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Review of Stochastic Approximation

Let R(x) := E[Y(x,&)] be a performance measure, in which
e Y(x,&): sample performance (observed)

@ &: stochastic disturbance, x in a parameter space

Root-finding problem:
e Given a constant b, find the root x* = {x|R(x) = b}

Optimization problem:

e Find x* = arg miny R(x) or x* = arg max, R(x)

Stochastic approximation (SA) method:
o lterates algorithm x,11 = x, + a,,@R(x,,)
o RM (root-finding): R nondecreasing and R’'(x*) > 0, VR(xp) = b—y,
o KW (optimization): find maxima, R concave, VR(x,) = ==
in which y,: observation from Y(x,,&), y2n: obsv from Y(x, + ¢p, &),
and ya2p_1: obsv from Y(xp, — cn, &)
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Motivations of Averaging Algorithm

Wiki:" While the RM algorithm is theoretically able to achieve O(1/n)
under the assumption of twice continuous differentiability and strong
convexity, it can perform quite poorly upon implementation. This is
primarily due to the fact that the algorithm is very sensitive to the choice
of the step size sequence a,, and the supposed asymptotically optimal step
size policy can be quite harmful in the beginning.”

It require a large amount of a prior information on R, VR, and/or V2R,
which is hard to obtain in most situations. E.g.

e Chung (1954) and Fabian (1968): achieve optimal convergence rate
O(1/+y/n) with a, = V2R(x*)"!/n or =

1
nV R(x*)

Averaging algorithm does not require such information
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Motivations of Averaging Algorithm

Influence of step-size a, on the finite-time performance
o If a, too large, then iterates jump back and forth without
approaching x*
e If a, too small, then iterates barely move
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Fig. 6.1 Sensitivity of SA to step size a, when a,, is “too large” relative to the gradient (left graph)
and when a, is “too small” relative to the gradient (right graph)
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Motivations of Averaging Algorithm

Averaging algorithm reduce sensitivity of a, (put less emphasis on the last
iterate)

@ Take longer steps

@ averaging of the iterates (Incorporate a subset of the iterates into the
output to decrease the reliance on the last iterate)

Averaging algorithm: a more robust step size policy
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Linear Problem

Linear root-searching problem:

2. Linear problem. We want to find x*, which solves the following equation:
(1) Ax=b.
Here be R™, xe R™, and Ae R™*™. The sequence ()=, is observed, where y, =
Ax, ;—b+&. Here Ax,_,—b is a prediction residual and ¢, is a random disturbance.

Linear performance measure R(x) = Ax — b and the root-finding problem
R(x) = 0, and sample performance y;.
Averaging algorithm:

To obtain the sequence of estimates (%,),=, of the solution x* of (1), the following
recursive algorithm will be used:

Xy = X1~ YiYes yr:Axl~l_b+§h
(2) 1t-1

X, is an arbitrary (nonrandom) point in R™.
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Assumptions

Assumpti;)a;l 2.1. The matrix —A is Hurwiiz, i.e., Re A;(A)>0. (Here A,(A) are the

eigenvalues of the matrix A.)
Assumption 2.2. Coeflicients y, > 0 satisfy either

-1
(3) Y=Y, 0<y<2(min Re )i,-(A))
or
) %0, LYooy,
Y

Commentary. Condition (4) for y,—0 is the requirement on 7y, to decrease
sufficiently slow. For example, the sequences vy, =y “ with 0<a <1 satisfy this
restriction, but the sequence y, =yt~ does not.

Why using these two assumptions?

Oct. 11, 2021 8 /30
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Try to understand A2.1- 2.2 as follows.
Iterate algorithm:

Xt = Xt—1 = Ve(Axt—1 — b+ &) = (I = veA)xe—1 + (b — &)

— = H(/ — 4iA)xo + Z H (I =~jA)vi(b = &) )
i=1 i=1 j=i+1

and

Xt — X" = xp-1 = X" = Ye[Alxe—1 — x*) + A" — b+ &
= (/ - ’YtA)(Xt—l - X*) — V&t

=10 =30 —x) = H (I =2A)ici
i=1 i=1j=i
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Let A; = x; — x*, and A; = X — x*, then

Atzﬂ(/w Ao—ZH (1 = A

i=1 j=i41
AtziiAk
t—1 k lt 1 k k
zsz(l—'y,A)Ao— tzz 1T (=AW
k=0i=1 k=0 i=1 j=i+1
t—1 k 1t 1t-1 k
zsz(l—y,A)Ao—tz IT U —=~Ac
k=0 i=1 i=0 k=i j=i+1

t—1 77k Y oo | 1 t-1
Set af = ;> 4 [Ii2j41(/ — 7iA), we obtain A, = ot Yoiso aréi
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Ay should has little impact on A; and A;. So, we need
[Ti_.( —viA) =0, as t — co.
o When v =7, [Ti—;(/ —7iA) = (I — yA)t — 0, then we need
|l —vAl <1
Assumption 2.2: 0 < yA < 2, then || —vA| < 1
o When v; — 0, [Tt_,(/ — 7iA) < Ke @ Zi=1% — 0 if YL, v
divergences
Assumption 2.2: vy ~t7% 0 < a < 1.
Why «a cannot be 17 (a < 1is a technical assumption)

t—1 k k
Z H (I = AN = 'VJZ H (I —A)& + Z H (I = %A
k=i j=i+1 k=i j=i+1 J:i+1

i—1 i—1
(Vi = %) = 2oh=; (V1 — ) = D vk - o()-
Then A2.3 guarantees the second term CONVErgence (the proof is routine, omit here, see

the proof of lemma 1 in the paper).
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We assume a probability space with an increasing family of Borel fields (Q, ,
&1, P). Suppose that & is a random variable, adopted to ..
Assumption 2.3. £ is martingale-difference process, i.e., E(£ |J,-,)=0;

sup E(J&]|F 1) <o as.
t

(Here |-| is a Euclidean norm in R™.)
Assumption 2.4. The following limit exists:

lim Tim E(&[1(£]> ©)|.-) £ 0.
(Here I(A) is the characteristic function of a set A.)
Assumption 2.5. The following hold:

(@)  lim E(&¢7|F1) £ 5>0;

100

(b)  lim B =5>0.

=00

The notation S>>0 means that a matrix S is symmetrical and positive definite.
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A2.3: Stochastic disturbance: random variable £ — stochastic process &
@ Time dimension, x, — x¢, and then averaging the trajectory
o Filtered probability space (2, F, F¢, Pr) with a filtration F;

e & € m(F;) is a martingale-difference process

A2.4: Lindeberg condition — CLT

A2.5: There exists a covariance matrix.
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Theorem 1

THEOREM 1. (a) Let Assumptions 2.1-2.4, 2.5(a) be satisfied. Then

Vi(x,—x*) 3 N(0, V);
i.e., the distribution of normalized error \/1(%,— x*) is asymptotically normal with zero
mean and the covariance matrix

(5) V=A"'S(A™H"
(b) If Assumptions 2.1-2.3, 2.5(b) are satisfied, then

lim Et(%, —x*)(%,—x*)" = V.
pirs

840 B. T. POLYAK AND A. B. JUDITSKY

(c) Let Assumptions 2.1-2.3 be satisfied and let (&)=, be mutually independent
and identically distributed. Then

X —x¥>0 as.
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Proof of (a)

Simplify without loss of generality: N =1 B
To prove (a), we consider decomposing v/tA; and obtain

_ tA 1 t—1
ViR, = 2020 até =10 4@ 4 6),

" Vi \/f;

1M = %ft’ — 0. In fact, [of|| < K.

Idea: (we only show the case v; = 7)

ot =0 TLU-18) =2 30w

k=i j=i+1
= Al (1 —HA) 2471

- t—1
So. J; 2 afti = & £ A - & T (1 -4 2ATG = 10 41O
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Proof of (a)

We prove /3) — 0.
In fact, because of tlim (I —~vA)t =0, we obtain

—00

t—1

1 .
- > (I=~A)FTPAT 0,
i=0

i _ -1
Denote w} := (I — yA)"™ 2A~1. Then %Zf:o [wfll — 0, and we also
obtain [|wf| < K.

Hence, we get that |/)| =

l—l thl
=— X Iwjili’== X Iwjl->0 ast->x,
= t 5

B| T wie| =%

so [1®)] = 0.
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Proof of (a)

We prove /(2 is asymptotic normality.
We must demonstrate that the central limit theorem for martingales can
be employed for I'® (see, for example, Theorem 5.5.11 in [17]). We have, for a
sufficiently large constant C, that

T T EQAEPI0A™g1> Ol

=1
= K'Tm 3 E(8P10g1> CK)IF,-) = AC).

848 B. T. POLYAK AND A. B. JUDITSKY

According to Assumption 2.4, /(C) %> 0 as C - co. Thus the Lindeberg condition is
fulfilled. By Assumption 2.5(a), we get that

1!*1
T L ATEEE |05
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Proof of (b)

VA, _/(1)+/(2)+/()
E[tA:A]] = E[(/M 4+ 1@ 416G M) 4 1?) 4 j(3))T]
Part 2. Proposition (b) of the theorem holds.
Proof. We have from (A10) that
tEAA, = EI?(I®)7T +¢,.

As in the proof of Part 1, we obtain from Lemma 2 that & - 0 as ¢ »c0. Then

lim tEA,AT —11m ZA 'Egg(ATH)T

1>

—hm Z AT'S(AT)T =

t-wctJ‘
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Proof of (c)

Back to the decomposition A, := (/) 4 1) - 13))/\/t. (Consider i.i.d.
&)
o N/t = afo g

tvo

t—1
o By the law of large number, /?)/\/t = 1Y A 0.
i=0

t—1
o ldea of the law of large number, I(3)/\/f = % Yo wig — 0.

1=
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Nonlinear Problem

3. Nonlinear problem. For nonlinear problems, consider the classical problem of
stochastic approximation [21]. Let R(x):R™ = R" be some unknown function.
Observations y, of the function are available at any point x,_,€ R™ and contain the
following random disturbances &, :

M [ R(x,_)+ &
The problem is finding the solution x* of the equation R(x)=0 by using the observa-
tions y, under the assumption that a unique solution exists.
Averaging algorithm:
To solve the problem, we use the following modification of algorithm (2):
X =X~ Yoy J’;:R(IH)*&,

L
(7 frzl b3l Al xo€ R™.

The first equation in (7) defines the standard stochastic approximation process.
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Assumption 3.1. There exists a function V(x): R"™ = R" such that for some A >0,
@>0, £>0, L>0, and all x, ye R", the conditions V(x)=Z a|x[’, |VV(x) -V V(y)|=
Lix—y|, V(x*)=0, VV(x—x*)TR(x)>0 for x# x* hold true. Moreover, VV(x —
x®)TR(x)Z AV(x) for all |x —x*|=e.

Assumption 3.2. There exists a matrix Ge R™*™ and K, <, £ >0,0<A=1such
that

(8) |R(x)— G(x—x*)| = Ky|x —x*'™,

for all |[x—x*=¢ and Re A,(G)>0, i=T, N.
A3.1: V(x*) = R(x*) = 0. For example, V(x) = x2, x* = 0, in this case
x - R(x) > 0 meaning that when x > x* then R(x) > 0, and when x < x*
then R(x ) < 0. Moreover, x - R(x) > ’\x meaning that when x > 0 then

R(x) > 3x, when x < 0 then R(x) < 3x.

A3.2: For example Gx — K1|x|**1 < R(x) < Gx + Ki|x|**? locally around
*=0. R(x) is close to Gx when X or Kj is small.
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Assumptions

Assumption 3.3. (&),=, is a martingale-difference process, defined on a probability
space (Q, §, &, P), i.e.,, E(&|%,-1) =0 almost surely, and for some K,

E(|§:|2|%r—1) +|R(xH)f2§ Ky(1+ |x:—1‘2) a.s.
for all t=1. The following decomposition takes place:

9 &=&(0)+L(x),

where

E(E!(O)l%J—l):O a.s.,
E(E(OE(0)|F-) > S ast—x; $>0,
sup E(|&(0)PT(&(0)> C)|F,-) = 0 as C— oo

and, for all ¢ large enough,
E(|§’,(x,,,)|2 ‘ Fi1)=8(xy) as.

with 8(x)— 0 as x — 0.
Assumption 3.4. It holds that (y, — y,41)/ v, = o(v,), y.>0 for all r;

10) T (1+A)/ Y22 <o,
=1

Commentary. Assumption 3.4, when compared to Assumption 3.2 of Theorem 1,
not only restricts the rate of decrease of the coefficients y, from above, but it forces
the coefficients to decrease not very slowly. Thus, if A =1 in (8), then the sequence
7y, =yt satisfies this condition only for §<a<1.
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Theorem 2

THEOREM 2. If Assumptions 3.1-3.4 are satisfied, then X, — x* almost surely, and

VI(E —x*) 3 N(0, V).
Here
1) V=G'S(GHT.
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Sketch of the Proof

Let us define the process A} by the following equations:
A::AI ~7rGA.:—1+'Ye§ta A?=A01

Let us demonstrate, that for the process A}, all the properties to be proved follow
from Theorem 1.

Denote R(x) := R(x — x*).
We demonstrate the proximity of the processes A! and A,. Set 8, =A!—A,; then
for 8, we obtain the equation (compare with (A9))

1
Vis = v a, Mg+

ol 60 ol B
A= A% — 6. To prove /td; — 0.

‘/_Z (G'+w))(R(A)) - GA))
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Sketch of the Proof

It can be proved that \/t6; — 0 as t — oco. So, the processes A} and A,
are asymptotically equivalent. In fact,

It holds that V10 as t-co.
Proof. From Lemma 2 we immediately get that I'” >0 as - o. Next, due to
Assumption 2.2 and Lemma 2, we get that

o= § % (G +w!)(R(A,) - GA,)|

o0 ] i
=K EoiT/E |[R(A;)— GAl

=
K ]
i=0 1

: : —1/2 oo AN §ghoe 1
Idea (not rigorous): A; ~ i~*/2 then >27°, A = Do mam < 0.
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Sketch of the Proof

|A'P+A
¥ ——i'm < 00,

i=0

Hence, by the Kronecker lemma,

Remark:

Speaker:

Weihuan Hua

I19=—F G~ +w)lIR(8,) - Ga,|>o.

VS

Kronecker's lemma

From Wikipedia, the free encyclopedia
In mathematics, Kronecker's lemma (see, e.g., Shiryaev (1996, Lemma IV.3.2)) is a result at
proofs of theerems concerning sums of independent random variables such as the strong Lav
The lemma | edit]

If (2,)32, is an infinite sequence of real numbers such that

2 Ty =8

m=1

exists and is finite, then we have forall 0 < b; < by, < b3 < ... and b, — oo that

lim — % bpa = 0.
.Hmbl; e
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Stochastic Optimization Problem

An application of the nonlinear result:

4. Stochastic optimization. Consider the problem of searching for the minimum
x* of the smooth function #(x), x € R". The values of the gradient y, = V/(x,_,)+ &

842 B. T. POLYAK AND A. B. JUDITSKY

containing random noise & are available at an arbitrary point x,_, of R™. To solve
this problem, we use the following algorithm of the form (7):

X, =X~ ve), ye=VAx_)+E,
(12) |

At Yl A ) - Jll
o
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Assumption 4.1. Let /(x) be a twice continuously differentiable function and
II =V?¢(x) = LI for all x and some 1>0 and L>0; here I is the identity matrix.

Assumption 4.2. (&)=, is the sequence of mutually independent and identically
distributed random variables E€, =0.

Assumption 4.3. It holds that |¢(x)| = K, (1 +|x]).

Assumption 4.4. The function ¢(x) = Eo(x+£,) is defined and has a derivative
at zero, (0) =0 and x "¢ (x) > 0 for all x # 0. Moreover, there exist &, K,>0,0<A=1,
such that

|9'(0)x =y (x)| = Kfx|"™

for |x|<e.

Assumption 4.5. The matrix function y(x)= Ep(x+£)e(x+¢,)7 is defined and
is continuous at zero.

Assumption 4.6. The matrix —G = —¢'(0)V?/(x*) is Hurwitz, i.e., Re \,(G) >0,
i=1, N.

Assumption 4.7. It holds that (y, — v,41)/ . = 0(y,), ¥, >0 for all t;

-
P AT ALY
=1

A4.1: f convex. A4.3: ¢ linear growth. A4.3+ Ad.4: eg. ¢(x) = x. A4.5:
x(0) = covariance matrix.
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TueoreM 3. Let Assumptions 4.1-4.6 be fulfilled. Then X, — x* almost surely and
Vi(%,—x*) 2 N(0, V), where V=G ' x(0)(G™")".

Sketch of the proof:

Proof of Theorem 3. Let us check whether the assumptions of Theorem 2 are
fulfilled. For that purpose, we transform the first equation of algorithm (12) in the
following way:

X =X, — ¥ (VA D+ v (VX)) — (VA X, )+ £))

(A15)
=l 'YrR(xr—l) + '}'tgr(x:—i _X*);
here
(A16) £ —x®) = (V(x,20)) — e (VA(x_ )+ &),

R(x,-1) = (V4 (x,21)-
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