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Problem statement

* Goal: %16%1 J(6)= L, (L(O,w))

where "."1s a compact region in the s-dimensional real space

A
» Discretization: S,, =16,,,,6,,,,...,6,,,,} € O

N
* Budget: total N; for each discrete point 7 = [— J :

m

~

* Methods: 6 =arg Bmigl J (G

:}(Qm,i) = l Li,j

J=1



How to balance between m and r

How to choose S,

How to allocate budgets adaptively




How to balance between m and r

So, this choice of € makes the selection error decrease at the same rate as the

discretization error, and therefore gives a good tradeoff in rates for the sum of
these two errors.




1.7

Basic idea

Error: A, =TO)-J Jy=minJ(8,,)

1<ism

= (@) T +(y=T)

The first term: from random sampling

control the tail of L(6, w)! (Assumption A1)

The second term: from discretization

avoid S, being too sparse (low-dispersion) (Assumption A3)

avoid J 4, being too bumpy locally around 8* (Assumption A2)



7.2 Discretization error

 Dispersion: dp (S,, )= sup mlnHQ _Qm,in

ge’ 1sism

e Smoothness locally around 6™ :

H,()= sup (J(O)-J(@))

8eB, (97 ,0)N"

* Proposition 1:

Jy=J <H (S, "))




7.2 Discretization error

* Assumption A2:
H (1)< Kt fort <t

e Assumption A3:




7.3 Estimation error

* Assumption Al:

P[P(Q) —J(Q)‘ >el<e”™ forr=R,0<e<e,

* Ellis (1998.p.247): if the moment generating function is finite for all real values, then:

2
~Eor0(re?)

P[|.7(9)—J(Q)‘ el<e 2%



7.3 Estimation error

* Assumption Al:

P[P(Q) —J(Q)‘ >el<e”™ forr=R,0<e<e,

* Proposition 2:

PJ@) - Ty

>2e] < me "™ for N = N,,0<¢ < %



7.3 Estimation error

* Assumption Al:

P[P(Q) —J(Q)‘ >el<e”™ forr=R,0<e<g,

* Proposition 2:

PJ@) - Ty

>2e] < me "™ for N = N,,0<¢ < %

e Corollary 1:
PlA, >2e+H,(d,(S,, )] <me"™ forN=N,,0<e < %

Proposition 1:
Jy—J < H,(d,(S,, "))




7.4 Balance discretization and estimation error

* Key idea: make them decrease at the same rate

S

m;’;(C>~c-(—N )

In N

TueoreM 1. Let Assumptions AI-A3 be in force for a given
p and suppose that m=my,(C). Then, there are two con-
stants Ko and Ny (which may depend on s and q) such that
Jor all N = Ny,

P[Ap > Kp(N/In N)_‘?-"{"'*'E??] <C(In N)—s.f{s +2g) (17)



How to choose §,,

Niederreiter (1992, Theorem 6.9) gives the following low-dispersion
sequence for the sup norm.




2.7 Low dispersion sequence

 Niederreiter (1992, Theorem 6.9): for the sup norm, for . =[0,1]" :

1 m=1
X =
" l(log,(2m—-3))modl m =2

1
limm"*d_(S ,[0,1]) =
lim m'"*d, (S,,.[0.1") = - —

* s=1: asymptotically optimal

* s>1: asymptotically ﬁ, while the smallest possible value cannot be smaller than 1/2

“one cannot achieve much better with the sup norm”



How to allocate budgets adaptively

At promising points, one should collect more observations because it is with nearly
optimal points that sampling noise is more likely to lead to selection error.




3.7 Allocate budgets adaptively

* Key idea: majorization minimization

control the upper bound of the estimation error



3.2 Majorization

* Key idea: majorization minimization

control the upper bound of the estimation error

» Update the proposition 2:

Proposition 2:

PlJ

* _ 2 E
v|>2e]<me”™ forN=N,,0<e=<—
2

. Proposition 4.



3.3 Minimization

Key idea: majorization minimization

Proposition 5:

control the upper bound of the estimation error

ProrosiTION 5. For given positive constants K,,. .., Ky, the
minimizer of

D exp[~riKi] (29)
=1

over nonnegative real vectors (ri,...,%m) subject to
X" ri=N is given by

- anj i N = Zj:—t {l“ KJ')."JK_;'
¢ Ky a1k

(30)



3.3 Minimization

Proof of Proposition 5:

Proor. The relation (30) follows by writing the first order
optimality conditions, using a Lagrange multiplier. For V
representing the gradient with respectto (ry,..., 5, ), we have
that for some number A,

VY exp[—riKi] + A(1,...,1)=0.

i=1
The solution requires that

K; exp[—-rK;]= 4

for all 7. Taking the logarithm and solving for #;, one obtains
ri=(InkK; —In 1)/K;.

Combining this with the constraint 7,7 =N to eliminate
In A, (30) follows after easy manipulations. ]



3.4 Allocation strategy

* Choose the minimal:

< 2 < 2
1K~k =r (0, +e)°k —ln(5i+8) K
16 16

* Implementation:

argmin; (0, +e)’
l



THANKS!




