ys) is a random vector

following a multivariate normal distribution N (0,Σ) with mean 0 and covariance matrix

Σ =




p1 (1− p1) −p1p2 · · · −p1ps

−p1p2 p2 (1− p2) · · · −p2ps
...

...
...

...
−p1ps −p2ps · · · ps (1− ps)


.

We further normalize the random vector Y by letting

Z = (Z1, Z2, · · · , Zs) =

(
Y1√

p1 (1− p1)
,

Y2√
p2 (1− p2)

, · · · ,
Ys√

ps (1− ps)

)
.

Then Z follows a multivariate normal distribution with standard normal marginals and a correlation

matrix determined by Σ. Because the summation of all column vectors of Σ equals 0, Σ is a

singular matrix. Therefore, Y and Z follow degenerate multivariate normal distributions. This
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makes building confidence region potentially difficult. In this paper, we use a famous result in

Šidák (1967) to build a conservative confidence region. The result states that for a multivariate

normal distribution with any covariance structure, the joint probability function can be bounded

from below by the product of the marginal probability functions; see Theorem 1 of Šidák (1967).

It follows from Theorem 1 of Šidák (1967) that

Pr {|Z1| ≤ c1, |Z2| ≤ c2, · · · , |Zs| ≤ cs} ≥ Pr {|Z1| ≤ c1}Pr {|Z2| ≤ c2} · · ·Pr {|Zs| ≤ cs} . (27)

Therefore, for any α ∈ [0, 1], by selecting ci, i = 1, 2, · · · , s such that

Pr {|Z1| ≤ c1}Pr {|Z2| ≤ c2} · · ·Pr {|Zs| ≤ cs} ≥ 1− α, (28)

we can ensure that the left hand side of (27) is also larger than or equal to 1−α. This suggests we

can construct an approximate confidence region for the LR based on the limiting distribution, i.e.,

the distribution of Z. The basic idea is as follows. We first find some ci, i = 1, 2, · · · , s satisfying

(28). We use σi =
√

p̂i (1− p̂i) to estimate
√

pi (1− pi). Then we can construct the following

approximate 1− α confidence region:

−ci ≤
√

n

σi

(
p̂2

p2
− 1

)
≤ ci, i = 1, 2, · · · , s,

which can be equivalently transformed as

1
1 + ciσi√

n

≤ pi

p̂i
≤ 1

1− ciσi√
n

, i = 1, 2, · · · , s.

Define

a = min
i=1,··· ,s

{
1

1 + ciσi√
n

}
, b = max

i=1,··· ,s

{
1

1− ciσi√
n

}
.

Then La,b is an approximate 1 − α confidence band for L. Now we discuss how to find the best

c∗i , i = 1, 2, · · · , s to achieve the largest lower bound a and smallest upper bound b. We show that

c∗i , i = 1, 2, · · · , s are determined by the following conditions:

c1σ1 = c2σ2 = · · · = csσs (29)

Pr {|Z1| ≤ c1}Pr
{
|Z2| ≤ σ1

σ2
c1

}
· · ·Pr

{
|Zs| ≤ σ1

σs
c1

}
= 1− α, (30)

and the optimal bounds are

a∗ =
1

1 + c∗1σ1√
n

, b∗ =
1

1− c∗1σ1√
n

.

We justify the results via contradiction. Consider any ci, i = 1, 2, · · · , s satisfying (28) but violating

(29). Without loss of generality we assume c1σ1 and c2σ2 are the largest and the smallest values

of ciσi, i = 1, 2, · · · , s. Then we must have c1σ1 > c∗1σ1. The reason is as follows. Suppose

23



c1σ1 ≤ c∗1σ1. Then ciσi ≤ c∗1σ1 for all i = 1, 2, · · · , s, and the strict inequality holds for at least

some i. Consequently, ci ≤ σ1
σi

c∗1 for all i = 1, 2, · · · , s, and the strict inequality holds for at least

some i. In this case, (28) cannot hold, which leads to a contradiction. Similarly, we can show that

c2σ2 < c∗1σ1. It follows that a < a∗ and b > b∗. This justifies that c∗i , i = 1, 2, · · · , s are the best

choice.

To obtain a∗ and b∗, we need to compute c∗1, which is the unique root of (30), or equivalently,

the unique root of the following equation:

[2Φ(c1)− 1]
[
2Φ

(
σ1

σ2
c1

)
− 1

]
· · ·

[
2Φ

(
σ1

σ2
c1

)
− 1

]
= 1− α, (31)

where Φ is the cumulative distribution function of a standard normal distribution. Because the

left hand side of (31) is monotone in c1, we can compute c1 via a bisection search procedure. The

procedure only involves evaluating Φ for different points which is computationally very easy.

Specifying the size of the ambiguity set Lφ for discrete case was studied by Ben-Tal et al. (2013),

who built an approximate confidence region for probability mass p based on asymptotic results of

the φ-divergence. Consider the discrete distribution p and the empirical distribution p̂. The idea

of Ben-Tal et al. (2013) is to use that

2n

φ′′(1)
Dφ(p, p̂) ⇒ χ2

s−1, as n →∞,

where χ2
s−1 is a χ2-distribution with s − 1 degrees of freedom. Then based on a finite number of

observations, an approximate 1− α confidence region for p can be built:
{

p ∈ <s : p ≥ 0,
s∑

i=1

pi = 1, Dφ(p, p̂) ≤ η

}
,

where η = φ′′(1)
2n χ2

s−1,1−α. The case that the distribution is supported on s scenarios is called base

case in Ben-Tal et al. (2013). Ben-Tal et al. (2013) also discussed more general cases and studied

how to improve the approximate confidence region using correction parameters.

Specifying the ambiguity set for continuous distribution turns out to be much more difficult.

We briefly discuss it in what follows. Suppose we have n observations of ξ, denoted as ξ1, ξ2, · · · , ξn.

The first step should be to fit a continuous distribution based on the data. There are several ways

for constructing the distribution. A simple approach is to construct the density histogram (Scott

1992). Suppose the support Ξ of ξ is a bounded hyper-rectangle and suppose it is partitioned

into sub-rectangles of size h1 × h2 × · · · × hk. Consider one sub-rectangular bin labeled Bj , which

contains νj observations of the sample. Then a density histogram takes the following form:

p̂(z) =
νj

nh1h2 · · ·hk
for z ∈ Bj .
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A more popular approach is to use the kernel density estimation (Scott 1992). Suppose K : <k → <
is a kernel function and B is a k × k nonsingular matrix. Let |B| denote the determinant of B.

Then the following probability density

p̂(z) =
1

n|B|
n∑

i=1

K
(
B−1 (z − ξi)

)

is a typical kernel density estimator.

Once we obtain a density estimator, the natural idea is then to replace the probability mass in

the discrete case with the estimated probability density and obtain the corresponding ambiguity set

for the true density p. The question is whether the constructed ambiguity set (the band ambiguity

set or the φ-divergence constrained ambiguity set) is still a confidence region with the specified

confidence level. The answer is no. For the histogram estimation and kernel density estimation,

the estimator is itself biased and there often exists a tradeoff between bias and variance for the

estimator. Moreover, the convergence rate will be affected by the bin width or the bandwidth and

will be certainly slower than the rate n−1 which is the convergence rate of the discrete setting.

The remaining question is how to specify the index of ambiguity η to obtain a confidence region.

This turns out to be a difficult statistical problem. The methodology that determines the index for

discrete setting does not naturally carry over to the continuous setting. Below we briefly introduce

some idea of tackling the problem when we use kernel density estimation. Suppose p̂ is some kernel

estimator of the true density p. We want to build the asymptotics for Dφ(p, p̂). For this we construct

the function ϕ(t) = tφ(t−1). Then ϕ is also a divergence function. Moreover, φ
′′
(1) = ϕ

′′
(1) and

Dφ(p, p̂) = Dϕ(p̂, p). Thus it suffices to build asymptotics for Dϕ(p̂, p).

Define a functional g(f) =
∫
Ξ pϕ

(
f
p

)
dz. Then g(p̂) = Dϕ(p̂, p) and g(p) = 0. Assume that

some regularity conditions are satisfied. The second order Taylor expansion for g(p̂) at p yields

g(p̂) = g(p) +
∫

Ξ
ϕ′(1) (p̂− p) dz +

∫

Ξ
ϕ
′′
(1)

(p̂− p)2

p
dz + o

(‖p̂− p‖2
)

= φ
′′
(1)

∫

Ξ

(p̂− p)2

p
dz + o

(‖p̂− p‖2
)
.

Therefore, it suffices to study the asymptotics of the statistic
∫
Ξ (p̂− p)2 p−1dz. For the one-

dimensional case, Bickel and Rosenblatt (1973) built some asymptotic results for this statistic.

Especially, they showed
∫
Ξ (p̂− p)2 p−1dz multiplied by a term (which goes to ∞ as n → ∞) will

converge in distribution to a normal distribution. Based on the convergence result, we can then

build a confidence region accordingly. To the best of our knowledge, there is no result for the multi-

dimensional case. But Rosenblatt (1976) did some work that generalizes some asymptotic results

for another statistic maxz∈Ξ

{|p̂(z)− p(z)| p(z)−1/2
}

to the multi-dimensional case. We expect to

generalize their approach to show that the statistic
∫
Ξ (p̂− p)2 p−1dz converges in distribution to

some normal distribution. The analysis is quite involved. Furthermore, building asymptotics for the
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φ-divergence in continuous setting is itself an important statistical problem and is of independent

interest from this paper. We will try to carry out these ideas in a future work.

When it is difficult to construct the ambiguity set, or there is no data for specifying the set, we

can absorb some expert opinion to the ambiguity set. Alternatively, the decision maker can take

a sensitivity analysis viewpoint, and can derive the optimal solutions for a number of indexes of

ambiguity to see the effect of the distribution ambiguity.

3.4 Bounding Relationship between Distances

We have discussed a number of φ-divergences. Besides, there are many other distances that can be

used to model ambiguity. It turns out that there may exists certain bounding relationship between

two distances, i.e., one distance can bound the other one, or be bounded by the other one; see,

e.g., fruitful results in Gibbs and Su (2002). In DRO we can often use the relationship to generate

tractable approximations for the distances that may be difficult to handle. In particular, for two

distances D1 and D2, we have the following property.

Proposition 2. Suppose there exists an increasing function B(y) on <+ such that D1 ≤ B(D2).

Then, for any η > 0,

PD2 := {P ∈ D : D2(P ||P0) ≤ η} ⊂ {P ∈ D : D1(P ||P0) ≤ B (η)} := PD1 .

Consequently, supP∈PD2
EP

[
1{H(x,ξ)>0}

] ≤ supP∈PD1
EP

[
1{H(x,ξ)>0}

]
.

Suppose that PD2 is used as the ambiguity set in an ambiguous CCP, but the distance measure

D2 may be mathematically less tractable than the tractable distance measure D1. Suppose D1

and D2 satisfy conditions in Proposition 2. Then we can use D1 to construct a new ambiguity set

PD1 and the corresponding new ambiguous CCP is a tractable conservative approximation of the

original ambiguous CCP.

To demonstrate how to specify the function B(y), we consider some simple examples. From

Gibbs and Su (2002), we have DV ≤ DH , DV ≤ √
Dχ2/2, DV ≤

√
DKL/2, and DV ≤ DS , where

DV , DH , Dχ2 , DKL and DS denote the Variation distance, Hellinger distance, χ2-distance, KL

divergence and Separation distance, respectively. Therefore, for DV versus DH , Dχ2 , DKL and

DS , we can set B(y) = y, B(y) =
√

y/2, B(y) =
√

y/2, and B(y) = y respectively. We know

that the new confidence level for Variation distance has analytical expression. Then we can build

conservative approximations for the other four distances using Variation distance, and the new

confidence levels for the conservative approximations can be computed analytically.

4 Conclusions

In this paper, we have studied ambiguous probabilistic programs. We have considered different

ambiguity sets constructed using the likelihood ratio of the random distribution. The main con-

26



tribution of the paper is that we show the ambiguous probabilistic programs with a certain class

of ambiguity sets essentially have the same complexity as their pure probabilistic program coun-

terparts. Therefore, the probability functional often provides a reasonable performance measure in

decision under uncertainty. One main managerial insight of the paper is that we do not need to

fear that much the ambiguity in probabilistic program based decision models. The results derived

in this paper complemented the DRO literature.

A Appendix

A.1 Proof of Theorem 1

Proof. We prove this theorem in a measure-theoretic framework. Let (Ω,F) be a measurable

space, where Ω is non-empty and F is a σ-algebra on Ω. Let X be the linear space of real-valued

measurable functions on (Ω,F). Let M+ be the set of probability measures on (Ω,F). Now,

consider a fixed probability measure P0 ∈ M+. Let P ∈ M+ be absolutely continuous w.r.t. P0

(denoted by P ¿ P0). Then, by the Radon-Nikodym theorem, there exists a measurable function

f : (Ω,F) → <+, called the Radon-Nikodym derivative of P w.r.t. P0 and denoted by f = dP/dP0,

such that

P (A) =
∫

A
f dP0 for all A ∈ F .

Given a divergence function φ : < → <, the φ-divergence from P to P0 is defined as

Dφ(P‖P0) =
∫

Ω
φ

(
dP

dP0

)
dP0.

Furthermore, define C ⊂ X to be the set

C = {f ∈ X : a ≤ f(ω) ≤ b P0-almost surely},

where 0 ≤ a < 1 < b. Note that C is convex. Roughly speaking, the set C contains all the

Radon-Nikodym derivatives of measures in M+ w.r.t. P0 that are bounded between [a, b] P0-almost

surely.

Let A ∈ F and η1, . . . , ηm > 0 be given. (For instance, one can take A = {ω : H(x, ω) > 0},
where H(x, ·) ∈ X for each x.) Furthermore, let φ1, . . . , φm be given divergence functions. Consider

the following problem:

sup
f∈C

∫

A
f dP0

such that
∫

Ω
φi(f) dP0 ≤ ηi for i = 1, . . . , m,

∫

Ω
f dP0 = 1.

(32)
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Note that Problem (32) can be written in the form

v∗p = sup
f∈C

∫

A
f dP0

such that Φ(f) ∈ Q,

(33)

where Φ : X → <m+1 is given by

Φ(f) =
(∫

Ω
φ1(f) dP0 − η1, · · · ,

∫

Ω
φm(f) dP0 − ηm,

∫

Ω
f dP0 − 1

)
,

and Q ⊂ <m+1 is the convex cone given by Q = <m− × {0}. Note that Φ is convex on C ⊂ X . We

remark that Problem (33) is an instance of the so-called nonlinear programming with generalized

constraints (Rockafellar (1974), p. 26, Example 4’).

Strong Duality

To analyze the dual of Problem (33), let π : <m+1 → [−∞,+∞] be the optimal value function

defined by

π(u) = inf
{
−

∫

A
f dP0 : f ∈ C, Φ(f)− u ∈ Q

}
= inf

f∈X
F (f, u),

where

F (f, u) =




−

∫

A
f dP0 if f ∈ C, Φ(f)− u ∈ Q,

+∞ otherwise.

Note that F is convex in (f, u) and closed in u (see Rockafellar (1974), p. 26, Example 4’). The

domain of π is

dom(π) =
{
u ∈ <m+1 : ∃ f ∈ C such that Φ(f)− u ∈ Q

}
.

The Lagrangian function K : X ×<m+1 → [−∞,+∞] is given by (cf. Section 4 and Example 4’ of

Rockafellar (1974))

K(f, y) = inf
u∈<m+1

{
F (f, u) + uT y

}

=





inf
v∈Q

{
−

∫

A
f dP0 + (Φ(f)− v)T y

}
if f ∈ C,

+∞ if f 6∈ C,

=





−
∫

A
f dP0 + Φ(f)T y if f ∈ C, y ∈ <m

+ ×<,

−∞ if f ∈ C, y 6∈ <m
+ ×<,

+∞ if f 6∈ C.

The dual of Problem (33) can then be given by

v∗d = sup
y∈<m

+×<
inf
f∈C

{
−

∫

A
f dP0 + Φ(f)T y

}
.
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By Theorem 17 of Rockafellar (1974), strong duality v∗p = v∗d holds if we can show that π is

bounded above in a neighborhood of 0. By Theorem 18(b) of Rockafellar (1974), it suffices to show

that 0 ∈ core dom(π), i.e.,

∀u ∈ <m+1,∃ε > 0 such that λu ∈ dom(π) ∀λ ∈ [−ε, ε].

Since dom(π) is finite-dimensional, the above condition is equivalent to 0 ∈ int dom(π); see Section

6 of Rockafellar (1974). To establish the latter, we simply note that if f = 1 + κ with |κ| > 0

sufficiently small, then f ∈ C, and |Φ(f)−Φ(1)| is small due the the continuity of φ1, · · · , φm.

A.2 Proof of Proposition 1

Proof. For any fixed z, sz −∑m
i=1 αiφi (z) is linear, and thus convex, in (s, α). Furthermore, it is

well known that the supremum preserves convexity. Thus Ψ(s, α) is convex in (s, α). Furthermore,

z ∈ L(a, b) is always non-negative. Therefore, Ψ(s, α) is non-decreasing in s for any given α ≥ 0.

Note that 1 ∈ L(a, b) and φi(1) = 0. We have Ψ(s, α) ≥ s−∑m
i=1 αiφi (1) = s.

A.3 Proof of Corollary 4

Proof. For the ambiguity set Lφ, we have

Ψ(s, α) = sup
t≥0

{st− αφ (t)} = α sup
t≥0

{ s

α
t− φ (t)

}
= αφ∗

( s

α

)
.

Then it follows from Theorem 4 that the result of Corollary 4 holds.

A.4 Proof of Corollary 6

Proof. We compute Ψ(s, α) using Lagrangian duality and properties of the conjugate:

Ψ(s, α) = sup
t≥0

inf
µ1≥0,µ2≤0

{
st−

m∑

i=1

αiφi (t) + µ1 (t− a) + µ2 (t− b)

}

= inf
µ1≥0,µ2≤0

sup
t≥0

{
(s + µ1 + µ2) t−

m∑

i=1

αiφi (t)− aµ1 − bµ2

}

= inf
µ1≥0,µ2≤0

{(
m∑

i=1

αiφi

)∗
(s + µ1 + µ2)− aµ1 − bµ2

}

= inf
µ1≥0,µ2≤0

inf∑m
i=1 si=s+µ1+µ2

{
m∑

i=1

αiφ
∗
i

(
si

αi

)
− aµ1 − bµ2

}
,

where the second equality follows from strong duality, the third one follows from the definition of

the conjugate, and the last one follows from Proposition 1 of Ben-Tal et al. (2013) and the property

that (αφ)∗ (s) = αφ∗(s/α) (Ben-Tal et al. 2013). This concludes the proof.
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Prékopa, A. 1970. On probabilistic constrained programming. Proceedings of the Princeton Sym-

posium on Mathematical Programming, 113-138.
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