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The Problem

minimize y(x) , E[Y (x)] subject to x ∈X

The feasible set X is a finite subset of the d-dimensional integer
lattice Zd and n , |X |.

Let x? denote the unknown best of the n feasible solutions,
which we assume for simplicity of exposition is unique:
x? = arg minx y(x). Let x̃ be the selected solution by whatever
method.

global convergence.
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Adaptive random search (ARS)

Commonly, adaptive random search involves
I Surrogate Modeling
I Anticipated spatial structure (Correlation)
I Algorithm Design that can

I learn spatial relationships by sampling
I balance exploration and exploitation
I facilitate a stopping criterion that considers the uncertainty

at feasible solutions that have and have not been simulated

For example, the gaussian random field (GRF) => numerical
issues with inverse of dense covariate matrix (except the 2014
OR Paper of Jeff).
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Why A Discrete Gaussian Markov Random Field
(GMRF) can be Great?

I If we are interested in predicting the value of the objective
function at a feasible solution, then the values of the
objective function at the feasible solutions in a
neighborhood of it would often be sufficient; other feasible
solutions would provide little additional information.

I GMRFs can be defined on a lattice, so the use of GMRFs in
DOvS problems is more natural than using a GRF with a
continuous domain.

I The dependence in a GMRF is defined by its precision
matrix, which is the inverse of the covariance matrix. Using
the Markov structure of GMRFs, the precision matrix can
be constructed to be sparse.
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Contributions

I create a GRF that is appropriate for the DOvS problem.
I extend the GMRF approach to a multi resolution

framework that can be used to solve DOvS problems with
vast numbers of solutions.

I demonstrate that expected improvement (EI) combined
with our framework can provide effective inference for
terminating the search when the estimated optimality gap
is small enough.

I Both algorithms are shown to converge to a globally
optimal solution as simulation effort increases under very
mild conditions (essentially finite variance).
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Notations and Conditional Independence
For C ∈ I = {1, . . . , n}, define xC = {xi : i ∈ C} . With −C we
denote the set I −C, so that x−C = {xi : i ∈ −C}. For two sets
A and B, then A\B = {i : i ∈ A and i /∈ B}.

Conditional Independence
Two variables x and y are called conditionally independent
given z, iff π(x, y | z) = π(x | z)π(y | z). We write this as

x ⊥ y | z.

iff π(x,y | z) = π(x | z)π(y | z), which we write as x ⊥ y | z.

Factorization Criterion for Conditional Independence

x ⊥ y | z ⇐⇒ π(x, y, z) = f(x, z)g(y, z)

for some functions f and g, and for all z with π(z) > 0.
e.g. For π(x, y, z) ∝ exp(x+ xz + yz), on some bounded region.
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Undirected graphs G = (V , E)
I neighbors of node i

ne(i) = {j ∈ V : {i, j} ∈ E}
I neighbors of node set A

ne(A) =
⋃
i∈A

ne(i)\A

I path from i1 to im: A path from i1 to im is a sequence of
distinct nodes in V, i1, i2, . . . , im, for which (ij , ij+1) ∈ E for
j = 1, . . . ,m− 1.

I A subset C ⊂ V separates two nodes i /∈ C and j /∈ C, if
every path from i to j contains at least one node from C.

I Two disjoint sets A ⊂ V\C and B ⊂ V\C are separated by
C, if all i ∈ A and j ∈ B are separated by C, i.e., we
cannot walk

I subgraph over node set A:

EA = {{i, j} ∈ E and {i, j} ∈ A×A}
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The Normal Distribution

The density of a normal random variable
x = (x1, . . . , xn)T , n <∞, with mean µ(n× 1 vector) and SPD
(Symmetric positive-definite) covariance matrix Σ(n× n matrix
), is

π(x) = (2π)−n/2|Σ|−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, x ∈ Rn

Here, µi = E (xi) ,Σij = Cov (xi, xj) ,Σii = Var (xi) > 0 and
Corr (xi, xj) = Σij/ (ΣiiΣjj)

1/2. We write this as x ∼ N (µ,Σ).
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We now divide x into two parts, x =
(
xTA,x

T
B

)T , and split µ
and Σ accordingly:

µ =

(
µA
µB

)
and Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)

I xA ∼ N (µA,ΣAA)

I ΣAB = 0 iff xA and xB are independent.
I The conditional distribution π (xA | xB) is
N
(
µA|B,ΣA|B

)
, where

µA|B = µA + ΣABΣ−1BB (xB − µB) and

ΣA|B = ΣAA −ΣABΣ−1BBΣBA

I If x ∼ N (µ,Σ) and x′ ∼ N (µ′,Σ′) are independent, then
x+ x′ ∼ N (µ+ µ′,Σ + Σ′) .
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GMRF: Intuition

x is a GMRF wrt G
Let x = (x1, . . . , xn)T have a normal distribution with mean µ
and covariance matrix Σ. Define the labelled graph G = (V, E),
where V = {1, . . . , n} and E be such that there is no edge
between node i and j iff xi ⊥ xj | x−ij , where x−ij is short for
x−{i,j}. Then we say that x is a GMRF wrt G.

Precision Matrix and Conditional Independence

Q = Σ−1

Let x be normal distributed with mean µ and precision matrix
Q > 0. Then for i 6= j,

xi ⊥ xj | x−ij ⇐⇒ Qij = 0.
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GMRF: Definition

A random vector x = (x1, . . . , xn)T ∈ Rn is called a GMRF wrt
a labelled graph G = (V, E) with mean µ and precision matrix
Q > 0, iff its density has the form

π(x) = (2π)−n/2|Q|1/2 exp

(
−1

2
(x− µ)TQ(x− µ)

)
and

Qij 6= 0 ⇐⇒ {i, j} ∈ E for all i 6= j

Any normal distribution with SPD covariance matrix is also a
GMRF and vice versa.
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GMRF: Inference

Let x be a GMRF wrt G = (V, E) with mean µ and precision
matrix Q > 0, then

E (xi | x−i) = µi −
1

Qii

∑
j:j∼i

Qij (xj − µj) ,

Prec (xi | x−i) = Qii and

Corr (xi, xj | x−ij) = − Qij√
QiiQjj

, i 6= j.
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Markov properties of GMRFs

Theorem 2.4 Let x be a GMRF wrt G = (V, E). Then the
following are equivalent. The pairwise Markov property:

xi ⊥ xj | x−ij if {i, j} /∈ E and i 6= j

The local Markov property:

xi ⊥ x−{i,ne(i)} | xne(i) for every i ∈ V

The global Markov property:

xA ⊥ xB | xC

for all disjoint sets A,B and C where C separates A and B, and
A and B are non-empty.
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Local Markov Property on Lattice

The Markov property does not imply that nodes far away from
one another are independent, but rather that if we know the
value of the GMRF at nodes close by, then we can ignore nodes
farther away conditional on those values.
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Conditional properties of GMRFs
We split the indices into the nonempty sets A and denote by B
the set −A, so that

x =

(
xA
xB

)
Partition the mean and precision accordingly,

µ =

(
µA
µB

)
, and Q =

(
QAA QAB

QBA QBB

)
Let x be a GMRF wrt G = (V, E) with mean µ and precision
matrix Q > 0. Let A ⊂ V and B = V\A where A,B 6= ∅. The
conditional distribution of xA | xB is then a GMRF wrt the
subgraph GA with mean µA|B and precision matrix QA|B > 0,
where

µA|B = µA −Q−1AAQAB (xB − µB)

and
QA|B = QAA.
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This is a powerful result for two reasons.
I First, we have explicit knowledge of QA|B through the

principal matrix QAA, so no computation is needed to
obtain the conditional precision matrix. Constructing the
subgraph GA does not change the structure; it just removes
all nodes not in A and the corresponding edges.

I Secondly, since Qij is zero unless j ∈ ne(i), the conditional
mean only depends on values of µ and Q in A ∪ ne(A).
This is a great advantage if A is a small subset of V.
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The canonical parameterization

Canonical parameterization
A GMRF x wrt G with canonical parameters b and Q > 0 has
density

π(x) ∝ exp

(
−1

2
xTQx+ bTx

)
,

i.e., the precision matrix is Q and the mean is µ = Q−1b. We
write the canonical parameterization as x ∼ NC(b,Q). The
relation to the normal is that N

(
µ,Q−1

)
= NC(Qµ,Q).

Let x ∼ NC(b,Q), then

xA | xB ∼ NC (bA −QABxB,QAA) .

The result is useful for computing conditional densities.
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GMRF Construction for DOvS Problem

Construction of the graph:
I I defining the nodes of the graph V to be X

I defining the edges = construction of neighborhoods

N (x) = {x′ ∈X : ‖x− x′‖2 = 1}

up to 2d neighbors in d dimensions. For this neighborhood,
the fraction of nonzero entries in the precision matrix Q is
bounded above by (2d+ 1)/|X |, which is very small for
large problems.

N (x) = {x′ ∈ Z : ‖x− x′‖2 = 1}

up to 3d − 1 neighbors in d dimensions.

23 / 55



Because we are particularly interested in DOvS problems with
large feasible regions and because (roughly speaking) the more
sparse Q is, the larger the DOvS problems we can solve, our
algorithm will use the neighborhood structure N (x).
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Construction of Q

Recall the definition of GMRF,

Qij 6= 0 ⇐⇒ {i, j} ∈ E for all i 6= j.

A standard approach to specify Q is to have the entries of Q
given by a function p (x,x′;θ), where θ is a vector of
parameters; that is, Qij , p (xi,xj ;θ) . For the neighborhood
N (x), we propose θ = (θ0, θ1, θ2, . . . , θd)

> and

p
(
x,x′;θ

)
=


θ0, if x = x′

−θ0θj , if |x− x′| = ej

0, otherwise

for x,x′ ∈ Zd, where ej is the j th standard basis vector.
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Properties of the constructed Q

Recall that

Prec (xi | x−i) = Qii and

Corr (xi, xj | x−ij) = − Qij√
QiiQjj

, i 6= j.

Thus, θ0 is the conditional precision of each solution, and θj is
the conditional correlation between solutions that differ by one
in the j th coordinate direction.

That the conditional correlations can depend on the coordinate
direction is important to allow for response surfaces that change
more rapidly in one direction as compared with another.
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Restrictions on Parameterization
the conditional precisions must be positive, it follows that

θ0 > 0

neighbors have nonnegative conditional correlations

θ1, θ2, . . . , θd ≥ 0

conditional correlations must be less than one

θj ≤ 1 for j = 1, 2, . . . , d

Finally, Q should be positive-definite.

Now, Q is a nonsingular M matrix, so its inverse is nonnegative;
that is,

[
Q−1

]
ij
≥ 0 for all i and j. In other words, there are

no negative unconditional correlations among nodes in
the GMRF.
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Modeling the Mean

minimize y(x) , E[Y (x)] subject to x ∈X

Yj(x) = y(x) + εj(x)

where {εj(x)} are independent and identically distributed
(i.i.d.) with mean zero and finite variance that may depend on
x. In the following we also assume that the εj(x) are normally
distributed.

Bayesian Prior Model of the Means
Let y denote the vector of objective function values
(y (x1) , y (x2) , . . . , y (xn))>. Of course, y is unknown, so we
model it as a realization of the GMRF

Y , (Y (x1) ,Y (x2) , . . . ,Y (xn))> ∼ N
(
µ,Q(θ)−1

)
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More Notations

I “design point”: refer to a feasible solution that has been
simulated

I “point” = “feasible solution”
I Ξ2 ⊆X denote the current set of design points
I Ξ1 = X \Ξ2 is the set of feasible solutions that have not

been simulated
I use "1" as a subscript to denote quantities associated with

the set Ξ1 and " 2 " as a subscript to denote quantities
associated with the set Ξ2.

I n1 = |Ξ1| and n2 = |Ξ2|
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Intermediate Inference

(In the running process) partition the vectors y,Y, µ and the
precision matrix Q(θ) as(

Y1

Y2

)
∼ N

((
µ1
µ2

)
,

(
Q11(θ) Q12(θ)

Q12(θ)> Q22(θ)

)−1)

Let Y 2 be the vector of sample means of the simulation output
at the design points and represent Y 2 as a realization of the
GMRF

Yε2 = Y2 + ε

with Y2 and ε independent and ε ∼ N
(−→

0 n2×1,Q
−1
ε

)
, where Qε

is the intrinsic precision matrix of the noise inherent to the
stochastic simulation output Y 2.
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Q & Qε Estimation (MLE)

The values in Qε also depend on how many replications have
been averaged, which need not be the same at all design points.

Ignored.
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e-companion to Salemi, Song, Nelson and Staum: Gaussian Markov Random Fields for DOvS ec1

Electronic Companion to Gaussian Markov Random Fields
for Discrete Optimization via Simulation: Theory and
Computation

EC.1. Conditional Distribution Proof

In this section we prove Theorem 1, which establishes the conditional distribution of (Y1,Y2) given

observed Yε2 in (4). We do this by first deriving the joint distribution of (Y1,Y2,Yε2) and then

applying Lemma 2.1 of Rue and Held (2005) to obtain the conditional distribution. To simplify

the notation we suppress the dependence of Q on θ.

Notice that Y1 and Yε2 are conditionally independent, given Y2, because Y is a GMRF and is

also independent of the intrinsic noise. From Theorem 2.5 in Rue and Held (2005), the conditional

distribution of Y1 given Y2 = y2 is

N
(
µ1−Q−1

11 Q12(y2−µ2),Q−1
11

)
.

From our assumption about the simulation output process, the conditional distribution of Yε2 given

Y2 = y2 is N (y2,Q
−1
ε ). Further,

Y2 ∼N (µ2,Σ22) =N
(
µ2, [Q22−Q21Q

−1
11 Q12]−1

)
using standard results for the inverse of a partitioned matrix. Therefore, the joint distribution

f(y1,y2,y
ε
2) satisfies

f(y1,y2,y
ε
2) ∝ exp

{
−1

2

[
y1− (µ1−Q−1

11 Q12(y2−µ2))
]>

Q11

[
y1− (µ1−Q−1

11 Q12(y2−µ2))
]}

× exp

{
−1

2
(y2−µ2)

>
(Q22−Q21Q

−1
11 Q12) (y2−µ2)

}
× exp

{
−1

2
(yε2−y2)

>
Qε (yε2−y2)

}
. (EC.1)

A significant quantity of matrix algebra leads to

f(y1,y2,y
ε
2) ∝ exp

−1

2

y1

y2

yε2

>Q11 Q12 0
Q21 Q22 + Qε −Qε

0 −Qε Qε

y1

y2

yε2



+

y1

y2

yε2

>Q11µ1 + Q12µ2

Q21µ1 + Q22µ2

0


 . (EC.2)

Rue and Held (2005) refer to (EC.2) as being in canonical form, for which their Lemma 2.1 can be

used to show that the conditional distribution of (Y1,Y2) given Yε2 is as in (4).
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Inference

Theorem 1. The conditional distribution of Y given Yε2 = Y 2 is

N
((

µ1
µ2

)
+ Q(θ)−1

( −→
0 n1×1

Qε

(
Y 2 − µ2

) ) ,Q(θ)−1
)

where

Q(θ) ,

(
Q11(θ) Q12(θ)

Q12(θ)> Q22(θ)

)
+

(
0n1×n1 0n1×n2

0>n1×n2
Qε

)
is the conditional precision matrix and 0ni×nj is the ni × nj
matrix of zeros.
The sparsity of Q(θ) is inherited from the sparsity of Q(θ) and
Qε.
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The Defined EI Criterion

Let x? denote the unknown best of the n feasible solutions,
which we assume for simplicity of exposition is unique:
x? = arg minx y(x). Let x̃ be the selected solution by whatever
method.

EI for a feasible solution x

EIt(x) = E
[
max

{
0,Y

(
x̃t
)
− Y(x)

}
| Y t

2

]
where we have appended a superscript t to indicate quantities
available at the end of the t th iteration of an algorithm.
x̃t can be the sample best solution (smallest sample mean)
through iteration t.
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Closed Form of “complete expected improvement”

Recall that the conditional distribution of Y given Yε2 = Y 2 is

N
((

µ1
µ2

)
+ Q(θ)−1

( −→
0 n1×1

Qε

(
Y 2 − µ2

) ) ,Q(θ)−1
)
.

Given the simulation output Y
t
2, the conditional joint

distribution of Y
(
x̃t
)
and Y(x) is bivariate normal.

I Denote the conditional means by M t
(
x̃t
)
and M t(x)

I the conditional variances by V t
(
x̃t
)
and V t(x), and the

conditional correlation by ρt
(
x̃t,x

)
.

I Let

V t
(
x̃t,x

)
, V t

(
x̃t
)

+ V t(x)− 2ρt
(
x̃t,x

)√
V t (x̃t)V t(x)

be the conditional variance of the difference Y
(
x̃t
)
− Y(x).
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Then the CEI of solution x,CEI(x), is

CEIt(x) =
(
M t
(
x̃t
)
−M t(x)

)
Φ

(
M t
(
x̃t
)
−M t(x)√

V t (x̃t,x)

)

+
√
V t (x̃t,x)φ

(
M t
(
x̃t
)
−M t(x)√

V t (x̃t,x)

)
.

Detailed discussions on the EI are ignored here.
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Stopping Criterion

max
x 6=x̃t

CEIt(x) ≤ δ

Comparison with PCS and PGS:

(PCS) Pr

{
x̃ = x? | min

x 6=x?
y(x)− y (x?) ≥ δ

}

(PGS) Pr {y(x̃)− y (x?) ≤ δ} ≥ 1− α

The proposed approach is more akin to PGS than PCS in that
we make no assumption about the gap between the best and
next-best feasible solution, but we do require the user to provide
a smallest practically significant difference δ measured in the
same units as the response y(x).
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Solution-level Gaussian Markov improvement
algorithm

I 0. Generate a set of ks design points. Simulate r
replications for each design point and use the simulation
output to calculate the MLE estimates.

I 1. Let x̃, the current sample-best solution, be the design
point with the smallest sample mean.

I 2. Calculate the CEI with respect to x̃ for each candidate
feasible solution. If maxx 6=x̃ CEI(x) ≤ δ, then go to step 5.
Otherwise, go to step 3.

I 3. Simulate r replications at both x̃ and the candidate
feasible solution x∗CEI that maximize the CEI over the set of
all candidate feasible solutions.
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I 4. Update the simulation output at x̃ with the new
replications. If x∗CEI is a design point, then update the
simulation output at x∗CEI and go to step 1. If x∗CEI is not a
design point, then add x∗CEI to the set of design points, add
the simulation output obtained at x∗CEI to the collection of
simulation output, and go to step 1.

I 5. Return x̃ as the estimated optimal solution.

The MLE estimates are not updated dynamically.
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Estimated Conditional Distribution

N

(
β̂01n×1 + Q(θ̂)−1

( −→
0 n1×1

Q̂ε

(
Y 2 − β̂01n2×1

) ) ,Q(θ̂)−1

)
,

where

Q(θ̂) ,

(
Q11(θ̂) Q12(θ̂)

Q12(θ̂)> Q22(θ̂)

)
+

(
0n1×n1 0n1×n2

0>n1×n2
Q̂ε

)

Computation of Q(θ̂)−1

The matrix is sparse, and with our proposed neighborhood
structure, the fraction of nonzero elements is bounded above by
(2d+ 1)/n. To compute all n− 1 CEIs we need only the n
diagonal elements of Q

−1
(θ̂) and the n− 1 off-diagonal elements

of one column.
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Asymptotic Convergence

Assumptions

1. y(x) > −∞ for all x ∈X

2. 0 < Var[Y (x)] < +∞ for all x ∈X

3. The initial estimated precision matrix Q(θ̂) is
positive-definite and is not updated thereafter.

Theorem 2.
The GMIA algorithm without a stopping condition simulates
each solution x ∈ X infinitely often with probability one as the
number of iterations goes to infinity.
Theorem 2 does not depend on our chosen neighborhood
structure being “correct,” nor does it depend on having “good”
parameter estimates for the GMRF.
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Solution Level v.s. Region Level
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The Multi-resolution Framework and Algorithm

I First partition X into m disjoint regions P1,P2, . . . ,Pm

I Nodes of a region-level GMRF represent a measure of the
overall solution quality within each region with a
neighborhood structure again defined by proximity (i.e.,
adjacent regions).

I The region-level GMRF provides global guidance by
facilitating a CEI comparison among regions.

I The quality of individual solutions within a region Pj is
represented by a solution-level GMRF except that the
GMRs for Pj and P` for j 6= ` are assumed to be
independent.
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Region-Level Prior Model

The response associated with the region P` is

z (P`) = |P`|−1
∑
x∈P`

y(x)

model z = (z (P1) , z (P2) , . . . , z (Pm))> as as a realization of
a region-level GMRF

Z , (Z (P1) ,Z (P2) , . . . ,Z (Pm))> ∼ N
(
η,T(τ )−1

)
.

For the solution-level GMRFs, we may choose to fit a different
set of parameters for each region- µ` and θ` for P`-or assume
all regions share the same solution-level parameters µ and θ.
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MR-GMIA: Procedure

I On each iteration of the algorithm, select three regions in
which to run simulations:
I (i) the design region Pmin that contains the solution with

the smallest sample mean among all simulated solutions in
X ,

I (ii) the design region P̃ that has the smallest region-level
estimator L (P`) among P` ∈ Π2,

I (iii) the region P?
CEI that has the largest region-level CEI

among all regions in P.
I For Pmin and P̃, and for P?

CEI, apply the same method as
in the solution-level GMIA algorithm:
at each iteration, simulate the solution with the smallest
sample mean and the solution with the largest
solution-level CEI in that region.

The algorithm stops when both the largest region-level CEI and
the solution-level CEI fall below δ.
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Experiments

I (i) GMIA combined with expected improvement provides
valid inference on the remaining optimality gap at
termination while achieving good finite-budget performance
for a DOvS problem,

I (ii) MR-GMIA can solve a large-scale DOvS problem
efficiently and effectively.

I (s, S) Inventory Problem (2d)
I Griewank Function (2d)
I Inverted Multivariate Normal Density Function (15d)
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(s, S) Inventory Problem with 100× 100 lattice

Figure 1: optimality gaps from 400 runs of all six algorithms stopped
after 100 iterations
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(s, S) Inventory Problem with 100× 100 lattice

Figure 2: convergence plot of all six algorithms stopped after 100
iterations
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Achieving Optimality gap δ = 1
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Comparison of GMIA and MR-GMIA.
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Griewank Function (2d)
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Inverted Multivariate Normal Density Function
I integer lattice with 415 = 1, 073, 741, 824 solutions.
I The response function for this test case is a 15-dimensional

inverted Gaussian density function (that does not have any
local minima),

f (x1, x2, . . . , xd) = −β exp

−γ
d∑
j=1

jx2j


x> = (x1, x2, . . . , xd) .

I a three-resolution GMRF consisting of super region–level,
region-level, and solution-level GMRFs.

I The average optimality gap of 200 runs after 10,000
iterations is 1.27 (standard error = 0.12 ), and

I the average number of solutions that the algorithm visited
is 73, 344(1, 046), which is only 0.0068% of the feasible
solution space.
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