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“Robust” Dynamic Pricing

The “price of misspecification” is expected to be significant if the parametric model
is overly restrictive. Somewhat surprisingly, we show (under reasonably general
conditions) that this need not be the case.




1.1 Dynamic Pricing

- Demand: D, =A(p)+¢, t=123,..
where 2:R, — R_ Is a deterministic (decreasing) function;

g,t>1 are zero-mean i.i.d random variables.
T
+ Regret:  R(z,T)=p"A(p")T-E*( p,D,)
=l

« Parametric Model: Misspecification:



1.2 “Robust” linear model

» Besbes and Zeevi (2015):

» All models are wrong, but some are useful !

Semimyopic pricing scheme: 7(p,, [I;, §;, 7;: i = 1})
Set t, = 0.
For i > 1: * Price consistency: converge to the optimal price

Step 1. Pricing and information collection
Set prices _ )
« Regret growth rate optimality:
pt:ﬁif f:f+1,...,f+fj,

p=p;+8;, t=t+L+1,..., t+2IL.

Set t,,, = t; +2I..  Practically: robust numerical experiments performance
Step 2. Recalibration

« Theoretically: near optimal O(/T (logT)?)

Table 1 The Impact of Misspecification

- . . .
A . 2 Well specified Misspecified
@1, B.) = argmin E D —(a- . (5
{ i+1s "BH'I} g B [ [ t ( "Bpr)] { ) Demand functions &, (linear) &, (exponential) ¥, (logit)
o, ted;
' Time periods (T) Time periods (T) Time periods (T)
=025 0.25 0.90 0.94 0.95 091 0.94 0.95 0.84 0.90 0.92
~ 05 0.87 0.93 0.95 0.93 0.96 0.96 0.87 0.93 0.95
~ ] "Ii+1 0.75 0.79 0.88 091 094 0.96 0.97 091 0.95 0.96
P = P L) (6) ;
i+ o=05
285+-1 0.25 0.83 0.89 09 0.82 0.87 0.89 0.69 0.77 0.80
05 0.80 0.88 091 0.87 0.92 0.93 0.76 0.84 0.87
0.75 0.74 0.84 0.87 0.90 0.94 0.95 0.81 0.88 0.91

Notes. Fraction of optimal (oracle) revenues achieved by the linear-based pricing policy, averaged over a set of 500 random test instances. The standard error of the
mean was always below 0.0125.



Online KWSA algorithm

First, the classical KWSA algorithm is for solving offline optimization problems
where only the terminal solutions of the iterations; Second, Algorithm 1 uses a
forward finite-difference gradient estimator instead of a central finite-difference

estimator.




2. 1 Online stochastic optimization

« Formulation: rllelggl{f (xX) =E(F(x,$))}

* Regret: R(T)=iE(f(Xt)—f(X*))

« Assumption:
- O c RY compact & convex
« E(F(X,£))<M,VxeQ
» f twice differentiable and Hessian continuous

» f strongly convex
. X eint(Q)



1 Online stochastic optimization

A0: Q c R? compact & convex

« compact (+A2) : the existence of X~

« convex : the uniqueness of the projection I1, (X)
Al: E(F(X,£))<M,vVxeQ

* convergence In mean square

A2: f twice differentiable and Hessian continuous
+ Hessian continuous (+A0 compact): |[V*f (x)| < B,, Vx € Q
A3: f B;-strongly convex
o definition: f(x,)> f(x)+VFf(x) (x,-x,) +% B, [[x, — %,
> corollary 1: [Vf (x,) -V (x,)]' (X, —=%;) = B, X, =X,
« corollary 2: the uniqueness of x~
Ad: X eint(Q)
« VI(X)=0

> WX,,X, (simplification: V2 (x)—B,1x0 )

2
, VX1, X,




2.2 Online KWSA algorithm

ALGORITHM 1 Online KWSA algorithm

Initialization. Let x; € Q be a starting solution. Let the
iteration counter n = 1 and period counter ¢ = ().
Step 1. Function evaluations and information collection.
e Letr=1r+1.SetX, = x,, and observe F(X,;,&,0);
eFori=1.2, ....d,
Letsr =1+ 1. Set X, = x,, + ¢,€; and observe F(X,, &,,).
End the for-loop.
Step 2. Updating.
Let
Xn+1 = o (x, — a,G(x,)),

where [lg is a projection operator onto the set €, that is,
[lo(x) = argming, _||x — x'||, and

G(x,) = —((F (%, + cae1, En1) = FX En0))s -

Cn

[F(xn + Cn€d, éﬂ,d} - F(xn-.. Qtn_{])])T-
Letn =n+ 1 and go back to Step 1.

Step 1: calculate the (forward) finite-difference

estimator (c,, sequence)

Step 2: projection gradient descent (a,, sequence)



2.2 Online KWSA algorithm

Theorem 1 Suppose that Algorithm 1 is
used to solve Problem (1) and Assumptions
1-4 are satisfied. Let a, = yn™! and ¢, =
sn~i with 1/(4By)<y <1/(2B;) and &> 0.
Then, there exists a constant A >0 such rthat
E[|lx, — x*||2] < An"2 foralln=1,2, ....

Fabian (1967):

* Forward finite-difference estimator

a =yn?,c =on*

* Central finite-difference estlmator.

1
a =yn",c =4n°

n

a,, sequence: gradient descent step size

* f By-strongly convex (A3)

V2 f(x)-B,I1>0

c, sequence: forward finite-difference

2)

(But i |n the online stochastic optimization, it

cumulative regret !)



2.2 Online KWSA algorithm

2
) Theorem 1 Suppose thar Algorithm 1 is

X, — X

 Define: b, =E(
« Recurrence relation: used to solve Problem (1) and Assumptions

|2 14 are satisfied. Let a, = yn™! and ¢, =
b . =E(IT.(x. —aG(x.))—x |
thes ( Q( ¢ n ( ”)) ) én_ v with 1/(4B)) <y <1/(2B;) and 6>0.
NG Then, there exists a constant A> 0 such rthat
=E(II.(X.—a G(x.))—-II,(x ' |
(o (%, =8,G (%)) =TT, (X )] ) E[llx, = x*|I’1 < An"2 foralln=1,2, ....

< E(|[X, _anG(Xn)_X*HZ)
=b, +a2E(|G(x,)[) - 2a,E(G(x,)" (X, - X))

where G(X;) =Ci([|:(><n +C81,601) —F (X0, &) oo F(X, +C84, 6 0) —F(Xon G0)]'

n

Define g(xn) - E(G(Xn) | Xn) :Ci([f(xn +Cne1)_ f(Xn)’ ey f(Xn +Cned)_ f(Xn)]T .

n



2.2 Online KWSA algorithm

.12
* Define: bn = E( G T ) Theorem 1 Suppose thar Algorithm 1 is
« Recurrence relation: used to solve Problem (1) and Assumptions
14 are satisfied. Let a, = yn™! and ¢, =
b,., <b, +a2E(|G(x,)|") - 2a,E(G(x,)" (X, —X")) sn"i with 1/(4B\)<y <1/(2B,) and &>0.
Then, there exists a constant A>0 such that
E(G(x.)" (X, —X))=E[E(G(X,)" (X, =X ))|X.] Elllx, — x*[12] < An"2 foralln=1,2, ...

= E[g(x,)" (X, —X)]
= E[VF (x,)" (X, =X )]+ E[(9(x,) = V(X)) (X, =X )]



2.2 Online KWSA algorithm

.12
* Define: bn = E( G T ) Theorem 1 Suppose thar Algorithm 1 is
« Recurrence relation: used to solve Problem (1) and Assumptions
14 are satisfied. Let a, = yn™! and ¢, =
b,., <b, +a2E(|G(x,)|") - 2a,E(G(x,)" (X, —X")) sn"i with 1/(4B\)<y <1/(2B,) and &>0.
Then, there exists a constant A>0 such that
E(G(x.)" (X, —X))=E[E(G(X,)" (X, =X ))|X.] Elllx, — x*[12] < An"2 foralln=1,2, ...

= E[g(x,)" (X, —X)]
= E[VF (x,)" (X, =X )]+ E[(9(x,) = V(X)) (X, =X )]

A4 corollary: Vf(x)=0
A3 corollary 1: [Vf(x,) -V (x,)I' (x, —%,) = B/||x, —le2 VX[, X,

E[VT(x,)" (x, =x)] = E[(VF (x,) = VI (x"))" (x, =x)]
2] = Blbn

> BE[||x, — X




2.2 Online KWSA algorithm

)

X, — X

 Define: b, =E(
* Recurrence relation:

b, <b, +a2E(|G(x,)| ) —2a,E(G(x,) (X, —X"))

E(G (Xn )T (Xn _X*)) 2 Blbn L E[(g(xn) —Vf (Xn ))T (Xn _X*)]

Theorem 1 Suppose thar Algorithm 1 is
used to solve Problem (1) and Assumptions
14 are satisfied. Let a, = yn™! and ¢, =
sn~+ with 1/(4B)) <y <1/(2B,) and &> 0.
Then, there exists a constant A>0 such that
E[||x, — X*|[2] < An"? foralln=1,2, ....



2.2 Online KWSA algorithm

*2
« Define: b, =E(|x. —X7| )

* Recurrence relation:

b, <b, +a2E(|G(x,)| ) —2a,E(G(x,) (X, —X"))

E(G (Xn )T (Xn _X*)) 2 Blbn o E[(g(xn) —Vf (Xn ))T (Xn _X*)]

Theorem 1 Suppose thar Algorithm 1 is
used to solve Problem (1) and Assumptions
14 are satisfied. Let a, = yn™! and ¢, =
sn~+ with 1/(4B)) <y <1/(2B,) and &> 0.
Then, there exists a constant A>0 such that
E[||x, — X*|[2] < An"? foralln=1,2, ....

A2 corollary: ||V2 f (x)|| <B,,VxeQ

g(x,) = E(G(X,)[X,) = Ci([f(xn +C,81) = F (%), ooy T (X, +Coeg) = F(X)T

n

(%) = V1 (%,) =€, €1V £ (1), - &1V F(n,)e,)” < By,

EL(G(%,) - V1 (X,)) (%, ~X 1> =~ Byc,E]

2_%Bzcrﬁﬁ

X —x*Hl] > —% B,c.E[v/d

X, —X

N



2.2 Online KWSA algorithm

.12
* Define: bn = E( *n T X ) Theorem 1 Suppose thar Algorithm 1 is
« Recurrence relation: used to solve Problem (1) and Assumptions
> 14 are satisfied. Let a, = yn™! and ¢, =
b, <b, +a E(|G(x,)|") —2a,E(G(X,)" (X, —X)) Sn~i with 1/(4By)<y<1/(2B)) and &> 0.

Then, there exists a constant A>0 such that

* 1 1
E(G(X.) (X, —X)) = Bb. —EBzanE\/E E[||x, — x*[|12] < An~? foralln=1,2, ....



2.2 Online KWSA algorithm

* Define: Theorem 1 Suppose that Algorithm 1 is

« Recurrence relation: used to solve Problem (1) and Assumptions

14 are satisfied. Let a, = yn™! and ¢, =
b,., <b, +a2E(|G(x,)|") - 2a,E(G(x,)" (X, —X")) sn"i with 1/(4B\)<y <1/(2B,) and &>0.
X 1 Then, there exists a Lcm:s.ram A >0 such rthat
E(G0x,) (%, =)= B, ~— B,c,v/d b, E[llX, — x*|12] < An~3 foralln=1,2, ....
)

[Al: E(F(X,£)?)<M,¥xeQ

G(Xn) - i([F(Xn +Cne1’ én,l) o F(Xn J gn,o)’ ey F(Xn +Cned J fn,d)_ F(Xn’gn,o)]T
N Cr Y,

E(|G(x )H)_“dM ( [la+b]< max{2|al,2[b|} )

n

2 2
b, <(1-2aB)b +ac Bzﬁﬁ+4di“2'v'

2pn2 3
:(1—27Bl)b +75B,"Jdn \/7 —4d7;2M n 2



2.2 Online KWSA algorithm

.12
* Define: bn = E( *n T X ) Theorem 1 Suppose thar Algorithm 1 is
« Recurrence relation: used to solve Problem (1) and Assumptions
. 14 are satisfied. Let a, = yn™! and ¢, =
27B 2 4dy*M? -3 l " "
b,., < (1— L2, + yoB,/dn *\fo, + —— = n? sn™i with 1/(4B))<y <1/2B;) and 5> 0.
n o Then, there exists a constant A>0 such that

« Induction (Appendix): E(llx, —=x*|I°’] < An"2 foralln=1,2, ....

1

b <An2,n=123..



2.2 Online KWSA algorithm

)

X, — X

 Define: b, =E(

e Recurrence relation:
) 2pnp 2 3
D, < (4= ZL2)b, + 708, ¢ b, + L n 2
n

* Proof (Appendix):

let a = 2yBy, f = }’533\/{1 and @ = 4“:—” By

Equation (11), we have

bpi1 < (l - %) b, + ﬁf?_i b, + cm':_%. (A1)

Let A = max{b;, Ag}, where

(ﬁ + \Xﬁ: + 20(2a — l]l)1
Ao =

2a — 1




2.2 Online KWSA algorithm

)

« Define: b, =E(|x, —X

* Recurrence relation:

_2 2n 2 8
b < (1—2Biyp 4458 dn 4\/E+4dy5—z'v'n 2
n

* Proof (Appendix):

and, because 2a — 1 > 0, Ay also satisfies

2a— Dk =2k =2mw 2 0, Vk =2 g (A2)

We prove by induction that b, < An 2. It is easy to see

that it holds for n = 1. For any n = 1, 2, ..., suppose that
1

b, < An"z. Then, by Equation (A1) and because 1 —a/n >0

ductoa <1,
3

| N ;
bpi1 < (l - E) An T + ﬁ\ﬁu_”‘ + wn 2
n

| 3
= in"2 — (ad — ﬁ\/;— @)n 2
3 3

= An"7 — %n‘i - %[(za —1)A=28VA-20n"?

-

L f 1 1 _3
< A n:——nl). A3
_/( 5 : (A3)



2.2 Online KWSA algorithm

*2
« Define: b, =E(|x. —X7| )

* Recurrence relation:

_2 2n 2 8
b < (1—2Biyp 4458 dn 4\/E+4dy5—z'v'n 2
n

* Proof (Appendix):

where the last inequality follows from Equation (A2) and the
fact that A = max{by, Ap} = Ap. Let g(x) = x 2. Then, g’'(x) =

—%:{_%. Notice that g(x) is convex. Then,
g() — g(x) = g' ()’ = x).
Then,

3

(n+ l)"; - u_'; =gn+ 1) —gn =g = —%u_:.

Therefore,
_1 1 _3 _1
n:—=-nz11<(n+1):.
5 ( )
Then, by Equation (A3), we have b,,; < A(n+ l)_%. This
concludes the induction proof and, therefore, b, < An"1 for
alln=1,2, ....



2.2 Online KWSA algorithm

Theorem 2 Suppose that Algorithm 1 is used

to solve Problem (1) and Assumptions 1-4 are » Step 1: calculate the (forward) finite-difference
1
satisfied. Let a, = yn~" and ¢, = én i with T ( o uence)
1/(4B,) <y < 1/(2B,) and é>0. Then, there el
exists constant K >0 and K2 > 0 such that ° Step 2 projection gradlent descent (an Sequence)

R(T) < r|ﬁ+x3ﬁ)rnh’?"= 1,2, ...
* Regret:
(1) = EIF (X, &,0) + F (X, +C,84, Ep1) +oe + F (X, +C,8, &, )]~ (A +D) F (X)
=E[f(x,)— fO)]+E[f(x, +¢.e,) = F ()] +... +E[f(x,+c.eq)~f(X)]



2.2 Online KWSA algorithm

Theorem 2 Suppose that Algorithm 1 is used

o Rt to solve Problem (1) and Assumptions 1-4 are
1

r(in) = ENf(x )- f X* +Elf(x +ce)-f X* + satisfied. Let a, = yn~" and ¢, = én" 3 with

(n) =ELT06) = T( z] [T (%, +¢.8.) = T(x)] 1/(4B,) <y < 1/(2B;) and 6>0. Then, there

+E[f (Xn + cned) — f (X )] exists constant x>0 and x>>0 such that

R(T) < :f.\/?+x3ﬁ)rnh’?"= 1,2, ...

A2 corollary: ||V2 f (x)|| <B,,VxeQ
A4 corollary: Vf(x)=0

2

f(x )- f(x*)S%B2 X —X

%112
X, = X[ +¢2)

f0%+CﬁJ—f(f)£%Bzxn+%g—xw2£Bx

1

1 . Theorem 1: b, < An2,n=123..
r(n) < (eqd)szn +dB,C;

2d +1

1
<( A+d5%)B,n 2




2.2 Online KWSA algorithm

Regret:
r(n) < (% +d)B,b, +dB,c’

1
2d+1 5 d57)B,n 2

<(

If central finite-diﬂ‘erence estimatorl:
c.=6n 8 =r(n)<0O(n 3)
1

not as good as O(n 2)

Theorem 2 Suppose that Algorithm 1 is used
to solve Problem (1) and Assumptions 1-4 are
satisfied. Let a, = yn~" and ¢, = ﬁn_f with
1/(4B,)<y <1/(2By) and &>0. Then, there
exists constant x>0 and x>>0 such that
R(T) < :f.\/?+x3ﬁ)rnh’?"= 1,2, ...



2.2 Online KWSA algorithm

Theorem 2 Suppose that Algorithm 1 is used

) Regret' to solve Problem (1) and Assumptions 1-4 are
2d +1 21 satisfied. Let a, = yn~" and ¢, = ﬁﬂ_% with

r(n) <( A+d6?)B,n 2 1/(4B,) <y < 1/(2B)) and >0. Then, there

2 exists constant x>0 and x>>0 such that

. . RT) <xciNT+xaforallT=1,2, ...

RD< ) r(n):(zd;ld+d6:)33 > n

n=1 n=l1

(T+d) [ {d+1)
< (2d; lA+ﬂ’63)BQ/ _x_%dx

0

< [(2d + l)}].+2d§_182(ﬁ+ \/{_j}

vVd+1

<2A4+8OVd+1-VT+200+ DA+ 1).




Multi-product dynamic pricing and
numerical experiments

Theorem 3 essentially shows that the KW pricing policy is asymptotically optimal. The
nonparametric approach may avoid model misspecifications that always exist in
parametric models.




3.1 KW pricing policy

+ Demand: D(p) = (D,(p), D,(p)...., D, (p))"

« Maximizing the revenue:
p =argmax{f(p) = E[p' D(p)]1}

peQ

* Regret:

R(.T) = Y E(O(p") - 6(p)



3.1 KW pricing policy

ALGORITHM 2 KW pricing policy

Initialization. Let py € Q by a starting price vector. Let the
iteration counter n = 1 and period counter 1 = ().
Step 1. Pricing and information collection.
e Letr=1r+1.Setp, = p, and observe O, = O,(p,):
eFori=1,2, ....d,
Lett=t+ 1. Setp; = p.+cpe; and observe @, = O,(p,).
End the for-loop.
Step 2. Updating.
Let
Pot1 = Ha(ps + @,.G(p,)).
where [, is a projection operator onto the set €, that
is, Io(p) = argminy, .o |lp — p’||, and

|
G(p,) = C—[(@'mz = Ok11)s -ov s (Opyass — Op)I*

with k = n(d + 1). (Note that the index k introduced

here is only for notational simplification of the
expressions of @, where ¢ = k+1, ...,
k+d+1. In order to make the expression
of G(p,) in Algorithm 2 consistent with that
of G(x,) Algorithm 1, in fact, we can rewrite G(x,,) =
=([F®ks2:€n1) = F&ir1,£n0))s oo o [FRirass Ena)
(~F&ps1, En0)])T, with k= n(d+1).) Let n = n+ 1
and go back to Step 1.

Step 1: calculate the (forward) finite-difference

Step 2: projection gradient descent



3.1 KW pricing policy

Theorem 3 Suppose that the KW pricing pol-

icy is used to solve Problem (15) and that the
following assumptions hold: o Assumpti on:

1. QcR? is a convex and compact set and

o € int(©Q): « O c R compact & convex
E(F(x,£)*)<M,VxeQ

f twice differentiable and Hessian continuous

2. E[D(p)] is twice continuously differentiable
in Q and max, c o E[||D(p)]|*] < oo;
3. B(p) is strongly concave.

f strongly convex

X" eint(Q) /

Then, there exist constants A>0, k>0, and
k5 > 0 such that E(||p, —p*||*) < 4 n for all
n=1,2, ... and R(T,¥*V) < xlﬁ+ K> for
alT=1,2, ....

~




3. 2 Numerical experiments

« Experiment 1: illustration of the rate optimality of the total regret

D.(p;) = a + Bp, + €,

where €, = (ey,, ...

en)T € R, a = (ay, ...

and B is a d X d matrix

| Pan

P
[ia)]

b1z
Ji2%)

B

for r=1,2, ...,

Pra

Boa

5ﬂ'd)T c ER:J',

.ﬂ.rin‘ |

80

— KW pricing policy
70} 95% CI

60
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40}

R(T, W5W)
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vT

FIGURE 1 Average cumulative regret of the KW pricing policy [Colour
figure can be viewed at wileyonlinelibrary.com]



3. 2 Numerical experiments

» Experiment 2: comparison with multi-product parametric pricing policies

« Multi-product linear demand model
« compared with ILS & MCILS

(Keskin and Zeevi (2014))

expected cumulative regret R(T, W)

FIGURE 2

500

400

300

200

100

Greedy ILS v.s. KW pricing policy

—— KW pricing policy

- Greedy ILS
95% CI (Greedy ILS)

95% CI (KW pricing policy)

500 1000 15A00 2000 2500
T

Comparisons between the ILS and KW pricing policies

[Colour figure can be viewed at wileyonlinelibrary.com)

3000



3. 2 Numerical experiments

« Experiment 3: comparison with a single-product nonparametric pricing policy

a. Linear: A(p) = (a—pp)*, where a = 1,
p=0.5and ¢ =0.05%. Let Q= [I, u] = [0.5,
1.5], and then the optimal price is p” = 1. Let

5 = = - - (A) (B) (C)
= 07,1;=1,6,= pt where ,0 - 0'{5’ 5 KW v.s. Semimyopic (under linear model) 5 KW v.s. Semimyopic (under exp model) 5 KW v.s. Semimyopic (under logit model)
and T; = { l’ c s T } for the SCIIMyopIc = i [ — KW pricing policy = —— KW pricing policy J-—" = —— KW pricing policy Lo
policy; and let Po= [)?1 y = 3, and 6 = 1 for :‘é p e Semimyopic ; 41 ==~ Semimyopic //,—’ ::'3 44 === Semimyopic it
the KW pricing policy. g g 5 T g :
. Exponential: A(p) = exp(a—pp), where 27 . 2 P 2
a=1,p=03and 6> =005 Let Q = [/, -1 2’ 29
u] = [2.5, 3.5], and then the optimal price § APF é 1 ,,—’ % 1-
isp =3 Letp, =27, 1;=1,6, = pr~ g g z g
x 0 x 01 % 04
where p=0.2,and 7; = {1, ... . £;41} for the o 0 50 100 150 200 2 0 50 100 150 200 ¥ 50 100 150 200
semimyopic policy; and let py = 2.7, y = 3, e T - A T ] ey n— T ”
.. . Jnder linear mode Inder exponential mode Inder logit mode
and 6 = 1 for the KW pricing policy. nder linear mode nder exponen
. Loeit: A =expla— /(] +expla — FIGURE 4 Comparisons between the semimyopic and KW pricing policies. (A) Under linear model. (B) Under exponential model [Colour figure can be
g p p)/(1+exp p)). P p pricing po P g
where @ = 1, f = 0.3, and o2 = 0.052. Let viewed at wileyonlinelibrary.com]

Q=[l. ul=13.7I. and then the ptimal price is
p ~52238. Letp, =45, I;=1,6, = pr'™
where p=0.5,and 7; = {1, ... ,#;4,} for the
semimyopic policy; and let py = 4.5, y = 10,
and 6 = 1 for the KW pricing policy.




3. 2 Numerical experiments

« Experiment 3: comparison with a single-product nonparametric pricing policy

° Besbes and Zeevi (2015) = Hong LJ, L| C & Luo J (2021)

«  Price consistency: converge to the optimal price *  Price consistency: converge to the optimal price

* Regret growth rate optimality: *  Regret growth rate optimality:

- Theoretically: near optimal * Theoretically: optimal

» Practically: robust numerical experiments performance *  Practically: more robust

& /

» Applicability: much more general
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