Adaptive Stochastic Approximation by the Simultaneous Perturbation Method

Nifei Lin

October 2021

Nifei Lin **[Adaptive Stochastic Approximation by the Simultaneous Perturbation Method](#page-39-0) October 2021** 1/40

- **o** SPSA
- 2SPSA
	- Strong Convergence
	- Asymptotic Normality

4 ロ ▶ (母

 $\leftarrow \equiv +$

 \sim

Fabian, V. (1968). On asymptotic normality in stochastic approximation. The Annals of Mathematical Statistics, 1327-1332.

Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE transactions on automatic control, 37(3), 332-341.

Spall, J. C. (1997, December). Accelerated second-order stochastic optimization using only function measurements. In Proceedings of the 36th IEEE Conference on Decision and Control (Vol. 2, pp. 1417-1424). IEEE. Spall, J. C. (1998). Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Transactions on aerospace and electronic systems, 34(3), 817-823.

Spall, J. C. (1998). An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins apl technical digest, 19(4), 482-492.

Spall, J. C., & Cristion, J. A. (1998). Model-free control of nonlinear stochastic systems with discrete-time measurements. IEEE transactions on automatic control, 43(9), 1198-1210.

Spall, J. C. (2000). Adaptive stochastic approximation by the simultaneous perturbation method. IEEE transactions on automatic control, 45(10), 1839-1853.

Problem: finding a root θ^* of the gradient equation

$$
g(\theta) \equiv \frac{\partial L(\theta)}{\partial \theta} = 0
$$

SA standard form

$$
\hat{\theta}_{k+1} = \hat{\theta}_{k+} - \mathsf{a}_k \hat{\bm{g}}(\hat{\theta}_{k})
$$

• The central FD estimator of \hat{g} is

$$
\hat{g}(\hat{\theta}_{k}) = \frac{1}{2c} \left(\begin{array}{c} y(\hat{\theta}_{k} + c\mathbf{e}_{1}) - y(\hat{\theta}_{k} - c\mathbf{e}_{1}) \\ y(\hat{\theta}_{k} + c\mathbf{e}_{2}) - y(\hat{\theta}_{k} - c\mathbf{e}_{2}) \\ \vdots \\ y(\hat{\theta}_{k} + c\mathbf{e}_{d}) - y(\hat{\theta}_{k} - c\mathbf{e}_{d}) \end{array} \right)
$$

Le[t](#page-5-0) e_i denote the *i*th column of a $d \times d$ id[ent](#page-3-0)i[ty](#page-5-0) [ma](#page-4-0)t[rix](#page-0-0)[.](#page-39-0)

- Let $\Delta_k \in R^p$ be a vector of p mutually independent mean-zero random variables $\{\Delta_{k1}, \Delta_{k2}, ..., \Delta_{kn}\}$
- Let $\{\Delta_k\}$ be a mutually independent sequence with Δ_k independent of $\hat{\theta}_0, \hat{\theta}_1, ..., \hat{\theta}_k$.
- We have available noisy measurements of $L(\cdot)$:

$$
y_k^{(+)} = L(\hat{\theta}_k + c_k \Delta_k) + \epsilon_k^{(+)}
$$

$$
y_k^{(-)} = L(\hat{\theta}_k - c_k \Delta_k) + \epsilon_k^{(-)}
$$

where $\epsilon_k^{(+)}$ $\overset{(+)}{\underset{k}{\kappa}},\ \overset{\epsilon}{\epsilon}_{k}^{(-)}$ $k_{k}^{(-)}$ represent measurement noise terms that satisfy

$$
E(\epsilon_k^{(+)}-\epsilon_k^{(-)}|\mathscr{F},\Delta_k)=0
$$
a.s.∀k, $\mathscr{F}_k \equiv \left\{\hat{\theta}_0,\hat{\theta}_1,...,\hat{\theta}_k\right\}$

つへへ

• SPSA estimator of $g(\cdot)$ at the *k*th iteration is

$$
\hat{g}_k\left(\hat{\theta}_k\right) = \left[\begin{array}{c} \frac{y_k^{(+)} - y_k^{(-)} }{2c_k\Delta_{k1}} \\ \vdots \\ \frac{y_k^{(+)} - y_k^{(-)} }{2c_k\Delta_{kp}} \end{array}\right]
$$

← ロ → → ← 何 →

34 B \rightarrow

Lemma [Spall, 1992]

Consider all $k > K$ for some $K < \infty$. Suppose that for each such k the $\{\Delta_{ki}\}\$ are i.i.d. ($i = 1, 2, \cdots, p$) and symmetrically distributed about 0 with $|\Delta_{ki}| \leq \alpha_0$ a.s. and $E\left|\Delta_{ki}^{-1}\right|$ $\left| \frac{-1}{k i} \right| \leq \alpha_1.$ For almost all $\hat{\theta}_k$ (at each $k \geq K$) suppose that $\forall \theta$ in an open neighborhood of $\widehat{\theta}_k$ that is not a function of k or ω , $L^{(3)}(\theta) \equiv \partial^3 L/\partial \theta^T \partial \theta^T \partial \theta^T$ exists continuously with individual elements satisfying $\Big\vert$ $L_{i_1i_2}^{(3)}$ $\left. \begin{array}{c} \left(3\right) \ \left(\theta \right) \end{array} \right| \leq \alpha _{2}.$ Then for almost all $\omega \in \Omega$

$$
b_k\left(\hat{\theta}_k\right) \equiv \! E\left(\hat{g}_k\left(\hat{\theta}_k\right) - g\left(\hat{\theta}_k\right) \mid \hat{\theta}_k\right) \\ \quad \left(= E\left(\hat{g}_k\left(\hat{\theta}_k\right) - g\left(\hat{\theta}_k\right) \mid \mathscr{F}_k\right) \right) \\ = O\left(c_k^2\right)\left(c_k \to 0\right)
$$

Proof: Consider any $l \in \{1, 2, \cdots, p\}$ (let $\bar{\Delta}_{kl} = c_k \Delta_k$) First, note that $E\left[(\epsilon_k^{(+)}-\epsilon_k^{(-)}\right]$ $\left. \begin{array}{c} (-) \ k \end{array} \right/ 2 \bar \Delta_{kl} \mid \hat \theta_k \bigg] = 0$ a.s.

Then by the continuity of $L^{(3)}$ near $\hat{\theta}_k$ and uniform boundedness of $|\Delta_{ki}|$ for all k sufficiently large, we have by Taylor's theorem for all such k

$$
b_{kl}\left(\hat{\theta}_{k}\right)=\frac{1}{12}\mathsf{E}\left\{ \overline{\Delta}_{kl}^{-1}\left[L^{\left(3\right)}\left(\bar{\theta}_{k}^{+}\right)+L^{\left(3\right)}\left(\bar{\theta}_{k}^{-}\right)\right]\bar{\Delta}_{k}\otimes\bar{\Delta}_{k}\otimes\bar{\Delta}_{k}\mid\hat{\theta}_{k}\right\}
$$

where $\bar{\theta}_k^+,\bar{\theta}_k^-$ are on the line segment between $\hat{\theta}_k$ and $\hat{\theta}_k\pm\bar{\Delta}_k$, respectively, and b_{kl} denotes the l th term of the bias b_k . By the mean value theorem, the term on the r.h.s. , is bounded in magnitude by

$$
\frac{\frac{\alpha_2 c_k^2}{6} \sum_{i_1} \sum_{i_2} \sum_{i_3} E\left|\frac{\Delta_{ki_1} \Delta_{ki_2} \Delta_{ki_3}}{\Delta_{kl}}\right|}{\leq \frac{\alpha_2 c_k^2}{6} \cdot \left\{\left[p^3 - (p-1)^3\right] \alpha_0^2 + (p-1)^3 \alpha_1 \alpha_0^3\right\}
$$

つひい

Figure 5. Example of relative search paths for SPSA and FDSA in $p = 2$ problem. Deviations of SPSA from FDSA average out in reaching a solution in the same number of iterations; FDSA nearly follows the gradient descent path (perpendicular to level curves) in the low-noise setting.

重

 2990

イロト イ部 トイモト イモト

Basic form of algorithm(composed of two parallel recursions: one for θ and one for the Hessian of $L(\theta)$)

$$
\hat{\theta}_{k+1} = \hat{\theta}_k - a_k \overline{\overline{H}}_k^{-1} G_k \left(\hat{\theta}_k \right), \quad \overline{\overline{H}}_k = f_k \left(\overline{H}_k \right)
$$

$$
\overline{H}_k = \frac{k}{k+1} \overline{H}_{k-1} + \frac{1}{k+1} \hat{H}_k, \quad k = 0, 1, 2, \cdots
$$

- a stochastic analog of the well-known Newton-Raphson algorithm of deterministic search and optimization.
- recursive calculation of the sample mean of the per-iteration Hessian estimates

Notations:

$$
\hat{\theta}_{k+1} = \hat{\theta}_k - a_k \overline{\overline{H}}_k^{-1} G_k \left(\hat{\theta}_k \right), \quad \overline{\overline{H}}_k = f_k \left(\overline{H}_k \right)
$$

$$
\overline{H}_k = \frac{k}{k+1} \overline{H}_{k-1} + \frac{1}{k+1} \hat{H}_k, \quad k = 0, 1, 2, \cdots
$$

 a_k : a nonnegative scalar gain coefficient $G_k\left(\hat{\theta}_k\right)$: the input information related to $g\left(\hat{\theta}_k\right)$ (i.e., the gradient approximation from $y(\cdot)$ measurements in the gradient-free case or the direct observation as in the Robbins-Monro gradient-based case) $f_k: \boldsymbol{R}^{p\times p} \rightarrow \{$ positive definite $p\times p$ matrices $\}$: a mapping designed to cope with possible nonpositive definiteness of \tilde{H}_k $\hat{H}_{\pmb{k}}$: a per-iteration estimate of the Hessian

2SPSA

The formula for estimating the Hessian at each iteration is:

$$
\hat{H}_k = \frac{1}{2} \left[\frac{\delta G_k^T}{2c_k \Delta_k} + \left(\frac{\delta G_k^T}{2c_k \Delta_k} \right)^T \right]
$$

where

$$
\delta G_k = G_k^{(1)} \left(\hat{\theta}_k + c_k \Delta_k \right) - G_k^{(1)} \left(\hat{\theta}_k - c_k \Delta_k \right)
$$

- for 2SG, usually $\mathit{G}^{(1)}_{k}$ $\mathcal{G}_{k}^{(1)}(\cdot) = G_{k}(\cdot)$. We will suppose that $G_k(\cdot) = G_{k^k}^{(1)}$ $\mathcal{R}_{k}^{(1)}(\cdot)$ is an unbiased direct measurement of $g(\cdot)$ (i.e., $G_k(\cdot)=G_k^{(1)}$ $g_k^{(1)}(\cdot) = g(\cdot) + \text{ mean-zero noise }$).
- for 2 SPSA: $G_k^{(1)}$ $\kappa_k^{(1)}$ is a one-sided gradient approximation (in order to reduce the total number of function evaluations versus the two-sided form usually recommended for $G_k(\cdot)$])

$$
G_k^{(1)}\left(\hat{\theta}_k \pm c_k \Delta_k\right)
$$

=
$$
\frac{y\left(\hat{\theta}_k \pm c_k \Delta_k + \tilde{c}_k \tilde{\Delta}_k\right) - y\left(\hat{\theta}_k \pm c_k \Delta_k\right)}{\tilde{c}_k}\left[\begin{array}{c}\tilde{\Delta}_{k1}^{-1}\\ \tilde{\Delta}_{k2}^{-1}\\ \vdots\\ \tilde{\Delta}_{kp}^{-1}\end{array}\right]
$$

with $\tilde{\Delta}_k=\left(\tilde{\Delta}_{k1},\tilde{\Delta}_{k2},\cdots,\tilde{\Delta}_{kp}\right)^T$ generated in the same statistical manner as Δ_k , but independently of Δ_k and \tilde{c}_k satisfying conditions similar to c_k

つひひ

Two specific implementations of the ASP approach :

- 2SPSA (second-order SPSA) for applications in the gradient-free case (four function measurements $y(\cdot)$ are needed at each iteration)
- 2SG (second-order stochastic gradient) for applications in the Robbins-Monro gradient-based case. (three gradient measurements $g(\cdot)$ are needed at each iteration)

つひひ

Theorem 1a

Consider the SPSA estimate for $G(\cdot)$ with $G(\cdot)^{(1)}$. Let conditions C.0-C.7 hold. Then $\hat{\theta}_k - \theta^* \to 0$ a.s.

 QQ

Conditions

C.0: $E\left(\varepsilon_k^{(+)}-\varepsilon_k^{(-)}\right)$ $\big(\begin{matrix} (-) \ k \end{matrix} \big| \hat{\theta}_k ; \Delta_k ; \bar{H}_k \Big) = 0$ a.s. $\forall k$, where $\varepsilon_k^{(\pm)}$ $\binom{1}{k}$ is the effective SA measurement noise, i.e.,

$$
\varepsilon_k^{(\pm)} = y \left(\hat{\theta}_k \pm c_k \Delta_k \right) - L \left(\hat{\theta}_k \pm c_k \Delta_k \right)
$$

- C.1: a_k , $c_k > 0$ $\forall k$; $a_k \to 0$, $c_k \to 0$ as $k \to \infty$; $\sum_{k=0}^{\infty} a_k = \infty$, $\sum_{k=0}^{\infty}\left(a_{k}/c_{k}\right)^{2}<\infty$
- C.2:For some $\delta, \rho > 0$ and $\forall k, \ell, \ E \left(\mid y \left(\hat{\theta}_k \pm c_k \Delta_k \right) / \Delta_{k \ell} \vert ^{2 + \delta} \right) \le \rho$, $|\Delta_{k\ell}|\leq \rho$, $\Delta_{k\ell}$ is symmetrically distributed about 0 , and $\{\Delta_{k\ell}\}$ are mutually independent.
- C.3: For some $\rho>0$ and almost all $\widehat{\theta}_k$, the function $\bm{\mathit{g}}(\cdot)$ is continuously twice differentiable with a uniformly (in k) bounded second derivative for all θ such that \Vert $\left\|\hat{\theta}_k - \theta\right\| \leq \rho$
- C.4: For each $k \ge 1$ and all θ , there exists a $\rho > 0$ not dependent on k and θ , such that $(\theta - \theta^*)^T \bar{g}_k(\theta) \ge \rho \|\theta - \theta^*\|$.
- C.5: For each $i=1,2,\cdots,p$ and any $\rho>0$, $P\left(\left\{\bar{g}_{ki}\left(\hat{\theta}_{k}\right)\geq0\right.\right.$ i.o. $\big\} \cap \Big\{ \bar{g}_{ki} \left(\hat{\theta}_k \right) < 0 \, \text{ i.o. } \big\} \mid \Big\{ \Big\}$ $\left| \hat{\theta}_{ki} - (\theta^*)_{i} \right| \ge \rho \quad \forall k \bigg\} = 0$

つひひ

• C.6:
$$
\overline{H}_{k}^{-1}
$$
 exists a.s. $\forall k, c_{k}^{2} \overline{H}_{k}^{-1} \rightarrow 0$ a.s., and for some $\delta, \rho > 0$,
 $E(||\overline{H}_{k}^{-1}||^{2+\delta}) \le \rho$

• C.7: For any $\tau > 0$ and nonempty $S \subseteq \{1, 2, \cdots, p\}$, there exists a $\rho'(\tau, \mathcal{S}) > \tau$ such that

$$
\limsup_{k\to\infty}\left|\frac{\sum_{i\notin S}(\theta-\theta^*)_{i\bar{g}_{ki}(\theta)}}{\sum_{i\in S}(\theta-\theta^*)_{i\bar{g}_{ki}(\theta)}}\right|<1\quad a.s.
$$

for all $|(\theta - \theta^*)_{i}| < \tau$ when $i \notin S$ and $|(\theta - \theta^*)_{i}| \geq \rho'(\tau, S)$ when $i \in S$

We define $\bar{g}(\hat{\theta}_k) = \overline{\overline{H}}^{-1} g(\hat{\theta}_k)$

Proof The proof will proceed in 3 parts.

- 1. $\widetilde{\theta}_k \equiv \widehat{\theta}_k \theta^*$ does not diverge in magnitude to ∞
- 2. $\tilde{\theta}_k$ converges a.s. to some random vector;
- 3. this random vector is the constant 0

 $\mathsf{Part} \; \mathbf{1}$: Letting $M_j = a_j \overline{\overline{H}}_j^{-1} E(G_j(\hat{\theta}_j) | \hat{\theta}_j) = a_j \overline{\overline{H}}_j^{-1}$ $\int\limits_j^{-1} (g_j(\hat{\theta}_j)+b_j)$ and $M_j'=a_j\overline{\overline{H}}_j^{-1}$ $\bar{g}_j^{-1}(\hat{g}_j(\hat{\theta}_j)-\bar{g}_j(\hat{\theta}_j)),$ we can write

$$
\widetilde{\theta}_{k+1} + \sum_{j=0}^k M_j = \widetilde{\theta}_0 - \sum_{j=0}^k M_j'
$$

 $\left\{\sum_{j=1}^k M'_j\right\}$ is a maringale sequence (in k)

$$
E\left\|\sum_{j=0}^k M'_j\right\|^2 \leq 2\sum_{j=0}^k E\left\|M'_j\right\|^2 < \infty
$$

Then by the martingale convergence theorem

$$
\widetilde{\theta}_{k+1} + \sum_{j=0}^{k} M_j \stackrel{\text{a.s.}}{\rightarrow} X
$$

where X is some integrable random vector. Let us now show that $P\left(\limsup_{k\to\infty}\|$ $\left\| \tilde{\theta}_k \right\| = \infty$ $= 0$. Since the arguments below apply along any subsequence, epresented as

$$
\bigcup_{S} \left\{ \tilde{\theta}_{ki} \to \infty \quad \forall i \in S \right\}
$$

\n
$$
\subseteq \bigcup_{\tau > 0, S} \left\{ \left\{ \tilde{\theta}_{ki} \ge \rho'(\tau, S) \quad \forall i \in S, \quad \tilde{\theta}_{ki} \le \tau \quad \forall i \notin S \right\} \right\}
$$

\n
$$
k \ge K(\tau, S) \} \bigcap \limsup_{k \to \infty} \left\{ M_{ki} < 0 \quad \forall i \in S \right\} \right\}
$$

\n
$$
\bigcup \left\{ \left\{ \tilde{\theta}_{ki} \to \infty \quad \forall i \in S \right\} \bigcap \liminf_{k \to \infty} \left\{ M_{ki} < 0 \quad \forall i \in S \right\}^c \right\} \right\}
$$

For the first event:

Assuming there exists a subsequence $\{k_0, k_1, k_2, \dots\}$, $k_0 \ge K(\tau, S)$ such that $\left\{\widetilde{\theta}_{k_ji}\geq\rho'(\tau, S)\forall i\in S\right\}\cap\left\{M_{k_ji}< 0\forall i\in S\right\}$ is true. Then, from <code>C.6</code> and $M_j = a_j \overline{\overline{H}}_j^{-1} E(G_j(\hat\theta_j)|\hat\theta_j) = a_j(\bar g(\hat\theta_j)+\overline{\overline{H}}_j^{-1} o(c_j^2)),$

$$
\sum_{i\in S}\tilde{\theta}_{k_j i}\bar{g}_{k_j i}(\hat{\theta}_{k_j})<0 \quad \text{a.s.}
$$

for all k_j .

By C.4, $\tilde{\theta}_{k_j}^T \bar{g}_{k_j} \left(\hat{\theta}_{k_j} \right) \ge \rho \Big\|$ $\left\Vert \tilde{\theta}_{k_{j}}\right\Vert$ a.s. which, by C.7, $\rho'(\tau,S)\geq\tau$ and $dim(S) \geq 1$ implies, for all *j* sufficiently large,

$$
\sum_{i\in S}\widetilde{\theta}_{k_ji}\bar{g}_{k_ji}\left(\widetilde{\theta}_{k_j}\right)\geq \tfrac{\rho}{2}\left\|\widetilde{\theta}_{k_j}\right\|\geq \left(\tfrac{\rho}{2}\right)\dim(S)\rho'(\tau,S)\geq \tfrac{\rho\tau}{2}\quad \text{ a.s.}
$$

That's a contradiction. So the first event has probability 0.

For the second event

 $\{\tilde{\theta}_{ki} \to \infty \quad \forall i \in S\} \bigcap \liminf_{k \to \infty} \{M_{ki} < 0 \quad \forall i \in S\}^c$, from

$$
\widetilde{\theta}_{k+1} + \sum_{j=0}^{k} M_j \stackrel{\text{a.s.}}{\to} X
$$

for almost all sample points, $\sum_{k=0}^{\infty} M_{ki} \rightarrow -\infty \quad \forall i \in S$ However, at each k , the event $\{\tilde{M}_{ki} < 0 \forall i \in S\}^c$ is composed of the union of $2^{\dim(S)} - 1$ events, each of which has $M_{ki} \geq 0$ for at least one $i \in S$. Here is a contradiction. Hence, the probability of the second event is 0. So limsu $p_{k\to\infty} ||\tilde{\theta}_k|| < \infty$

つひひ

Part 2: To show that $\tilde{\theta}_k$ converges a.s. to a unique (finite) limit, we show that

$$
P\left(\liminf_{k\to\infty}\widetilde{\theta}_{ki} < a < b < \limsup_{k\to\infty}\widetilde{\theta}_{ki}\right) = 0 \quad \forall i
$$

for any $a < b$.

There exist two subsequences, one with convergence to a point $\lt a$ and one with convergence to a point $> b$.

From $\widetilde{\theta}_{k+1}+\sum_{j=0}^{\widetilde{k}}M_j\stackrel{\text{a.s.}}{\to} X$ and the conclusion of Part 1, each of these subsequences has a sub-subsequence $\{k_{j_l}\}$ such that

$$
\limsup_{l\to\infty}\left|\sum_{k=1}^{k_{j_l}}M_{ki}\right|<\infty \text{ a.s.}
$$

Supposing that the event within the probability statement is true, we know that for any $\rho > 0$ and corresponding sample point we can choose $m > n$ sufficiently large so that for each i and combined sub-subsequence (from both sub-subsequences mentioned above)

$$
\begin{aligned}\n&\left|\sum_{k=k_{j_n}}^{k_{j_{m-1}}} M_{ki}\right| \leq \rho \\
&\left|\tilde{\theta}_{k_{j_m}i} - \tilde{\theta}_{k_{j_n}}i + \sum_{k=k_{j_n}}^{k_{j_{m-1}}} M_{ki}\right| \leq \frac{b-a}{3} \\
&\tilde{\theta}_{k_{j_n}i} < a < b < \tilde{\theta}_{k_{j_m}i}\n\end{aligned}
$$

Picking $\rho < (b - a)/3$ implies that

$$
\left|\tilde{\theta}_{k_{j_n}i}-\tilde{\theta}_{k_{j_m}i}\right|\leq 2(b-a)/3
$$

it requires that

$$
\tilde{\theta}_{k_{jm}}i-\tilde{\theta}_{k_{jn}}i > b-a
$$

which is a contradiction. So $\tilde{\theta}_k$ converges a.s. to a unique limit.

 QQ

Part 3: Let us now show that the unique finite limit from Part 2 is 0. we have lim su $p_{n\to\infty}\,|\sum_{k=0}^\infty M_{ki}|<\infty$ a.s. $\forall i.$ Then the result to be shown follows if

$$
P\left(\lim_{k\to\infty}\widetilde{\theta}_k\neq 0,\left\|\sum_{k=0}^\infty M_k\right\|<\infty\right)=0
$$

Suppose that the event is true, and let $I \subseteq \{1, 2, \dots, p\}$ represent those indexes i such that $\widetilde{\theta}_{ki}\nrightarrow 0$ as $k\rightarrow \infty.$ Then, there exists some $0 < \mathsf{a}^{\prime} < \mathsf{b}^{\prime} < \infty$ and $\mathsf{K}\left(\mathsf{a}^{\prime}, \mathsf{b}^{\prime}\right) < \infty$ such that $\forall k \geq K, 0 < a' \leq \left| \tilde{\theta}_{ki} \right| \leq b' < \infty$ when $i \in I(I \neq \varnothing)$ and $\left| \begin{array}{c} 0 & \text{if } i \leq k \end{array} \right|$ $i \in I^c$. From C.4 and the conditions above, it follows that $\left.\tilde{{\theta}}_{ki}\right|<$ a $^{\prime}$ when

$$
\sum_{k=K+1}^{n} a_k \sum_{i \subset I} \tilde{\theta}_{ki} \bar{g}_{ki} \left(\hat{\theta}_k \right) \geq a' \rho \sum_{k=K+1}^{n} a_k
$$

At least one $i \in I$

$$
\limsup_{n\to\infty}\left|\frac{\rho a'\sum_{k=K+1}^{n}a_k}{\sum_{k=K+1}^{n}a_k\bar{g}_{ki}\left(\hat{\theta}_k\right)}\right|<\infty
$$

Recall that $a_k\bar g_k\left(\hat\theta_k\right)=M_k-a_k\overline{\overline H}_k^{-1}b_k$ and $b_k=O\left(c_k^2\right)$ a.s. Then, $\left|\sum_{k=K+1}^{\infty}M_{ki}\right|=\infty$. Hence, $\left|\sum_{k=0}^{\infty}M_{ki}\right|=\infty$ with probability >0 for at least one *i*. However, this is inconsistent with the event $\|\sum_{k=0}^\infty M_k\|<\infty$, showing that the event does, in fact, have probability 0 . This completes Part 3, which completes the proof. Q.E.D.

つひい

Theorem 2a

Let conditions C.0, C.1", C.2, C.3, and C.4-C.9 hold. Then $\overline{H}_k \to H(\theta^*)$ a.s.

C.1": The conditions of C.1 hold plus $\sum_{k=0}^{\infty} (k+1)$ $^{-2}$ $(c_k \tilde{c}_k)^{-2} < \infty$ with $\tilde{c}_k = O(c_k)$ C.3': Change "thrice differentiable" in C.3 to "four-times differentiable" with all else unchanged. C.9: $\tilde{\Delta}_k$ satisfies the assumptions for Δ_k in C.2 (i.e., $\forall k, \ell,$ $\left| \tilde{\Delta}_{k\ell} \right| \leq \rho$ and $\tilde{\Delta}_{k\ell}$ is symmetrically distributed about 0; $\left\{ \tilde{\Delta}_{k\ell}\right\}$ are mutually independent); Δ_k and $\tilde{\Delta}_k$ are independent; $E\left(\Delta_{k\ell}^{-2}\right)$ $\binom{-2}{k\ell} \leq \rho, E\left(\tilde{\Delta}_{k\ell}^{-2}\right) \leq \rho \forall k, \ell$ and some

 $\rho > 0$.

C.8: For some $\rho > 0$ and all k, ℓ, m ,

$$
E\left[y\left(\hat{\theta}_k \pm c_k\Delta_k + \tilde{c}_k\tilde{\Delta}_k\right)^2 / \left(\Delta_{k\ell}\tilde{\Delta}_{km}\right)^2\right] \le \rho
$$

and

$$
E\left[y\left(\hat{\theta}_{k} \pm c_{k}\Delta_{k}\right)^{2} / \left(\Delta_{k\ell}\Delta_{km}\right)^{2}\right] \leq \rho
$$

$$
E\left[\tilde{\varepsilon}_{k}^{(\pm)} - \varepsilon_{k}^{(\pm)} | \hat{\theta}_{k}; \tilde{\Delta}_{k}; \bar{H}_{k}\right] = 0
$$

and

$$
E\left[\left(\tilde{\varepsilon}_{k}^{(\pm)} - \varepsilon_{k}^{(\pm)}\right)^{2} / \left(\Delta_{k\ell}\tilde{\Delta}_{km}\right)^{2}\right] \leq \rho
$$

where $\tilde{\varepsilon}_{k}^{(\pm)} = y\left(\hat{\theta}_{k} \pm c_{k}\Delta_{k} + \tilde{c}_{k}\tilde{\Delta}_{k}\right) - L\left(\hat{\theta}_{k} \pm c_{k}\Delta_{k} + \tilde{c}_{k}\tilde{\Delta}_{k}\right)$

4 0 8

Proof:

$$
\begin{split}\n&= \Big[G_{k\ell}^{(1)} \left(\hat{\theta}_k \pm c_k \Delta_k \right) \mid \hat{\theta}_k, \Delta_k \Big] \\
&= E \left[\frac{1}{\tilde{c} \tilde{\Delta}_{k\ell}} [\tilde{c}_k g \left(\hat{\theta}_k \pm c_k \Delta_k \right)^T \tilde{\Delta}_k + \frac{\tilde{c}_k^2}{2} \tilde{\Delta}_k^T H \left(\hat{\theta}_k \pm c_k \Delta_k \right) \tilde{\Delta}_k \right. \\
&+ \frac{\tilde{c}_k^3}{6} \sum_{h, i, j} L_{hij}^{(3)} \left(\tilde{\theta}_k^{\pm} \right) \tilde{\Delta}_{kh} \tilde{\Delta}_{ki} \tilde{\Delta}_{kj} \mid \hat{\theta}_k, \Delta_k \right] \\
&= g_{\ell} \left(\hat{\theta}_k \pm c_k \Delta_k \right) + \frac{1}{6} \tilde{c}_k^2 E \left[\tilde{\Delta}_{k\ell}^{-1} \sum_{h, i, j} L_{hij}^{(3)} \left(\tilde{\theta}_k^{\pm} \right) \tilde{\Delta}_{kh} \tilde{\Delta}_{ki} \tilde{\Delta}_{kj} \mid \hat{\theta}_k, \Delta_k \right]\n\end{split}
$$

 $\tilde{\theta}_\kappa^\pm$ are points on the line segments between $\hat{\theta}_k \pm c_k \Delta_k + \tilde{c}_k \tilde{\Delta}_k$ and $\widehat{\theta}_k \pm \epsilon_k \Delta_k;$

←□

Let

$$
B_{k\ell} = \frac{1}{6} E\left[\tilde{\Delta}_{k\ell}^{-1} \sum_{h,i,j} \left(L_{hij}^{(3)}\left(\bar{\theta}_k^+\right) - L_{hij}^{(3)}\left(\bar{\theta}_k^-\right) \right) \cdot \tilde{\Delta}_{kh} \tilde{\Delta}_{ki} \tilde{\Delta}_{kj} \mid \hat{\theta}_k, \Delta_k \right]
$$

we have $B_{k\ell} \sim o(c_k)$ for all k sufficiently large. Hence,

$$
E\left(\hat{H}_{k,\ell m} | \hat{\theta}_{k}\right)
$$
\n
$$
= E\left(\frac{G_{k\ell}^{(1)}\left(\hat{\theta}_{k} + c_{k}\Delta_{k}\right) - G_{k\ell}^{(1)}\left(\hat{\theta}_{k} - c_{k}\Delta_{k}\right)}{2c_{k}\Delta_{km}} | \hat{\theta}_{k}\right)
$$
\n
$$
= E\left(\frac{g_{\ell}\left(\hat{\theta}_{k} + c_{k}\Delta_{k}\right) - g_{\ell}\left(\hat{\theta}_{k} - c_{k}\Delta_{k}\right) + \tilde{c}_{k}^{2}B_{k\ell}}{2c_{k}\Delta_{km}} | \hat{\theta}_{k}\right)
$$
\n
$$
= E\left(\frac{2c_{k}\left[\partial g_{\ell}/\partial\theta^{T}\right]_{\theta=\hat{\theta}_{k}}\Delta_{k} + O\left(c_{k}^{3}\right)}{2c_{k}\Delta_{km}} | \hat{\theta}_{k}\right)
$$
\n
$$
= H_{\ell m}\left(\hat{\theta}_{k}\right) + O\left(c_{k}^{2}\right)
$$

Since

$$
\frac{1}{n+1}\sum_{k=0}^n[\hat{H}_k - E(\hat{H}_k | \hat{\theta}_k)] \to 0 \text{ a.s.}
$$

Then, by the continuity of H near $\hat{\theta}_k$, and the fact that $\hat{\theta}_k \rightarrow \theta^*$ a.s. (Theorem 1a)

$$
\frac{1}{n+1} \sum_{k=0}^{n} E\left(\hat{H}_k | \hat{\theta}_k\right)
$$

=
$$
\frac{1}{n+1} \sum_{k=0}^{n} \left(H\left(\hat{\theta}_k\right) + O\left(c_k^2\right)\right) \to H\left(\theta^*\right) \text{ a.s.}
$$

Given that $\bar{H}_k = (n+1)^{-1} \sum_{k=0}^{n+1} \hat{H}_k$ Q.E.D.

Asymptotic Normality

Theorem 3a

Suppose that C.0, C. $1''$, C. 2, C. 3', and C.4-C.9 hold (implying convergence of $\widehat{\theta}_k$ and \bar{H}_k). Then, if C.10 and C.11 hold and $H\!\left(\theta^*\right)^{-1}$ exists,

$$
k^{\beta/2} \left(\hat{\theta}_k - \theta^* \right) \stackrel{\text{dist}}{\longrightarrow} \mathcal{N}(\mu, \Omega)
$$

where $\mu=\{0\,$ if 3 $\gamma-\alpha/2>0$; $H\!\left(\theta^*\right)^{-1}$ $\mathsf{T}/\left(\mathsf{a}-\beta_+/2\right)$ if 3 $\gamma-\alpha/2=0\},$ the i th element of T is

$$
-\frac{1}{6}ac^2\xi^2\left[L^{(3)}_{jjj}(\theta^*)+3\sum_{\stackrel{i=1}{i\neq j}}^{p}L^{(3)}_{ijj}(\theta^*)\right]
$$

 $\Omega=a^2c^{-2}\sigma^2\rho^2H\left(\theta^*\right)^{-2}/\left(8a-4\beta_+\right)$, and $\beta_+=\beta$ if $\alpha=1$ and $\beta_+=0$ if $\alpha < 1$.

 QQ

C.10: $E\left(\varepsilon_k^{(+)}-\varepsilon_k^{(-)}\right)$ $\left(\begin{smallmatrix} -1\k\end{smallmatrix}\right)^2 \mid \hat{\theta}_k, \overline{H}_k \bigg) \rightarrow \sigma^2$ a.s. for some $\sigma^2 > 0$ For almost all $\hat{\theta}_k, \left\{E\left(\left(\varepsilon_k^{(+)}-\varepsilon_k^{(-)}\right)\right) \right.$ $\left(\begin{smallmatrix} (-) \ k \end{smallmatrix}\right)^2 \mid \hat{\theta}_k, c_k\Delta_k = \eta \bigg) \bigg\}$ is an equicontinuous sequence at $\eta = 0$, and is continuous in η on some compact, connected set containing the actual (observed) value of $c_k\Delta_k$ a.s. C.11: In addition to implicit conditions an α and γ via C.1", $3\gamma - \alpha/2 \ge 0$ and $\beta > 0$. Further, when $\alpha = 1$, $a > \beta/2$. Let $f_k(\cdot)$ in (2.1a) be chosen such that $\overline{H}_{k}-\overline{H}_{k}\rightarrow 0$ a.s.

つひひ

Proof:

Beginning with the expansion $E\left(\, G_k\left(\hat\theta_k\right) \mid \hat\theta_k\right) = H\left(\bar\theta_k\right)\left(\hat\theta_k - ~\theta^*\right) + b_k$, where $\bar{\theta}_k$ is on the line segment between $\hat{\theta}_k$ and θ^* and b_k is the bias the estimation error can be represented as

$$
\hat{\theta}_{k+1} - \theta^* = (I - k^{-\alpha} \Gamma_k) \left(\hat{\theta}_k - \theta^* \right) k^{-(\alpha+\beta)/2} \Phi_k V_k + k^{\alpha-\beta/2} \overline{H}_k^{-1} T_k
$$

where

$$
\Gamma_{k} = a \overline{H}_{k}^{-1} H(\overline{\theta}_{k})
$$

\n
$$
\Phi_{k} = -a \overline{H}_{k}^{-1}
$$

\n
$$
V_{k} = k^{-\gamma} \left[G_{k} (\hat{\theta}_{k}) - E (G_{k} (\hat{\theta}_{k}) | \hat{\theta}_{k}) \right]
$$

\n
$$
T_{k} = -a k^{\beta/2} b_{k}
$$

The result will be shown if conditions (2.2.1) (2.2.2) and (2.2.3) of Fabian(1968) hold.

2.2. THEOREM. Suppose k is a positive integer, \mathfrak{F}_n a non-decreasing sequence of σ -fields, $\mathfrak{F}_n \subset \mathcal{S}$; suppose U_n , V_n , $T_n \in \mathbb{R}^k$, $T \in R^k$, Γ_n , $\Phi_n \in \mathbb{R}^{k \times k}$, Σ , Γ , Φ , $P \in R^{k \times k}$, Γ is positive definite, P is orthogonal and $P' \Gamma P = \Lambda$ diagonal. Suppose Γ_n , Φ_{n-1} , V_{n-1} are \mathfrak{F}_n -measurable, C, α , $\beta \varepsilon R$ and $(2.2.1)$ $\Gamma_n \to \Gamma$, $\Phi_n \to \Phi$, $T_n \to T$ or $E||T_n - T|| \to 0$, $E_{\pi_n}V_n = 0,$ $C > ||E_{\pi_n}V_nV_n' - \Sigma|| \to 0,$ $(2.2.2)$ and, with $\sigma_{i,r}^2 = E_X {\|\n|V_i\|^2} \geq r j^{\alpha} {\|\n|V_i\|^2}$, let either $\lim_{i\to\infty}\sigma_{i,r}^2=0$ for every $r > 0$, $(2.2.3)$

or

(2.2.4)
$$
\alpha = 1, \qquad \lim_{n \to \infty} n^{-1} \sum_{j=1}^{n} \sigma_{j,r}^{2} = 0 \qquad \text{for every } r > 0.
$$

Suppose that, with $\lambda = \min_i \Lambda^{(ii)}$, $\beta_+ = \beta$ if $\alpha = 1$, $\beta_+ = 0$ if $\alpha \neq 1$, $0 < \alpha \leq 1$, $0 \leq \beta$, $\beta_+ < 2\lambda$ $(2.2.5)$

 and

$$
(2.2.6) \tU_{n+1} = (I - n^{-\alpha} \Gamma_n) U_n + n^{-(\alpha+\beta)/2} \Phi_n V_n + n^{-\alpha-\beta/2} T_n.
$$

Then the asymptotic distribution of $n^{\beta/2}U_n$ is normal with mean $(\Gamma - (\beta_+/2)I)^{-1}T$ and covariance matrix PMP' where

$$
(2.2.7) \t\t M^{(ij)} = (P'\Phi\Sigma\Phi'P)^{(ij)}(\Lambda^{(ii)} + \Lambda^{(jj)} - \beta_+)^{-1}.
$$

If
$$
3\gamma - \alpha/2 > 0
$$
, $T_k \to 0$ a.s. by the fact that $b_k(\hat{\theta}_k) = O(k^{-2\gamma})$ a.s. If $3\gamma - \alpha/2 = 0$,

$$
b_{kl}\left(\hat{\theta}_{k}\right)-\frac{1}{6}\frac{c^{2}}{k^{2\gamma}}L^{(3)}\left(\theta^{*}\right)E\left[\Delta_{kl}^{-1}\left(\Delta_{k}\otimes\Delta_{k}\otimes\Delta_{k}\right)\right]\rightarrow0\text{ a.s.}
$$
\n
$$
T_{kl}\rightarrow-\frac{1}{6}ac^{2}\xi^{2}\left\{L_{lli}^{(3)}\left(\theta^{*}\right)+\sum_{\substack{i=1\\i\neq l}}^{p}\left[L_{lli}^{(3)}\left(\theta^{*}\right)+L_{lli}^{(3)}\left(\theta^{*}\right)+L_{lli}^{(3)}\left(\theta^{*}\right)\right]\right\}\text{ a.s.}
$$

We have thus shown that T_k converges for $3\gamma - \alpha/2 \geq 0$.

$$
E(V_{k}V_{k}^{T} | \mathscr{F}_{k}) = k^{-2\gamma} E\left\{-\left[\frac{L(\hat{\theta}_{k} + \bar{\Delta}_{k}) - L(\hat{\theta}_{k} - \bar{\Delta}_{k})}{2ck^{-\gamma}\Delta_{k}}\right]^{2} | \hat{\theta}_{k}\right\}
$$

∢ ロ ▶ - ∢ 母 ▶ - ∢ ヨ

$$
+ k^{-2\gamma} E \left\{ \Delta_k^{-1} \left(\Delta_k^{-1} \right)^{\mathsf{T}} \left[\frac{\epsilon_k^{(+)} - \epsilon_k^{(-)}}{2 c k^{-\gamma}} \right] \cdot \left[\frac{L \left(\hat{\theta}_k + \bar{\Delta}_k \right) - L \left(\hat{\theta}_k - \bar{\Delta}_k \right)}{2 c k^{-\gamma}} \right] \mid \mathscr{F}_k \right\}
$$

+ $k^{-2\gamma} E \left\{ \Delta_k^{-1} \left(\Delta_k^{-1} \right)^{\mathsf{T}} \left[\frac{\epsilon_k^{(+)} - \epsilon_k^{(-)}}{2 c k^{-\gamma}} \right]^2 \mid \mathscr{F}_k \right\}$
- $k^{-2\gamma} \left[g \left(\hat{\theta}_k \right) + b_k \left(\hat{\theta}_k \right) \right] \left[g \left(\hat{\theta}_k \right) + b_k \left(\hat{\theta}_k \right) \right]^{\mathsf{T}}$

For the third term

$$
E\left[\Delta_{k}^{-1} \left(\Delta_{k}^{-1}\right)^{\mathsf{T}}\left(\epsilon_{k}^{(+)}-\epsilon_{k}^{(-)}\right)^{2} | \mathcal{F}_{k}\right]
$$
\n
$$
= \int_{\Omega_{\Delta}} \Delta_{k}^{-1} \left(\Delta_{k}^{-1}\right)^{\mathsf{T}} E\left[\left(\epsilon_{k}^{(+)}-\epsilon_{k}^{(-)}\right)^{2} | \mathcal{F}_{k}, \bar{\Delta}_{k}\right] dP_{\Delta}
$$
\n
$$
E\left(V_{k}V_{k}^{\mathsf{T}} | \mathcal{F}_{k}\right) \rightarrow \frac{1}{4}c^{-2}\sigma^{2}\rho^{2}I \quad \text{a.s.}
$$

É

This completes the proof of Fabian's conditions (2.2.1) and (2.2.2) We now show that condition (2.2.3) holds, which is

$$
\lim_{k\to\infty} E\left(\mathscr{I}_{\{\|V_k\|^2\geq rk^\alpha\}}\|V_k\|^2\right)=0 \quad \forall r>0
$$

where $\mathscr{I}_{\{\cdot\}}$ denotes the indicator for $\{\cdot\}$. By Holder's inequality and for any $0 < \delta' < \delta/2$, the above limit is bounded above by

$$
\lim_{k\to\infty}\sup P\left(\|V_k\|^2\geq r k^{\alpha}\right)^{\delta'/(1+\delta')}\left(E\|V_k\|^{2(1+\delta')}\right)^{1/(1+\delta')}
$$

$$
\leq \limsup_{k\to\infty}\left(\frac{E\|V_k\|^2}{r k^{\alpha}}\right)^{\delta'/(1+\delta')}\left(E\|V_k\|^{2(1+\delta')}\right)^{1/(1+\delta')}
$$

Note that

$$
\|V_k\|^{2(1+\delta')}\leq 2^{2(1+\delta')}k^{-2(1+\delta')\gamma}\left[\left\|\hat{g}\left(\hat{\theta}_k\right)\right\|^{2(1+\delta')}\right.+\left\|g\left(\hat{\theta}_k\right)\right\|^{2(1+\delta')}+\left\|b_k\left(\hat{\theta}_k\right)\right\|^{2(1+\delta')}\right]
$$

Thanks

Þ D. \mathcal{A} .

 299

K ロ ト K 伊 ト K 毛