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Review of Stochastic Approximation

Let R(x) := E[Y (x , ξ)] be a performance measure, in which

Y (x , ξ): sample performance (observed)

ξ: stochastic disturbance, x in a parameter space

Root-finding problem:

Given a constant b, find the root x∗ = {x |R(x) = b}

Optimization problem:

Find x∗ = arg minx R(x) or x∗ = arg maxx R(x)

Stochastic approximation (SA) method:

Iterates algorithm xn+1 = xn + an∇̂R(xn)

RM (root-finding): R nondecreasing and R ′(x∗) > 0, ∇̂R(xn) = b − yn
KW (optimization): find maxima, R concave, ∇̂R(xn) = y2n−y2n−1

cn

in which yn: observation from Y (xn, ξ), y2n: obsv from Y (xn + cn, ξ),
and y2n−1: obsv from Y (xn − cn, ξ)
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Motivations of Averaging Algorithm

Wiki:“ While the RM algorithm is theoretically able to achieve O(1/n)
under the assumption of twice continuous differentiability and strong
convexity, it can perform quite poorly upon implementation. This is
primarily due to the fact that the algorithm is very sensitive to the choice
of the step size sequence an, and the supposed asymptotically optimal step
size policy can be quite harmful in the beginning.”

It require a large amount of a prior information on R, ∇R, and/or ∇2R,
which is hard to obtain in most situations. E.g.

Chung (1954) and Fabian (1968): achieve optimal convergence rate
O(1/

√
n) with an = ∇2R(x∗)−1/n or = 1

n∇R(x∗)

· · ·

Averaging algorithm does not require such information
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Motivations of Averaging Algorithm

Influence of step-size an on the finite-time performance

If an too large, then iterates jump back and forth without
approaching x∗

If an too small, then iterates barely move
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Motivations of Averaging Algorithm

Averaging algorithm reduce sensitivity of an (put less emphasis on the last
iterate)

Take longer steps

averaging of the iterates (Incorporate a subset of the iterates into the
output to decrease the reliance on the last iterate)

Averaging algorithm: a more robust step size policy
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Linear Problem

Linear root-searching problem:

Linear performance measure R(x) = Ax − b and the root-finding problem
R(x) = 0, and sample performance yt .

Averaging algorithm:
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Assumptions

Why using these two assumptions?
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Assumptions

Try to understand A2.1- 2.2 as follows.
Iterate algorithm:

xt = xt−1 − γt(Axt−1 − b + ξt) = (I − γtA)xt−1 + γt(b − ξt)

= · · · =
t∏

i=1

(I − γiA)x0 +
t∑

i=1

t∏
j=i+1

(I − γjA)γi (b − ξi )
(1)

and

xt − x∗ = xt−1 − x∗ − γt [A(xt−1 − x∗) + Ax∗ − b + ξt ]

= (I − γtA)(xt−1 − x∗)− γtξt

= · · · =
t∏

i=1

(I − γiA)(x0 − x∗)−
t∑

i=1

t∏
j=i+1

(I − γjA)γiξi

(2)
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Assumptions

Let ∆t = xt − x∗, and ∆̄t = x̄t − x∗, then

∆t =
t∏

i=1

(I − γiA)∆0 −
t∑

i=1

t∏
j=i+1

(I − γjA)γiξi

∆̄t =
1

t

t−1∑
k=0

∆k

=
1

t

t−1∑
k=0

k∏
i=1

(I − γiA)∆0 −
1

t

t−1∑
k=0

k∑
i=1

k∏
j=i+1

(I − γjA)γiξi

=
1

t

t−1∑
k=0

k∏
i=1

(I − γiA)∆0 −
1

t

t−1∑
i=0

t−1∑
k=i

k∏
j=i+1

(I − γjA)γiξi

Set αt
j = γj

∑t−1
k=j

∏k
i=j+1(I − γiA), we obtain ∆̄t =

αt
0∆0

tγ0
+ 1

t

∑t−1
i=0 α

t
i ξi .
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Assumptions

∆0 should has little impact on ∆t and ∆̄t . So, we need∏t
i=1(I − γiA)→ 0, as t →∞.

When γt = γ,
∏t

i=1(I − γiA) = (I − γA)t → 0, then we need
|I − γA| < 1
Assumption 2.2: 0 < γA < 2, then |I − γA| < 1

When γt → 0,
∏t

i=1(I − γiA) ≤ Ke−α
∑t

i=1 γi → 0 if
∑t

i=1 γi
divergences
Assumption 2.2: γt ∼ t−α, 0 < α < 1.
Why α cannot be 1? (α < 1 is a technical assumption)

t−1∑
k=i

k∏
j=i+1

(I − γjA)γiξi = γj

t−1∑
k=i

k∏
j=i+1

(I − γjA)ξi +
t−1∑
k=i

(γi − γj)
k∏

j=i+1

(I − γjA)ξi

(γi − γj) =
∑i−1

k=j(γk+1 − γk) =
∑i−1

k=j γk · o(γk).
Then A2.3 guarantees the second term convergence (the proof is routine, omit here, see

the proof of lemma 1 in the paper).
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Assumptions
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Assumptions

A2.3: Stochastic disturbance: random variable ξ → stochastic process ξt

Time dimension, xn → xt , and then averaging the trajectory

Filtered probability space (Ω,F ,Ft ,Pr) with a filtration Ft

ξt ∈ m(Ft) is a martingale-difference process

A2.4: Lindeberg condition → CLT

A2.5: There exists a covariance matrix.
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Theorem 1
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Proof of (a)

Simplify without loss of generality: N = 1
To prove (a), we consider decomposing

√
t∆̄t and obtain

√
t∆̄t =

αt
0∆0√
tγ0

+
1√
t

t−1∑
i=0

αt
i ξi := I (1) + I (2) + I (3).

I (1) :=
αt

0∆0√
tγ0
→ 0. In fact, ‖αt

i ‖ ≤ K .

Idea: (we only show the case γj = γ)

αt
i = γ

t−1∑
k=i

k∏
j=i+1

(I − γA) = γ

t−1∑
k=i

(I − γA)k−i−1

= A−1 − (I − γA)t−i−2A−1

So, 1√
t

t−1∑
i=0

αt
i ξi = 1√

t

t−1∑
i=0

A−1ξi − 1√
t

t−1∑
i=0

(I − γA)t−i−2A−1ξi := I (2) + I (3)
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Proof of (a)

We prove I (3) → 0.
In fact, because of lim

t→∞
(I − γA)t = 0, we obtain

1

t

t−1∑
i=0

(I − γA)t−i−2A−1 → 0,

Denote w t
j := (I − γA)t−j−2A−1. Then 1

t

∑t−1
j=0 ‖w t

j ‖ → 0, and we also
obtain ‖w t

j ‖ ≤ K .

Hence, we get that |I (3)| =

so |I (3)| → 0.
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Proof of (a)

We prove I (2) is asymptotic normality.
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Proof of (b)

√
t∆̄t = I (1) + I (2) + I (3).

E[t∆̄t∆̄
>
t ] = E[(I (1) + I (2) + I (3))(I (1) + I (2) + I (3))>]
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Proof of (c)

Back to the decomposition ∆̄t := (I (1) + I (2) + I (3))/
√
t. (Consider i.i.d.

ξi )

I (1)/
√
t =

αt
0∆0

tγ0
→ 0.

By the law of large number, I (2)/
√
t = 1

t

t−1∑
i=0

A−1ξi → 0.

Idea of the law of large number, I (3)/
√
t = 1

t

t−1∑
i=0

w t
i ξi → 0.
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Nonlinear Problem

Averaging algorithm:
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Assumptions

A3.1: V (x∗) = R(x∗) = 0. For example, V (x) = x2, x∗ = 0, in this case
x · R(x) > 0 meaning that when x > x∗ then R(x) > 0, and when x < x∗

then R(x) < 0. Moreover, x · R(x) ≥ λ
2 x

2 meaning that when x ≥ 0 then

R(x) ≥ λ
2 x , when x < 0 then R(x) ≤ λ

2 x .

A3.2: For example Gx − K1|x |λ+1 ≤ R(x) ≤ Gx + K1|x |λ+1 locally around
x∗ = 0. R(x) is close to Gx when λ or K1 is small.
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Assumptions
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Theorem 2
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Sketch of the Proof

Denote R̄(x) := R(x − x∗).

∆̄t = ∆̄1
t − δt . To prove

√
tδt → 0.
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Sketch of the Proof

It can be proved that
√
tδt → 0 as t →∞. So, the processes ∆̄1

t and ∆̄t

are asymptotically equivalent. In fact,

Idea (not rigorous): ∆i ∼ i−1/2 then
∑∞

i=0
|∆i |1+λ

i1/2 =
∑∞

i=0
1

i1+λ/2 <∞.
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Sketch of the Proof

Remark:
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Stochastic Optimization Problem

An application of the nonlinear result:
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Assumptions

A4.1: f convex. A4.3: φ linear growth. A4.3+ A4.4: e.g. φ(x) = x . A4.5:
χ(0) = covariance matrix.
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Theorem 3

Sketch of the proof:
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